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ABSTRACT

Federated learning (FL) is a privacy-preserving machine learning framework that
enables multiple nodes to train models on their local data and periodically av-
erage weight updates to benefit from other nodes’ training. Each node’s goal is
to collaborate with other nodes to improve the model’s performance while keep-
ing its training data private. However, this framework does not guarantee data
privacy. Prior work has shown that the gradient-sharing steps in FL can be vul-
nerable to data reconstruction attacks from a honest-but-curious central server. In
this work, we show that a honest-but-curious node/client can also launch attacks to
reconstruct peers’ image data in a centralized system, presenting a severe privacy
risk. We demonstrate that a single client can silently reconstruct other clients’ pri-
vate images using diluted information available within consecutive updates. We
leverage state-of-the-art diffusion models to enhance the perceptual quality and
recognizability of the reconstructed images, further demonstrating the risk of in-
formation leakage at a semantic level. This highlights the need for more robust
privacy-preserving mechanisms that protect against silent client-side attacks dur-
ing federated training.

1 INTRODUCTION

Federated learning (FL) has attracted significant attention as a promising approach to privacy-
preserving machine learning (McMahan et al., 2017; Kairouz et al., 2021). In this framework, a
central server coordinates training by multiple clients. In each training round, the server broadcasts
a shared model to a subset of clients. Each client computes a gradient by training the model on
its private data and returns the gradient to the server. The server then averages all the gradients
and updates the model. This approach enables each participant to benefit from a model trained on
more data without sharing its own data. FL has the potential to revolutionize collaborative efforts in
such real-world applications as healthcare and finance, enabling participants to train better models
without compromising data privacy (Li et al., 2020a).

Despite the intent to protect privacy through FL, prior works have shown that a honest-but-curious
central server can reconstruct a client’s training data. This is done by adjusting a dummy input to the
model until its resulting gradient closely matches the gradient sent by the client (Zhu et al., 2019;
Geiping et al., 2020; Yue et al., 2023). Meanwhile, studies on malicious clients have shown that a
client can disrupt federated training by sending adversarial data to the server (Blanchard et al., 2017;
Shi et al., 2022). However, far less attention has been given to the potential for clients to reconstruct
others’ data while honestly participating in the FL network.

Our work explores the extent to which a single client can reconstruct peers’ training data while
adhering to FL protocols. We introduce a novel client-to-client attack depicted in Figure 1, where
the attacker exploits weight updates between consecutive training rounds to reconstruct training
images. By participating in two consecutive training rounds and comparing the global model’s
weights, a single client extracts the averaged gradient of all participants in the earlier round. Unlike
server-side gradient inversion (Zhu et al., 2019; Geiping et al., 2020; Yue et al., 2023), this attack
requires isolating individual data from a diluted mixture of gradient updates. Despite this challenge,
we show that the attacker is able to reconstruct images from every other client.
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Figure 1: Overview of the proposed honest-but-curious client attack. The attacker participates in two
consecutive training rounds to obtain the global model’s gradient update by ① differencing the model
weights. The attacker then ② inverts the update to obtain each client’s training data. To address the
challenge of recovering high-quality images from diluted information hidden in the global gradient
update, the raw reconstructions are postprocessed using either ③ a direct technique respecting pixel-
level correctness or ④ a semantic technique focusing on producing photorealistic images.

We further propose to utilize two image postprocessing techniques based on diffusion models to
improve the quality and recognizability of attack’s raw reconstructed images. Our first technique
uses a pretrained masked diffusion transformer (MDT) (Gao et al., 2023) to generate high quality
images that resemble the raw attack results on a semantic level. Our second technique uses denoising
diffusion probabilistic models (DDPMs) (Ho et al., 2020) to enhance the raw reconstructions at the
pixel level through super resolution and denoising (Kawar et al., 2022). This paper’s contributions
are threefold.

1. We demonstrate that clients participating in FedAvg (McMahan et al., 2017) can exploit the
model updating process to reconstruct peers’ data, which reveals a previously unrecognized pri-
vacy risk in FL.

2. The proposed masked diffusion enhancer (MDE) generates sharp, high-resolution images from
the low-resolution, color-aliased raw reconstructions. The generated images resemble a target
image on a semantic level, preserving its geometric shape and perceptual features with photore-
alistic quality.

3. The proposed DDPM-based image postprocessing simultaneously denoises and upsamples raw
reconstructed images. This improves image resolution and object recognizability, achieving
strong pixel-wise similarity to ground-truth images.

2 RELATED WORK

Server-Side Gradient Inversion. The assumption that FL inherently protects data privacy has been
challenged by studies exposing vulnerabilities to gradient inversion attacks from the central server
(Zhu et al., 2019; Geiping et al., 2020). These attacks exploit the gradients shared by clients to re-
construct private training data. They revealed that by iteratively updating a dummy input to produce
a gradient similar to a given target gradient, the server could generate images closely resembling
the participant’s original training data. Various defense mechanisms have been proposed to protect
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against these attacks, including gradient compression, perturbation, and differential privacy tech-
niques (Zhang et al., 2020; Sun et al., 2021). Despite these efforts, recent studies have shown that
these defenses may not effectively prevent training data from being meaningfully reconstructed. For
example, Yue et al. (2023) overcame these defense methods by leveraging latent space reconstruc-
tion and incorporating generative models to remove distortion from reconstructed images.

Client-Side Model Inversion. While the majority of research has focused on server-side attacks,
the potential for client-side attacks has been less examined. Wu et al. (2024) investigated model
inversion attacks, where a client exploits the model’s overfitting to reconstruct training data. This
approach relies on manipulating the model rather than directly reconstructing other clients’ data.
Similar to our work’s takeaway, their results demonstrated that clients can reconstruct peers’ images
without disrupting the training process. However, due to the challenging nature of model inversion,
their method produces reconstructed images far less similar to the target than those from gradient
inversion attacks.

Malicious Client Attacks. A parallel research direction focuses on attacks where a malicious client
interferes with the FL process (Blanchard et al., 2017; Shejwalkar et al., 2022). Specifically, mali-
cious clients can manipulate the model updates by using poisoned data or sending poisoned gradients
to the server to impede convergence. Meanwhile, researchers have shown that malicious modifica-
tions can compromise privacy easily (Fowl et al., 2021; Wen et al., 2022). While this introduces
unique security challenges in FL, our attack does not disrupt the training process and is difficult to
be detected by the server or other clients.

3 PROPOSED IMAGE RECONSTRUCTION ATTACK BY CURIOUS CLIENTS

In this section, we present the gradient inversion attack, which allows an honest-but-curious client
to reconstruct image data from other clients. To enhance this reconstruction, two postprocessing
methods are introduced to achieve both fine-grained quality and perceptual realism. The first post-
processing method improves the images at the pixel level with enhanced details. The second method,
built on a masked diffusion enhancer, refines the images at the semantic level and produces photo-
realistic reconstructions.

3.1 ATTACK FRAMEWORK

Threat Model. We consider an honest-but-curious client (or curious client, for simplicity) attacker.
It aims to reconstruct other clients’ training data while following the protocol of FL. The attacker
does not disrupt the model training process. The curious client does not have direct access to the
gradients from other clients. However, it receives an updated version of the shared model from the
server at each communication round. Additionally, we assume as in Li et al. (2020b); Huang et al.
(2020) that all client updates in a given round have been computed using the same learning rate,
which is applied locally if each client transmits a model update, as shown in Eq. (2). It may also
be applied globally if clients transmit raw gradients to the server, as discussed in Section 4. The
attacker may not know the number of clients in each training round but can correctly guess the total
number of training images. We follow the assumption of Yue et al. (2023) that each client trains
for τ iterations on the same minibatch of images in each local iteration/update round and that the
class labels have been analytically inverted as in Ma et al. (2023). We target cross-silo FL scenarios,
in which a small number of clients collaborate to overcome data scarcity. For example, a group of
hospitals may use FL to develop a classifier for rare diseases from CT scans, where each has limited
training examples and images cannot be directly shared due to privacy concerns. We assume that the
system is designed to prioritize model accuracy and uses synchronous gradient updates. Clients are
not edge devices and have sufficient computational resources to perform the optimization process
while participating in FL.

We describe the FL process to be attacked as follows. The kth client at time t uses the same mini-
batch of size Nk to compute its local weights W(t,u)

k across all local iterations u until u = τ , where
τ is the number of local training iterations. Each client’s final local weight can be expressed as:

W
(t,τ)
k = W(t) −

ηg

Nk
∆

(t)
k , ∆

(t)
k =

τ−1∑
u=0

Nk∑
i=1

∇ℓ(W
(t,u)
k ;Xk,i;Yk,i), (1)
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where W(t) is the global model parameters at time t, ∇ℓ(·) is the gradient of the loss function, the
doubly indexed Xk,i ∈ RC×H×W ,Yk,i ∈ R are the ith training image and label from client k,
respectively, and C, H , and W are the number of channels, the height, and the width of the images.
The server generates the global weights by a weighted average of all clients’ final local weights,
namely, W(t+1) = 1

N

∑K
k=1 NkW

(t,τ)
k , where N =

∑K
k=1 Nk is the total number of training

examples across K clients, with each client having a fixed minibatch of Nk images. Substituting
W

(t,τ)
k into the expression for W(t+1), we obtain the global weight update equation:

W(t+1) = W(t) −
ηg

N
∆

(t)
k . (2)

We note that scaling each client’s update by its number of training images Nk causes the gradient of
each training image Xk,i to be weighted equally in the global update.

Our approach to reconstructing data from the global model updates builds upon traditional gradient
inversion and includes extra initialization and calculation steps to separate individual training im-
ages from the averaged global update. Our attacker engages in two consecutive rounds of FedAvg
and obtains two versions of the global model parameters, W(t) and W(t+1). By computing the
difference between successive model weights, the attacker can infer the gradient used for the global
model update: ∇(t)

avg = (W(t) −W(t+1))/η
(t)
g , where η

(t)
g is the globally-determined learning rate

for round t.

To reconstruct training images, our attacker initializes dummy image data X ∈ RN×C×H×W and
labels Y ∈ RN . The attacker passes them through a global model and compares the resulting gra-
dient update ∆(t)(X,Y) =

∑τ−1
u=0

∑N
l=1 ∇ℓ(W(t,u);Xl;Yl) to the target gradient ∇(t)

avg, where the
singly indexed Xl and Yl are the lth dummy image and label for the combined dataset. Following
the gradient inversion framework, the goal is to iteratively refine X until it closely approximates the
data used to compute the target gradient. The attacker solves the following optimization problem:

X̂ = argmin
X

∥∥∥∆(t)(X,Y)−∇(t)
avg

∥∥∥2 , (3)

where the evolving global model {W(t,u)}τ−1
u=0 requires only the knowledge of the total number of

images, eliminating the need to know the number of clients and the image counts from all clients.

Finally, the attacker applies a postprocessing function ϕ(·) to improve the quality of the recon-
structed images X̃ = ϕ(X̂). This shows that a curious client attacker is able to follow an approach
similar to server-side gradient inversion and obtain reconstructed data from all other clients from
only two consecutive versions of the model weights. We describe below two methods of postpro-
cessing X̂ to improve its quality at either a pixel or semantic level.

3.2 DIRECT POSTPROCESSING FOR PIXEL-LEVEL IMAGE ENHANCEMENT

To reconstruct the target data more effectively, we introduce a direct postprocessing method that
utilizes pretrained diffusion models to perform super resolution and denoising on the raw image
reconstructions. The raw reconstructed images from the attack may be low-resolution or have pixel
artifacts due to imperfect gradient inversion. This problem may also be more severe in our attack
compared to server-side gradient inversion as the target gradient contains diluted information from
multiple clients. To address this problem, we introduce a postprocessing implementation, ϕ(·) ≡
ϕdirect(·) that uses pretrained diffusion models to directly postprocess the raw reconstructed images.
Diffusion models have demonstrated good performance in image generation and restoration tasks
and are able to produce more realistic images with a lower likelihood of hallucination (Dhariwal &
Nichol, 2021). Our method follows the denoising diffusion restoration models (DDRM) framework
and utilizes a pretrained DDPM (Ho et al., 2020) as a backbone model. DDRM has demonstrated
strong performance across various image restoration tasks, including super resolution and denoising
(Kawar et al., 2022). By increasing resolution and removing noise, we aim to accurately reveal
details of the ground truth images and make the reconstructions more recognizable.
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Figure 2: Photorealistic images reconstructed by the proposed semantic reconstruction method
MDE. This diffusion-based method iteratively refines its generated image by referring to the raw
reconstruction. As iterations progress, the image increasingly assumes the shape and perceptual fea-
tures of the raw reconstruction. After some optimal epoch number (determined by visual inspection
of the attacker), the reconstructed image strongly resembles the target at a high quality. Beyond this
point, further optimization may produce blurry images due to overfitting.

3.3 MASKED DIFFUSION ENHANCER: RECONSTRUCTION AT A SEMANTIC LEVEL

In this subsection, we also introduce a method to reconstruct target images at the semantic level,
ϕ(·) ≡ ϕsemantic(·), the masked diffusion enhancer (MDE). The goal of MDE is to generate sharp,
high-resolution images from the low-resolution, color-aliased raw attack results. This approach
complements the direct postprocessing technique, as the generated images resemble the raw recon-
structions at the semantic level, rather than at the pixel level. The generated images preserve the
shape and perceptual features of the target image while achieving photorealistic quality.

Backbone Model. We use masked diffusion transformer (MDT) as the backbone of our reconstruc-
tion technique. MDT has been proven to achieve state-of-the-art performance in image generation
(Gao et al., 2023). Due to its extensive training and flexibility, MDT has learned a complex repre-
sentation of each image class that enables it to accurately reconstruct each image’s semantic features
through projection onto the manifold. Following the diffusion framework, MDT generates images
by starting from a Gaussian noise vector XT ∼ N (0, I), where T is the total number of diffusion
steps. At each step t, the model predicts a noise residual ϵθ(Xt), and uses it to refine the noisy
image Xt to Xt−1. After T iterations, the initial noise vector XT will be transformed into a high
quality image X0. For our reconstruction technique, we leverage a pretrained MDT and freeze its
model parameters throughout the process to maintain consistency in the image generation pipeline.

Proposed Masked Diffusion Enhancer (MDE). MDE optimizes the initial noise vector XT to
generate an image that closely matches a target image X̂. During optimization, the noise predictions
ϵθ(Xt) at each timestep are treated as constants. The objective of MDE is to minimize the mean
squared error (MSE) between the final generated image µθ(XT , T ) and the target image X̂:

X̃T = argmin
XT

∥∥∥µθ(XT , T )− X̂
∥∥∥2
2
, (4)

where µθ(XT , T ) denotes the final image produced from the initial noise vector XT after all diffu-
sion steps. By optimizing XT based on the loss term, we guide the model to generate images that
have the same shape and perceptual features as the target image.

4 EXPERIMENTAL RESULTS

This section first presents the performance of the proposed reconstruction attack in terms of image
reconstruction quality against gradients averaged from multiple clients. Factors affecting recon-
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Figure 3: Pixel-level correct images reconstructed by the proposed attack before and after direct
postprocessing (Section 3.2). The second and third rows show postprocessed and raw reconstructed
images. The raw reconstruction results from our attack are low-resolution and have significant color
aliasing. Our direct postprocessing method increases the resolution and simultaneously denoises the
images while maintaining pixel-level correctness, revealing image details that make the reconstruc-
tions easier to recognize.

struction quality, including the number of local iterations and client batch size, will be analyzed.
The postprocessing modules will be ablated to examine their benefits on image reconstruction. The
state of the art will be compared and the limitation of the proposed attack will be discussed.

Experimental Conditions. We evaluate our reconstruction attacks using the ImageNet (Deng et al.,
2009) and MNIST (LeCun et al., 1998) datasets. We employ LeNet (LeCun et al., 1998) and ResNet
(He et al., 2016) as the global models and conduct experiments under the FedAvg framework. Each
client performs 3 iterations of local training on 16 images as this batch size provides a baseline where
the attack reconstructs recognizable images from the target gradient. As more clients participate in
training, the training image count from the global model’s perspective increases proportionally. The
attacker uses a learning rate of 0.1 to optimize the dummy data and the attack is conducted after
the first FL round, following the approach of Yue et al. (2023). Before inverting the target gradient,
the attacker encodes its dummy data through bicubic sampling with a scale factor of 4 to reduce the
number of unknown parameters. This has been proven to save convergence time and improve image
quality in gradient inversion (Yue et al., 2023). We use LPIPS (Zhang et al., 2018) as the primary
metric to evaluate quality of the attack’s reconstructed images as it provides the best representation
of perceptual image quality based on our experiments, through we observe similar trends for SSIM
(Wang et al., 2004) and PSNR/MSE.

2 4 6 8
Number of Clients

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

LP
IP
S LeNet

ResNet9
ResNet18

Figure 4: LPIPS of reconstructed im-
ages vs. number of clients with three
different models: LeNet5, ResNet9, and
ResNet18.

Main Results. Figure 2 demonstrates that MDE effec-
tively transforms low-resolution, color-aliased raw re-
constructions into sharp, high-resolution images. The
model was provided with randomly selected reconstruc-
tions from an attack on a system with four clients and
iteratively refined the outputs over 100 epochs. In the
first epoch, the output is a random image from the tar-
get class. As optimization progresses, the generated im-
ages increasingly resemble the target. We observe that
at an optimal epoch number, the output images closely
match the target, preserving its geometric structure and
perceptual features with photorealistic quality. This opti-
mal point varies across target images and was determined
qualitatively based on the raw reconstructed images. Be-
yond this point, although the generated images continue
to match the target semantically, their quality degrades,
becoming blurrier. We attribute this to the model overfitting that learns the pixelation and blurriness
of the target to minimize the MSE loss.
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Figure 5: Pixel-level correct images reconstructed from the proposed honest-but-curious client-
based attack. Rows 2–4 show reconstructions from gradients averaged across 2, 4, and 8 clients
using LeNet5 as the global model with 16 images per client and 3 local training iterations. The
images remain high quality even when the attack is performed against multiple clients.

Figure 3 illustrates the impact of the proposed DDPM-based direct image postprocessing in en-
hancing the quality of the raw reconstructions while preserving pixel-wise accuracy. The raw re-
constructed images, constrained by the dummy data’s encoding, are 32×32 pixels compared to
the 128×128 ground-truth images and exhibit pixel artifacts and color aliasing due to imperfect
reconstruction. Our direct postprocessing method simultaneously performs super-resolution and de-
noising, addressing these quality issues. The resulting images are sharper, more recognizable, and
retain details that closely match the ground truth, significantly improving resolution and object rec-
ognizability over the raw reconstructions. Figure 5 shows reconstructed images from attacks against
systems with 2, 4, and 8 clients. As the number of clients increases, the reconstruction task becomes
more difficult but we observe that our attack is still able to effectively reconstruct images from the
target gradient. However, we observe a gradual decline in image reconstruction quality, measured
by LPIPS (Zhang et al., 2018) and SSIM (Wang et al., 2004) of the reconstructed images, as shown
in Figure 4. With a larger number of clients, the initial reconstructions exhibit increasing levels
of noise and color aliasing. This trend is consistent across a range of global models because the
information contained within the target gradient becomes increasingly diluted as it is averaged from
more clients.

2 4 6 8
Number of Clients

0.25

0.30

0.35

0.40

0.45

LP
IP
S Without Postprocessing

With Postprocessing

Figure 6: LPIPS of reconstructed images with
varying number of clients. Our direct postprocess-
ing technique significantly improves reconstruc-
tion quality compared to the raw attack results.

Ablation Study. We examine how much im-
pact the direct and semantic postprocessing
blocks have on the quality of the attacker’s
reconstructed images. Figure 6 shows that
directly postprocessing the raw reconstructed
images results in a 20–30% improvement in
LPIPS for systems with 2–8 clients. Figure 3
visually compares reconstructed images from a
system with four clients before and after direct
postprocessing. The raw images are low res-
olution and may be somewhat difficult to rec-
ognize while the postprocessed versions show
much finer details and have recognizable fea-
tures. This demonstrates the utility of our di-
rect postprocessing technique in increasing the
pixel-wise accuracy and recognizability of the
reconstructed images.
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Additionally, Figure 2 shows the effect of postprocessing the raw reconstructed images using the
proposed MDE. The final results have the same shape and perceptual features of the raw recon-
structions without any pixel artifacts, color aliasing, or blurriness. However, MDE’s goal is not to
achieve pixel-wise accuracy so the generated images should not be compared quantitatively to the
raw reconstructions.
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Figure 7: LPIPS of reconstructed images vs. num-
ber of clients, client batch size, and local itera-
tions. Reconstruction quality worsens with more
clients and larger batch sizes.

Factor Analysis. Figure 7 reveals the effect of
local iterations and client batch size on image
reconstruction quality. These factors directly
influence the attack’s ability to invert the target
gradient. As shown in the left plot of Figure 7,
larger client batch sizes lead to worse recon-
struction quality. Smaller batches add variabil-
ity to updates, making them more informative
for the attacker, whereas larger batches smooth
updates and reduce the amount of exploitable
information. The right plot of Figure 7 shows
that increasing the number of local iterations
leads to worse reconstructions when the num-
ber of clients is large. More local iterations cause greater gradient averaging, which dilutes the
information needed to accurately reconstruct images from the target gradient. This is particularly
important because federated learning often uses more local iterations to reduce communication.
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Figure 8: Quality of the raw reconstructed im-
ages when the attacker incorrectly guesses the
global model’s learning rate (LR). Image quality
improves as the attacker guesses more correctly.

Unknown Learning Rate. We assume in our
experiments that the attacker knows the global
learning rate ηg. This assumption simplifies the
attack but need not be true for the attack to be
effective. If the learning rate is applied globally
(by the central server) and the attacker’s guess
differs from the true value, the target gradient
will be inversely scaled by a factor of the ratio
between the guessed learning rate and the true
learning rate, leading to poor reconstruction
quality. For simplicity, we set the base ηg = 1
and examine the impact on reconstruction when
it is unknown to the attacker. The attacker uses
its own training images to evaluate reconstruc-
tion quality as it knows they will be in the set
of reconstructed images. Figure 8 shows that
reconstruction quality degrades rapidly as the
guessed and true learning rates diverge. However, within an order of magnitude of the true learning
rate, the degradation follows a simple polynomial pattern. An attacker with sufficient computational
resources can refine their guess over multiple iterations to improve reconstruction quality if the true
learning rate is not known.
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Figure 9: LPIPS and SSIM of reconstructed im-
ages using our direct postprocessor vs. GAN post-
processing with varying number of clients. Our
method results in higher LPIPS as it blurs uncer-
tain image details, compared to sharper but poten-
tially less accurate outputs from GANs. SSIM,
less sensitive to blurring, remains comparable
across both approaches.

Comparison to ROG and FedInverse. We
compare our attack method to FedInverse (Wu
et al., 2024) and reconstruction from obfus-
cated gradients (ROG) (Yue et al., 2023). To
the best of our knowledge, FedInverse is the
only prior work addressing honest-but-curious
client attacks. Unlike our approach, which re-
constructs data from gradients, FedInverse in-
verts the global model. Their method performs
best when the model is complex and trained
over many epochs, whereas our attack works
best with larger gradients, typically when the
model is simpler and less trained. Figure 11
reveals that our method reconstructs higher-
quality data from a small number of clients,
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Figure 10: Pixel-level-correct reconstructed images using (row 2) our direct postprocessor and
(row 3) ROG GAN (Yue et al., 2023). Our direct postprocessing method produces reconstruc-
tions that are more recognizable and have more accurate image details compared to the ROG GAN.
However, our method also results in worse LPIPS and SSIM due to blurring.

whereas FedInverse produced lower-quality reconstructions from a larger number of clients. FedIn-
verse is less sensitive to the number of clients, while our approach is more sensitive. Our proposed
attack can be viewed as complementary to FedInverse.

We compare reconstruction quality from our direct and semantic postprocessing techniques to the
state-of-the-art postprocessing results achieved by Yue et al. (2023). Figure 10 shows that our tech-
nique generates images that are more recognizable but often blurry because of uncertainty in the fine
image details. LPIPS is designed to evaluate image quality, rather than detail accuracy, and penal-
izes blurriness and pixelation much more than hallucination. The left plot of Figure 9 shows that this
results in the reconstructed images from our direct postprocessing technique having worse LPIPS
than the state-of-the-art postprocessing technique. In contrast, the right plot of Figure 9 shows that
our results achieve comparable SSIM, a metric that does not penalize blurriness as much as LPIPS.

5 CONCLUSIONS AND FUTURE WORK

We have demonstrated that a curious client attacker can successfully reconstruct high-quality images
from a small number of clients simply by participating in two consecutive training rounds. This type
of attack does not alter the training process or introduce corrupted data, making it difficult to de-
tect by the server or other clients in the system. Our findings indicate that the attack is particularly
effective when the number of participating clients is small or the available training examples are lim-
ited. This raises a significant concern for cross-silo FL, where participants collaborate specifically
to overcome data scarcity (Li et al., 2020a). In such settings, our findings reveal a serious privacy
risk, as the reconstruction of sensitive data becomes more feasible. Further research is needed to
assess the robustness of more advanced FL frameworks against curious client attacks and develop
effective defenses to preserve data privacy in cross-silo FL.
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Figure 11: (a) Evaluation on MNIST of the attack with MDE postprocessing compared to (b) the
model inversion (MI) and model inversion with Hilbert–Schmidt independence criterion (MI-HSIC)
approaches [reproduced from Wu et al. (2024)]. Only 5 examples were provided for each method in
Wu et al. 2024. Our reconstructed images are qualitatively more similar to the ground truth.
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Figure 12: Pixel-level-correct reconstructed images from a system with 16 clients. With more
clients, our reconstruction technique can reconstruct only a subset of training images with high
quality, whereas others show distortion and color aliasing artifacts. Each client has 16 images and
trains for 3 local iterations using LeNet5 as the model architecture.

A DISCUSSION

Limitations. Our attack struggles to reconstruct high-quality images in systems where the number
of clients is large. As the information contained within the attacker’s target gradient is averaged from
more clients, it becomes more difficult to reconstruct high-quality images. With more than 8 clients,
we observe that some reconstructed images remain high quality while others exhibit significant
degradation or are not recognizable. Figure 12 shows the varying quality in our reconstructed images
in a system of 16 clients. Additionally, we observe that the postprocessors are often able to restore
image details that may not be obvious to a human observer looking at the raw reconstruction results.
However, they are not able to restore images when the raw reconstruction result does not provide
enough information, which is a problem common to all postprocessing tasks.

Nonuniform Learning Rate. The proposed attack relies on each client’s gradient update being
scaled by the same learning rate and this is also necessary for the global model to converge with
FedAvg. To achieve the best model convergence during federated training, FedAvg scales each
client’s update by the client’s number of training images, which gives the individual gradient of
each training image equal weight in the global model update. If clients used very different learning
rates, the clients with larger learning rates would dominate the global weight update, leading to
suboptimal convergence. This is the basis for the assumption that the clients’ learning rate in each
round is either set by the server or otherwise controlled. For example, the clients may use a learning
rate scheduler but agree on its parameters so the scale of their updates does not vary significantly in
a given round. Regardless of how the learning rate is set during federated training, scaling individual
image gradients unevenly in a way that would disrupt the attack is also likely to impede the global
model’s convergence.

Unknown Number of Images. The proposed attack assumes that the attacker can correctly guess
the total number of training images N in a given round. This assumption simplifies the attacking
algorithm but is not always needed. Instead, the attacker can search for this integer value and decide
on the best guess leading to a successful recovery of the attacker’s own training images. If both the
learning rate and number of images are unknown, a joint parameter search can be conducted.

Application to Secure Aggregation. We evaluate the similarity between our approach and server-
side attacks against the secure aggregation protocol, identifying both significant differences and an
additional application scenario of our attack. Our problem of inverting the aggregated gradients
of multiple clients is similar to the problem server-side attackers encounter in systems using the
secure aggregation protocol, which prevents the parameter server from knowing individual clients’
gradients (Bonawitz et al., 2017). Despite this similarity, we have not found any other works that
obtain high-quality reconstructions without modifying the global model (Shi et al., 2023; Zhao et al.,
2024) or relying on additional information the server might have about the client devices, such as
device type and available memory (Lam et al., 2021), which would not be possible for a client
attacker. Most of these attacks also rely on information collected across many training rounds,
which may not be available to a client who cannot choose which rounds it is selected to participate
in. In contrast, our attack does not require the attacker to disrupt the training protocol or have
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any information about the other clients beyond the model updates and total number of training
images, which it may be able to guess. It also relies only on information from two consecutive
training rounds. This indicates that our attack could also be performed by a server against a securely
aggregated gradient and would allow it to avoid modifying the global model, maintaining the honest-
but-curious threat model.

B ASSUMPTIONS

Table 1: Many of the assumptions necessary for the proposed attack are shared by server-side gra-
dient inversion attacks. We compare the assumptions necessary for our attack to ROG (Yue et al.,
2023), DLG (Zhu et al., 2019), and iDLG (Zhao et al., 2020) to clarify which are unique to the
curious-client threat model. Beyond what is required for these server-side attacks, the proposed at-
tack requires that the number of clients in each training round is small and that the attacker knows
or can guess the total number of images in a given round.

Assumption Ours
(client)

ROG
(server)

iDLG
(server)

DLG
(server)

Application:
cross-silo/cross-device

cross-silo both both both

Analytical label inversion ✓ ✓ ✓

Single image per gradient ✓

Each client trains on a single
batch in each round

✓ ✓ ✓ ✓

Clients can guess the total
number of images in a given
training round

✓

Small number of clients ✓

Small number of local
iterations

✓ ✓ ✓ ✓

Small number of images in
each training round

✓ ✓ ✓ ✓

Attacker has resources for
complex attack

✓ ✓ ✓ ✓
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C EFFECT OF UNEVEN LOCAL BATCH SIZE

Figure 13: Quality of image reconstructions when
training images are distributed unevenly between
clients compared to an even distribution of train-
ing images. The effectiveness of the proposed at-
tack is not sensitive to uneven client batch sizes,
even when training for multiple local iterations.

We compare the performance of the proposed
attack with uneven client batch sizes to confirm
that the proposed attack is not affected when
training examples are distributed unevenly be-
tween clients. To evaluate this, we distribute
a total of 256 training images unevenly across
clients, using an average client batch size of 16
images. Half of the clients are initialized with
21 images (two-thirds of the total training data),
while the other half receive 11 images (one-
third of the total). Figure 13 compares the im-
age reconstruction quality between this uneven
distribution and a system where each client has
an equal batch size of 16 images, keeping the
total number of training images constant. The
evaluation is conducted with an even number
of clients ranging from 2 to 8. The results in-
dicate negligible differences in reconstruction
quality between the two systems. This finding
supports our hypothesis that the weighting be-
havior of FedAvg renders the attack robust to
uneven batch size distributions.

D EFFECT OF INVERSION LEARNING RATE
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Figure 14: LPIPS of reconstructed images with
varying attacker’s inversion learning rate, which
the reconstruction quality is not sensitive to.

Figure 14 examines the sensitivity of the pro-
posed attack to variations in the attacker’s in-
version learning rate, which is used optimize
the dummy data. We evaluate reconstruction
quality by varying both the inversion learning
rate and the number of clients where the FL
learning rate, used to update the global model,
is fixed at 0.03. The results show only mi-
nor differences in image reconstruction quality
across different learning rates, with slight vari-
ations in the optimal learning rate depending on
the number of clients. Overall, the attack’s per-
formance remains robust as long as the inver-
sion learning rate is within a reasonable range.
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Figure 15: Images reconstructed by the proposed attack on a system with 8 images per client and
three local iterations.
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Figure 16: Images reconstructed by the proposed attack on a system with 32 images per client and
three local iterations.
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Figure 17: Images reconstructed by the proposed attack on a system with 64 images per client and
three local iterations.
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Figure 18: Images reconstructed by the proposed attack on a system with 16 images per client and
one local iterations.
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Figure 19: Images reconstructed by the proposed attack on a system with 16 images per client and
five local iterations.
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Figure 20: Images reconstructed by the proposed attack on a system with 16 images per client and
eight local iterations.
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