
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FINDING THE NUMBER OF CLUSTERS IN A GRAPH:
A NEARLY-LINEAR TIME ALGORITHM

Anonymous authors
Paper under double-blind review

ABSTRACT

Given an undirected graph G with the normalised adjacency matrix NG, the well-
known eigen-gap heuristic for clustering asserts that G has k clusters if there is a
large gap between the kth and (k+1)th largest eigenvalues of NG. Although this
heuristic is well-supported in spectral graph theory and widely applied in practice,
determining k often relies on computing the eigenvalues of NG with high time
complexity. This paper addresses this key problem in graph clustering, and shows
that the number of clusters k implied by the eigen-gap heuristic can be computed
in nearly-linear time.

1 INTRODUCTION

Graph clustering is a fundamental problem in unsupervised learning with wide-ranging applications
across computer science and other scientific disciplines. Among the various techniques for solving
graph clustering problems, spectral clustering is probably the easiest to implement, and has been
widely applied in practice. Given any graph G = (VG, EG) and parameter k ∈ N as input, spectral
clustering first computes the top k eigenvectors of the normalised adjacency matrix of G and uses
these to embed the vertices of G to points in Rk. Afterwards, it applies k-means on the embedded
points to partition VG into k clusters (Ng et al., 2001).

Since spectral clustering requires the value of k as input, which is often unknown for real-world ap-
plications, to determine k we usually rely on the eigen-gap heuristic: the correct number of clusters
corresponds to the smallest k for which there’s a clear gap between the kth and (k + 1)th largest
eigenvalue of the normalised adjacency matrix of G (von Luxburg, 2007). While this heuristic can
be well explained in theory (Davis & Kahan, 1970; Lee et al., 2014), applying it in practice can be
computationally expensive and requires computing all eigenvalues, particularly for large values of
k. Given that spectral clustering itself runs in nearly-linear time (Peng et al., 2017), determining k is
the main computational bottleneck in the overall spectral clustering framework. This paper studies
this fundamental problem in spectral clustering, and presents the following result:

Theorem 1 (Informal Statement of Theorem 6). Let G = (V,E) be an undirected graph with n
vertices and m edges as input, and assume the G consists of k well-defined clusters. Then, there is
a randomised algorithm that runs in Õ(m) time1 and with probability at least 1− o(1) returns the
value of k.

To the best of our knowledge, Theorem 1 represents the first nearly-linear time algorithm that com-
putes the number of clusters in a graph, bridging the gap between the previous high time complexity
for determining k and the nearly-linear time algorithms for spectral clustering. In addition to its
theoretical guarantees, our algorithm demonstrates strong empirical performance, with our experi-
mental results validating its near-linear runtime in practice.

Related Work. There are many works that analyse the performance of spectral clustering on prac-
tical graph instances, e.g., (Kolev & Mehlhorn, 2016; Peng et al., 2017; Dey et al., 2019; Laenen
& Sun, 2020; Mizutani, 2021; Macgregor & Sun, 2022). These analyses are typically based on the

1We say that a graph algorithm runs in nearly-linear time if it runs in O(m·poly logn) time, where m and n

are the number of edges and vertices of the input graph. For simplicity, we use Õ(·) to hide a poly-logarithmic
factor of n.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

existence of a large gap between the (k+1)th eigenvalue of a graph matrix and the k-way expansion
of the underlying graph. Similar gap conditions are also widely used to analyse other clustering al-
gorithms, e.g., (Zhu et al., 2013; Gharan & Trevisan, 2014; Czumaj et al., 2015; Peng, 2020; Laenen
et al., 2023).

Our work bears some similarity to the generalised matrix rank estimation problem (Zhang et al.,
2015; Ubaru et al., 2017) and the the spectral density estimation problem (SDE) (Lin et al., 2016; Jin
et al., 2024). Our analysis further employs the techniques developed in the SDE literature (Braver-
man et al., 2022). However, unlike these problems, our problem needs to determine the exact value
of k, assuming the presence of a cluster structure of the underlying graph.

2 PRELIMINARIES

2.1 NOTATION

Let G = (V,E,w) be an undirected graph with |V | = n vertices, |E| = m edges, and weight
function w : V × V → R≥0. For any edge e = {u, v} ∈ E, we write wG(u, v) or wG(e) to express
the weight of e. For a vertex u ∈ V , we denote its degree by degG(u) ≜

∑
v∈V wG(u, v), and the

volume for any S ⊆ V is defined as volG(S) ≜
∑

u∈S degG(u). For any S, T ⊂ V , we define the
cut value between S and T by wG(S, T) ≜

∑
e∈EG(S,T) wG(e), where EG(S, T) is the set of edges

between S and T . Moreover, for any S ⊂ V , the conductance of S is defined as

ΦG(S) ≜
wG(S, V \ S)

min{volG(S), volG(V \ S)}
if S ̸= ∅, and ΦG(S) = 1 if S = ∅. For any integer k ≥ 2, we call subsets of vertices A1, . . . , Ak

a k-way partition of G if
⋃k

i=1 Ai = V and Ai ∩Aj = ∅ for different i and j. We define the k-way
expansion of G by

ρG(k) ≜ min
partitions A1,...,Ak

max
1≤i≤k

ΦG(Ai).

Our analysis is based on matrix representations of graphs. For any graph G, let DG ∈ Rn×n be the
diagonal matrix defined by DG (u, u) = degG (u) for all u ∈ V . We denote by AG ∈ Rn×n the
adjacency matrix of G, where AG (u, v) = wG (u, v) for all u, v ∈ V . The normalised adjacency
matrix of G is defined by NG ≜ D

−1/2
G AGD

−1/2
G . For any real and symmetric matrix A, we

write the eigenvalues of A as λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). We write the spectral norm
of A ∈ Rn×n by ∥A∥2 ≜ maxx:x∈Rn

x ̸=0
∥Ax∥/∥x∥, and the Frobenius norm of A ∈ Rn×n by

∥A∥F ≜
√∑

1≤i,j≤n A
2
i,j =

√∑n
i=1 |λi(A)|2. The following inequality builds the relationship

between 1− λk(NG) and ρG(k).
Lemma 2 (Higher-order Cheeger inequality, (Lee et al., 2014)). There is an absolute constant C
such that it holds for any graph G and k ≥ 2 that

1− λk(NG)

2
≤ ρG(k) ≤ C · k3

√
1− λk(NG). (1)

For any matrix A ∈ Rn×n with the eigen-decomposition QΛQ∗ and function f : R→ R, let

f(A) ≜ Qf(Λ)Q∗;

that is, we apply f to the eigenvalues of A. For any real-valued functions g and h defined on [−1, 1],
we define

⟨g, h⟩ ≜
∫ 1

−1

g(x)h(x)dx.

For any two functions p and q supported on [−1, 1], the Wasserstein-1 distance between p and q is
expressed by W1(p, q). By the dual formulation given by the Kantorovich-Rubinstein theorem (Kan-
torovich & Rubinshtein, 1957) we have

W1(p, q) = sup
f :R→R

|f(x)−f(y)|≤|x−y|∀x,y

{∫ 1

−1

f(x)(p(x)− q(x))dx

}
, (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

i.e., p and q are close in Wasserstein-1 distance if their difference has a small inner product with all
1-Lipschitz functions f .

2.2 CHEBYSHEV POLYNOMIALS

Our work is based on the Chebyshev polynomials, the first type of which is defined recursively as
follows: T0(x) = 1, T1(x) = x, and

Tk(x) = 2x · Tk−1(x)− Tk−2(x)

for any k ≥ 2. It’s known that maxx∈[−1,1] |Tk(x)| ≤ 1 for any k ≥ 0. The following lemma shows
that the Chebyshev polynomials are orthogonal on [−1, 1] under the weight function w, and the first
k Chebyshev polynomials form an orthogonal basis for the degree k polynomials under this weight
function:
Lemma 3 ((Mudde, 2017)). Let w(x) ≜ 1√

1−x2
. Then, the following holds: (1) ⟨T0, w · T0⟩ = π,

(2) ⟨Tk, w · Tk⟩ = π/2 for k > 0, and (3) ⟨Ti, w · Tj⟩ = 0 for any i ̸= j.
Definition 4 (Chebyshev expansion). For any function f defined on [−1, 1], the Chebyshev expan-
sion of f is defined as

∞∑
k=0

〈
f, w · T k

〉
· T k, (3)

where T k ≜ Tk/
√
⟨Tk, w · Tk⟩.

The following alternative definition of Chebyshev polynomials will be used in our analysis.
Definition 5 (Alternative definition of Chebyshev polynomial, (Mudde, 2017)). A Chebyshev poly-
nomial of degree n is also defined as Tn(x) = cos(n · cos−1 x) for any n ≥ 0.

3 ALGORITHM

In this section we present and analyse the algorithm behind Theorem 1. Recall that graph G has
exactly k clusters if (i) G has k disjoint subsets A1, . . . , Ak of low conductance and hence a small
value of ρG(k), and (ii) any (k + 1)-way partition of G would include some A ⊂ V of high
conductance, which would be implied by a lower bound on 1 − λk+1(NG) due to Lemma 2. To
characterise the structure of clusters, we define

ΥG(k) ≜
1− λk+1(NG)

ρG(k)
,

and a large value of ΥG(k) shows that G has exactly k clusters. We prove that, when the input graph
G satisfies ΥG(k) ≥ C · k for some C ∈ R+, the value of k can be computed in nearly-linear time.
Our result is as follows:
Theorem 6 (Formal Statement of Theorem 1). Let G = (V,E) be an undirected graph with n
vertices and m edges, and assume that G satisfies that ΥG(k) ≥ C · k for a universal constant
C ∈ R+. Then, there is an algorithm that, given G as input, runs in Õ(m) time and with probability
at least 1− o(1) returns the value of k.
Remark 1. Notice that ΥG(k) is a well-studied quantity in spectral clustering (Kolev & Mehlhorn,
2016; Peng et al., 2017; Dey et al., 2019; Mizutani, 2021), and it’s known that the performance of
spectral clustering can be rigorously analysed for any graph G with unbalanced clusters, as long
as ΥG(k) = Ω(k) (Macgregor & Sun, 2022). We prove that, under the same condition, the value of
k can be determined in nearly-linear time.

The design of our algorithm is based on three components: the first one is an efficient algorithm
that constructs a sparse subgraph H of G such that both G and H have the same structure of clus-
ters; this gives the normalised adjacency matrix M of H . The second component is the procedure
COUNTEIGENVALUES(M,a, b), which counts the number of eigenvalues of M in [a, b]. As the last
one, our main algorithm invokes COUNTEIGENVALUES(M,a, b) for different intervals and finds the
right value of k.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 SPARSIFICATION OF G

Since an input graph G could be a potentially dense graph and we only need to learn from the cluster
structure of G, we first apply a sparsification algorithm of G and obtain a sparse graph H , such that
(i) H has Õ(n) non-edges, and (ii) G and H have the same structure of clusters. We achieve this by
constructing a cluster-preserving sparsifier of G.

Definition 7 (Cluster-preserving sparsifier, (Sun & Zanetti, 2019)). Let G = (V,E,wG) be any
graph, and {Ai}ki=1 the k-way partition of G corresponding to ρG(k). We call a re-weighted sub-
graph H = (V, F ⊂ E,wH) a cluster-preserving sparsifier of G if (i) ϕH(Ai) = O(k · ϕG(Ai))
for 1 ≤ i ≤ k, and (ii) 1− λk+1(NH) and 1− λk+1(NG) differ by at most a constant factor.

To construct a cluster-preserving sparsifier of Õ(n) edges, we apply the nearly-linear algorithm (Sun
& Zanetti, 2019) described as follows: given any input graph G = (V,E,wG) with weight function
wG, the algorithm computes

pu(v) ≜ min

{
C · log n

1− λk+1(NG)
· wG(u, v)

degG(u)
, 1

}
and

pv(u) ≜ min

{
C · log n

1− λk+1(NG)
· wG(v, u)

degG(v)
, 1

}
for every edge e = {u, v}, where C ∈ R+ is some constant. Afterwards, the algorithm samples
every edge e = {u, v} with probability

pe ≜ pu(v) + pv(u)− pu(v) · pv(u),

and sets the weight of every sampled e = {u, v} in H as wH(u, v) ≜ wG(u, v)/pe. This constructs
the graph H = (V, F,wH). We use M to denote the normalised adjacency matrix of H .

By our assumption ΥG(k) ≥ C · k for a universal constant C ∈ R+ and the two properties of H
in Definition 7, the values of λk(M) and λk+1(M) differ by at least a constant. Without loss of
generality we assume that λk(M) ≥ 2β · λk+1(M) for β > 2. Moreover, it holds by construction
that ∥M∥2 ≤ 1.

Remark 2. Our chosen factor 2β is only used to simplify the presentation, and with the same time
complexity our algorithm works as long as λk(M)/λk+1(M) ≥ β for any β ∈ R+ with β > 1.

3.2 THE COUNTEIGENVALUES PROCEDURE

Next we study the problem of computing the number of eigenvalues of M belonging to [a, b], for
some 0 < a, b ≤ 1. Without loss of generality, we fix an arbitrary interval [a, b] throughout the
analysis, and define the spectral density of M by

s(x) ≜
1

n

n∑
i=1

δ(x− λi), (4)

where δ is a Dirac delta function. Notice that function s gives every distinct eigenvalue the same
probability mass of 1/n, and the number of eigenvalues in [a, b] equals to∫ b

a

n · s(x)dx.

We define a step function ha,b by

ha,b(t) ≜

{
1 if t ∈ [a, b]
0 otherwise,

and this implies that ∫ b

a

n · s(x)dx = tr(ha,b(M)).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Applying the Chebyshev expansion (Definition 4), we have that

tr(ha,b(t)) =

∞∑
i=0

〈
ha,b, w · T i

〉
· tr
(
T i(t)

)
. (5)

We first prove that that the coefficients of the Chebyshev expansion above can be computed in O(1)
time.

Lemma 8. It holds for any i ≥ 0 that

⟨ha,b, w · Ti⟩ =
{
sin−1(b)− sin−1(a) if i = 0
1
i ·
(
sin(i cos−1 a)− sin(i cos−1 b)

)
if i > 0.

Proof. By definition, we have that

⟨ha,b, w · Ti⟩ =
∫ 1

−1

ha,b(x) · Ti(x)√
1− x2

dx.

The proof is by case distinction.

Case of i = 0: By definition it holds that

⟨ha,b, w · T0⟩ =
∫ 1

−1

ha,b(x) · T0(x)√
1− x2

dx =

∫ b

a

1√
1− x2

dx = sin−1(b)− sin−1(a),

where the second line follows by the fact that T0(x) = 1 and the definition of h.

Case of i > 0: By definition we have that

⟨ha,b, w · Ti⟩ =
∫ 1

−1

ha,b(x) · Ti(x)√
1− x2

dx =

∫ b

a

Ti(x)√
1− x2

dx.

By Definition 5, we have Ti(x) = cos (i · cos−1 x). We set x = cos θ, and have that dx = − sin θdθ.
Hence, substituting x with cos θ gives us that

⟨ha,b, w · Ti⟩ = −
∫ cos−1 b

cos−1 a

cos(i · cos−1(cos θ))√
1− cos2 θ

sin θdθ

= −
∫ cos−1 b

cos−1 a

cos(i · θ)dθ

= −
∫ i·cos−1 b

i·cos−1 a

cosx

i
dx

= −

[
sinx

i

]i·cos−1 b

i·cos−1 a

=
sin(i cos−1 a)− sin(i cos−1 b)

i
,

which proves the lemma.

Therefore, it suffices to study a fast approximation of tr(Ti(M)) and the number of leading terms
N needed in (5) to achieve a good approximation of

∫ b

a
n · s(x)dx. That is, we would like to know

the order of N for which∫ b

a

n · s(x)dx = tr(ha,b(M)) =

∞∑
i=0

αi · tr(Ti(M)) ≈
N∑
i=0

αi · tr(Ti(M)), (6)

where
αi ≜

〈
ha,b, w · T i

〉
.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Approximating tr(Ti(M)). For a general matrix M , computing Ti(M) exactly requires matrix
multiplication operations due to the recursive definition of Ti(M), and a fast approximation of
tr(Ti(M)) needs to avoid the explicit computation of Ti(M). To achieve this, we employ the
Hutchinson’s estimator (Hutchinson, 1989), and its main idea is as follows: if one picks a random
vector x satisfying E

[
xx⊤] = I, then it holds that E

[
x⊤Mx

]
= tr(M). To increase the accuracy

of the estimator one can pick ℓ sub-Gaussian random vectors x1, x2, . . . , xℓ and return

Hℓ(M) =
1

ℓ

ℓ∑
i=1

(xi)
⊤Mxi =

1

ℓ
· tr
(
X⊤MX

)
, (7)

where X = [x1, x2, . . . , xℓ] consists of ℓ independent copies of x. By applying the Hutchinson’s
estimator we estimate

∫ b

a
n · s(x)dx by the quantity

1

ℓ

ℓ∑
j=1

N∑
i=0

αi

(
xj

⊤Ti(M)xj

)
. (8)

Notice that we need O(N · ℓ) matrix-vector multiplications to calculate (8). Since M has Õ(n)

nonzero entries, the overall calculation takes Õ(N · ℓ · n) time. The following lemma proves the
approximation ratio of Hℓ(Tk(M)) with respect to ℓ.

Lemma 9. If we pick ℓ = O
(

1
ϵ2 · log

1
δ

)
random vectors, in which every entry is sub-Gaussian,

then for k ≥ 0 it holds with probability at least 1− δ that

|tr
(
Tk(M)

)
−Hℓ(Tk(M))| ≤ ϵ ·

√
n.

The following result is used in our analysis.
Lemma 10 (Theorem A.1, Persson et al. (2022)). Let M ∈ Rn×n be symmetric, and x ∈ Rn a
standard Gaussian vector. Then, for any c ∈ (0, 1/2) and C = − 1

c −
log(1−2c)

2c2 it holds that

P
(∣∣x⊤Mx− tr(M)

∣∣ ≥ ∆
)
≤ 2 · exp

(
−min

{
∆2

4C∥M∥2F
,

c∆

2∥M∥2

})
.

Proof of Lemma 9. Let M̄ ∈ Rℓn×ℓn be a block-diagonal matrix defined by

M̄ =


Tk(M) 0 · · · 0

0 Tk(M) · · · 0
...

...
. . .

...
0 0 · · · Tk(M)

 .

Let X ∈ Rn×ℓ be the matrix of ℓ random vectors in (7), and x = [x1, x2, . . . , xℓ] ∈ Rnℓ be the
vector representation of X. Then, it holds for every k ≥ 0 that

ℓ ·Hℓ(Tk(M)) = tr
(
X⊤Tk(M)X

)
= x⊤M̄x. (9)

By Lemma 10, we have

P
(
|x⊤M̄x− tr(M̄)| ≥ ∆

)
≤ 2 · exp

(
−min

{
∆2

4C∥M̄∥2F
,

c∆

2∥M̄∥2

})
≤ 2 · exp

(
−min

{
∆2

4Cℓ∥Tk(M)∥2F
,

c∆

2∥Tk(M)∥2

})
≤ 2 · exp

(
−min

{
∆2

4Cℓn
,
c∆

2

})
, (10)

where the second inequality follows by ∥M̄∥2F = ℓ · ∥Tk(M)∥2F and ∥M̄∥2 = ∥Tk(M)∥2, and the
third one follows by ∥Tk(M)∥2 ≤ 1 for every k ≥ 0. We combine (9) with (10), and obtain that

P
(
|ℓ ·Hℓ(Tk(M))− ℓ · tr(Tk(M))| ≥ ∆

)
≤ 2 · exp

(
−min

{
∆2

4Cℓn
,
c∆

2

})
,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

which implies that

P
(
|Hℓ(Tk(M))− tr(Tk(M))| ≥ ∆

ℓ

)
≤ 2 · exp

(
−min

{
∆2

4Cℓn
,
c∆

2

})
.

By setting ∆ = ϵ · ℓ ·
√
n, we have

P
(
|Hℓ(Tk(M))−tr(Tk(M))| ≥ ϵ·

√
n
)
≤ 2·exp

(
−min

{
ℓ · ϵ2

4C
,
cϵ · ℓ ·

√
n

2

})
≤ 2·exp

(
−ℓ · ϵ2

4C

)
.

Hence, by setting ℓ = 4C
ϵ2 · log

2
δ = O

(
1
ϵ2 · log

1
δ

)
, we have

P
(
|Hℓ(Tk(M))− tr(Tk(M))| ≥ ϵ ·

√
n
)
≤ δ.

Upper bound of N . We study the number of terms in (5) needed to achieve a good approximation.
Notice it holds for every T k in (5) that

⟨s, T k⟩ =
∫ 1

−1

1

n

n∑
i=1

δ(x− λi) · T k(x)dx =
1

n

n∑
i=1

(T k(λi)) =
1

n
tr(T k(M)).

On the other hand, by the Hutchinson’s estimator we implicitly obtain an function q that satisfies
⟨q, T k⟩ = 1

nHℓ(T k(M)). Hence, W1(s, q) ≤ ϵ implies that the algorithm returns the correct
number of eigenvalues of M in [a, b]. We prove that, by setting N = Θ(1/ϵ), the statement shown
in Lemma 9 implies that W1(s, q) ≤ ϵ.

Lemma 11. Let A ∈ Rn×n be any symmetric matrix satisfying

1

n
· |tr(Tk(A))−Hℓ(Tk(A))| ≤ 1

N ln(eN)
.

Then, it holds for N = Θ(1/ϵ) that W1(s, q) ≤ ϵ.

To prove Lemma 11, we use the following two properties of a Lipschitz continuous function.

Lemma 12 (Braverman et al. (2022)). Let f be a Lipschitz continuous function on [−1, 1] with
Lipschitz constant λ > 0. Then, for every N ∈ 4N+, there exists N + 1 constants b̂N [0] > . . . >

b̂N [N] ≥ 0 such that the polynomial

f̄N =

N∑
k=0

b̂N [k]

b̂N [0]

〈
f, w · T k

〉
T k

satisfies that maxx∈[−1,1]

∣∣f(x)− f̄N (x)
∣∣ ≤ 18λ/N .

Lemma 13 (Braverman et al. (2022)). Let f be a Lipschitz continuous function on [−1, 1]with
Lipschitz constant λ > 0. Then, it holds for any k ≥ 1 that∣∣〈f, w · T k

〉∣∣ = ∣∣∣∣∫ 1

−1

f(x)T k(x)w(x)dx

∣∣∣∣ ≤ 2λ/k.

Proof of Lemma 11. Since s and q are both supported on [−1, 1], by (2) we have

W1(s, q) = sup
f :R→R

|f(x)−f(y)|≤|x−y|∀x,y

{∫ 1

−1

f(x)(s(x)− q(x))dx

}
.

Let f be an arbitrary 1-Lipschitz function, and
{
b̂N [k]

}N

k=0
and f̄N be the coefficients and polyno-

mial defined by Lemma 12 for function f . Using the triangle inequality we have

W1(s, q) ≤
∫ 1

−1

∣∣f(x)− f̄N (x)
∣∣ (s(x)− q(x))dx+

∫ 1

−1

f̄N (s(x)− q(x))dx. (11)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Since f is 1-Lipschitz function (λ = 1), by Lemma 12 we have∫ 1

−1

∣∣f(x)− f̄N (x)
∣∣ (s(x)− q(x))dx ≤ 18

N

∫ 1

−1

(s(x)− q(x))dx ≤ 36

N
.

To bound the second term of (11) we use the Chebyshev series expansion of f̄N and have that∫ 1

−1

f̄N (x)w(x) · s(x)− q(x)

w(x)
dx

=

∫ 1

−1

f̄N (x)w(x) ·
∞∑
k=0

〈
s− q, T k

〉
T k(x)dx

=

∫ 1

−1

(
w(x)

N∑
k=0

b̂N [k]

b̂N [0]

〈
f, w · T k

〉
T k(x)

)(∞∑
k=0

〈
s− q, T k

〉
T k(x)

)
dx

≤
N∑

k=1

∣∣〈f, w · T k

〉∣∣ · ∣∣〈T k, s
〉
−
〈
T k, q

〉∣∣
≤

N∑
k=1

2

k
·
∣∣〈T k, s

〉
−
〈
T k, q

〉∣∣ , (12)

where the first inequality follows by the orthogonality of the Chebyshev polynomials under the
weight function w , the fact that

〈
T k, w · T k

〉
= 1 for all k ∈ [N] as 0 ≤ b̂N [k]/b̂N [0] ≤ 1 and∣∣∣∣∫ 1

−1

T k(s(x)− q(x))dx

∣∣∣∣ = ∣∣〈T̄k, s
〉
−
〈
T̄k, q

〉∣∣
for each k ∈ [N]. The last inequality of (12) follows from Lemma 13. Combining these with (11)
gives us that

W1(s, q) ≤
36

N
+ 2 ·

N∑
k=1

|⟨T k, s⟩ − ⟨T k, q⟩|
k

≤ 36

N
+ 2 ·

N∑
k=1

1

n
· |tr(Tk(M))−Hℓ(Tk(M))|

k

≤ 36

N
+

2

N ln(eN)
·

N∑
k=1

1/k

≤ 36

N
+

2

N ln(eN)
· (ln(eN)) =

38

N
,

where the third inequality follows by the condition of the lemma2 and the fourth one follows by the
fact that Hn ≤ 1 + lnn. By setting N = 38/ϵ = O(1/ϵ), we have that W1(s, q) ≤ ϵ.

The COUNTEIGENVALUES Procedure. Combining the Hutchinson’s estimator and the Cheby-
shev expansion, our designed COUNTEIGENVALUES procedure is described in Algorithm 1. Notice
that, as the Hutchinson’s estimator computes x⊤Hi(M)x for every 0 ≤ i ≤ N , Algorithm 1 com-
putes x⊤Hi(M)x inductively for every i and matrix multiplication operations are not needed.

Lemma 14. Given any matrix M ∈ Rn×n with ∥M∥2 ≤ 1 and Õ(n) non-zero entries, parameters
0 ≤ a, b ≤ 1, and ϵ ∈ (0, 1) as input, COUNTEIGENVALUES(M,a, b) runs in Õ(n/ϵ3) time and
outputs the number of M ’s eigenvalues in [a, b] with probability at least 1−O(ϵ/n).

Proof. By setting δ = ϵ/n in Lemma 9, we pick ℓ = O((1/ϵ2) · log(n/ϵ)) random vectors to
construct a Huntchinson’s estimator, and for every k it holds with probability at least 1 − O(ϵ/n)
that

|tr
(
Tk(M)

)
−Hℓ(Tk(M))| ≤ ϵ ·

√
n,

2Notice that the condition easily holds due to Lemma 9.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Algorithm 1: COUNTEIGENVALUES(M,a, b, ϵ)
Input: Matrix M ∈ Rn×n, range of interval [a, b], and parameters ϵ
Output: the number of eigenvalues of M in [a, b]

1: for i = 1 to ℓ = O
(
(1/ϵ2) · log(ϵ/n)

)
do

2: pick x ∈ Rn with i.i.d. {−1, 1} entries
3: x0 ← x, T[i, 0]← x⊤

0 x0

4: x1 ← A · x0, T[i, 1]← x⊤
0 x1

5: for k = 2 to N do
6: xk ← 2 ·M · xk−1 − xk−2

7: T[i, k]← x⊤
0 xk

8: end for
9: end for

10: return 1
ℓ

∑ℓ
i=1

∑N
j=1 αj · T[i, j] // Here αks are computed from Lemma 8.

implying that the precondition of Lemma 11 holds for every k. Hence, the claimed success proba-
bility follows by taking the union bound of N applications of the Huntchinson’s estimator. The total
running time follows by our choice of N = Θ(1/ϵ) and ℓ = O((1/ϵ2) · log(n/ϵ)).

3.3 THE MAIN ALGORITHM AND THE PROOF OF THEOREM 6

Our main algorithm is based on repeated executions of COUNTEIGENVALUES with different param-
eters, and consists of the two phases:

• the algorithm invokes COUNTEIGENVALUES
(
M, 1− (β/2)i/n2, 1

)
for i = 1, 2, 3, . . .,

until the output of COUNTEIGENVALUES
(
M, 1− (β/2)i

′
/n2, 1

)
for some i′ ∈ N is at

least 2.

• the algorithm continues to invoke COUNTEIGENVALUES
(
M, 1− (β/2)i/n2, 1

)
from i =

i′, and terminates when any two executive executions return the same value. The algorithm
outputs this value as the number of clusters in G.

Now we analyse the correctness of the algorithm. We apply the first phase to find the smallest i
such that λ2 ∈

[
1− (β/2)i/n2, 1

]
and this approximate value of λ2 is needed for the algorithm,

since otherwise COUNTEIGENVALUES could simply return 1 for the first two executions while only
counting λ1(M). Then, in the second phase the algorithm returns the correct value of k by our
assumption that λk(M) ≥ 2β · λk+1(M) for β > 2.

Secondly, we analyse the time complexity of our algorithm. Since constructing a cluster-preserving
sparsifier takes Õ(m) time (Sun & Zanetti, 2019) and our main algorithm runs O(log n) times of
the COUNTEIGENVALUES procedure with time complexity Õ(n/ϵ3), the total running time of the
algorithm is Õ(m+ n/ϵ3).

Finally, we analyse the success probability of the algorithm. Since we run COUNTEIGENVALUES
O(log n) times and every execution returns the correct value with probability at least 1 −
O(logc n/n) for some constant c, taking the union bound proves the success probability of our
main algorithm. This proves Theorem 6.

4 EXPERIMENTS

This section evaluates the performance of our designed algorithm. Since our algorithm is the first
nearly-linear time algorithm for the problem, the primary goals of our experiments are to demon-
strate the nearly-linear running time of the algorithm in practice, and its effectiveness in determining
the value of k. All of our experiments were performed on a Lenovo Yoga 2 Pro with an Intel(R)
Core(TM) i7-4510U CPU @ 2.00GHz processor and 32GB of RAM. Our reported running times
are averaged over 5 runs of the algorithm.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

We first evaluate the performance of our algorithm on the Stochastic Block Model (SBM) with pa-
rameter n, k, p, q (Abbe, 2018). A random graph G generated from the SBM has k clusters, each of
which contains n vertices. Moreover, every pair of vertices within the same cluster is connected with
probability p, and every pair of vertices belonging to different clusters is connected with probability
q. All of our tested graphs are randomly generated from the SBM with the STAG library (Macgregor
& Sun, 2024). We evaluate the performance of our algorithm on three sets of input instances:

1. we set k = 4, p = 0.6, and q = 0.1, and run the algorithm with respect to n between 2, 000
and 5, 000; this setup ensures that the total number of edges in G is approximately linear in
n. Figure 1a reports the running time of the algorithm with respect to the total number of
edges in G;

2. we set n = 2, 000, k = 4, p = 0.6, and increase the values of q. Notice that, as q increases,
the cluster structure of the input graph becomes less significant, making it more challenging
for the algorithm to accurately determine the value of k. Figure 1b reports the running time
of the algorithm with respect to the total number of edges in G;

3. we set n = 500 · k, p = 0.6, and q = 0.08, and increase the value of k from 2 to 8.

For all the tested instances our algorithm correctly determines k, and Figure 1 further demonstrates
its nearly-linear running time in practice.

(a) Running time with respect to m (b) Running time with respect to q/p

Figure 1: The running time of our algorithm with respect to (a) the total number of edges, and (b)
the value of q for a fixed p.

Secondly, we apply the scikit-learn library to generate 500 data points in R2 from clas-
sical clustering datasets. The data is created using the make circles, make moons, and
make blobs methods, each configured with a noise parameter of 0.05. The make circles
method is set with a factor of 0.5, controlling the distance between the inner and outer circles, and
the make blobs method generates two clusters with the standard deviation of 0.5 for each clus-
ter. Every constructed data set gives us a graph with 500 vertices and approximately 70,000 edges,
with the weights of the edges determined by the Euclidean distances between the data points. Our
algorithm correctly identifies k for every graph instance with the average running time of about 9
seconds.

REFERENCES

Emmanuel Abbe. Community detection and stochastic block models: Recent developments. Journal
of Machine Learning Research, 18(177):1–86, 2018.

Vladimir Braverman, Aditya Krishnan, and Christopher Musco. Sublinear time spectral density
estimation. In 54th Annual ACM Symposium on Theory of Computing (STOC’22), pp. 1144–
1157, 2022.

Artur Czumaj, Pan Peng, and Christian Sohler. Testing cluster structure of graphs. In 47th Annual
ACM Symposium on Theory of Computing (STOC’15), pp. 723–732, 2015.

Chandler Davis and W. M. Kahan. The rotation of eigenvectors by a perturbation. iii. SIAM Journal
on Numerical Analysis, 7(1):1–46, 1970.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Tamal K. Dey, Pan Peng, Alfred Rossi, and Anastasios Sidiropoulos. Spectral concentration and
greedy k-clustering. Computational Geometry: Theory and Applications, 76:19–32, 2019.

Shayan Oveis Gharan and Luca Trevisan. Partitioning into expanders. In 25th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’14), pp. 1256–1266, 2014.

Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059–1076,
1989.

Yujia Jin, Ishani Karmarkar, Christopher Musco, Aaron Sidford, and Apoorv Vikram Singh.
Faster spectral density estimation and sparsification in the nuclear norm. arXiv preprint
arXiv:2406.07521, 2024.

Leonid Vital’evich Kantorovich and Gennadii Shlemovich Rubinshtein. On a functional space and
certain extremum problems. In Doklady Akademii Nauk, volume 115, pp. 1058–1061. Russian
Academy of Sciences, 1957.

Pavel Kolev and Kurt Mehlhorn. A note on spectral clustering. In 24th Annual European Symposium
on Algorithms (ESA’16), pp. 57:1–57:14, 2016.

Steinar Laenen and He Sun. Higher-order spectral clustering of directed graphs. In Advances in
Neural Information Processing Systems 34th (NeurIPS’20), 2020.

Steinar Laenen, Bogdan-Adrian Manghiuc, and He Sun. Nearly-optimal hierarchical clustering
for well-clustered graphs. In International Conference on Machine Learning, pp. 18207–18249,
2023.

James R Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral partitioning and higher-
order Cheeger inequalities. Journal of the ACM, 61(6):1–30, 2014.

Lin Lin, Yousef Saad, and Chao Yang. Approximating spectral densities of large matrices. SIAM
review, 58(1):34–65, 2016.

Peter Macgregor and He Sun. A tighter analysis of spectral clustering, and beyond. In International
Conference on Machine Learning, pp. 14717–14742, 2022.

Peter Macgregor and He Sun. Spectral toolkit of algorithms for graphs: Technical report (2). arXiv
preprint arXiv:2407.07096, 2024.

Tomohiko Mizutani. Improved analysis of spectral algorithm for clustering. Optimization Letters,
15(4):1303–1325, 2021.

M.H. Mudde. Chebyshev approximation. Master’s thesis, Faculty of Science and Engineering,
University of Groningen, 2017.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
In Advances in Neural Information Processing Systems 15th (NeurIPS’01), pp. 849–856, 2001.

Pan Peng. Robust clustering oracle and local reconstructor of cluster structure of graphs. In 31st
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’20), pp. 2953–2972, 2020.

Richard Peng, He Sun, and Luca Zanetti. Partitioning well-clustered graphs: Spectral clustering
works! SIAM Journal on Computing, 46(2):710–743, 2017.

David Persson, Alice Cortinovis, and Daniel Kressner. Improved variants of the hutch++ algorithm
for trace estimation. SIAM Journal on Matrix Analysis and Applications, 43(3):1162–1185, 2022.

He Sun and Luca Zanetti. Distributed graph clustering and sparsification. ACM Transactions on
Parallel Computing, 6(3):17:1–17:23, 2019.

Shashanka Ubaru, Yousef Saad, and Abd-Krim Seghouane. Fast estimation of approximate matrix
ranks using spectral densities. Neural computation, 29(5):1317–1351, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing volume, 17(4):
395–416, 2007.

Yuchen Zhang, Martin Wainwright, and Michael Jordan. Distributed estimation of generalized ma-
trix rank: Efficient algorithms and lower bounds. In 32nd International Conference on Machine
Learning, pp. 457–465, 2015.

Zeyuan Allen Zhu, Silvio Lattanzi, and Vahab S. Mirrokni. A local algorithm for finding well-
connected clusters. In 30th International Conference on Machine Learning, volume 28, pp. 396–
404, 2013.

12

	Introduction
	Preliminaries
	Notation
	Chebyshev Polynomials

	Algorithm
	Sparsification of G
	The CountEigenvalues Procedure
	The Main Algorithm and the Proof of Theorem 6

	Experiments

