

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FATIGUE-AWARE LEARNING TO DEFER VIA CONSTRAINED OPTIMISATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Learning to defer (L2D) enables human-AI cooperation by determining when AI systems should make autonomous predictions versus deferring to human experts. However, existing L2D methods assume constant human performance across both short and long time horizons, contradicting established cognitive psychology research on fatigue-induced performance degradation. We present Fatigue-Aware Learning to Defer via Constrained Optimisation (FALCON), explicitly modelling workload-varying human performance through psychologically grounded fatigue curves. FALCON formulates L2D as a Constrained Markov Decision Process (CMDP), where system states incorporate both task-specific characteristics and cumulative human workload. In particular, we maximise classification accuracy under human-AI cooperation budget constraints, using PPO-Lagrangian optimisation. We also introduce the Fatigue-Aware L2D (FA-L2D) benchmark with controllable fatigue-induced performance degradation across varying time horizons, enabling scenarios that range from near-constant to highly variable human performance and replacing prior benchmarks that assumed stability over time. Extensive experiments on our benchmarks demonstrate that FALCON consistently outperforms state-of-the-art L2D approaches at all coverage levels, particularly when considering human performance variations. Notably, FALCON enables zero-shot generalisation to unseen experts with different fatigue patterns. Furthermore, L2D methods are shown to consistently surpass both AI-only and human-only baselines whenever coverage lies strictly between 0 and 1, underscoring the effectiveness of adaptive human-AI collaboration in a setting closer to real-world scenarios.

1 INTRODUCTION

AI systems are increasingly deployed in safety-critical applications, but relying solely on AI can be dangerous because they may overlook subtle issues that only humans can interpret. In domains such as financial risk assessment (Green & Chen, 2019), breast cancer classification (Halling-Brown et al., 2020), and detecting deceptive AI-generated content (Ding et al., 2024), human experts provide essential judgment and contextual understanding that current AI models cannot replicate. While AI offers consistent and relatively reliable performance, it can still make catastrophic errors that humans are better positioned to detect. Conversely, humans can be highly trustworthy in complex scenarios, but their performance is unstable and influenced by factors such as expertise level and fatigue.

Learning to defer (L2D) aims to address these challenges by creating *hybrid intelligence* systems that dynamically allocate decisions between AI and human experts (Flügner et al., 2022). L2D methods learn a gating mechanism to defer decisions to humans on high-uncertainty cases to maximise accuracy, or leverage AI classifiers on high-confidence cases to minimise cost and reserve human effort (Madras et al., 2018). Current L2D approaches can be categorised by their architectural design, including one-stage and two-stage approaches. The one-stage approach (Mozannar & Sontag, 2020a) jointly models gating and classification functions using shared feature representations, while the two-stage approach (Madras et al., 2018) models these components separately. Recent research in L2D has extended from human-specific to human-adaptive setting, in which a system can quickly adapt and collaborate with a new human expert given prior knowledge of that expert capability. Specifically, L2D-Pop (Tailor et al., 2024) encodes a *context set* consisting of data annotated by a human expert in a *few-shot* setting and conditions for that representation to collaborate with that

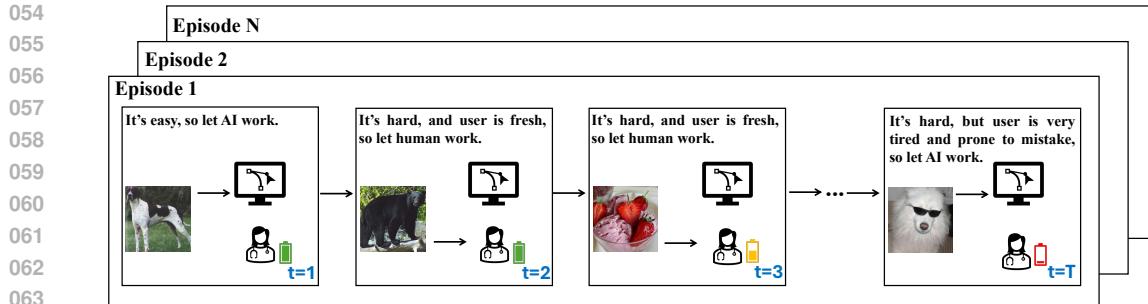


Figure 1: Example of an L2D scenario illustrating workload-variant human performance in human–AI task allocation within a single episode. FALCON adapts deferral decisions based on both task difficulty and accumulated human fatigue. At $t = 1$, an easy task is handled by the AI while the human expert remains fresh. At $t = 2$, a challenging case is deferred to the human expert who has sufficient cognitive capacity. By $t = 3$, another hard task is still assigned to the human despite mild fatigue accumulation. At the final time step $t = T$, severe human fatigue leads to AI handling the task to prevent performance degradation.

expert. EA-L2D (Strong et al., 2025) simplifies that strategy further by using class-expertise of a human expert measured in the context set as the representation for that human.

Despite these successes, current L2D systems rely on an unrealistic assumption: they assume *human experts function as tireless, static oracles with constant performance*. This simplification is often adopted to facilitate the learning process and reduce modelling complexity, but comes at the cost of creating an unrealistic training and deployment scenario. In reality, cognitive psychology research (Casali et al., 2019) shows that human performance is dynamic, influenced by factors such as skill acquisition and, more critically, cognitive fatigue (Pimenta et al., 2014; Bose et al., 2019). As humans engage in demanding tasks for prolonged periods, their vigilance wanes, leading to an accuracy decline, which is known as the vigilance decrement phenomenon (Gyles et al., 2023). This static-performance assumption introduces practical inefficiencies in human–AI cooperation. Fatigue-induced performance degradation is well documented: individuals experience declining cognitive and physical capabilities as work sessions progress, making even simple tasks increasingly time-consuming and effortful (Cairns et al., 2008). This resource depletion is particularly pronounced during extended periods of demanding or repetitive work (Pimenta et al., 2014; Lee et al., 2013), where sustained attention requirements exceed natural cognitive capacity. In real-world scenarios involving extended work sessions, such as radiological screening, cognitive fatigue accumulates predictably (Waite et al., 2017; Reiner & Krupinski, 2012; Taylor-Phillips & Stinton, 2019), significantly increasing diagnostic error rates with potentially life-threatening consequences. Berlin (2000) reported a radiologist who made a critical misdiagnosis after interpreting 162 cases in a single day, which is more than triple the typical daily workload of 50 cases. Despite this, current L2D methods continue to apply fixed deferral thresholds throughout an entire session, ignoring temporal variations in human performance. Consequently, two equally complex tasks may be assigned to the same expert, once when fresh and later when fatigued, without accounting for the diminished cognitive resources.

Inspired by cognitive psychology research on mental fatigue (Estes, 2015; Newell & Rosenbloom, 2013), we introduce a dynamic L2D setting, illustrated in Fig. 1, that accounts for predictable variations in human performance, challenging the common assumption of static expert capability. We explicitly model workload-dependent human performance by linking expert accuracy to dynamic performance curves that capture both initial learning and subsequent fatigue-induced decline. To operationalise this, we introduce Fatigue-Aware Learning to Defer via Constrained Optimisation (FALCON), which formulates dynamic L2D as a Constrained Markov Decision Process (CMDP), where system states incorporate task-specific characteristics and cumulative human workload. This formulation enables our framework to make adaptive deferral decisions that align task allocation with the expert’s current cognitive state, rather than assuming static capability under a predetermined human–AI collaboration budget. Our main contributions can be summarised as follows:

- **L2D with workload-variant human performance:** We introduce FALCON, the first framework for human–AI cooperative sequential decision-making that accounts for workload-variant

108 human performance by explicitly modelling its degradation over time. Additionally, FALCON
 109 incorporates a budget-constrained optimisation strategy, enabling precise control over target
 110 coverage while effectively balancing the accuracy–coverage trade-off.

- 111 • **Psychologically Grounded Simulation Environment:** We develop a human performance
 112 simulation environment grounded in psychological principles, offering a realistic testbed for
 113 evaluating L2D methods under workload-variant human performance conditions.
- 114 • **Fatigue-Aware L2D (FA-L2D) Benchmark:** We release the FA-L2D benchmark, based on
 115 Cifar100 (Wei et al., 2021), Flickr (Yang et al., 2017), MiceBone (Schmarje et al., 2022), and
 116 Chaoyang (Zhu et al., 2021), which models controllable fatigue effects across varying time
 117 horizons, enabling scenarios from near-constant to highly variable human performance and
 118 replacing prior benchmarks that assumed static human performance.

119 We evaluate FALCON against state-of-the-art L2D approaches (Mozannar & Sontag, 2020a; Madras
 120 et al., 2018; Tailor et al., 2024; Strong et al., 2025) on our proposed FA-L2D benchmark. Empirical
 121 results demonstrate that FALCON consistently outperforms existing methods, achieving
 122 higher accuracy for equivalent coverage levels across all evaluation settings. Importantly, under the
 123 workload-variant human performance proposed by our FA-L2D benchmark, L2D methods consistently
 124 outperform both AI-only and human-only decision-making for any non-trivial coverage level
 125 (i.e., between 0 and 1), highlighting the practical value of adaptive collaboration strategies.

127 2 PRELIMINARIES

128 2.1 LEARNING TO DEFER

131 For a K -way classification task, let $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$ be the training set of size N , where $\mathbf{x}_i \in$
 132 $\mathcal{X} \subset \mathbb{R}^d$ denotes a d -dimensional input sample, and $\mathbf{y}_i \in \mathcal{Y} \subset \{0, 1\}^K$ is the corresponding ground
 133 truth label. An *AI classifier* is denoted as $\mathbf{m} : \mathcal{X} \rightarrow \Delta^{K-1}$, where a human expert is represented
 134 by $\mathbf{h} : \mathcal{X} \rightarrow \Delta^{K-1}$. Traditional L2D methods contain the classifier $\mathbf{m}(\cdot)$ and a gating function $\mathbf{g}(\cdot)$.
 135 Given an input sample \mathbf{x} and corresponding human prediction $\mathbf{h}(\mathbf{x})$ and ground truth label \mathbf{y} , the
 136 training objective is:

$$137 \ell(\mathbf{m}, \mathbf{g}) = \mathbb{E}_{\mathbf{x}, \mathbf{y}, \mathbf{h}} [(1 - \mathbf{g}(\mathbf{x}))\mathbb{I}[\mathbf{h}(\mathbf{x}) \neq \mathbf{y}] + \mathbf{g}(\mathbf{x})\mathbb{I}[\mathbf{m}(\mathbf{x}) \neq \mathbf{y}]], \quad (1)$$

139 where $\mathbb{I}[\cdot]$ is the indicator function, $\mathbf{g}(\mathbf{x}) \in [0, 1]$ denotes the probability deferring the decision to the
 140 human, while $1 - \mathbf{g}(\mathbf{x})$ represents the probability that the AI classifier makes the prediction. Since $\mathbb{I}[\cdot]$
 141 is non-differentiable, some surrogate losses are proposed to generalise the cross-entropy loss (Verma
 142 & Nalisnick, 2022; Mozannar & Sontag, 2020b).

143 Critically, all existing L2D methods are built on the simplifying assumption that the performance of
 144 the human prediction $\mathbf{h}(\mathbf{x})$ is static over time, which is an assumption that ignores well-documented
 145 variations such as fatigue-induced degradation or learning effects (Estes, 2015; Leppink & Pérez-
 146 Fuster, 2019), and thus fails to reflect realistic deployment conditions.

147 2.2 MARKOV DECISION PROCESS

149 A Markov Decision Process (MDP) can be described by a 4-tuple $(\mathcal{S}, \mathcal{A}, \mathbf{p}, \mathbf{r})$, where \mathcal{S} is the set of
 150 states called the *state space*, \mathcal{A} is the set of actions called *action space*, $\mathbf{p} : \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$ is the
 151 *transition dynamics* with $\Delta(\mathcal{S})$ being the probability simplex over \mathcal{S} , and $\mathbf{r} : \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$ is a
 152 *reward function*. A *policy* $\pi : \mathcal{S} \rightarrow \Delta(\mathcal{A})$ maps a state in \mathcal{S} to a probability distribution over the
 153 actions in \mathcal{A} . An *optimal policy* π^* is a policy that maximises the expected value of the discounted
 154 return $J_r(\pi) = \mathbb{E}_{\mathbf{s}_0 \sim \mathcal{S}} [\sum_{t=0}^{\infty} \gamma^t \mathbf{r}(\mathbf{s}_t, \pi(\mathbf{s}_t), \mathbf{s}_{t+1})]$, where $\gamma \in [0, 1]$ is a discount factor. The value
 155 function is defined as $V_r^{\pi}(\mathbf{s}) = \mathbb{E}_{\tau \sim \pi} [\sum_t \gamma^t \mathbf{r}(\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1}) | \mathbf{s}_0 = \mathbf{s}]$, the action-value function is
 156 defined as $Q_r^{\pi}(\mathbf{s}, \mathbf{a}) = \mathbb{E}_{\tau \sim \pi} [\sum_t \gamma^t \mathbf{r}(\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1}) | \mathbf{s}_0 = \mathbf{s}, \mathbf{a}_0 = \mathbf{a}]$ and the advantage function is
 157 defined as $A_r^{\pi}(\mathbf{s}, \mathbf{a}) = Q_r^{\pi}(\mathbf{s}, \mathbf{a}) - V_r^{\pi}(\mathbf{s})$.

158 Constrained Markov decision process (CMDP) is an augmented version of MDP (Altman,
 159 2021), defined by the tuple $(\mathcal{S}, \mathcal{A}, \mathcal{C}, \mathbf{p}, \mathbf{r})$, in which the set of constraints is defined as: $\mathcal{C} =$
 160 $\{\pi \in \Pi \mid J_{\mathbf{c}_i}(\pi) \leq d_i, i \in \{1, \dots, C\}\}$, where $J_{\mathbf{c}_i}(\pi) = \mathbb{E}_{\tau \sim \pi} [\sum_t \gamma^t \mathbf{c}_i(\mathbf{s}_t, \mathbf{a}_t)]$, with $\mathbf{c}_i : \mathcal{S} \times$
 161 $\mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$. The training objective is then defined as $\max_{\pi \in \mathcal{C}} J_r(\pi)$, where \mathcal{C} is the constraint (or

162 feasible) set. In this setting, the corresponding value function, action-value function, and advantage
 163 functions for the auxiliary costs are denoted by $V_c^\pi(s)$, $Q_c^\pi(s, a)$, $A_c^\pi(s, a)$.
 164

165 3 METHODOLOGY

166
 167 In this section, we present FALCON, a framework that formulates L2D as a CMDP to address the
 168 human-AI cooperation with human performance degradation dependent on workload accumulation.
 169 Firstly, we define the human-AI collaborative sequential decision-making task. We then introduce a
 170 human performance simulation environment grounded in psychological principles. Lastly, we illus-
 171 trate the L2D architecture with workload-variant human performance, while introducing constrained
 172 optimisation for precise budget control over human-AI cooperation costs.
 173

174 3.1 ENVIRONMENT SETUP

175
 176 We address sequential classification in the form of episodes. In each episode, a human-AI team
 177 collaboratively processes a stream of T sequential data $\tau = \{(\mathbf{x}_t, \mathbf{y}_t)\}_{t=1}^T$, where $\mathbf{x}_t \in \mathcal{X} \subset \mathbb{R}^d$ is
 178 an input sample at time step t , and $\mathbf{y}_t \in \mathcal{Y} = \{1, \dots, K\}$ is the corresponding ground truth label. The
 179 system maintains two predictive components: 1) a human expert with workload affected performance
 180 by defined by $h : \mathcal{X} \times \mathcal{W} \rightarrow \mathcal{Y}$, where $\mathcal{W} \subset \mathbb{R}_+$ is the space that represents the cumulative human
 181 workload, and 2) the AI classifier defined by $m : \mathcal{X} \rightarrow \Delta^{K-1}$. At each time step t , the system will
 182 perform an action $a_t \in \{\text{AI, Human}\}$. This action determines which agent will produce the final
 183 prediction \hat{y}_t of the sample \mathbf{x}_t .
 184

185 3.2 HUMAN PERFORMANCE SIMULATION

186
 187 The human performance is simulated with two key assumptions: (1) *Predictable Fatigue Accu-*
 188 *mulation* (Estes, 2015), where human cognitive performance degrades as a function of cumulative
 189 engagement in decision-making tasks, following psychologically grounded fatigue curves ; and (2)
 190 *Selective Fatigue* (Hopko et al., 2021), where only tasks assigned to the human expert contribute to
 191 fatigue accumulation, while tasks handled by the AI system impose no additional cognitive load.
 192

193 **Mental Fatigue Curves** Since vigilance wanes as cognitive fatigue accumulates (McCarley &
 194 Yamani, 2021; Gyles et al., 2023), we model human performance $w : \mathcal{W} \rightarrow [0, 1]$ using a two-phase
 195 piece-wise function:

$$196 w(\rho) = \begin{cases} w_0 + (w_{\text{peak}} - w_0) \left(\frac{\rho}{\hat{\rho} \cdot L} \right)^2 & \text{if } 0 \leq \rho \leq \hat{\rho} \cdot L \\ w_{\text{base}} + (w_{\text{peak}} - w_{\text{base}}) \frac{1}{1 + \exp[k(\rho - \bar{\rho} \cdot L)]} & \text{if } \rho \geq \hat{\rho} \cdot L \end{cases}, \quad (2)$$

197 where $w_0, w_{\text{peak}}, w_{\text{base}}$ denote the initial, peak and minimum (or base) performance levels, $\rho \in \mathcal{W}$ is
 198 the cumulative workload (see Eq. (4)), and $\hat{\rho}, \bar{\rho}$ denote the relative workload at the peak performance
 199 and at the inflection point of the decay phase, and k is the steepness of performance decline. The
 200 function $w(\rho)$ in Eq. (2) quantifies human performance as it evolves with cumulative workload ρ ,
 201 over a total duration represented by L time steps. The human performance has two distinct phases:
 202

- 203 1. *Warm-up* (quadratic growth) (Newell & Rosenbloom, 2013): performance improves from the
 204 initial level w_0 to peak w_{peak} as the human adapts to the task.
- 205 2. *Fatigue* (sigmoid decay) (Estes, 2015): performance degrades from the peak w_{peak} toward the
 206 minimum w_{base} due to cognitive fatigue accumulation.

207 We show three different human performance curves in Fig. 2a by varying the parameters in Eq. (2).
 208

209 **Human Prediction Modelling** Given the human performance at a particular workload at time
 210 step t , defined as $w(\rho_t)$, we model human prediction errors via noise rate η_t , which represents
 211 the probability at time step t of a classification error, defined as $\eta_t = 1 - w(\rho_t)$. The prediction
 212 distribution of the human prediction given noise rate η_t is defined as:

$$213 \Pr(\hat{\mathbf{y}}|\mathbf{y}, \mathbf{x}, \eta_t) = (1 - \eta_t) \cdot \mathbb{I}(\hat{\mathbf{y}} = \mathbf{y}) + \eta_t/K-1 \cdot \mathbb{I}(\hat{\mathbf{y}} \neq \mathbf{y}), \quad (3)$$

214 where \mathbf{x} and \mathbf{y} denote the data sample and ground truth label, respectively. This means that the
 215 human predicts the ground truth label with probability $(1 - \eta_t)$, and one of the $K - 1$ incorrect labels
 216 with probability $\eta_t/K-1$.

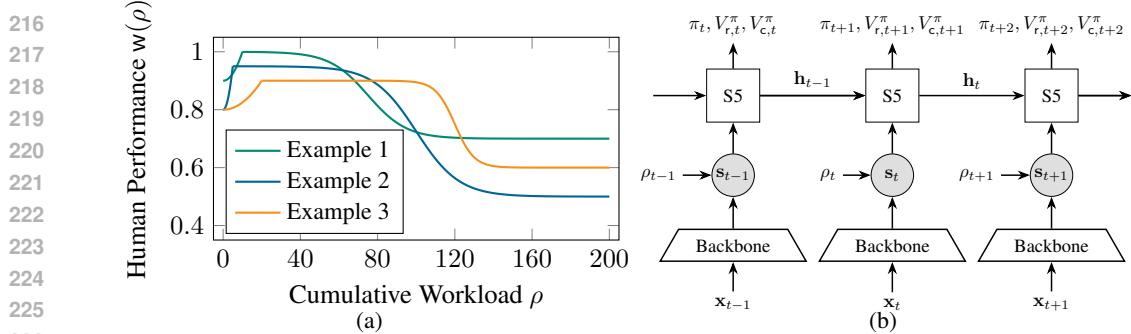


Figure 2: (a): Examples of $w(\rho)$. The values of parameters $(w_0, w_{\text{peak}}, w_{\text{base}}, k, \bar{\rho}, \hat{\rho})$ in Example 1,2 and 3 are $(0.9, 1, 0.7, 0.1, 0.375, 0.05)$, $(0.8, 0.95, 0.5, 0.09, 0.5, 0.025)$ and $(0.8, 0.9, 0.6, 0.2, 0.6, 0.1)$. (b): The architecture of FALCON with workload-variant human performance. A backbone model extracts visual features from the input x_t , while the cumulative human workload ρ_t is passed through an embedding layer. The visual and workload features are concatenated and processed by a Resettable S5 layers (Lu et al., 2023) to capture temporal dependencies and output the policy $\pi(a_t|s_t)$ alongside value estimates.

3.3 FATIGUE-AWARE LEARNING TO DEFER VIA CONSTRAINED OPTIMISATION

We model this workflow as a CMDP, where the state space is $s_t = (x_t, \rho_t) \in \mathcal{X} \times \mathcal{W}$, where x_t and ρ_t denote the current input sample and cumulative human workload, respectively. The system transitions deterministically based on the workload update rule:

$$\rho_{t+1} = \begin{cases} \rho_t + 1 & \text{if } a_t = \text{Human} \\ \rho_t & \text{if } a_t = \text{AI} \end{cases}, \quad (4)$$

where $\rho_1 = 0$. The reward function is denoted by prediction accuracy (i.e., $r(s_t, a_t) = \mathbb{I}[\hat{y}_t = y_t]$), where \hat{y}_t is the final decision of the system at the time step t , while the constraint set \mathcal{C} defines lower and upper limits to human workload, where the lower bound is denoted by $\sum_{t=1}^T c(s_t, a_t) \geq d_l$ and the upper limit is defined by $\sum_{t=1}^T c(s_t, a_t) \leq d_u$, with $c(s_t, a_t) = \mathbb{I}[a_t = \text{Human}]$.

L2D Architecture with workload-variant Human Performance The architecture of our L2D architecture with workload-variant human performance (Fig. 2b) employs an actor-critic strategy for adaptive decisions. A backbone model takes the input sample x_t to extract visual feature embeddings, while the cumulative workload ρ_t is embedded by a learnable linear layer. Then the visual and workload features are concatenated and processed through Resettable simplified structured state space sequence (S5) layers (Lu et al., 2023), which represent a variation of structured state space sequence (S4) models (Smith et al., 2023; Gu et al., 2022), to capture temporal dependencies and maintain memory of the human’s cognitive state trajectory—this is represented by the state vector $h \in \mathcal{H}_t \subset \mathbb{R}^H$. From this state vector, three distinct heads predict: the policy $\pi_t = \pi(a_t|s_t)$, the estimated future reward $V_{r,t}^\pi = V_r^\pi(s_t)$, and the estimated future cost $V_{c,t}^\pi = V_c^\pi(s_t)$.

Constrained Optimisation with PPO-Lagrangian We formulate the training phase as a constrained optimisation problem:

$$\max_{\pi_\theta \in \Pi} J_r(\pi_\theta) \quad \text{s.t.} \quad d_l \leq J_c(\pi_\theta) \leq d_u, \quad (5)$$

where $J_r(\pi_\theta)$ is defined in Section 2.2, $J_c(\pi_\theta) = \mathbb{E}_{\tau \sim \pi_\theta} [\sum_t \gamma^t c(s_t, a_t)]$, with $c(\cdot)$ defined in equation 4, and d_l, d_u represent the lower and upper limits in cumulated workload. Following the PPO-Lagrangian method (Fujimoto et al., 2019), the constrained problem in equation 5 can be solved via the Lagrangian dual formulation (Altman, 1998):

$$\min_{\lambda_u, \lambda_l \geq 0} \max_{\pi_\theta \in \Pi} J_r(\pi_\theta) - \lambda_u \cdot \max(0, J_c(\pi_\theta) - d_u) - \lambda_l \cdot \max(0, -J_c(\pi_\theta) + d_l). \quad (6)$$

The optimisation of equation 6 involves the update of the Lagrangian multipliers with gradient ascent. If the agent defers too much (exceeding the d_u), λ_u increases, which heavily penalises the deferral action in the loss function. If the agent defers too little (below the d_l), λ_l increases, encouraging the deferral action. Note that our constraint objective is to make the cost value between the budget bounds, so we share the same $J_c(\pi_\theta)$ with the two Lagrange multipliers. For instance, if we want 0.4 target coverage, we set $d_u = 0.65$ and $d_l = 0.55$. Please refer to Appendix A.2 for the updates of PPO-Lagrangian, while Algorithms 1 and 2 for training and testing procedures of FALCON.

270 4 FATIGUE-AWARE L2D (FA-L2D) BENCHMARK
271

272 Our new benchmark is designed to evaluate L2D methods under the assumption that humans have a
273 variable performance as a function of cumulative workload. During each training episode, images are
274 randomly sampled from the training set, while human performance parameters are randomly sampled
275 from predefined ranges (See Tables 4 to 7 for dataset-specific human performance parameter ranges).
276 As fatigue accumulates according to Eq. (2), human predictions are modelled probabilistically with a
277 noise rate $\eta_t = 1 - w(\rho_t)$, while humans predict correctly with probability $1 - \eta_t$ and make random
278 classification errors among the remaining $K - 1$ classes with probability $\eta_t / K - 1$. This design enables
279 the generation of diverse scenarios ranging from a nearly static expert performance to highly variable
280 fatigue patterns, providing a more realistic representation of human-AI cooperation environments than
281 previous benchmarks that assumed temporal stability. The controllable nature of fatigue parameters
282 allows systematic evaluation of L2D methods across different human performance profiles, from
283 minimally fatigued experts to those experiencing significant cognitive decline over time.

284 **Datasets** *Cifar100* (Krizhevsky & Hinton, 2009) has 50k training images and 10k testing images,
285 with each image belonging to one of 100 classes. *Chaoyang* (Zhu et al., 2021) comprises 6,160
286 colon slide patches categorised into four classes. *MiceBone* (Schmarje et al., 2022) has 7,240 second-
287 harmonic generation microscopy images, where the annotation consists of one of three possible
288 classes. *FLickr10K* (Yang et al., 2017) is a large-scale dataset containing 10,700 images labelled with
289 8 commonly used emotions. To ensure fair comparison across all methods, we standardise the testing
290 episodes by reshuffling several datasets. Please refer to Appendix C for the datasets details.

291 **Metrics** We evaluate performance using prediction accuracy as a function of coverage on test
292 set episodes, where coverage denotes the percentage of samples classified solely by the AI. These
293 accuracy-coverage curves capture the trade-off between accuracy and cooperation budget as coverage
294 varies from 0% (human-only classification) to 100% (AI-only classification). Reported results are
295 averaged over three models trained with different random seeds and evaluated at the final training
296 epoch. To provide a concise quantitative summary, we compute the *area under the accuracy-coverage*
297 *curve* (AUACC), where higher AUACC values indicate more favourable accuracy-coverage trade-offs.

298 **Ablation Settings** To systematically evaluate L2D methods across different human performance
299 patterns, we define three distinct benchmark cases that capture varying degrees of fatigue-induced
300 performance degradation as follows:

- 301 1. *Sustained High Performance*: This case models scenarios where human experts maintain
302 consistently high performance throughout the task duration, approximating the static expert
303 assumption used in traditional L2D methods.
- 304 2. *Normal Fatigue*: This case represents typical workplace conditions where human performance
305 follows a standard warm-up and fatigue cycle.
- 306 3. *Rapid Fatigue*: This case simulates sharp decline in human performance, aiming to test the ro-
307 bustness of L2D methods under extreme cognitive fatigue conditions, such as those encountered
308 during extended work shifts or high-stress environments.

309 For each case, we employ two distinct evaluation protocols to assess robustness and generalisation
310 capability. **Fine-tuning Setting**: This setting evaluates how well different approaches can adapt
311 when they have full knowledge of the specific fatigue pattern during training. All training procedures
312 remain consistent with the main experiments, but the human performance simulation for training
313 and testing uses only the parameters from the specific case being evaluated, rather than the broader
314 parameter ranges shown in Fig. 7. **Zero-shot Setting**: This setting measures the ability to generalise to
315 previously unseen human performance patterns. Methods use models trained on the main experiments
316 with parameter ranges in Tables 4 to 7 and Fig. 7 without additional training or adaptation for the
317 specific case being evaluated during testing.

318 5 EXPERIMENTS
319

320 For our training, Cifar100 has 200 steps in each episode, while the other datasets have 100 steps¹.
321 The training parameters for PPO and the Lagrange multipliers are in Table 3, while the parameters of
322 mental fatigue curves $w(\rho)$ are provided in Tables 4 to 7 for different datasets in Appendix.

323 ¹Cifar100 uses a larger number of episodes because it has more images than other datasets in FA-L2D.

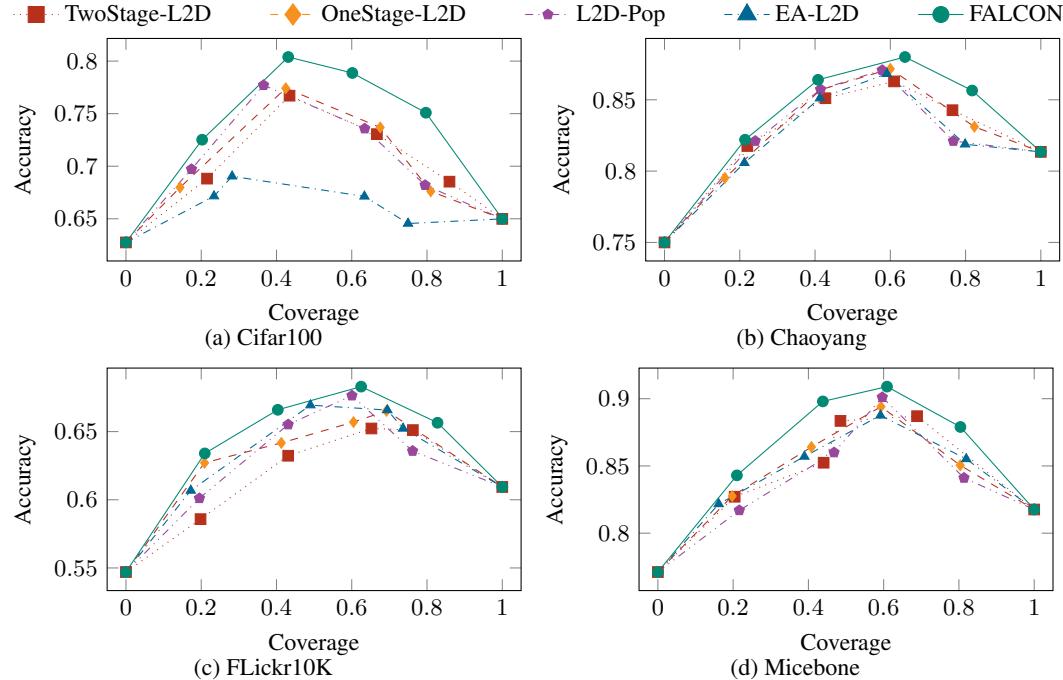


Figure 3: Accuracy-Coverage curves of several L2D strategies and FALCON on various datasets.

Baselines and SOTAs We compare FALCON with SOTA L2D methods, such as one-stage L2D (Mozannar & Sontag, 2020a), two-stage L2D (Madras et al., 2018), L2D-Pop (Tailor et al., 2024), and EA-L2D (Strong et al., 2025). During the training phase, conventional L2D methods require all human predictions for backpropagation. Therefore, to train these models, we simulate human experts by randomly generating a complete sequence of performance variations for each training trajectory. For L2D-Pop and EA-L2D, we follow its prescribed methodology by training it on 16 randomly generated human expert simulations per epoch. In the testing phase, after the model makes its deferral decisions, the accuracy is calculated by incorporating the simulated human's predictions for all deferred instances. Note that we control the budget of all static L2D methods by the penalty constraint optimisation from (Zhang et al., 2024). Please refer to Appendix B for details.

Comparison with Baselines and SOTAs We report the *accuracy-coverage curves* of several L2D strategies and our proposed FALCON across the FA-L2D benchmark datasets in Fig. 3. In general, FALCON outperforms all competing methods at every coverage level in all benchmarks. TwoStage-L2D achieves better performance at high coverage but worse than others at low coverages. On datasets with a small number of classes, (e.g. Chaoyang, Micebone), L2D-Pop and EA-L2D show small improvements over simpler OneStage and TwoStage L2D models. This suggests that their learned human representation is weak in these scenarios. In contrast, FALCON maintains a remarkable performance advantage, especially when coverage is large, highlighting its capabilities. On the FLickr10K dataset, L2D-Pop and EA-L2D outperform the simpler baselines at mid-range budget levels. This indicates that they can capture an average representation of expert performance. However, FALCON's strength lies in its ability to adapt to a dynamic environment and unseen expert behaviours, rather than relying on a simple average. EA-L2D performs worse than other methods on datasets with a large number of classes (e.g., Cifar100), because the counting-based prior for expert accuracy cannot scale effectively. When the number of classes increases, the gating function will be biased to the classifier. Although L2D-Pop achieves higher performance than other baselines, FALCON achieves the best results. Regarding the AUACC results in Table 1 of Appendix, FALCON shows better results than all other methods for all datasets. It is worth noting the superior performances, particularly on Cifar100 and MiceBone. All other methods perform competitively against each other, except for EA-L2D that shows poor performance on Cifar100.

Robustness of L2D Methods Under FA-L2D Parameter Variations To evaluate the robustness of L2D methods to varying parameters of the FA-L2D benchmark, we test the methods with the ablation settings in Section 4, as illustrated in Figs. 4a, 4d and 4g (above) and Table 2 (in Appendix). We

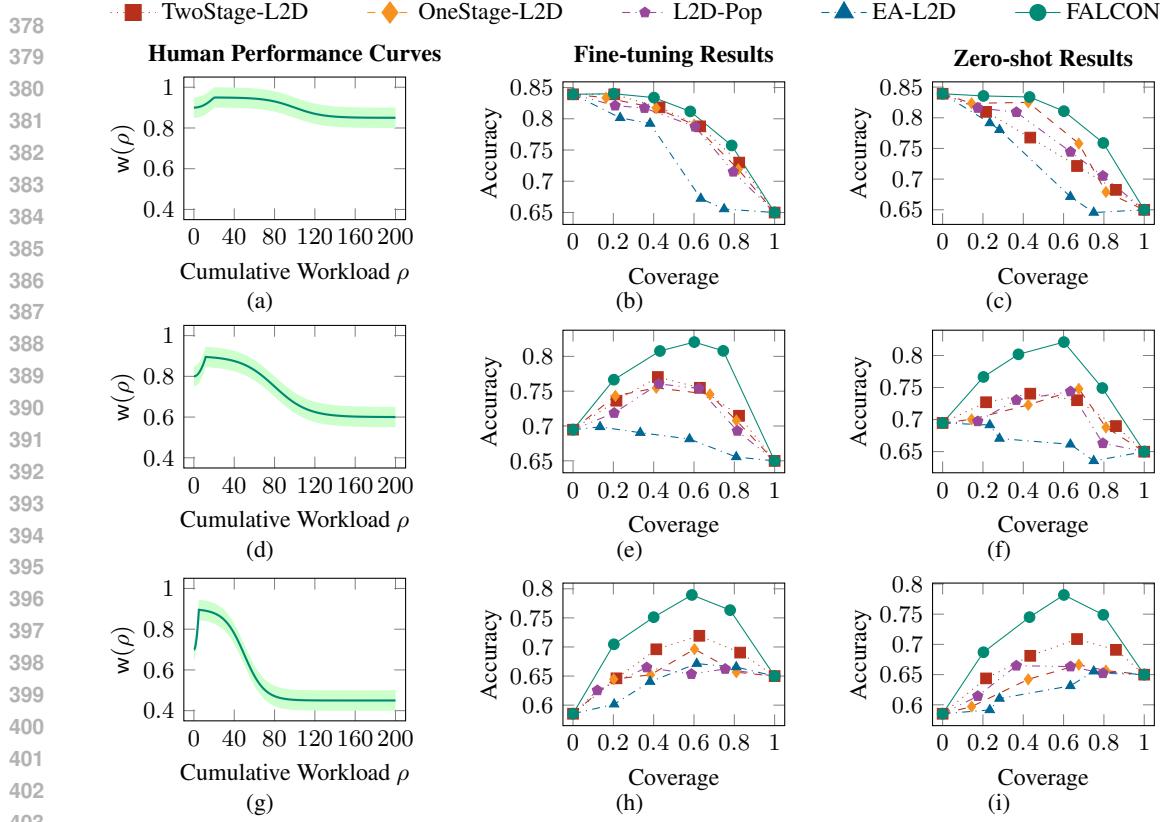


Figure 4: Different human performance during testing (left column) and corresponding results with fine-tuning (middle column) and zero-shot (right column) testing on Cifar100 across all methods.

evaluated each method’s ability to adjust its deferral strategy under fine-tuning settings in Figs. 4b, 4e and 4h and zero-shot settings in Figs. 4c, 4f and 4i.

Sustained High Performance. In this scenario, the human expert’s accuracy remains high, staying above 80% for the duration of the task in Fig. 4a. The results in Figs. 4b and 4c show that FALCON consistently achieves the highest accuracy. Other methods achieve similar performance in Fig. 4a, which indicates their advantages in standard L2D setting. In Fig. 4c, FALCON significantly exceeds that of EA-L2D and L2D-Pop, which struggle to effectively cooperate with a strong human expert. OneStage-L2D performs better than EA-L2D and L2D-Pop, suggesting that these methods cannot learn efficient dynamic human presentation.

Normal Fatigue. In this case, human performance peaks around 40 steps before gradually decreasing in Fig. 4d. By letting the model learn the relatively slow human performance variation, performance in Fig. 4e is better than in Fig. 4f, but also lag behind FALCON. In Fig. 4f, the performance of all the methods is close to the results in Fig. 3a.

Rapid Fatigue. Human performance decreases from above 90% to below 50% in the first 80 time steps (Fig. 4g). This challenging condition highlights the robustness of our approach. The results in Figs. 4h and 4i show that FALCON maintains high precision by correctly identifying human unreliability and adjusting its deferral strategy. In contrast, all other methods suffer a significant performance drop. While TwoStage-L2D is the best of the baselines, its accuracy still lags behind FALCON at all coverage levels.

Remark 1 *In the almost static L2D setting (e.g., sustained high-performance humans), it becomes harder to appreciate the value of L2D methods (see Fig. 4a and results in Figs. 4b and 4c): L2D does not exhibit improved performance for coverages strictly between 0 and 1. By contrast, in the normal and rapid fatigue settings (Figs. 4d and 4g), L2D methods surpass both AI-only and human-only baselines across intermediate coverage levels (Figs. 4e, 4f, 4h and 4i), highlighting the effectiveness of adaptive human–AI cooperation in scenarios that more closely mirror real-world conditions.*

432

6 RELATED WORK

433
 434 **Learning to defer** aims to learn a classifier and a rejector to decide in which case the decision should
 435 be deferred to a human expert to make the final prediction (Madras et al., 2018). Existing L2D
 436 approaches focus on the development of different surrogate loss functions to be consistent with the
 437 Bayes-optimal classifier (Mozannar & Sontag, 2020a; Wei et al., 2024; Cao et al., 2024). However,
 438 these methods overlook the settings that contain a wide diversity of multiple human experts. Recently,
 439 research in L2D shifts towards the multiple-expert setting (Mao et al., 2023; Verma et al., 2023;
 440 Mao et al., 2024; Zhang et al., 2025; Nguyen et al., 2025), and unseen expert scenarios (Tailor et al.,
 441 2024; Strong et al., 2025). For example, L2D-Pop (Tailor et al., 2024) proposed to encode image and
 442 corresponding human labels into a conditional latent context set for human representations. During
 443 testing, given few-shot context predictions of experts, the gating model can use fine-grained human
 444 embeddings to make deferral decisions. EA-L2D (Strong et al., 2025) constructs an explicit Bayesian
 445 representation of expert performance from their context predictions by counting correct predictions
 446 of each expert. Sequential Learning-to-Defer (SLTD) (Joshi et al., 2023) frames the L2D problem
 447 as a model-based reinforcement learning task, which considers the causal chain of events in the
 448 environment. Different from our method, SLTD focuses on scenarios where the underlying rules or
 449 data distribution of the task change over time. Furthermore, SLTD assumes access to prior batch data
 450 collected by human experts, which is expensive for L2D systems.

451 **Human mental fatigue** is a critical component of non-technical skills within human factors re-
 452 search (Casali et al., 2019). Mental fatigue is a psychobiological state resulting from prolonged
 453 cognitive engagement (Driskell & Salas, 2013; Van Cutsem et al., 2022). This phenomenon manifests
 454 across multiple dimensions: physiologically through measurable changes in brain activity (Müller
 455 et al., 2021), behaviourally through systematic declines in cognitive performance (Lindner & Retels-
 456 dorf, 2020), and subjectively through increased perception of effort and diminished energy (Hockey,
 457 2013). Recently, research suggested that mental fatigue can affect physical performance (Enoka &
 458 Duchateau, 2016; Van Cutsem et al., 2017; Marcora et al., 2009; Dallaway et al., 2022). The temporal
 459 dynamics of fatigue-induced performance degradation follow distinct mathematical patterns that
 460 depend on task characteristics. For simple repetitive or vigilance tasks, performance typically follows
 461 exponential decay curves (Anderson, 2013). Jaber et al. (2013) proposed exponential models to cap-
 462 ture fatigue and recovery cycles across repeated work-rest periods. However, complex adaptive tasks
 463 requiring sustained cognitive engagement exhibit sigmoid performance patterns (Enoka & Duchateau,
 464 2016; Gyles et al., 2023). Leppink & Pérez-Fuster (2019) observed that mental effort scales non-
 465 linearly with workload and time, with vigilance decline following non-linear patterns (McCarley &
 466 Yamani, 2021) and cognitive load relationships exhibiting sigmoid curves (Estes, 2015).

467 Unlike existing L2D methods that treat human experts as static oracles, our approach explicitly
 468 models workload-dependent performance degradation using psychologically-grounded functions,
 469 enabling more informed deferral decisions by accounting for the expert’s current cognitive state rather
 470 than assuming constant capability throughout task sequences.

471

7 CONCLUSION

472 In this paper, we proposed FALCON to explicitly model dynamic human performance degradation
 473 due to cognitive fatigue. By formulating L2D as a CMDP with psychologically-grounded fatigue
 474 curves and PPO-Lagrangian optimisation, FALCON addresses the unrealistic assumption of static
 475 human expert performance in existing methods. Extensive experiments on our proposed FA-L2D
 476 benchmark demonstrated that FALCON consistently outperformed SOTA L2D approaches across all
 477 coverage levels and achieved robust zero-shot generalisation to unseen expert fatigue patterns.

478 While FALCON captures general patterns of cognitive decline, it may not fully represent individual
 479 variation in fatigue patterns across different populations or task contexts. Also, the current evaluation
 480 relies on simulated human performance rather than real human studies. FALCON assumes uniform
 481 fatigue contribution across tasks, but cognitive load varies significantly with task complexity. In
 482 future work, we will incorporate instance-dependent fatigue modelling, extending Eqs. (3) and (4)
 483 to account for instance-specific cognitive load, while incorporating multi-modal sensitive fatigue
 484 indicators and real-world deployment studies with real human experts.

486 REFERENCES
487

488 Eitan Altman. Constrained Markov decision processes with total cost criteria: Lagrangian approach
489 and dual linear program. *Mathematical methods of operations research*, 48(3):387–417, 1998. 5

490 Eitan Altman. *Constrained Markov decision processes*. Routledge, 2021. 3

491 John R Anderson. *Cognitive skills and their acquisition*. Psychology Press, 2013. 9

492 Björn Barz and Joachim Denzler. Do we train on test data? Purging CIFAR of near-duplicates.
493 *Journal of Imaging*, 6(6):41, 2020. 16

494 Leonard Berlin. Liability of interpreting too many radiographs. *American Journal of Roentgenology*,
495 175(1):17–22, 2000. 2

496 Damian Borth, Rongrong Ji, Tao Chen, Thomas Breuel, and Shih-Fu Chang. Large-scale visual
497 sentiment ontology and detectors using adjective noun pairs. In *Proceedings of the 21st ACM*
498 *international conference on Multimedia*, pp. 223–232, 2013. 16

499 Rohit Bose, Hongtao Wang, Andrei Dragomir, Nitish V Thakor, Anastasios Bezerianos, and Junhua
500 Li. Regression-based continuous driving fatigue estimation: Toward practical implementation.
501 *IEEE Transactions on Cognitive and Developmental Systems*, 12(2):323–331, 2019. 2

502 SP Cairns, DM Robinson, and DS Loiselle. Double-sigmoid model for fitting fatigue profiles in
503 mouse fast-and slow-twitch muscle. *Experimental physiology*, 93(7):851–862, 2008. 2

504 Yuzhou Cao, Hussein Mozannar, Lei Feng, Hongxin Wei, and Bo An. In defense of softmax
505 parametrization for calibrated and consistent learning to defer. In *Advances in Neural Information*
506 *Processing Systems*, volume 36, 2024. 9

507 Gianluca Casali, William Cullen, and Gareth Lock. The rise of human factors: optimising performance
508 of individuals and teams to improve patients’ outcomes. *Journal of thoracic disease*, 11(Suppl 7):
509 S998, 2019. 2, 9

510 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
511 Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
512 modeling. *Advances in neural information processing systems*, 34:15084–15097, 2021. 14

513 Neil Dallaway, Samuel JE Lucas, and Christopher Ring. Cognitive tasks elicit mental fatigue and
514 impair subsequent physical task endurance: Effects of task duration and type. *Psychophysiology*,
515 59(12):e14126, 2022. 9

516 Shmuel Bar David, Itamar Zimerman, Eliya Nachmani, and Lior Wolf. Decision s4: Efficient
517 sequence-based rl via state spaces layers. In *The Eleventh International Conference on Learning*
518 *Representations*, 2022. 14

519 Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Ruhle, Laks VS
520 Lakshmanan, and Ahmed Hassan Awadallah. Hybrid llm: Cost-efficient and quality-aware query
521 routing. In *International Conference on Learning Representations*, 2024. 1

522 James E Driskell and Eduardo Salas. *Stress and human performance*. Psychology Press, 2013. 9

523 Roger M Enoka and Jacques Duchateau. Translating fatigue to human performance. *Medicine and*
524 *science in sports and exercise*, 48(11):2228, 2016. 9

525 Steven Estes. The workload curve: Subjective mental workload. *Human factors*, 57(7):1174–1187,
526 2015. 2, 3, 4, 9

527 Andreas Flüggen, Jörn Grahl, Alok Gupta, and Wolfgang Ketter. Cognitive challenges in human–
528 artificial intelligence collaboration: Investigating the path toward productive delegation. *Information*
529 *Systems Research*, 33(2):678–696, 2022. 1

530 Scott Fujimoto, Edoardo Conti, Mohammad Ghavamzadeh, and Joelle Pineau. Benchmarking batch
531 deep reinforcement learning algorithms. *arXiv preprint arXiv:1910.01708*, 2019. 5

540 Tobias Gessler, Tin Dizdarevic, Ani Calinescu, Benjamin Ellis, Andrei Lupu, and Jakob Nicolaus
 541 Foerster. Overcookedv2: Rethinking overcooked for zero-shot coordination. In *International*
 542 *Conference on Learning Representations*, 2025. 14

543

544 Ben Green and Yiling Chen. Disparate interactions: An algorithm-in-the-loop analysis of fairness in
 545 risk assessments. In *Conference on Fairness, Accountability, and Transparency*, pp. 90–99, 2019.
 546 1

547 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
 548 state spaces. *International Conference on Learning Representations*, 2022. 5, 14

549

550 Shannon P Gyles, Jason S McCarley, and Yusuke Yamani. Psychometric curves reveal changes in
 551 bias, lapse rate, and guess rate in an online vigilance task. *Attention, Perception, & Psychophysics*,
 552 85(8):2879–2893, 2023. 2, 4, 9

553

554 Mark D Halling-Brown, Lucy M Warren, Dominic Ward, Emma Lewis, Alistair Mackenzie,
 555 Matthew G Wallis, Louise S Wilkinson, Rosalind M Given-Wilson, Rita McAvinchey, and Ken-
 556 neth C Young. OPTIMAM mammography image database: a large-scale resource of mammography
 557 images and clinical data. *Radiology: Artificial Intelligence*, 3(1):e200103, 2020. 1

558

559 Robert Hockey. *The psychology of fatigue: Work, effort and control*. Cambridge University Press,
 560 2013. 9

561

562 Sarah K Hopko, Riya Khurana, Ranjana K Mehta, and Prabhakar R Pagilla. Effect of cognitive
 563 fatigue, operator sex, and robot assistance on task performance metrics, workload, and situation
 564 awareness in human-robot collaboration. *IEEE Robotics and Automation Letters*, 6(2):3049–3056,
 565 2021. 4

566

567 Mohamad Y Jaber, ZS Givi, and W Patrick Neumann. Incorporating human fatigue and recovery into
 568 the learning-forgetting process. *Applied mathematical modelling*, 37(12-13):7287–7299, 2013. 9

569

570 Kunal Jha, Wilka Carvalho, Yancheng Liang, Simon S Du, Max Kleiman-Weiner, and Natasha Jaques.
 571 Cross-environment cooperation enables zero-shot multi-agent coordination. In *International*
 572 *Conference on Machine Learning*, 2025. 14

573

574 Shalmali Joshi, Sonali Parbhoo, and Finale Doshi-Velez. Learning-to-defer for sequential medical
 575 decision-making under uncertainty. *Transactions on Machine Learning Research*, 2023. 9

576

577 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
 578 Technical report, University of Toronto, 2009. 6, 15

579

580 Cindy S Lee, Paul G Nagy, Sallie J Weaver, and David E Newman-Toker. Cognitive and system
 581 factors contributing to diagnostic errors in radiology. *American Journal of Roentgenology*, 201(3):
 582 611–617, 2013. 2

583

584 Jimmie Leppink and Patricia Pérez-Fuster. Mental effort, workload, time on task, and certainty:
 585 Beyond linear models. *Educational Psychology Review*, 31:421–438, 2019. 3, 9

586

587 Christoph Lindner and Jan Retelsdorf. Perceived—and not manipulated—self-control depletion
 588 predicts students' achievement outcomes in foreign language assessments. *Educational Psychology*,
 589 40(4):490–508, 2020. 9

590

591 Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and
 592 Feryal Behbahani. Structured state space models for in-context reinforcement learning. *Advances*
 593 *in Neural Information Processing Systems*, 36:47016–47031, 2023. 5, 14

594

595 David Madras, Toni Pitassi, and Richard Zemel. Predict responsibly: improving fairness and accuracy
 596 by learning to defer. In *Advances in Neural Information Processing Systems*, volume 31, 2018. 1,
 597 3, 7, 9, 15

598

599 Anqi Mao, Christopher Mohri, Mehryar Mohri, and Yutao Zhong. Two-stage learning to defer with
 600 multiple experts. In *Advances in Neural Information Processing Systems*, 2023. 9

594 Anqi Mao, Mehryar Mohri, and Yutao Zhong. Regression with multi-expert deferral. In *International*
 595 *Conference on Machine Learning*, 2024. 9
 596

597 Samuele M Marcora, Walter Staiano, and Victoria Manning. Mental fatigue impairs physical
 598 performance in humans. *Journal of applied physiology*, 106(3):857–864, 2009. 9
 599

600 Jason S McCarley and Yusuke Yamani. Psychometric curves reveal three mechanisms of vigilance
 601 decrement. *Psychological science*, 32(10):1675–1683, 2021. 4, 9
 602

603 Luke Metz, C Daniel Freeman, Samuel S Schoenholz, and Tal Kachman. Gradients are not all you
 604 need. *arXiv preprint arXiv:2111.05803*, 2021. 14
 605

606 Steven Morad, Ryan Kortvelesy, Matteo Bettini, Stephan Liwicki, and Amanda Prorok. Popgym:
 607 Benchmarking partially observable reinforcement learning. *The Eleventh International Conference*
 608 *on Learning Representations*, 2023. 14
 609

610 Hussein Mozannar and David Sontag. Consistent estimators for learning to defer to an expert. In
 611 Hal Daumé III and Aarti Singh (eds.), *International Conference on Machine Learning*, volume 119
 612 of *Proceedings of Machine Learning Research*, pp. 7076–7087. PMLR, 2020a. 1, 3, 7, 9, 15
 613

614 Hussein Mozannar and David Sontag. Consistent estimators for learning to defer to an expert. In
 615 *International Conference on Machine Learning*, pp. 7076–7087. PMLR, 2020b. 3
 616

617 Tanja Müller, Miriam C Klein-Flügge, Sanjay G Manohar, Masud Husain, and Matthew AJ Apps.
 618 Neural and computational mechanisms of momentary fatigue and persistence in effort-based choice.
 619 *Nature Communications*, 12(1):4593, 2021. 9
 620

621 Malik Sajjad Ahmed Nadeem, Jean-Daniel Zucker, and Blaise Hanczar. Accuracy-rejection curves
 622 (arcs) for comparing classification methods with a reject option. In *Machine Learning in Systems*
 623 *Biology*, pp. 65–81. PMLR, 2009. 15
 624

625 Allen Newell and Paul S Rosenbloom. Mechanisms of skill acquisition and the law of practice. In
 626 *Cognitive skills and their acquisition*, pp. 1–55. Psychology Press, 2013. 2, 4
 627

628 Cuong C Nguyen, Thanh-Toan Do, and Gustavo Carneiro. Probabilistic learning to defer: Handling
 629 missing expert annotations and controlling workload distribution. In *The Thirteenth International*
 630 *Conference on Learning Representations*, 2025. 9
 631

632 Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayakumar,
 633 Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing transformers
 634 for reinforcement learning. In *International conference on machine learning*, pp. 7487–7498.
 635 PMLR, 2020. 14
 636

637 André Pimenta, Davide Carneiro, Paulo Novais, and José Neves. Analysis of human performance as a
 638 measure of mental fatigue. In *Hybrid Artificial Intelligence Systems: 9th International Conference*,
 639 *HAIS 2014, Salamanca, Spain, June 11–13, 2014. Proceedings* 9, pp. 389–401. Springer, 2014. 2
 640

641 Bruce I Reiner and Elizabeth Krupinski. The insidious problem of fatigue in medical imaging practice.
 642 *Journal of digital imaging*, 25(1):3–6, 2012. 2
 643

644 Lars Schmarje, Monty Santarossa, Simon-Martin Schröder, Claudius Zelenka, Rainer Kiko, Jenny
 645 Stracke, Nina Volkmann, and Reinhard Koch. A data-centric approach for improving ambiguous
 646 labels with combined semi-supervised classification and clustering. In *European Conference on*
 647 *Computer Vision*, pp. 363–380. Springer, 2022. 3, 6, 16
 648

649 Jimmy TH Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for
 650 sequence modeling. In *The Eleventh International Conference on Learning Representations*, 2023.
 651 5, 14
 652

653 Joshua Strong, Pramit Saha, Yasin Ibrahim, Cheng Ouyang, and Alison Noble. Expert-agnostic
 654 learning to defer. *arXiv preprint arXiv:2502.10533*, 2025. 2, 3, 7, 9, 15
 655

656 Dharmesh Tailor, Aditya Patra, Rajeev Verma, Putra Manggala, and Eric Nalisnick. Learning to defer
 657 to a population: A meta-learning approach. In *International Conference on Artificial Intelligence*
 658 and *Statistics*, 2024. 1, 3, 7, 9, 15
 659

648 Sian Taylor-Phillips and Chris Stinton. Fatigue in radiology: a fertile area for future research. *The*
 649 *British journal of radiology*, 92(1099):20190043, 2019. 2
 650

651 Jeroen Van Cutsem, Samuele Marcora, Kevin De Pauw, Stephen Bailey, Romain Meeusen, and Bart
 652 Roelands. The effects of mental fatigue on physical performance: a systematic review. *Sports*
 653 *medicine*, 47(8):1569–1588, 2017. 9

654 Jeroen Van Cutsem, Peter Van Schuerbeek, Nathalie Pattyn, Hubert Raeymaekers, Johan De Mey,
 655 Romain Meeusen, and Bart Roelands. A drop in cognitive performance, whodunit? subjective
 656 mental fatigue, brain deactivation or increased parasympathetic activity? it's complicated! *Cortex*,
 657 155:30–45, 2022. 9

658 Rajeev Verma and Eric Nalisnick. Calibrated learning to defer with one-vs-all classifiers. In
 659 *International Conference on Machine Learning*, pp. 22184–22202. PMLR, 2022. 3
 660

661 Rajeev Verma, Daniel Barrejon, and Eric Nalisnick. Learning to defer to multiple experts: Consistent
 662 surrogate losses, confidence calibration, and conformal ensembles. In *International Conference on*
 663 *Artificial Intelligence and Statistics*, pp. 11415–11434. PMLR, 25–27 Apr 2023. 9

664 Stephen Waite, Srinivas Kolla, Jean Jeudy, Alan Legasto, Stephen L Macknik, Susana Martinez-
 665 Conde, Elizabeth A Krupinski, and Deborah L Reede. Tired in the reading room: the influence of
 666 fatigue in radiology. *Journal of the American College of Radiology*, 14(2):191–197, 2017. 2
 667

668 Jiaheng Wei, Zhaowei Zhu, Hao Cheng, Tongliang Liu, Gang Niu, and Yang Liu. Learning with
 669 noisy labels revisited: A study using real-world human annotations. In *International Conference*
 670 *on Learning Representations*, 2021. 3

671 Zixi Wei, Yuzhou Cao, and Lei Feng. Exploiting human-AI dependence for learning to defer. In
 672 *International Conference on Machine Learning*, 2024. 9
 673

674 Xue Yan, Jiaxian Guo, Xingzhou Lou, Jun Wang, Haifeng Zhang, and Yali Du. An efficient end-
 675 to-end training approach for zero-shot human-ai coordination. *Advances in Neural Information*
 676 *Processing Systems*, 36:2636–2658, 2023. 14

677 Jufeng Yang, Ming Sun, and Xiaoxiao Sun. Learning visual sentiment distributions via augmented
 678 conditional probability neural network. In *Proceedings of the AAAI Conference on Artificial*
 679 *Intelligence*, volume 31(1), 2017. 3, 6, 16

680 Zheng Zhang, Cuong Nguyen, Kevin Wells, Thanh-Toan Do, David Rosewarne, and Gustavo
 681 Carneiro. Coverage-constrained human-ai cooperation with multiple experts. *arXiv preprint*
 682 *arXiv:2411.11976*, 2024. 7

683 Zheng Zhang, Wenjie Ai, Kevin Wells, David Rosewarne, Thanh-Toan Do, and Gustavo Carneiro.
 684 Learning to complement and to defer to multiple users. In *European Conference on Computer*
 685 *Vision*, pp. 144–162. Springer, 2025. 9

686 Chuang Zhu, Wenkai Chen, Ting Peng, Ying Wang, and Mulan Jin. Hard sample aware noise robust
 687 learning for histopathology image classification. *IEEE Transactions on Medical Imaging*, 41(4):
 688 881–894, 2021. 3, 6, 16

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703 A APPENDIX704
705 A.1 DISCLOSURE OF LLM USAGE706
707 Large language models were used to improve grammar and assist with paper revision. All ideas,
708 experimental design, data analysis, and conclusions are the original work of the authors.709
710 A.2 PPO-LAGRANGIAN OPTIMISATION711
712 The critic model is optimised by regression on mean-square error between value estimator and the
713 true trajectory value, followed by the standard PPO setting. The policy update follows standard
PPO-Lagrangian with modified objective:

714
715
$$J_r(\pi_\theta) = \mathbb{E}_{\tau \sim \pi_{\theta_{old}}} \left[\min \left(\frac{\pi_\theta(\mathbf{a}|\mathbf{s})}{\pi_{\theta_{old}}(\mathbf{a}|\mathbf{s})} A_r^{\pi_{\theta_{old}}}(\mathbf{s}, \mathbf{a}), \text{clip} \left(\frac{\pi_\theta(\mathbf{a}|\mathbf{s})}{\pi_{\theta_{old}}(\mathbf{a}|\mathbf{s})}, 1 - \epsilon, 1 + \epsilon \right) A_r^{\pi_{\theta_{old}}}(\mathbf{s}, \mathbf{a}) \right) \right] \quad (7)$$

716
717
$$J_c(\pi_\theta) = \mathbb{E}_{\tau \sim \pi_{\theta_{old}}} \left[\min \left(\frac{\pi_\theta(\mathbf{a}|\mathbf{s})}{\pi_{\theta_{old}}(\mathbf{a}|\mathbf{s})} A_c^{\pi_{\theta_{old}}}(\mathbf{s}, \mathbf{a}), \text{clip} \left(\frac{\pi_\theta(\mathbf{a}|\mathbf{s})}{\pi_{\theta_{old}}(\mathbf{a}|\mathbf{s})}, 1 - \epsilon, 1 + \epsilon \right) A_c^{\pi_{\theta_{old}}}(\mathbf{s}, \mathbf{a}) \right) \right] \quad (8)$$

721
722 where θ_{old} is the vector of policy parameters before the update, $\text{clip}(\cdot)$ is the clipping operation on
723 the probability ratio with clipping parameter ϵ , which controls the maximum allowed deviation of the
724 updated policy from the previous policy to ensure stable training.

725 Furthermore, we update the Lagrangian multipliers using gradient ascent with an Adam optimiser:

726
727
$$\lambda_u^{(\beta+1)} = \max(0, \lambda_u^{(\beta)} + \alpha_\lambda \cdot (J_c(\pi) - d_u)) \quad (9)$$

728
729
$$\lambda_l^{(\beta+1)} = \max(0, \lambda_l^{(\beta)} + \alpha_\lambda \cdot (d_l - J_c(\pi))) \quad (10)$$

731
732 where λ_u and λ_l are the Lagrangian multipliers for the upper and lower bound constraints respectively,
733 α_λ is the learning rate for the multiplier updates, d_u and d_l denote the upper and lower constraint
734 thresholds, β denotes the update step, and $J_c(\pi)$ represents the expected cumulative cost under policy
735 π . The multipliers automatically adjust to enforce the constraint bounds: λ_u increases when the cost
736 exceeds the upper limit d_u , penalizing excessive human utilisation, while λ_l increases when the cost
falls below the lower limit d_l , encouraging sufficient human engagement.737
738 A.3 DESIGN CHOICE OF S5 FOR FALCON739
740 Modelling human cognitive state over long episodes is critical for FALCON to track cumulative
741 fatigue, making the choice of sequence model critical. RL systems typically employ RNNs (Yan
742 et al., 2023; Jha et al., 2025; Gessler et al., 2025; Morad et al., 2023; David et al., 2022; Lu et al.,
743 2023), Transformers (Chen et al., 2021; Parisotto et al., 2020), and as the sequence models. However,
744 traditional RNNs, such as LSTM and GRU, suffer vanishing gradients over long sequences while
745 Transformers incur quadratic computational costs prohibitive for extended episodes (Metz et al.,
746 2021). We employ Resettable Simplified Structured State Space Sequence (S5) layers (Lu et al., 2023),
747 a variant of S4 models (Smith et al., 2023; Gu et al., 2022), which provide linear computational
748 complexity and stable gradient flow essential for tracking cumulative workload over hundreds of time
749 steps. S5 demonstrates superior asymptotic runtime compared to Transformers while significantly
outperforming LSTMs in both performance and computational efficiency (Lu et al., 2023).750
751 B IMPLEMENTATION DETAILS752
753 B.1 ARCHITECTURE754
755 All methods are implemented in Jax, a Python library that accelerates array computation and program
transformation to achieve high-performance numerical computing for large-scale machine learning,

756 Table 1: Quantitative comparison in terms of AUACC ($\times 100$) (Nadeem et al., 2009) of the SOTA
 757 L2D (Mozannar & Sontag, 2020a; Madras et al., 2018; Tailor et al., 2024; Strong et al., 2025) on
 758 the L2D datasets. The results consist of the mean and standard deviations obtained from three
 759 experiments using models trained with different random seeds. The best result per benchmark is
 760 marked in bold.

	Cifar100	Chaoyang	FLickr10K	MiceBone
OneStage L2D	70.87 ± 0.13	83.24 ± 0.14	63.06 ± 0.12	84.61 ± 0.12
TwoStage L2D	70.50 ± 0.15	83.15 ± 0.08	61.77 ± 0.13	84.58 ± 0.15
L2D-Pop	71.01 ± 0.11	82.65 ± 0.17	62.72 ± 0.18	83.96 ± 0.14
EA-L2D	66.26 ± 0.39	82.39 ± 0.08	63.26 ± 0.23	84.59 ± 0.12
Ours	74.01 ± 0.09	84.13 ± 0.11	64.40 ± 0.08	86.08 ± 0.13

761
 762
 763
 764
 765
 766
 767
 768 Table 2: Quantitative comparison in terms of the Area Under Accuracy-Coverage Curve (AUACC)
 769 ($\times 100$) (Nadeem et al., 2009) of the SOTA L2D (Mozannar & Sontag, 2020a; Madras et al., 2018;
 770 Tailor et al., 2024; Strong et al., 2025) with three different human performance curves on the Cifar100
 771 dataset. The results consist of the mean value obtained from three experiments using models trained
 772 with different random seeds. The best result per benchmark is marked in bold.

	Sustained High Performance		Normal Fatigue		Rapid Fatigue	
	Fine-tuning	Zero-shot	Fine-tuning	Zero-shot	Fine-tuning	Zero-shot
OneStage L2D	78.23 ± 0.17	77.25 ± 0.13	72.67 ± 0.10	70.83 ± 0.16	66.75 ± 0.09	63.85 ± 0.11
TwoStage L2D	78.78 ± 0.14	75.22 ± 0.16	73.10 ± 0.09	71.56 ± 0.07	67.36 ± 0.14	67.49 ± 0.13
L2D-Pop	77.63 ± 0.08	76.38 ± 0.12	72.07 ± 0.11	70.35 ± 0.13	64.82 ± 0.12	64.40 ± 0.08
EA-L2D	73.46 ± 0.10	72.23 ± 0.14	67.87 ± 0.15	66.51 ± 0.12	63.97 ± 0.17	62.31 ± 0.14
Ours	79.58 ± 0.10	79.70 ± 0.12	76.93 ± 0.07	76.20 ± 0.09	72.36 ± 0.15	71.68 ± 0.07

783 while running on a single Nvidia RTX A6000. A mixed precision using `bfloat16` is applied over
 784 all methods and datasets to speed up the training. All AI models are trained for 300 epochs using
 785 stochastic gradient descent with a momentum of 0.9 and a learning rate of 0.01. The learning rate is
 786 decayed through a cosine decaying scheduler, and the gradient norm is clipped at the maximal of 10
 787 for numerical stability. For experiments performed on Cifar100 dataset, we employ PreAct-ResNet-18
 788 and the batch size used is 256. For other datasets, we train the AI model with a ResNet-18 using a
 789 regular CE loss minimisation with a ground truth label, while the batch size used is 256. On Cifar100
 790 the AI model achieves 64.99% accuracy on the testing set. The AI models on Chaoyang, Flickr10K,
 791 and Micebone datasets achieve 72.65%, 81.35%, 60.94%, and 81.76%, respectively. Furthermore,
 792 the actor, reward and cost, critic heads in Fig. 2b consist of two-layer multi-layer perceptron (MLP),
 793 where each hidden layer has 512 nodes activated by Rectified Linear Units (ReLU).

794 B.2 GATING MODEL TRAINING

795 All methods are trained for $1e7$ iterations. For our PPO-Lagrangian training, we use Adam optimiser
 796 and the parameters is shown in Table 3. For other methods, we employ stochastic gradient descent
 797 with a momentum of 0.9, while the initial learning rate is set at 0.01 and decayed through a cosine
 798 annealing.

800 B.3 INFERENCE TIME

801 The inference time for 50 episodes on Cifar100 dataset across all methods in shown in Fig. 6,
 802 FALCON showcases similar inference time compared to other static L2D methods.

805 C DATASETS

806 Cifar100 (Krizhevsky & Hinton, 2009) has 50k training images and 10k testing images, with each
 807 image belonging to one of 100 classes categorised into 20 super-classes. In addition, because about
 808 10% of testing images in Cifar100 (Krizhevsky & Hinton, 2009) are duplicated or almost identical to

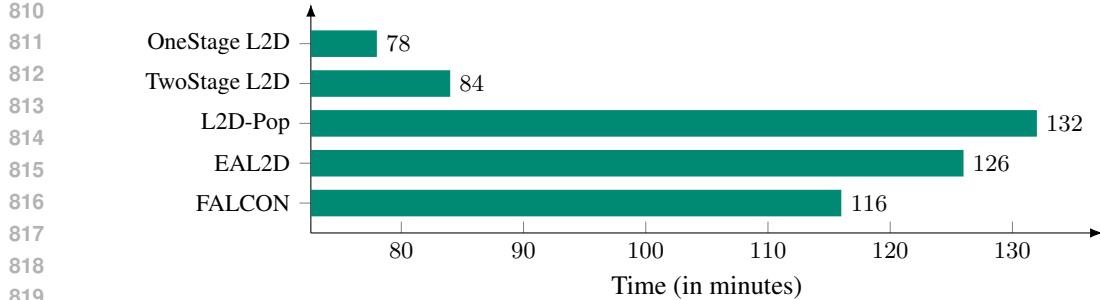


Figure 5: Training time of FALCON and competing methods on Cifar100 (1e7 iterations).

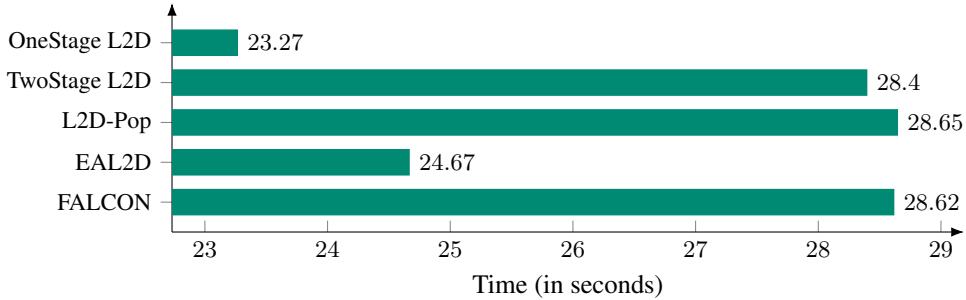


Figure 6: Inference time of FALCON and competing methods on Cifar100 (50 episodes).

the ones in the training set, in our training and testing, we use ciFAIR-100 (Barz & Denzler, 2020), which replaces those duplicated images by different images belonging to the same class.

Chaoyang (Zhu et al., 2021) comprises 6,160 colon slide patches categorised into four classes: *normal, serrated, adenocarcinoma, and adenoma*, where each patch has *three noisy labels annotated by three pathologists*. In the original Chaoyang dataset setup, the training set has patches with multi-rater noisy labels, while the testing set only contains patches that all experts agree on a single label. We assume that the majority vote forms the ground truth annotation.

MiceBone (Schmarje et al., 2022) has 7,240 second-harmonic generation microscopy images, with each image being annotated by one to five professional annotators, where the annotation consists of one of three possible classes: *similar collagen fiber orientation, dissimilar collagen fiber orientation, and not of interest due to noise or background*. Only 8 out of 79 annotators label the whole dataset. We, therefore, use the majority vote of 8 annotators as the ground truth.

Flickr10K (Yang et al., 2017) is a subset of Flickr dataset (Borth et al., 2013), in which the numbers of each class are roughly equal. It contains 10,700 images labelled with 8 commonly used emotions, including *amusement, contentment, excitement, awe, anger, disgust, fear, and sadness*.

Dataset Reshuffling. To ensure fair comparison across all methods, we standardise the testing episodes by reshuffling several datasets. For **Cifar100**, we retain the original test set, resulting in 50 testing episodes with 200 time steps each. For **Chaoyang**, we split the complete dataset into 4,160 training images and 2,000 testing images, yielding 20 testing episodes with 100 time steps. For **MiceBone**, we allocate 5,240 images for training and reserve the remaining 2,000 images for testing, comprising 20 episodes with 100 time steps. For **Flickr10K**, we divide the dataset into 8,700 training images and 2,000 testing images, which generates 20 testing episodes with 100 time steps.

864
865
866
867
868

869 **Algorithm 1** FALCON training procedure

870

871 1: **procedure** TRAINING(\mathcal{D} , n_{iter} , n_{episode})

872 2: ▷ $\mathcal{D} = \{\mathbf{x}_t, \mathbf{y}_t\}_{t=1}^T$: training dataset

873 3: ▷ n_{iter} : the total number of iterations

874 4: ▷ n_{episode} : number of episodes

875 5: initialise AI classifier \mathbf{m} , policy π_{θ_1} , value function $V_r^{\phi_1}$ and cost value function $V_c^{\psi_1}$

876 6: initialise Lagrangian multiplier λ_u , λ_l

877 7: **for** $j = 1$ to n_{iter} **do**

878 8: collect set of trajectories: $\hat{\mathcal{D}}_j \leftarrow \text{COLLECT TRAJECTORIES}(\mathcal{D}, \mathbf{m}, \pi_{\theta}, V_r^{\phi}, V_c^{\psi}, n_{\text{episode}})$

879 9: update Lagrangian multiplier λ_u , λ_l via gradient ascent

880 10: compute estimated reward value $\hat{r}_t = \sum_{j=0}^{T-t} \gamma^j r_{t+j}$ and reward advantage $A_r^{\pi_{\theta_i}}$

881 11: compute estimated cost value $\hat{c}_t = \sum_{j=0}^{T-t} \gamma^j c_{t+j}$ and cost advantage $A_c^{\pi_{\theta_j}}$

882 12: shuffle data in $\hat{\mathcal{D}}_j$ and split into mini-batches

883 13: **for** each mini-batch from $\hat{\mathcal{D}}_j$ **do**

884 14: update $\pi_{\theta_{j+1}}$ using PPO

885 15: update reward value function: $\phi_{j+1} \leftarrow \arg \min_{\phi} \frac{1}{|\hat{\mathcal{D}}_j|T} \sum (V_r^{\phi_j} - \hat{r}_t)^2$

886 16: update cost value function: $\psi_{j+1} \leftarrow \arg \min_{\psi} \frac{1}{|\hat{\mathcal{D}}_j|T} \sum (V_c^{\psi_j} - \hat{c}_t)^2$

887 17: **return** the optimal policy $\theta_{n_{\text{iter}}}$

888

889 18: **procedure** COLLECT TRAJECTORIES(\mathcal{D} , \mathbf{m} , π_{θ} , V_r^{ϕ} , V_c^{ψ} , n_{episode})

890 19: ▷ \mathcal{D} : training dataset

891 20: ▷ \mathbf{m} : AI classifier

892 21: ▷ π_{θ} : policy function parameterised by θ

893 22: ▷ V_r^{ϕ} : reward value function parameterised by ϕ

894 23: ▷ V_c^{ψ} : cost value function parameterised by ψ

895 24: ▷ n_{episode} : number of episodes

896 25: set data buffer $\hat{\mathcal{D}} = \emptyset$

897 26: **for** $i = 1$ to n_{episode} **do**

898 27: sample a sequences of T images from \mathcal{D}

899 28: sample fatigue model parameters $w_0, w_{\text{peak}}, w_{\text{base}}, k, \bar{\rho}, \hat{\rho}$

900 29: initialise human workload accumulator $\rho \leftarrow 0$ and $\mathbf{w}(0) \leftarrow w_0$

901 30: **for** $t = 1$ to T **do**

902 31: get current state: $\mathbf{s}_t \leftarrow (\mathbf{x}_t, \rho)$

903 32: sample an action from the policy: $\mathbf{a}_t \sim \pi_{\theta_i}(\mathbf{s}_t)$

904 33: **if** $\mathbf{a}_t = \text{human}$ **then**

905 34: update human workload: $\rho \leftarrow \rho + 1$

906 35: update human performance: $\mathbf{w}_t \leftarrow \mathbf{w}(\rho)$

907 36: get the annotation flipping probability of human due to fatigue: $\eta \leftarrow 1 - w_t$

908 37: sample human prediction: $\hat{\mathbf{y}}_t \sim \text{Pr}(\hat{\mathbf{y}}_t | \mathbf{y}_t, \eta)$

909 38: **else if** $\mathbf{a}_t = \text{AI}$ **then**

910 39: get the label predicted by the classifier: $\hat{\mathbf{y}}_t \leftarrow \text{argmax } \mathbf{m}(\mathbf{x}_t)$

911 40: $r_t \leftarrow \mathbb{I}(\mathbf{y}_t = \hat{\mathbf{y}}_t)$

912 41: gather data from $\pi(\cdot | \mathbf{s}_t, \mathbf{a}_t)$, then $\hat{\mathcal{D}} = \hat{\mathcal{D}} \cup \{\tau_{t+1}, \mathbf{s}_t, \mathbf{a}_t, r_t, \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t), V_r^{\phi}, V_c^{\psi}\}$

913 42: **return** $\hat{\mathcal{D}}$

914

915

916

917

918
919**Algorithm 2** FALCON testing procedure

```

1: procedure TESTING( $\mathcal{D}, \mathbf{w}, \mathbf{m}, \theta$ )
2:    $\triangleright \mathcal{D} = \{\mathbf{x}_t, \mathbf{y}_t\}_{t=1}^T$ : testing dataset
3:    $\triangleright \theta$ : parameter of policy function
4:    $\triangleright \mathbf{w}$ : fatigue function
5:    $\triangleright \mathbf{m}$ : AI classifier
6:   sample fatigue model parameters  $w_0, w_{peak}, w_{base}, k, \bar{\rho}, \hat{\rho}$   $\triangleright$  See Tables 4 to 7
7:   initialise human workload accumulator  $\rho \leftarrow 0$  and  $\mathbf{w}(0) \leftarrow w_0$ 
8:   initialise accumulate accuracy  $r$ 
9:   for  $t = 1$  to  $T$  do
10:    get current state:  $\mathbf{s}_t \leftarrow (\mathbf{x}_t, \rho)$ 
11:    select an action:  $\mathbf{a}_t \leftarrow \text{argmax}_{\theta} \pi_{\theta}(\mathbf{s}_t)$ 
12:    if  $\mathbf{a}_t = \text{human}$  then  $\triangleright$  human expert makes the prediction
13:      update human workload:  $\rho \leftarrow \rho + 1$ 
14:      update human performance:  $\mathbf{w}_t \leftarrow \mathbf{w}(\rho)$   $\triangleright$  defined in Eq. (2)
15:      get the annotation flipping probability of human due to fatigue:  $\eta \leftarrow 1 - \mathbf{w}_t$ 
16:      sample human prediction:  $\hat{\mathbf{y}}_t \sim \text{Pr}(\hat{\mathbf{y}}_t | \mathbf{y}_t, \eta)$   $\triangleright$  defined in Eq. (3)
17:    else if  $\mathbf{a}_t = \text{AI}$  then  $\triangleright$  AI classifier makes the prediction
18:      get the label predicted by the classifier:  $\hat{\mathbf{y}}_t \leftarrow \text{argmax} \mathbf{m}(\mathbf{x}_t)$ 
19:    Calculate accuracy  $r_t$   $\triangleright$ 
20:    if  $\hat{\mathbf{y}}_t = \mathbf{y}_t$  then  $\triangleright$  correct prediction
21:       $r_t \leftarrow 1$ 
22:    else  $\triangleright$  incorrect prediction
23:       $r_t \leftarrow 0$ 
24:     $r \leftarrow \hat{r} + r_t$   $\triangleright$  accumulate reward
25:   return  $r/T, 1 - \rho/T$   $\triangleright$  return accuracy and coverage

```

945

Table 3: PPO parameters

946

Params	Value
Activation	Relu
Clipping_Coefficient ϵ	0.2
Entropy_Coefficient	0.001
Lagrangian_LR	0.035
Lagrangian_INIT λ	0.001
GAE_LAMBDA	0.95
Discount Factor γ	0.99
LR	0.0004
LR_WARMUP	0.01
UPDATE_EPOCHS	4
Value Function Weight	0.5
Maximum Gradient Norm	0.5
S5 Layers	4
S5 Hidden Size	512
FC_DIM	512

947

Table 4: The range of parameters of human performance variation in Eq. (2) on Cifar100 dataset.

948

Params	Range	Description
w_0	$\mathcal{U}(0.7, 0.9)$	initial performance
w_{base}	$\mathcal{U}(0.4, 0.5)$	minimum performance
w_{peak}	$\mathcal{U}(0.8, 1.0)$	maximum performance
$\hat{\rho}$	$\mathcal{U}(0.025, 0.1)$	relative workload at the peak performance
$\bar{\rho}$	$\mathcal{U}(0.25, 0.5)$	relative workload at the inflection point of the decay phase
k	$\mathcal{U}(0.05, 0.1)$	steepness of performance decline

972
973
974
975
976

Table 5: The range of parameters of human performance variation in Eq. (2) on Chaoyang dataset.

977
978
979
980
981
982
983
984
985

Params	Range	Description
w_0	$\mathcal{U}(0.8, 0.9)$	initial performance
w_{base}	$\mathcal{U}(0.6, 0.7)$	minimum performance
w_{peak}	$\mathcal{U}(0.9, 1.0)$	maximum performance
$\hat{\rho}$	$\mathcal{U}(0.025, 0.1)$	relative workload at the peak performance
$\bar{\rho}$	$\mathcal{U}(0.25, 0.5)$	relative workload at the inflection point of the decay phase
k	$\mathcal{U}(0.05, 0.1)$	steepness of performance decline

986
987
988
989
990
991
992
993
994

Table 6: The range of parameters of human performance variation in Eq. (2) on FLickr10K dataset.

995
996
997
998
999
1000
1001
1002
1003

Params	Range	Description
w_0	$\mathcal{U}(0.65, 0.9)$	initial performance
w_{base}	$\mathcal{U}(0.3, 0.4)$	minimum performance
w_{peak}	$\mathcal{U}(0.8, 1.0)$	maximum performance
$\hat{\rho}$	$\mathcal{U}(0.025, 0.1)$	relative workload at the peak performance
$\bar{\rho}$	$\mathcal{U}(0.25, 0.5)$	relative workload at the inflection point of the decay phase
k	$\mathcal{U}(0.05, 0.1)$	steepness of performance decline

1004
1005
1006
1007
1008
1009
1010
1011
1012

Table 7: The range of parameters of human performance variation in Eq. (2) on Micebone dataset.

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Params	Range	Description
w_0	$\mathcal{U}(0.8, 0.9)$	initial performance
w_{base}	$\mathcal{U}(0.6, 0.7)$	minimum performance
w_{peak}	$\mathcal{U}(0.9, 1.0)$	maximum performance
$\hat{\rho}$	$\mathcal{U}(0.025, 0.1)$	relative workload at the peak performance
$\bar{\rho}$	$\mathcal{U}(0.25, 0.5)$	relative workload at the inflection point of the decay phase
k	$\mathcal{U}(0.05, 0.1)$	steepness of performance decline

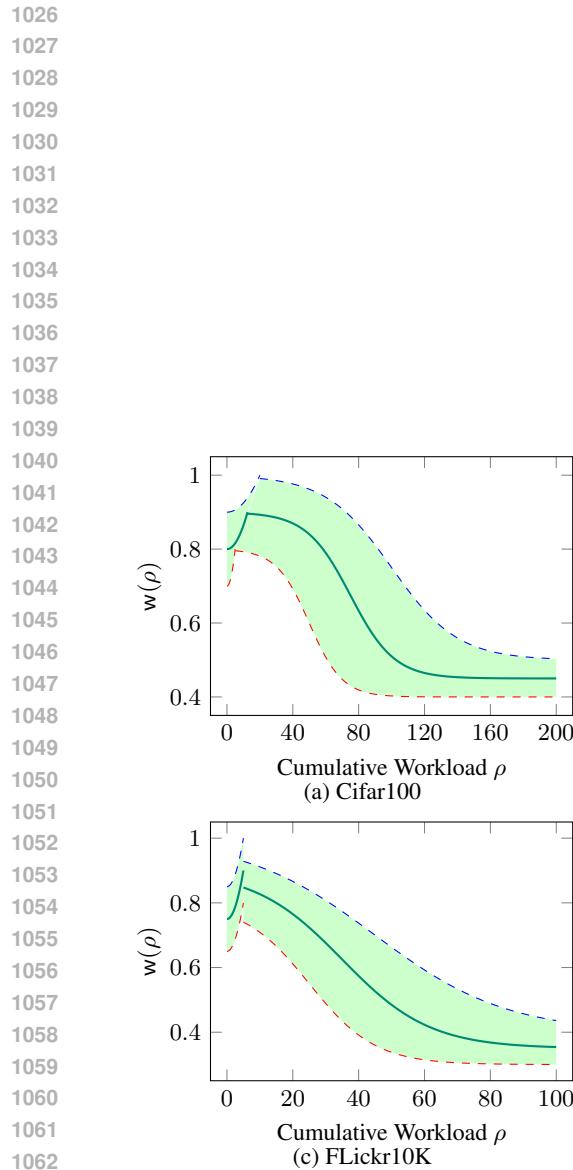


Figure 7: Human performance-Cumulative Workload curves on various datasets. The blue and red lines denote the upper and lower bound of human performance under cumulative workload accumulation.