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Abstract
We introduce the problem of regret minimization
in adversarial multi-dueling bandits. While
adversarial preferences have been studied in
dueling bandits, they have not been explored in
multi-dueling bandits. In this setting, the learner
is required to select m ≥ 2 arms at each round
and observes as feedback the identity of the most
preferred arm which is based on an arbitrary
preference matrix chosen obliviously. We
introduce a novel algorithm, MiDEX (Multi
Dueling EXP3), to learn from such preference
feedback that is assumed to be generated from a
pairwise-subset choice model. We prove that the
expected cumulative T -round regret of MiDEX
compared to a Borda-winner from a set of K
arms is upper bounded by
O((K logK)1/3 T 2/3). Moreover, we prove a
lower bound of Ω(K1/3 T 2/3) for the expected
regret in this setting which demonstrates that our
proposed algorithm is near-optimal.

1. Introduction
Multi-armed bandits (MAB) is a sequential decision
making framework that involves selecting from multiple
options (symbolized as arms) with unknown outcomes to
optimize performance over time. This framework can be
useful in impactful applications like e-healthcare, clinical
trials, recommendation systems, and online advertising.

In a classical MAB problem, the learner selects an arm in
each round and observes absolute feedback i.e., a numerical
value as feedback for the selected arm. However, in some
tasks, especially those requiring human feedback, it is often
more practical to elicit preference feedback than absolute
feedback. Motivated by such scenarios, there has been a
growing body of work on dueling bandits in which the
learner selects a pair of arms to be compared in each round,
and receives preference feedback about the selected pair.
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Recently, a few works have extended this setup to multi-
dueling bandits in which the learner selects a subset of
m ≥ 2 arms in each round, and receives preference feedback
about the selected arms (Brost et al., 2016; Saha & Gopalan,
2018; 2019; Ren et al., 2019; Agarwal et al., 2020; Sui et al.,
2017; Haddenhorst et al., 2021; Du et al., 2020).

Preferences, either over a pair of arms or for m ≥ 2 arms,
can be expressed as stochastic stationary preferences or
adversarial preferences. Stochastic stationary preferences
represent scenarios where preferences are assumed to be
generated through stochastic models that do not change
over time. Such preferences might be unable to capture
real-world applications where preferences might vary
significantly and unpredictably over time. These
preferences would find more faithful representation within
a robust worst-case (adversarial) model, which avoids the
stringent stochastic assumption and allows for an arbitrary
sequence of preferences over time. For dueling bandits,
several algorithms have been proposed for stochastic
stationary preferences (Yue & Joachims, 2009; 2011; Yue
et al., 2012; Urvoy et al., 2013; Zoghi et al., 2014;
Komiyama et al., 2015) and for adversarial preferences
(Gajane et al., 2015; Saha et al., 2021). However, to the
best of our knowledge, all the previous work on
multi-dueling bandits assumes stochastic stationary
preferences, and adversarial preferences have not been
studied in this context.

Our Contributions

• We introduce and formalize the problem of regret
minimization in adversarial multi-dueling bandits,
where the learner is required to select m ≥ 2 arms at
each round and observes as feedback the identity of
the most preferred arm. In this general adversarial
model, the sequence of preference matrices is allowed
to be entirely arbitrary and they are chosen obliviously
by the environment.

• We propose a novel algorithm called, MiDEX ,
considering a pairwise-subset choice model for
feedback (exact definitions will follow in Section 3).

• We analyze the expected cumulative regret of MiDEX
compared to a Borda-winner (which, unlike the
alternative of Condorcet-winner, always exists and
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may suit the adversarial model better). Our analysis
demonstrates that the expected cumulative regret of
MiDEX is upper bounded by O((K logK)1/3 T 2/3).

• Furthermore, we establish a lower bound of
Ω(K1/3 T 2/3) for the expected cumulative regret,
indicating the near-optimality of our proposed
algorithm.

2. Related Work
In the multi-dueling bandits problem considered in Brost
et al. (2016); Schuth et al. (2016); Sui et al. (2017); Du et al.
(2020), the learner is assumed to receive some subset of the
possible

(
m
2

)
pairwise comparisons amongst the selected m

arms. In contrast, Saha & Gopalan (2018); Agarwal et al.
(2020) assume a more limited form of feedback, referred
to as winner feedback, where the learner receives only the
identity of the arm that is most preferred among the selected
arms. In this article, we consider winner feedback.

In multi-dueling bandits (and dueling bandits), several
notions of an optimal arm have been considered in the
literature. Many works on multi-dueling bandits use the
notion of Condorcet winner: an arm being preferred when
compared to any other arm. For instance, Saha & Gopalan
(2018); Brost et al. (2016); Du et al. (2020) consider regret
minimization in multi-dueling bandits for stochastic
preferences with Condorcet winner. Agarwal et al. (2020)
extend this notion to a generalized Condorcet winner: an
arm that has the greatest probability of being the winner in
each subset containing it and propose an algorithm for
regret minimization. Haddenhorst et al. (2021) also use the
notion of a generalized Condorcet winner and propose an
algorithm for best arm identification with bounds on its
sample complexity. Saha & Gopalan (2019) study the
problem of identifying a near-best arm with high
confidence where the Condorcet winner is considered to be
the best arm. All of these works in the framework of
multi-dueling bandits assume that the underlying
preferences are of a stationary stochastic nature.

As highlighted by Jamieson et al. (2015), using the notion
of a Condorcet winner may pose several drawbacks. Chief
among these is the potential non-existence of a Condorcet
winner, as illustrated by the absence of one in widely used
datasets like MSLR-WEB10k (Qin et al., 2010). Moreover,
in the context of adversarial preferences addressed in this
study, assuming the presence of a Condorcet winner would
imply preferences where a certain fixed arm is consistently
preferred to all the other arms at all rounds. Such a
constraint might render the framework of adversarial
(multi-)dueling bandits that presupposes the existence of a
Condorcet winner unsuitable for many real-world
applications with non-stationary preferences.

Alternatively, the notion of a Borda winner has been used
in adversarial dueling bandits (Saha et al., 2021). A Borda
winner is an arm with the highest Borda score where the
Borda score of an arm is the probability that it is preferred
over another arm chosen uniformly at random. Firstly, the
advantage of using the notion of Borda winner is that it
always exists, unlike a Condorcet winner. Secondly, as
argued in Jamieson et al. (2015), in certain cases a Borda
winner represents a better reflection of preferences than a
Condorcet winner when they are distinct, and the former is
more robust to estimation errors in preferences.
Consequently, in this article, we use the notion of a Borda
winner.

Other notions of an optimal arm have also been considered
for dueling bandits with stochastic preferences: Copeland
winner (Zoghi et al., 2015; Komiyama et al., 2016; Wu &
Liu, 2016) and von Neumann winner (Balsubramani et al.,
2016; Dudı́k et al., 2015).

Another tangentially related problem is the one considered
in Ren et al. (2019) where there exists a unique unknown
ranking r1 ≻ r2, . . . ≻ rK such that i ≻ j indicates that i is
more preferred than j; the learner receives winner feedback
for the selected m ≥ 2 arms; and the learner’s goal is to
recover this true ranking.

Multi-armed bandits with preference feedback can also be
formulated as partial monitoring games which is a rich
framework for sequential decision making under
uncertainty (Gajane & Urvoy, 2015; Kirschner et al., 2023).

3. Problem Setting
We consider an online decision making task over a finite set
of arms [K] :={1, 2, . . . ,K} which spans T rounds 1. At
each round t = 1, 2, . . . , T ,

• the learner selects, possibly at random, a multiset of
arms At such that |At|= m where 2 ≤ m ≤ K; and

• the learner observes a ‘winner’: an arm that is preferred
over all the other arms in At at time t.

The selection of a winner from a multiset of arms is
governed by the underlying subset choice model. Given a
multiset of arms, a subset choice model determines the
probability of one of the arms being preferred over the rest
in the multiset. In this article, we consider the
pairwise-subset choice model, introduced by Saha &
Gopalan (2018). There also exist other subset choice
models in the related literature such as a popular class of
models called Random Utility Models (Soufiani et al.,
2012).

1Throughout the article, we use the shorthand of [V ] to
represent {1, 2, 3 . . . , V } for any positive integer V .
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3.1. Pairwise-subset Choice Model

We assume that the environment obliviously fixes a
sequence of T preference matrices P1, P2, . . . , PT where
each Pt(i, j) is the probability that arm i is preferred when
compared to arm j at round t ∈ [T ]. Each Pt ∈ [0, 1]K×K

satisfies Pt(i, j) = 1 − Pt(j, i) and Pt(i, i) = 1/2 for all
i, j ∈ [K]. These preference matrices are not revealed to
the learner.

Given a multiset of arms A = {A(1),A(2), . . . ,A(m)}
and a corresponding preference matrix P , the probability of
any index i ∈ [m] being selected as the winner is defined as

W (i | A, P ) :=

m∑
j=1,j ̸=i

2P (A(i),A(j))
m(m− 1)

.

As noted in Saha & Gopalan (2018), the above forms a valid
probability distribution over the indices i ∈ [m], and when
m = 2 (which corresponds to the dueling bandits case), it
simplifies to the probability of an arm winning the pairwise
duel.

3.2. Performance Measure: Regret

The performance of the learner’s arm selection strategy is
measured against the performance of an optimal arm in
hindsight. As noted earlier in Section 2, we use the notion
of a Borda winner which is defined using the Borda score
defined below.
Definition 1 (Borda Score). The Borda score of an arm
i ∈ [K] according to a preference matrix Pt is defied as

bt(i) :=
1

K − 1

∑
j∈[K]\{i}

Pt(i, j).

Accordingly, the optimal arm i∗ is defined as the arm with
the highest cumulative Borda score up to horizon T i.e.,

i∗ := argmax
i∈[K]

T∑
t=1

bt(i).

Definition 2 (Regret). LetAt be the subset of arms selected
by an algorithm at t = 1, . . . , T such that |At|= m. Then
regret of the algorithm at the end of horizon T is defined as

RT :=

T∑
t=1

[
bt(i

∗)− 1

m

∑
i∈At

bt(i)

]
.

In our proposed algorithm, we make use of the Shifted Borda
Score (Saha et al., 2021).
Definition 3 (Shifted Borda Score). The shifted Borda score
of an arm i ∈ [K] according to a preference matrix Pt is
defined as

st(i) :=
1

K

∑
j∈[K]

Pt(i, j).

Definition 4 (Shifted Borda Regret). Let At be the subset
of arms selected by an algorithm at t = 1, . . . , T such that
|At|= m. Then shifted Borda regret of the algorithm at the
end of horizon T is defined as

Rs
T :=

T∑
t=1

[
st(i

∗)− 1

m

∑
i∈At

st(i)

]
.

The following proposition lets us interpret the shifted Borda
score of an arm in terms of its Borda score.
Proposition 1. The shifted Borda score st(i) of any arm
i ∈ [K] is related to its Borda score bt(i) by the equation

st(i) =
K − 1

K
bt(i) +

1

2K
.

Proof.

st(i) =
1

K

∑
j∈[K]

Pt(i, j)

=
1

K

∑
j∈[K]\{i}

Pt(i, j) +
1

K
Pt(i, i)

=
K − 1

K
bt(i) +

1

2K
,

where the last equality follows from Definition 1 and the
fact that Pt(i, i) =

1
2 for any i ∈ [K].

Using the above, we can state the following for optimal arm
i∗ and regret RT .
Proposition 2. i∗ := argmaxi∈[K]

∑T
t=1 bt(i) =

argmaxi∈[K]

∑T
t=1 st(i).

Proposition 3. RT = K
K−1R

s
T .

4. Our Algorithm and Performance Guarantee
In this Section, we provide our proposed algorithm
MiDEX (Multi Dueling EXP3). It falls under the class of
Exponential Weight algorithms — a well-known class of
algorithms for MAB problems that can be traced back to
Auer et al. (2002).

In MiDEX, firstly at each round t = 1, 2, . . . , T , two arms
xt and yt are sampled from qt. Then each of xt and yt is
replicated about m

2 times to constitute the multiset of arms
At to be selected at time t. After receiving the winner index
from At according to the pairwise-subset choice model as
defined in Eq. (1), Procedure 2 transforms the received
feedback which is then used to compute an estimate of the
shifted Borda score ŝt(i) for each arm i. These estimates
are, in turn, used to compute qt+1. A parameter γ ∈ (0, 1]
is incorporated to ensure that for all t ∈ [T ] and i ∈ [K],
qt(i) ≥ γ/K which translates to the selection probability
of any arm always being above zero.
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Algorithm 1 MiDEX (Multi Dueling EXP3)

1: Input: Set of arms [K], horizon T , number of arms
to be selected at each round m, exploration parameter
γ ∈ (0, 1] and learning rate η > 0.

2: Initialize: Initial arm-selection probability distribution
q1(i) = 1/K, ∀i ∈ [K].

3: for t = 1, 2, . . . , T do
4: Sample xt, yt ∼ qt i.i.d. with replacement.
5: Construct At = {xt, xt, . . . , xt, yt, yt, . . . , yt} by

replicating xt for ⌈m2 ⌉ times and yt for ⌊m2 ⌋ times
with probability 1

2 , or xt for ⌊m2 ⌋ times and yt for
⌈m2 ⌉ time with probability 1

2 .
6: Receive winning index

INDEXt ∼Wt(i|At) (1)

where Wt(i|At) =
∑m

j=1,j ̸=i
2Pt(At(i),At(j))

m(m−1) for
any i ∈ [m] and At(i) is the ith item in At.

7: if At(INDEXt) = xt then
ot = xt,

else
ot = yt.

end if
8: Estimates scores, for all i ∈ [K]:

ŝt(i) :=
1(i = xt)

K qt(i)

∑
j∈[K]

1(j = yt) g(m, ot, xt)

qt(j)
,

(2)
where g(m, ot, xt) is computed as shown in
Procedure 2.

9: Update, for all i ∈ [K]:

q̃t+1(i) :=
exp

(
η
∑t

τ=1 ŝτ (i)
)

∑K
j=1 exp

(
η
∑t

τ=1 ŝτ (j)
) ;

qt+1(i) :=(1− γ) q̃t+1(i) +
γ

K
. (3)

10: end for

Theorem 1. Let γ =
√

3ηK
2 and η =

(
2 logK

T
√
K m′

)2/3
where

m′ =
(√

3
2 +

√
2
3

(3m+1)2

4(m+1)2

)
. For any T , K ≥ 2 and

m ≥ 2, the expected regret of MiDEX satisfies

E[RT ] ≤ 3.78 (m′)2/3 (K logK)1/3 T 2/3.

The regret upper bound can be further simplified to

E[RT ] ≤ 8.13 (K logK)1/3 T 2/3,

for any m ≥ 2.

Procedure 2 g(m, ot, xt)

if m is even then

return
1(ot=xt)− (m−2)

4(m−1)
m

2(m−1)
,

else

return 1(ot=xt)− (m−1)
4m

m+1
2m

.

endif

5. Mathematical Analysis
The proof of Theorem 1 builds upon the following lemmas.
The most important lemmas are Lemma 1 and Lemma 2.
Lemma 1 proves how the transformed feedback can be
interpreted as the probability of xt winning the duel against
yt. Lemma 2 proves that the score ŝt(i) being computed in
Eq. (2) is an unbiased estimate of the true shifted Borda
score st(i). Proofs for the following lemmas can be found
in the Appendix.

Lemma 1. E[g(m, ot, xt)] = Pt(xt, yt).

Lemma 1 is proved using Procedure 2, the construction of
At and the definition of Wt(i | At).

Lemma 2. For all t ∈ [T ] and i ∈ [K], it holds that
E[ŝt(i)] = st(i).

Lemma 2 is proved using Lemma 1 and the fact that xt and
yt are sampled i.i.d. from qt with replacement.

Next, in Lemma 3, we bound the magnitude of the
transformed feedback g(m, ot, xt).

Lemma 3. For all t ∈ [T ] and m ≥ 2, g(m, ot, xt) ≤
3m+1
2m+2 .

Lemma 3 follows from expanding the construction of
g(m, ot, xt) given in Procedure 2.

In Lemma 4, we bound the magnitude of the shifted Borda
score estimates.

Lemma 4. Let γ ≥
√
3ηK/2. Then, for any t ∈ [T ],

i ∈ [K] and η > 0, it holds that ηŝt(i) ∈ [0, 1].

Lemma 4 is proved using Lemma 3, the definition of qt
given in Eq. (3) and the definition of ŝt given in Eq. (2).

Let Ht−1 :=(q1, P1, x1, y1, o1, . . . , qt, Pt) denote the
history up to round t.

Lemma 5. For all t ∈ [T ], it holds that EHt

[
qTt ŝt

]
=

EHt−1
[Ei∼qt [st(i) | Ht−1]].

Lemma 5 follows from the proof of Lemma 2.

Lemma 6. At any time t ∈ [T ], it holds that

E
[∑K

i=1 qt(i) ŝt(i)
2
]
≤ (3m+1)2

4(m+1)2
K
γ .
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Lemma 6 is proved using Lemma 3, the definition of ŝt
given in Eq. (2), and the fact that ∀i′ ∈ [K] and ∀t ∈ [T ],
qt(i

′) ≥ γ/K according to Eq. (3), the initialization of qt,
and γ ∈ (0, 1].

Lemma 7. For any i ∈ [K], j ∈ [m] and t ∈ [T ],

P
(
At(j) = i

)
= qt(i).

Lemma 7 follows from the construction of At and the fact
that xt and yt are sampled i.i.d. from qt with replacement.

5.1. Proof of Theorem 1

Proof. We start by expanding the expression for the
expectation of shifted Borda regret Rs

T .

EHT
[Rs

T ] = EHT

 T∑
t=1

st(i∗)− 1

m

∑
j∈At

st(j)


=

T∑
t=1

st(i
∗)−

T∑
t=1

EHt

 1

m

∑
j∈At

st(j)


=

T∑
t=1

st(i
∗)−

T∑
t=1

EHt−1 [Ei∼qt [st(i) | Ht−1]]

(4)

In the above, the second equality holds because the
preference matrices Pt are chosen obliviously, and hence st
and the identity of i∗ remain independent of the
randomness of the algorithm. Moreover, the last equality
uses that all the m arms in At are ∼ qt (Lemma 7).

For any γ ≥
√
3ηK/2 and η > 0, we have ηŝt(i) ∈ [0, 1]

using Lemma 4. Using the regret guarantee of standard
Exponential Weight algorithm (Auer et al., 2002) over the
completely observed fixed sequence of reward vectors
ŝ1, ŝ2, . . . , ŝT , for i∗ := argmaxi∈[K]

∑T
t=1 bt(i) =

argmaxi∈[K]

∑T
t=1 st(i), one can state that

T∑
t=1

ŝt(i
∗)−

T∑
t=1

q̃Tt ŝt ≤
logK

η
+ η

T∑
t=1

K∑
i=1

q̃t(i)ŝt(i)
2.

Using q̃t =
qt− γ

K

1−γ and γ ∈ (0, 1), with the above inequality,
we have that

(1− γ)

T∑
t=1

ŝt(i
∗)−

T∑
t=1

qTt ŝt

≤ logK

η
+ η

T∑
t=1

K∑
i=1

qt(i)ŝt(i)
2

=⇒ (1− γ)

T∑
t=1

EHT
[ŝt(i

∗)]−
T∑

t=1

EHT

[
qTt ŝt

]

≤ logK

η
+ η

T∑
t=1

EHT

[
K∑
i=1

[
qt(i)ŝt(i)

2
]]

(a)
=⇒ (1− γ)

T∑
t=1

st(i
∗)−

T∑
t=1

EHt−1 [Ei∼qt [st(i) | Ht−1]]

≤ logK

η
+ η

T∑
t=1

(3m+ 1)2

4(m+ 1)2
K

γ

=⇒
T∑

t=1

st(i
∗)−

T∑
t=1

EHt−1
[Ei∼qt [st(i) | Ht−1]]

≤ γ

T∑
t=1

st(i
∗) +

logK

η
+

(3m+ 1)2

4(m+ 1)2
ηKT

γ

(b)
=⇒ EHT

[Rs
T ]

≤ γT +
logK

η
+

(3m+ 1)2

4(m+ 1)2
ηKT

γ

(c)
=⇒ EHT

[Rs
T ]

≤
√

3ηK

2
T +

logK

η
+

(3m+ 1)2

4(m+ 1)2

√
2ηK

3
T

(d)
=⇒ EHT

[Rs
T ]

≤ 1.89 (m′)2/3 (K logK)1/3 T 2/3,

where m′ =
(√

3
2 +

√
2
3
(3m+1)2

4(m+1)2

)
. In the above, (a)

follows from Lemma 2, Lemma 5 and Lemma 6; (b) follows
from Eq. (4) and using st(i

∗) ≤ 1; (c) follows from setting
γ =

√
3ηK/2; and (d) follows from optimizing over η

which gives η =
(

2 logK

T
√
K m′

)2/3
.

The theorem follows by using RT = K
K−1R

s
T for any K ≥

2 and T > 0.

5.2. Varying mt

Note that MiDEX is also applicable when the number of
arms to be selected is time-dependent. In this setting, at
each round t, the learner receives an integer mt|2≤mt<K

which indicates the number of arms to be selected at time t.
MiDEX can be employed here with m being replaced with
mt and the corresponding regret bound would feature

m′′ = maxm∈{m1,m2,...,mT }

(√
3
2 +

√
2
3

(3m+1)2

4(m+1)2

)
instead of m′. The proof structure remains the same with
the upper bound in Lemma 3 being updated to
maxm∈{m1,m2,...,mT }

(3m+1)
2(m+1) . The subsequent proofs and

computations build upon this updated bound to arrive at the
regret upper bound featuring m′′.

5



Adversarial Multi-dueling Bandits

6. Lower Bound
To prove the lower bound for adversarial multi-dueling
bandits, we use a reduction from adversarial dueling
bandits to adversarial multi-dueling bandits given in
Algorithm 3. That is we show how an algorithm AMB

designed for adversarial multi-dueling bandits can be used
to solve an instance of adversarial dueling bandits DB.

Algorithm 3 ADB: Reduction from adversarial dueling
bandits to adversarial multi-dueling bandits

1: for t=1,2,. . . do
2: At = {At(1),At(2), . . . ,At(m)} ← multiset of

arms played by AMD at round t.
3: Sample it, jt from [m] uniformly at random without

replacement.
4: Play

(
At(it),At(jt)

)
whereAt(i) is the ith item in

At.

5: Receive wt ∼ BERNOULLI

(
Pt

(
At(it),At(jt)

))
.

6: Return INDEXt = itwt + jt(1 − wt) ∈ {it, jt} as
the winning index to AMB .

7: end for

Note that even though this reduction is the same as the
reduction suggested by Saha & Gopalan (2018) for
stochastic multi-dueling bandits, our novel contribution is
the lemma below which shows that Algorithm 3 preserves
the expected regret for any arbitrary sequence of preference
matrices.
Lemma 8. Using ADB given in Algorithm 3,

E[RT (ADB)] = RT (AMB),

for any arbitrary sequence of preference matrices
P1, P2, . . . , PT .

The complete proof can be found in the Appendix. Here we
provide a brief outline of the proof.
Proof Outline.

Let rt(ADB) := bt(i
∗) − bt(At(it))+bt(At(jt))

2 be the
instantaneous regret of ADB at round t. Correspondingly,
let rt(AMB) := bt(i

∗) − 1
m

[∑m
i=1 bt

(
At(i)

)]
be the

instantaneous regret of AMB at round t. Firstly, we show
that E

it,jt
Unif∼ [m],it ̸=jt

[rt(ADB)] = rt(AMB). Then,

E[RT (ADB)] =

T∑
t=1

E[rt(ADB)] =

T∑
t=1

rt(AMB)

= RT (AMB).

Using the above reduction and Lemma 8, along with the
lower bound proved for adversarial dueling bandits (Saha

et al., 2021)[Theorem 16], we can state the following lower
bound for the expected regret of adversarial multi-dueling
bandits measured against a Borda winner.

Theorem 2. For any learning algorithm A, there exists an
instance of adversarial multi-dueling bandits with T ≥ K,
K ≥ 4 and a sequence of preferences P1, P2, . . . , PT , such
that the expected regret of A for that instance is at least
Ω(K1/3 T 2/3).

7. Concluding Remarks
In conclusion, we have introduced and formalized the
problem of regret minimization in adversarial multi-dueling
bandits, extending previous research on multi-armed
bandits with preference feedback. Our work addresses a
gap in the literature by considering scenarios where the
learner selects multiple arms at each round and observes the
identity of the most preferred arm, based on arbitrary
preference matrices. Central to our contribution is the
development of a novel algorithm, MiDEX, tailored to
learn from preference feedback following a pairwise-subset
choice model. Through rigorous analysis, we have
demonstrated that MiDEX achieves near-optimal
performance in terms of its expected cumulative regret
measured against a Borda winner. Specifically, our upper
bound on the expected cumulative regret of MiDEX is of
the order O((K logK)1/3 T 2/3). We also prove a
matching lower bound of Ω(K1/3 T 2/3), thereby
demonstrating the near-optimality of our proposed
algorithm up to a logarithmic factor. Future research
directions include conducting high-probability regret
analysis and exploring the dynamic regret objective with
respect to a time-varying benchmark. Another valuable
direction would be to investigate alternative notions for
optimal arm and subset choice models. It would also be
advantageous to develop a meta-algorithm for
multi-dueling bandits which can make use of the
corresponding algorithm for dueling bandits as a black-box
leading us to incorporate the advancements in dueling
bandits into multi-dueling bandits as done for other
problems (e.g., Gajane et al. (2023)).
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A. Proof of Lemma 1
Lemma 1. E[g(m, ot, xt)] = Pt(xt, yt).

Proof. Case 1: m is even.

E[g(m, ot, xt)] =
E[1(ot = xt)]− (m−2)

4(m−1)
m

2(m−1)

(5)

Using the construction of At, one can write

E[1(ot = xt)] =

m/2∑
i=1

Wt(i | At)

=
m

2

(
2

(
m
2 − 1

)
Pt(xt, xt) +

m
2 Pt(xt, yt)

m(m− 1)

)

=

((
m
2 − 1

)
1
2

)
m− 1

+
m

2(m− 1)
Pt(xt, yt)

=
m

2(m− 1)
Pt(xt, yt) +

m− 2

4(m− 1)
. (6)

In the above, the second equality follows from the definition of Wt(i | At) and (Saha & Gopalan, 2018)[Lemma 1].
Substituting Eq. (6) in Eq. (5), we get

E[g(m, ot, xt)] = Pt(xt, yt).

Case 2: m is odd.
We proceed on similar lines to Case 1.

E[g(m, ot, xt)] =
E [1(ot = xt)]− (m−1)

4m
m+1
2m

(7)

Using the construction of At, one can write

E[1(ot = xt)] =
1

2

(m−1)/2∑
i=1

Wt(i | At) +
1

2

(m+1)/2∑
i=1

Wt(i | At)

=
1

2

(
m− 1

2

) (
2

(
m−1
2 − 1

)
Pt(xt, xt) +

m+1
2 Pt(xt, yt)

m(m− 1)

)

+
1

2

(
m+ 1

2

) (
2

(
m+1
2 − 1

)
Pt(xt, xt) +

m−1
2 Pt(xt, yt)

m(m− 1)

)

=

(
1

2

) ((m−1
2 − 1

)
1
2 + m+1

2 Pt(xt, yt)

m

)

+

(
m+ 1

2

) ((m+1
2 − 1

)
1
2 + m−1

2 Pt(xt, yt)

m(m− 1)

)

=

(
1

2

) ((m−3
4

)
+ m+1

2 Pt(xt, yt)

m

)
+

(
m+ 1

2

) ((m−1
4

)
+ m−1

2 Pt(xt, yt)

m(m− 1)

)

=
m− 3

8m
+

(
m+ 1

2

)
(m− 1)

4m(m− 1)
+

(
m+ 1

4m

)
Pt(xt, yt) +

(
m+ 1

2

)
m− 1

2m(m− 1)
Pt(xt, yt)

=
m− 3

8m
+

m+ 1

8m
+

(
m+ 1

4m

)
Pt(xt, yt) +

(
m+ 1

4m

)
Pt(xt, yt)
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=

(
m+ 1

2m

)
Pt(xt, yt) +

m− 1

4m
. (8)

In the above, the second equality follows from the definition of Wt(i | At) and (Saha & Gopalan, 2018)[Lemma 1].
Substituting Eq. (8) in Eq. (7), we get

E[g(m, ot, xt)] = Pt(xt, yt).

B. Proof of Lemma 2
Lemma 2. For all t ∈ [T ] and i ∈ [K], it holds that E[ŝt(i)] = st(i).

Proof.

E[ŝt(i)] = EHt

1(i = xt)

K qt(i)

∑
j∈[K]

1(j = yt) g(m, ot, xt)

qt(j)


=

1

K

EHt−1

E(xt,yt,ot)

1(i = xt)

qt(i)

∑
j∈[K]

1(j = yt) g(m, ot, xt)

qt(j)

∣∣∣∣Ht−1


=

1

K

EHt−1

Ext

1(i = xt)

qt(i)

∑
j∈[K]

Eyt

[
1(j = yt) Eot [g(m, ot, xt) | ot]

qt(j)

∣∣∣∣ xt

] ∣∣∣∣∣Ht−1


=

1

K

EHt−1

Ext

1(i = xt)

qt(i)

∑
j∈[K]

Eyt

[
1(j = yt) Pt(xt, yt)

qt(j)

∣∣∣∣ xt

] ∣∣∣∣∣Ht−1


=

1

K

EHt−1

Ext

1(i = xt)

qt(i)

∑
j∈[K]

∑
j′∈[K]

[
1(j = j′) Pt(xt, j

′) qt(j
′)

qt(j)

] ∣∣∣∣Ht−1


=

1

K

EHt−1

Ext

1(i = xt)

qt(i)

∑
j∈[K]

Pt(xt, j)

∣∣∣∣Ht−1


=

1

K

EHt−1

 ∑
i′∈[K]

1(i = i′)qt(i
′)

qt(i)

∑
j∈[K]

Pt(i
′, j)


=

1

K

∑
j∈[K]

Pt(i, j)

= st(i).

In the above, the fourth equality is due to Lemma 1. Moreover, the fifth equality and the seventh equality use that xt, yt ∼ qt
iid with replacement.

C. Proof of Lemma 3
Lemma 3. For all t ∈ [T ] and m ≥ 2, g(m, ot, xt) ≤ 3m+1

2m+2 .

Proof. Case 1: m is even.

g(m, ot, xt) ≤
1− (m−2)

4(m−1)
m

2(m−1)
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=

(
4(m−1)−(m−2)

4(m−1)

)
m

2(m−1)

=

(
(3m− 2)

4(m− 1)

)(
2(m− 1)

m

)
=

(3m− 2)

2m

Case 2: m is odd.

g(m, ot, xt) ≤
1− (m−1)

4m
m+1
2m

=

(
4m−m+ 1

4m

)(
2m

m+ 1

)
=

3m+ 1

2(m+ 1)

For m ≥ 2,
(3m− 2)

2m
<

3m+ 1

2(m+ 1)
.

D. Proof of Lemma 4
Lemma 4. Let γ ≥

√
3ηK/2. Then, for any t ∈ [T ], i ∈ [K] and η > 0, it holds that ηŝt(i) ∈ [0, 1].

Proof. From the definition of qt given in (3), it can be seen that, for all t ∈ [T ] and i ∈ [K],

qt(i) ≥
γ

K
.

Using the above along with the definition of ŝt given in Eq. (2) and Lemma 3, it can be seen that, for all t ∈ [T ] and i ∈ [K],

ŝt(i) ≤
(3/2)

(K) (γ/K)2
=

3K

2γ2
.

Then, using γ ≥
√
3ηK/2 and the above inequality,

ηŝt(i) ≤
3ηK

2γ2
= 1.

Furthermore, 0 ≤ ηŝt(i) also holds using the definition of ŝt(i) given in Eq. (2), Lemma 3 and η > 0.

E. Proof of Lemma 5
Lemma 5. For all t ∈ [T ], it holds that EHt

[
qTt ŝt

]
= EHt−1

[Ei∼qt [st(i) | Ht−1]].

Proof.

EHt

[
qTt ŝt

]
= EHt

[
K∑
i=1

qt(i) ŝt(i)

]
= EHt−1

[
K∑
i=1

qt(i) Ext,yt,ot [ŝt(i) | Ht−1]

]

= EHt−1

[
K∑
i=1

qt(i) st(i)

]
= EHt−1

[Ei∼qt [st(i) | Ht−1]].

In the above, the third equality follows from the proof of Lemma 2.
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F. Proof of Lemma 6
Lemma 6. At any time t ∈ [T ], it holds that E

[∑K
i=1 qt(i) ŝt(i)

2
]
≤ (3m+1)2

4(m+1)2
K
γ .

Proof.

E

[
K∑
i=1

qt(i) ŝt(i)
2

]

= EHt−1

 K∑
i=1

qt(i) E(xt,yt,at)

[
1(i = xt)

K qt(i)

∑
j∈[K]

1(j = yt) g(m, ot, xt)

qt(j)

∣∣∣∣Ht−1

]2
=

1

K2

EHt−1

 K∑
i=1

qt(i)

qt(i)2
E(xt,yt)

 ∑
j∈[K]

1(i = xt)1(j = yt)Eot [g
2(m, ot, xt) | xt, yt]

qt(j)2

∣∣∣∣∣Ht−1


≤ (3m+ 1)2

4(m+ 1)2K2

EHt−1

 K∑
i=1

1

qt(i)

 ∑
j∈[K]

Ext
[1(i = xt)]Eyt

[1(j = yt)]

qt(j)2

∣∣∣∣∣Ht−1

 (using Lemma 3)

=
(3m+ 1)2

4(m+ 1)2K2

EHt−1

 K∑
i=1

1

qt(i)

 ∑
j∈[K]

qt(i) qt(j)

qt(j)2


=

(3m+ 1)2

4(m+ 1)2K2

EHt−1

K ∑
j∈[K]

1

qt(j)


≤ (3m+ 1)2

4(m+ 1)2K

∑
j∈[K]

1

γ/K

 (∵ ∀i′ ∈ [K] and ∀t ∈ [T ], qt(i
′) ≥ γ/K using Eq. (3))

=
(3m+ 1)2

4(m+ 1)2K

(
K

γ/K

)
=

(3m+ 1)2

4(m+ 1)2
K

γ
.

G. Proof of Lemma 7
Lemma 7. For any i ∈ [K], j ∈ [m] and t ∈ [T ],

P
(
At(j) = i

)
= qt(i).

Proof.

P
(
At(j) = i

)
= P(At(j) = xt)P(xt = i) + P(At(j) = yt)P(yt = i)

= P(At(j) = xt) qt(i) + P(At(j) = yt) qt(i)

= qt(i).

H. Proof of Lemma 8
Lemma 8. Using ADB given in Algorithm 3,

E[RT (ADB)] = RT (AMB),

12
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for any arbitrary sequence of preference matrices P1, P2, . . . , PT .

Proof. Let rt(ADB) be the instantaneous regret of ADB at round t. Correspondingly, let rt(AMB) be the instantaneous
regret of AMB at round t.

E
it,jt

Unif∼ [m],it ̸=jt
[rt(ADB)]

= bt(i
∗)− 1

2

[
E
it,jt

Unif∼ [m],it ̸=jt

[
bt

(
At(it)

)
+ bt

(
At(jt)

)]]

= bt(i
∗)− 1

2

 m∑
i=1

bt

(
At(i)

)
m

+

∑m
j=1,j ̸=i bt

(
At(j)

)
m(m− 1)


= bt(i

∗)− 1

2m

 m∑
i=1

bt

(
At(i)

)
+

∑m
j=1 bt

(
At(j)

)
− bt

(
At(i)

)
(m− 1)


= bt(i

∗)− 1

2m

 m∑
i=1

bt

(
At(i)

)
−

bt

(
At(i)

)
(m− 1)

+
m
∑m

j=1 bt

(
At(j)

)
(m− 1)


= bt(i

∗)− 1

2m

 (m− 2)

(m− 1)

m∑
i=1

bt

(
At(i)

)
+

m
∑m

i=1 bt

(
At(i)

)
(m− 1)


= bt(i

∗)− 1

2m

∑m
i=1 bt

(
At(i)

)
(m− 1)

(m− 2 +m)


= bt(i

∗)− 1

2m

∑m
i=1 bt

(
At(i)

)
(m− 1)

(2m− 2)


= bt(i

∗)− 1

m

[
m∑
i=1

bt

(
At(i)

)]
= rt(AMB).

In the above, the second equality uses that it, jt are sampled uniformly at random from [m] without replacement.

Then,

E[RT (ADB)] =

T∑
t=1

E[rt(ADB)] =

T∑
t=1

rt(AMB) = RT (AMB).
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