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Abstract

Accurate uncertainty quantification (UQ) in Large Language Models (LLMs)
is critical for trustworthy deployment. While real-world language is inherently
ambiguous, existing UQ methods implicitly assume scenarios with no ambiguity.
Therefore, a natural question is how they work under ambiguity. In this work,
we demonstrate that current uncertainty estimators only perform well under the
restrictive assumption of no aleatoric uncertainty and degrade significantly on
ambiguous data. Specifically, we provide theoretical insights into this limitation
and introduce two question-answering (QA) datasets with ground-truth answer
probabilities. Using these datasets, we show that current uncertainty estimators
perform close to random under real-world ambiguity. This highlights a fundamental
limitation in existing practices and emphasizes the urgent need for new uncertainty
quantification approaches that account for the ambiguity in language modeling.

1 Introduction

Many linguistic tasks that are solved by Large language models (LLMs) can be framed as question-
answering (QA): a user poses a query, and the model provides an answer. As LLMs are increasingly
deployed in high-stakes domains—such as medical diagnosis, legal advice, or autonomous decision-
making it becomes critical not only to obtain correct answers but also to have reliable estimates of
how well the model understands the data, also referred to as epistemic uncertainty. An important
consideration when assessing model reliability in this context is that some questions permit more
than one answer. Consider these two examples:

Single-answer (No ambiguity): “Which hormone do I lack if I have type 1 diabetes?” → Insulin.
Multi-answer (Ambiguity): “Which medication should I take for type 2 diabetes?” → Metformin,
Sulfonylureas, DPP-4 Inhibitors, ... (all plausible, but with different probabilities).

Since in the first example there is only one correct answer, any model that predicts a distribution over
possible replies should put all mass on this one answer. In the second example, multiple answers
are correct, and they may be associated with different probabilities. This is known as aleatoric
uncertainty: It refers to the randomness that is intrinsic to the distribution of true answers itself. Most
uncertainty–quantification (UQ) methods for LLMs, however, are evaluated on data resembling the
first question, where aleatoric uncertainty is zero (Devic et al., 2025). In this restrictive setting, a
variety of UQ methods show satisfactory performance in estimating epistemic uncertainty (Kuhn
et al., 2023; Duan et al., 2024; Yadkori et al., 2024). However, many realistic applications involve
non-trivial aleatoric uncertainty. This motivates a critical question: How do current UQ approaches
perform under realistic conditions of ambiguity?

In this work, we demonstrate that current UQ methods fail when answers have non-trivial aleatoric
uncertainty. Specifically, we:
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• Provide theoretical explanations why entropy-based methods are effective in settings of zero
aleatoric uncertainty but fail in more general settings (Section 3.1).

• Extend existing ambiguous QA dataset with novel ground-truth answer distributions that are
estimated from factual co-occurrence statistics (Section 3.2).

• Empirically confirm that existing UQ methods perform nearly at random in distinguishing and
ranking high and low uncertainty questions when they are inherently ambiguous (Section 4.1).

Our findings fundamentally challenge the suitability of existing uncertainty quantification methods for
the practical deployment of LLMs. We release our new benchmark with empirical answer distributions
to support future research on UQ methods that explicitly account for non-trivial ambiguity.

2 Background

Uncertainty quantification (UQ) in machine learning (ML) characterizes the uncertainty in a model’s
predictive distribution for a given input x. This uncertainty, often referred to as total uncertainty,
stems from two distinct sources: epistemic uncertainty, reflecting uncertainty in the model itself due
to limited training data, model misspecification, or artifacts of optimization, and aleatoric uncertainty,
which represents intrinsic randomness in the true data-generating process (Hüllermeier and Waegeman,
2021; Gawlikowski et al., 2022). Epistemic uncertainty can be reduced with sufficient data and a
well-specified model, whereas aleatoric uncertainty is irreducible by definition. Importantly, when
both sources are present, they jointly shape the model’s predictive distribution, and naive uncertainty
estimates may confuse epistemic uncertainty for genuine data ambiguity. As such, disentangling
these sources of uncertainty is a central challenge in reliable ML.

With the general capability of LLMs to address diverse tasks by framing them as question-answering
(QA) problems (Sanh et al., 2022), a natural approach to uncertainty quantification in LLMs is
assessing the model’s certainty in the answers it provides. Since LLMs often produce syntactically
diverse yet semantically equivalent answers, it is useful to group answers into semantic equivalence
classes (Kuhn et al., 2023). For instance, to the question "What is the capital of France?", the answers
"Paris" or "The capital is Paris" represent the same semantic class. We focus on the distribution
over these semantically distinct classes, denoted p in the remainder, with details given in Section B.
Importantly, this perspective enables studying uncertainty quantification for LLMs as a classification
problem, enabling us to build on established theory; see Section D for related approaches.

3 Methods

Following Kotelevskii et al. (2025), we define the total uncertainty (TU) as the cross-entropy between
the true distribution p∗ over semantic classes and the semantic distribution predicted by the model
p. This allows a natural decomposition: Aleatoric uncertainty (AU) is the entropy of the true
distribution p∗ and epistemic uncertainty (EU) the Kullback-Leibler divergence between p∗ and
predicted distribution p:

CE(p∗, p)︸ ︷︷ ︸
Total(TU)

= H(p∗)︸ ︷︷ ︸
Aleatoric(AU)

+ KL(p∗∥p)︸ ︷︷ ︸
Epistemic(EU)

Unlike the widely used information-theoretic decomposition for sampling-based methods (Depeweg
et al., 2018), which has faced criticism for conflating distinct sources of uncertainty (Wimmer et al.,
2023; Smith et al., 2025), this formulation makes use of a reference distribution p∗. This is critical
for principled evaluation (Smith et al., 2025) and provides a powerful tool to study uncertainty as we
show in Section 3.1.

Many existing methods for LLMs estimate EU by measuring the variability in the predictive distribu-
tion p, with predictive entropy H(p)1 being the most prominent example (Vashurin et al., 2025). In
this work, we investigate under which conditions this variation-based EU estimation is a good approx-
imation with high probability, while focusing on H(p) as our central example. The corresponding
insights translate to other variability-based uncertainty measures as well.

1In LLMs, where p is the semantic class distribution H(p) is known as semantic entropy (Kuhn et al., 2023).
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Figure 1: Theoretical Insights on 3-class simplex Left: Under zero aleatoric uncertainty, high entropy
H(p) guarantees EU, since all possible p∗ are far away (Theorem 1). Assuming a well-trained model,
observing low entropy likely indicates low EU as the model cannot often be confidently incorrect
(Theorem 2). Right: Under non-trivial aleatoric uncertainty, observing high or low entropy does not
provide information about the EU, since the ground-truth p∗ has no constraint on its location.

3.1 When Does Model Entropy Reflect Epistemic Uncertainty?

When aleatoric uncertainty is zero, the epistemic uncertainty reduces to the negative log-probability
the model assigns to the correct semantic class, given as − log(p(y = y∗)) (Proposition 2). Therefore,
it can be understood as the model’s confidence in the correct answer. Building on this insight, we
introduce two theoretical arguments that explain why entropy-based uncertainty estimation methods
perform well in this case. Critically, neither of these arguments holds in the case of non-trivial AU,
and we show that a faithful estimation in this case is impossible.
Theorem 1 (High Entropy ⇒ High Epistemic Uncertainty). Let there be K ≥ 2 classes and δ ∈
[0, logK] be a threshold on the entropy. Furthermore, let αδ be the maximal possible probability on
some class s.t. H(p) ≥ δ. Then the epistemic uncertainty with H(p) ≥ δ is at least:

EU ≥ − logαδ.

Intuitively, high entropy H(p) ≥ δ implies that the predictive distribution must become increasingly
flatter. This implies that the maximum probability assigned to any class can be at most αδ - naturally,
also for the correct class y∗. Since epistemic uncertainty is quantified as − log p(y = y∗), such a
flat predictive distribution hence leads to large epistemic uncertainty (Figure 1). Thus, Theorem 1
explicitly shows that high predictive entropy necessarily implies high epistemic uncertainty.
Theorem 2 (Low Entropy ⇒ Low Epistemic Uncertainty with High Probability). Let there be K≥2
classes and δ ∈ [0, log 2] be a threshold on the entropy. Furthermore let L = E(x,y)[− log py] the
average loss and γδ be the minimal possible maximum probability on some class s.t H(p) ≤ δ. Then
the probability that the epistemic uncertainty with H(p) ≤ δ will be less than − log(γδ) satisfies:

P(EU ≤ − log(γδ) | H(p) ≤ δ) ≥ 1− L
− log(1− γδ) ∗ P(H(p) ≤ δ)

Theorem 2 complements Theorem 1: If the entropy of a predictive distribution is small (H(p) ≤ δ),
some class must have high probability γδ . This creates a dichotomy: if that class is correct, the EU is
small (≤ − log(γδ)), whereas if it is incorrect, the EU is large (≥ − log(1− γδ))(Figure 1). Noting
that the training loss − log py coincides with EU under zero AU, the average loss L is the expected
EU. As such, for a well-trained model (small L), frequent high-EU errors would contradict the low
average loss. Hence, confident but wrong predictions must be rare. The bound also depends on the
frequency of confident predictions; while it may loosen when such cases are rare, the negative log
likelihood objective encourages models to be confident, making this unlikely in practice. Overall,
Theorem 2 formalizes the intuition that for models that make confident predictions and perform well
on average, observing a low predictive entropy is likely to correspond to low epistemic uncertainty.

Non-trivial Aleatoric Uncertainty The preceding theoretical arguments show that under zero
aleatoric uncertainty, high entropy indicates epistemic uncertainty, whereas low entropy predomi-
nantly reflects epistemic confidence. These insights use the fact that under zero aleatoric uncertainty,
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Table 1: Examples of question-answer-distribution pairs
Dataset Question Answer(s) # Counts in Data p∗ Entropy H(p∗)

TriviaQA Where in England was Dame Judi Dench born? {Y orkshire} n/a [1.00] 0.0

MAQA∗ What is one essential component of the fire triangle? {Heat, Fuel, Oxygen} {31, 32, 25} [0.35, 0.36, 0.29] 1.1
AmbigQA∗ What is the name of one princess in Frozen? {Elsa,Anna} {188, 91} [0.67, 0.33] 0.63

the ground-truth is constrained to be an indicator distribution.2Allowing for arbitrary aleatoric un-
certainty lifts this restriction on p∗. Consequently, a high-entropy prediction no longer necessarily
indicates high EU as the entropy may also arise from an inherently uncertain ground-truth (Figure 1
right) that is, at the same time, well reflected by the model (low EU). More generally, no function of
the predictive distribution p alone can distinguish epistemic uncertainty from intrinsic ambiguity:
Proposition 1 (Non-Identifiability of Epistemic Uncertainty). Let K ≥ 2 and ∆K−1 be the prob-
ability simplex over K classes. For any function f : ∆K−1 → R and any p ∈ ∆K−1, there exist
p∗1, p

∗
2 ∈ ∆K−1 such that

KL(p∗1 ∥ p) = 0 and KL(p∗2 ∥ p) = − logmin
i
pi ≥ logK,

Thus, any function f(p) can both indicate zero or high (≥ log(K)) epistemic uncertainty.

As such, any estimator that is a function of p — e.g. semantic entropy — cannot faithfully estimate
EU without restrictions on AU. Since assumptions about the inherent ambiguity poorly reflect many
linguistic problems, these approaches are rendered unreliable measures of EU in practice.

3.2 A Novel QA benchmark for Unrestricted Aleatoric Uncertainty

To study how current estimators perform under aleatoric uncertainty, we introduce two novel ambigu-
ous QA datasets, MAQA∗ & AmbigQA∗, that are equipped with explicit estimates of the ground-truth
distribution p∗. Concretely, we augment the ambiguous QA datasets MAQA (Yang et al., 2025)
and AmbigQA (Min et al., 2020) by estimating the answer probabilities from the co-occurrence of
question-answer pairs in the training data. This choice is well supported by previous work: Empiri-
cally, co-occurrence statistics correlate strongly with model performance: models score higher on
samples with frequent co-occurrence (Kandpal et al., 2023; Mallen et al., 2023), and recently, Wang
et al. (2025) demonstrates that, particularly in factual QA, LLM output probabilities correlate with co-
occurrence statistics. Theoretically, as n→ ∞, the model will reproduce the pretraining distribution
ptrain, and epistemic uncertainty will vanish (Smith et al., 2025). The remaining uncertainty is thus
purely aleatoric, reflecting the intrinsic variability in ptrain itself. Consequently, estimating p∗ from
statistics of ptrain is more principled than relying on external annotations that may diverge from ptrain.
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Figure 2: Distribution of ground-truth entropy
H(p∗) across questions in MAQA∗ (left) and
AmbigQA∗ (right)

Since the pre-training datasets for LLMs are not
publicly available, we instead employ the En-
glish Wikipedia (Wikimedia Enterprise, 2024)
as a proxy for the pre-training corpus due to its
widespread use in LLM pre-training and com-
prehensive coverage of factual knowledge. To
perform the co-occurrence search, we use key-
words extracted from the question alongside can-
didate answers. The keywords represent the
most important words in the question, e.g., the
question’s subject, and importantly, both key-
words and answers are stemmed to their base
forms to ensure robustness against surface-form
variation. Elsahar et al. (2018) demonstrate that
subject–object co-occurrence is a reliable indi-
cator for the presence of a subject–relation–object triplet, making it suitable for fact counting. We
further improve the precision of these counts by using an entailment model to verify the factual
occurrence of each candidate co-occurrence. The resulting datasets contain 468 and 2553 samples,
spanning diverse cases of aleatoric uncertainty (Figure 2) with examples shown in Table 1.3

2In Section E.1 we discuss that also other restrictions are useful.
3Dataset: https://huggingface.co/collections/ttomov/llm-uncertainty-under-ambiguity
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Figure 3: Relationship between estimators and epistemic uncertainty (EU) for Gemma 3-12B on
MAQA∗. Left: Relationship betweenH(p) and EU. In the absence of aleatoric uncertainty (AU = 0),
predictive entropy and EU are correlated, while in the presence of variable aleatoric uncertainty
(AU ≥ 0), predictive entropy and EU are uncorrelated. Lines indicate theoretical bounds on the EU.
Right ROC curves showing different estimators as a discriminator for identifying certain predictions
(EU < log(2)). Shaded regions represent one standard deviation over different estimators.

To validate the robustness of our estimation strategy, we confirm these ground-truth distributions
using two alternative co-occurrence search strategies. (i) Similarly as above, using keywords and
answers but using as corpus the RedPajama-V1 dataset (Weber et al., 2024) via infini-gram (Liu et al.,
2024), and (ii) through entity linking on the Pile dataset (Gao et al., 2020) using DPBedia Spotlight
(Kandpal et al., 2023; Daiber et al., 2013). We find that the distributions from all strategies strongly
align, which validates our approach for estimating ground-truth distributions (Section C).

4 Experiments

To confirm our theoretical analysis, we compare different UQ estimators across models on our novel
MAQA∗ and AmbigQA∗ datasets and contrast that to performance on data with no AU.

Setup. We evaluate uncertainty estimators on three datasets: TriviaQA4 (Joshi et al., 2017), con-
taining questions with zero aleatoric uncertainty, and our novel MAQA∗ and AmbigQA∗ datasets,
which feature varying degrees of ambiguity. The estimators include Semantic Entropy (SE) (Kuhn
et al., 2023), Maximum Sentence Probability (MSP), Shifting Attention to Relevance (SAR) (Duan
et al., 2024), and Iterative Prompting (IP) (Yadkori et al., 2024). We evaluate these across several
models: LLaMA3.1 8B (Grattafiori et al., 2024), Gemma3 12B (Team et al., 2025), Qwen2.5 14B
(Qwen et al., 2025)—each in both base and instruct variants—as well as GPT-4.1-mini, which serves
as state-of-the-art LLM. We additionally experiment with different model sizes in Section A.4.

Metrics. We study how well the estimated EU represents the true EU. As both are continuous
quantities, we report the following metrics: (i) For a given threshold δ we measure the separation
between uncertain (EU ≥ δ) and certain (EU < δ) samples using AUCROC. (ii) As threshold-
independent metric, we employ the concordance statistic AUCc(Therneau and Atkinson, 2024)
,which estimates P(EUi > EUj | Estimatori > Estimatorj). It quantifies how reliably the estimator
assigns higher ranks to samples with greater epistemic uncertainty.

4.1 Key Observations

I. Predictive Entropy is a reliable estimator of EU only under zero AU This observation
(Figure 3, left) aligns well with both theorems of Section 3.1. The lower bound on the EU from
Theorem 1 ensures that models with substantial predictive entropy cannot have low epistemic
certainty. The primary sources of errors in the zero AU case are confident yet incorrect predictions
(left top). However, given a sufficiently well-trained model, these occur with low probability (
Theorem 2), which is reflected in the sparsity of that region (low bin counts). Conversely, for non-
trivial AU, predictive entropy has no connection to EU. Pathological cases include predictions with
high predictive entropy despite low EU, which can be seen in the AU ≥ 0 case of Figure 3 (middle

4We use the first 2000 samples as this is enough to demonstrate the phenomenon.
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Table 2: Concordance scores AUCc for all estimators of three models on TriviaQA (AU=0) and on
AmbigQA∗ & MAQA∗ (AU≥0). An AUCc = 0.50 corresponds to random chance.

Model
AU = 0 AU ≥ 0

TriviaQA MAQA∗ AmbigQA∗

SE MSP SAR IP SE MSP SAR IP SE MSP SAR IP

Llama 3.1-8B 0.80 0.74 0.79 0.80 0.52 0.49 0.51 0.53 0.61 0.58 0.60 0.60
Gemma 3-12B 0.91 0.79 0.86 0.90 0.55 0.53 0.58 0.60 0.66 0.64 0.66 0.66
Qwen 2.5-14B 0.87 0.74 0.82 0.86 0.59 0.56 0.62 0.59 0.67 0.63 0.67 0.66

plot) in the right/middle bottom section. Another case are predictions exhibiting higher EU but low
predictive entropy, which are located on the left-middle top section. These patterns demonstrate that
predictive entropy is not a suitable quantity for accurately estimating EU under non-trivial AU.

II. Current estimators perform nearly at random in distinguishing and ranking high and low
EU samples under non-trivial AU To quantify these effects, we set the uncertainty threshold
to δ = log(2)5. In the zero AU case, different estimators well separate epistemically certain and
uncertain (Figure 3, right). However, in scenarios involving non-zero AU, the discriminative power
of the estimators reduces to close to random performance.

These findings are supported by the concordance statistic: Semantic Entropy fails to rank the true EU
better than random chance in the presence of AU across models and both MAQA∗ and AmbigQA∗

(Table 2). The slightly higher scores on AmbigQA∗ can be attributed to its large proportion of
near-zero entropy samples rather than genuine estimator effectiveness. Similar results also hold for
the other estimators. Our findings are consistent with the instruct versions of the models as well;
additionally, we note that these models, other than the corresponding base models, collapse their
predictions frequently to only one semantic answer (Section A.3). Our claims also generalize to
different model sizes, with the exception that very small models, which surprisingly perform better
than random. We defer a discussion to Section A.4. Finally, this pathological pattern arises for all
strategies for estimating p∗(Section A.2).

5 Discussion

Limitations Our new benchmark quantifies p∗ as factual occurrences in Wikipedia. Although
evidence suggests that such occurrences correlate well with model performance (Kandpal et al., 2023;
Mallen et al., 2023; Wang et al., 2025), there is, to our knowledge, no work that empirically shows
LLMs approach this distribution in the infinite data limit. We aim to mitigate potential inaccuracies
by supplementing experiments using Dirichlet-distributed perturbations around the estimated ground
truth (Section A.1) and find our claims to be robust. Furthermore, our evaluation requires models to
provide a single answer for each question. While this is consistent with prior work (Kuhn et al., 2023;
Aichberger et al., 2024), settings in which multiple answers are generated simultaneously require a
fundamentally different theoretical framework for modeling uncertainty.

Current Estimators are not reliable The observations of Section 4.1 confirm the theoretical
insights of Section 3.1. With our novel benchmark, we demonstrate that in the general scenario of
ambiguity, current estimators fail to adequately assess epistemic uncertainty. Consequently, their use
in general language tasks is problematic and not reliable.

Toward Reliable Estimators Accurately estimating epistemic uncertainty based on a function of p
indeed appears impossible. Hence, more information than p is needed, and it seems, e.g., sensible to
account for model uncertainty during training itself. For example, in classical UQ, evidential deep
learning (Sensoy et al., 2018) learns a second-order distribution to represent epistemic uncertainty.
More recent approaches train models on joint distributions to capture epistemic uncertainty (Johnson
et al., 2024; Ahdritz et al., 2024). We hope that our work encourages the development of such
estimators and that our benchmark enables a more holistic study of UQ in LLMs.

5In a binary classification scenario with AU = 0, an EU of log(2) corresponds precisely to p1 = p2 = 1
2

.
Choosing a threshold δ > log(2) would incorrectly label genuine misclassifications as epistemically certain.
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A Additional Experiments

A.1 Accounting for uncertainty in estimating p∗

In practice, our estimate of the ground-truth distribution p∗ is itself uncertain due to limited or noisy
co-occurrence counts. To explicitly capture this uncertainty, we use a Dirichlet prior p∗ ∼ Dir(α),
with parameters α = (α1, . . . , αC). We start with a uniform prior αi = 1 for all classes i. After
observing co-occurrence counts ni, the posterior parameters become αi = 1 + ni. To prevent
low-count posteriors from remaining too uniform—which would erroneously decouple the model
prediction p from p∗—we introduce a scaling factor γ ≥ 1, defining

αi = 1 + γ ni.

Then, under the Dirichlet posterior, the aleatoric uncertainty is given by:

Ep∗∼Dir(α)

[
H(p∗)

]
= Ep∗∼Dir(α)

[
−

C∑
i=1

p∗i log(p
∗
i )
]

= −
C∑
i=1

Ep∗∼Dir(α)[p
∗
i log(p

∗
i )]

= −
C∑
i=1

[
αi

α0
(ψ(αi + 1)− ψ(α0 + 1)]

where ψ is the digamma function, and we leverage the fact that each p∗i ∼ Beta(αi, α0 − αi).
Likewise, the epistemic uncertainty is defined as

Ep∗∼Dir(α)

[
KL(p∗ ∥ p)

]
= Ep∗∼Dir(α)

[
CE(p∗||p)

]
− Ep∗∼Dir(α)

[
H(p∗)

]
= −

C∑
i=1

Ep∗∼Dir(α)[p
∗
i ]log(pi)− Ep∗∼Dir(α)

[
H(p∗)

]
= −

C∑
i=1

αi

α0
log(pi) +

C∑
i=1

[
αi

α0
(ψ(αi + 1)− ψ(α0 + 1)

=

C∑
i=1

αi

α0

[
(ψ(αi + 1)− ψ(α0 + 1)− log(pi)

]
We perform ablation studies over different values of γ (see Table 3). Increasing γ corresponds to
making a stronger assumption that the retrieved p∗ is exact, which causes the concordance score to
approach the values reported in our main results. For smaller γ, p∗ becomes more independent of p,
especially given the relatively low counts noted earlier. Interestingly, estimator performance degrades
further when we relax the assumption that p∗ is exact, corroborating our main findings.

Table 3: Concordance scores AUCc for Gemma 3-12B for different likelihood multipliers (γ) across
uncertainty estimators.

Likelihood Multiplier (γ)
MAQA∗ AmbigQA∗

SE MSP SAR IP SE MSP SAR IP

γ = 1 0.50 0.50 0.53 0.54 0.56 0.57 0.57 0.56
γ = 2 0.51 0.51 0.54 0.56 0.58 0.58 0.59 0.58
γ = 5 0.53 0.52 0.55 0.57 0.61 0.60 0.61 0.61
γ = 10 0.54 0.52 0.56 0.58 0.62 0.61 0.63 0.62
γ = 100 0.55 0.53 0.57 0.59 0.65 0.63 0.65 0.65

Main KL 0.55 0.53 0.58 0.60 0.66 0.64 0.66 0.66
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A.2 Different p∗ estimation methods

We assess the robustness of our results by evaluating different strategies for estimating the ground-
truth p∗, as outlined in Section C. Across all estimators, the three methods yield highly similar results
(Table 4), consistent with our observation that their estimated ground truths are strongly aligned.
Note that, since we discard samples where at least one class has zero counts, different estimation
strategies result in slightly different final datasets.

Table 4: Concordance scores AUCc for Gemma 3-12B for different estimation methods for ground
truth p∗

p∗ Estimation Method MAQA∗ AmbigQA∗

SE MSP SAR IP SE MSP SAR IP

Wikipedia English 0.55 0.53 0.58 0.60 0.66 0.64 0.66 0.66
RedPajama-V1 0.55 0.53 0.58 0.59 0.65 0.63 0.65 0.65
The Pile 0.53 0.53 0.58 0.58 0.60 0.58 0.60 0.61

A.3 Instruct Models
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Figure 4: Entropy collapse of Instruct models
on MAQA∗ leads to higher EU

For instruct models, we observe the same qualitative
patterns as for base models (Table 5). Note that for
GPT 4.1-Mini, the estimators SAR and MI were not
computed since the model is only accessible via an
API.

An additional insight is that the entropy for instruct
models collapses to zero for most samples, even in
cases with non-trivial aleatoric uncertainty. This be-
havior is undesirable, as it indicates that the models
fail to represent any meaningful predictive distribu-
tion. Compared to base models, this collapse results
in substantially worse model performance (average
EU) (Figure 4). Moreover, the entropy collapse also
degrades estimator performance on TriviaQA, since
a model that always outputs a single answer provides
no variability and thus no basis to distinguish certain from uncertain cases.

Table 5: Concordance scores AUCc for all estimators of instruct models on TriviaQA (AU=0) and
on AmbigQA & MAQA (AU≥0). An AUCc = 0.50 corresponds to random chance.

Model
AU = 0 AU ≥ 0

TriviaQA MAQA∗ AmbigQA∗

SE MSP SAR IP SE MSP SAR IP SE MSP SAR IP

Llama 3.1-8B-Instruct 0.84 0.79 0.83 0.81 0.54 0.52 0.53 0.54 0.60 0.59 0.60 0.60
Gemma 3-12B-Instruct 0.76 0.76 0.77 0.74 0.53 0.54 0.55 0.54 0.57 0.57 0.58 0.57
Qwen 2.5-14B-Instruct 0.73 0.69 0.73 0.69 0.55 0.54 0.56 0.55 0.57 0.56 0.57 0.56
GPT 4.1 Mini 0.87 0.85 - - 0.50 0.52 - - 0.59 0.61 - -

A.4 Effect of Model Size

We evaluate different versions of Gemma 3—1B, 4B, 12B, and 27B—and observe that smaller models
yield better performance for UQ estimation methods (Table 6) on MAQA∗. This effect appears to
stem from the fact that smaller models often do not know the correct answers, and thus produce
arbitrary outputs that form a high-entropy distribution. Such cases naturally coincide with high
epistemic uncertainty, as the model lacks knowledge of the answers. Conversely, when a smaller
model does know the answers, the resulting distribution has lower entropy and correspondingly
lower epistemic uncertainty. As shown in Figure 4, the average entropy decreases substantially with
model size. Crucially, this reduction is accompanied by improved performance, indicating that larger
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models more accurately capture the underlying ground-truth distributions. The reduced estimator
performance of smaller models on TriviaQA is consistent with prior observations in the literature
(Kuhn et al., 2023).

Table 6: Concordance scores AUCc for all estimators of different model sizes on TriviaQA (AU=0)
and on AmbigQA∗ & MAQA∗ (AU≥0). An AUCc = 0.50 corresponds to random chance.

Model
AU = 0 AU ≥ 0

TriviaQA MAQA∗ AmbigQA∗

SE MSP SAR IP SE MSP SAR IP SE MSP SAR IP

Gemma 3-1B 0.78 0.72 0.77 0.78 0.69 0.63 0.71 0.69 0.67 0.64 0.64 0.64
Gemma 3-4B 0.85 0.76 0.82 0.85 0.65 0.57 0.65 0.67 0.69 0.65 0.69 0.67
Gemma 3-12B 0.91 0.79 0.86 0.90 0.55 0.53 0.58 0.60 0.66 0.64 0.66 0.66
Gemma 3-27B 0.93 0.80 0.87 0.91 0.52 0.52 0.56 0.57 0.65 0.62 0.65 0.64

A.5 AUCROC for different uncertainty thresholds δ

For completeness, we also report AUCROC scores for thresholds δ other than log(2) across all
datasets (Table 7). As discussed in Section 4.1, the higher values observed on AmbigQA∗ are largely
explained by its considerable proportion of near-zero entropy ground-truth samples.

Table 7: AUCROC scores for Gemma 3-12B for different uncertainty thresholds δ across all estimators

Uncertainty Threshold δ
AU = 0 AU ≥ 0

TriviaQA MAQA∗ AmbigQA∗

SE MSP SAR IP SE MSP SAR IP SE MSP SAR IP

δ = log(1.5) 0.95 0.89 0.92 0.94 0.54 0.52 0.58 0.61 0.78 0.73 0.77 0.78
δ = log(2) 0.93 0.87 0.90 0.92 0.56 0.53 0.60 0.63 0.75 0.71 0.74 0.75
δ = log(3) 0.90 0.85 0.89 0.89 0.58 0.56 0.62 0.65 0.73 0.70 0.73 0.73

B Implementation Details

B.1 Approximations

Approximation of p To estimate the probability p(y) of a semantic class y ∈ C, we sample K
answers a1, . . . , aK from the model and then cluster them into semantic classes using an auxiliary
entailment model. The probabilities of each semantic class are then obtained by aggregating and
normalizing the answer probabilities within each class:

p(y) ≈ p̃(y)∑|C|
j=1 p̃(yj)

, where p̃(y) =
1

K

K∑
i=1

I(ai ∈ y)p(ai), ai ∼ p(a).

As K → ∞, the approximation converges to the model’s true semantic answer distribution. We use
a higher number of samples K = 30 to ensure a reasonable approximation. Semantic clustering
follows the procedure of Kuhn et al. (2023), employing a bi-directional entailment check with the
deberta-v2-xlarge-mnli model He et al. (2021). Samples are drawn via multinomial sampling with
the default temperature, top-p, and top-k settings of each model. This choice is deliberate, as different
model families and versions (e.g., base vs. instruct) provide different defaults, and we aim to evaluate
them under their most realistic production settings.

Calculation of Epistemic Uncertainty KL(p∗ ∥ p) The distribution p∗ defines probabilities over
the set of semantically distinct correct answers. Since the model distribution p is sampled and may be
arbitrary, their supports need not coincide. Moreover, matching classes may also differ in surface
form. As such, they need to be aligned to be able to calculate the epistemic uncertainty. As an
example, consider:

p∗ = {Heat : 0.3, Fuel : 0.34,Oxygen : 0.36}
p = {It’s Heat : 0.4,Carbon : 0.2,Oxygen : 0.4}.
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We construct a joint support set {Heat, Fuel,Oxygen,Carbon}, imputing missing values with 0 in
p∗ and with ϵ = 0.01 in p to avoid undefined terms in the KL-divergence due to log(0). Using ϵ for
the model distribution is justified, since in principle the model assigns non-zero probability to any
possible sequence, making the support of p∗ always a subset of the support of p. To determine the
common support set, we apply the same semantic clustering procedure used for estimating p, based
on bidirectional entailment with deberta-v2-xlarge-mnli He et al. (2021).

B.2 UQ Estimators

Semantic Entropy (SE) For semantic entropy, we follow Kuhn et al. (2023) The method first
estimates the semantic distribution p as outlined in Section B.1 using K samples, and then computes
the entropy:

H(p) = −
|C|∑
i=1

pi log pi.

Maximum Sentence Probability (MSP) A simple yet effective estimator is the maximum sentence
probability (MSP), defined as:

MSP = 1−max
a

p(a | x),

where p(a | x) is the probability assigned to answer a. Importantly, we do not compute maxy p(y | x)
from the semantic distribution p estimated above; instead, we directly perform beam search with 5
beams to identify the highest-probability answer. This approach is similar to a recent proposal by
Aichberger et al. (2024)

Shifting Attention to Relevance (SAR) Instead of having hard clusters, SAR computes continuous
semantic similarity scores to determine the importance of samples. Additionally, SAR mitigates
the influence of irrelevant tokens by calculating the importance of each token on the semantics
of the answer (Duan et al., 2024). We use the implementation of (Vashurin et al., 2025) using
cross-encoder/stsb-roberta-large as the semantic similarity model and K = 30 samples.

Iterative Prompting (IP) The proposed estimator (Yadkori et al., 2024) should not be confused
with the traditional MI estimator (Depeweg et al., 2018). The core idea behind the method is based on
the idea that if a model is epistemically certain, it is less likely to change its answer by the inclusion
of a wrong answer in the input context. For a detailed explanation of this method, we refer to Yadkori
et al. (2024). In our implementation, we limit the number of samples to K = 10. Conditional
probabilities are obtained via teacher forcing and extracted explicitly from the model output. We use
hyperparameters γ1 = γ2 = 10−9 and employ the prompt schema shown in Prompt 3 to obtain the
conditional probabilities.

B.3 Inference Prompts

For base models, we employ few-shot prompts to guide the model toward producing answers in the
desired format (Prompt 1). In contrast, instruct models are queried with a single instruction that
specifies the expected answer style (Prompt 2).

Prompt 1: Prompt for base models.
Q: What is one planet in our solar system that has rings?
A: Saturn

Q: Name one programming language you know.
A: Python

Q: Who is one of the singers in the band ABBA?
A: Agnetha Faeltskog

Q: What is one color in the German flag?
A: Black

Q: {question }?
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A:

Prompt 2: Prompt for instruct models.
Answer the following question with one word or phrase:
{question }?

Prompt 3: Prompt for MI estimator
A possible answer to the question {question} is {answer }.
Q: {question }?
A:

C Dataset Creation

Our dataset construction process consists of the following steps:

Question Rephrasing: Each original question is reformulated to explicitly request exactly one
specific answer. E.g.: "What are the essential components of the fire triangle?" →"What is one
essential component of the fire triangle?". This prevents the model from producing multiple answers
in a single generation. The rephrasing is done with gpt-4.1-mini.

Keyword Extraction: To enable the co-occurrence search, we extract a main keyword for the
co-occurrence search. The keyword can either be a single word, like the subject, or a phrase.
Critically, the co-occurrence of the keyword and the answer should reliably indicate the presence of
the fact in the retrieved document. This is a valid assumption in most cases, as Elsahar et al. (2018)
shows that when only the subject and object of a subject-object-relation triple co-occur in text, the
resulting triple is often also present. However, for our main dataset Wikipedia English, we take
additional measures to enhance quality as explained Section C.1. The keyword extraction is done
using gpt-4.1-mini with Prompt 5 - except for the proxy using The Pile, which employs entity
linking.

Co-occurrence Search: For each question, we perform a co-occurrence search for each answer on
the proxy corpora. The final ground-truth distribution p∗(·|q) for a given question q is then obtained
by the relative frequency of the individual answer counts to all answer counts. To reduce potential
biases, we discard samples in which at least one candidate answer has zero counts. Due to this fact,
using the different proxies English Wikipedia, RedPajama-V1, and The Pile can result in different
samples in the final datasets.

C.1 Wikipedia English

Dataset curation We use the structured Wikipedia Wikimedia Enterprise (2024) dataset, and specif-
ically the English version, which consists of all English article pages in a structured way. For each
article, we are leveraging all data in the sections tag. For the co-occurrence search, we use Pyserini
and build the search index locally Lin et al. (2021). To define what constitutes a document—i.e.,
how articles are chunked for indexing—we leverage the dataset’s hierarchical structure: articles
are organized into sections and subsections down to the level of individual paragraphs or lists. We
assume that relevant facts are contained at this lowest level, which represents a coherent unit of text.
The average length of the resulting chunks is around 65 words, with the distribution following a
power-law: fewer than 1% of the chunks exceed 300 words, while only a small number of outliers
contain more than 2000 characters (≈400 words). For such extreme outliers, we apply additional
splitting at sentence boundaries. Importantly, apart from these rare cases, we keep the chunks intact
and do not split them further, ensuring high recall of facts. Importantly, we also apply stemming to
reduce words to their base forms, avoiding reliance on overly specific surface forms. The final index
contains 65,069,586 documents.

Co-occurrence counting In the retrieval step, we return all documents containing both the keyword
and the candidate answer for a given question. Because the relationship between a question and
its answer can be complex, relying on a single keyword often yields high recall but only moderate
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precision. For instance, consider the question “Who is the founder of Apple?”—one valid answer is
Steve Jobs. If we extract Apple as the main keyword, then any fact expressing “Steve Jobs founded
Apple” will naturally contain both Steve Jobs and Apple, which ensures high recall. However, the
mere co-occurrence of Steve Jobs and Apple does not always capture the intended fact—for example,

“Steve Jobs was the CEO of Apple”. Such cases reduce precision. Hence, to ensure high precision,
we apply an entailment procedure. Given a retrieved document through the co-occurrence search,
we pass it to an LLM to verify that the fact is indeed present. For this step, we use Gemma-3 12B
Instruct with the prompt shown in Prompt 4 and examples in Table 9. To keep the entailment step
computationally feasible, we cap the number of retrieved documents per candidate answer at 1000—a
threshold that we observe is rarely exceeded. The final number of samples for MAQA∗ is 468 and for
AmbigQA∗ 2553 (Table 8).

Prompt 4: Prompt for entailment check.
You are an expert at verifying factual entailment. I.e., is the fact
present in the text?
Given the following TEXT and FACT , answer with "yes" if the FACT
follows from the TEXT , or "no" if it does not.

TEXT: {text}
FACT: {fact}
Answer:

C.2 RedPajama-V1

Dataset curation The Infini-Gram API provides access to co-occurrence counts across a range of
large-scale pre-training datasets Liu et al. (2024). We use RedPajama-v1 Weber et al. (2024), which
closely replicates the LLaMA pre-training corpus and includes a diverse set of data sources.

Co-occurrence counting Similarly, as for Wikipedia English, we query for co-occurrences
of the keyword with each candidate answer. For the Infini-Gram API we use the parameters
max_diff_tokens= 100 and max_clause_freq= 50000. Since the underlying tokenizer (LLaMA
2) is sensitive to whitespaces for a keyword answer pair, we test all four combinations of including
or removing a whitespace at the beginning of the keyword or answer. To obtain the final counts,
we sum up the retrieved counts of the four different possibilities. Due to limited document access
in Infini-Gram, we do not perform an entailment-checking phase. The final number of samples for
MAQA∗ is 470 and for AmbigQA∗ 2331 (Table 8).

C.3 The Pile

Dataset Curation In contrast to the previous two approaches, this method follows a different
strategy for obtaining keywords and answers. It relies on entity linking, which identifies entities
such as people, cities, or songs in both the question and the answer. The co-occurrence of a question
entity with an answer entity is then retrieved from the Pile corpus Gao et al. (2020). Following the
approach of Kandpal et al. (2023), we use the DBpedia Spotlight entity linker Daiber et al. (2013)
to extract entities from questions and answers. To improve accuracy, each answer is appended to
its corresponding question before entity linking. When multiple candidate entities are returned
for a question, we employ Gemma-3 12B Instruct to filter for the most relevant one. The linker’s
parameters are set to confidence = 0.4 and support = 1.

Co-occurrence counting After obtaining the entity sets, we match them with pre-extracted entities
from The Pile provided by Kandpal et al. (2023) to compute co-occurrence statistics. Similarly, as
for RedPajama-V1, we do not perform an entailment-checking phase as we do not have access to
the underlying documents.The final number of samples for MAQA∗ is 120 and for AmbigQA∗ 861
(Table 8).

C.4 Characteristics

Summary statistics are reported in Table 8. Compared to Wikipedia English, the other two strategies
have access to a substantially larger pre-training corpus and therefore yield considerably higher
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Figure 5: Comparison of retrieved ground-truth distribution p∗ using different strategies

counts. Nevertheless, the average entropies and their standard deviations remain in a similar range.
As mentioned previously, we use English Wikipedia as our principal strategy since it is the most
controlled method with entailment checking, ensuring high precision and high recall. As can be seen
in Table 8, it also provides most samples on AmbigQA∗ and similarly many on MAQA∗ as RedPajama-
V1. Using The Pile, in contrast, produces significantly fewer samples compared to the other two
methods, as entity linking often can’t find an entity in either question or answer, and hence such
samples have to be discarded. To assess how well the estimated ground truths p∗ align across datasets,
we compute the Jensen-Shannon divergence for all pairwise couplings on MAQA∗ and AmbigQA∗

(Figure 5). The Jensen-Shannon divergence is given by: JS(p ∥ q) = 1
2 [KL(p ∥m) + KL(q ∥m)]

,where m = 1
2 (p + q). It has the useful property of being symmetric, as we do not consider one

strategy over the other as the truth. Overall, all strategies produce largely consistent ground truths, as
reflected in the low average JS divergence and the characteristic power-law distribution (Figure 5).

Table 8: Summary statistics for p∗ estimation strategies: samples n, mean answer-counts, and mean
entropies (mean ± std).

p∗ Estimation Method MAQA∗ AmbigQA∗

n Count ± SD H ± SD n Count ± SD H ± SD

Wikipedia English 468 115.49 ± 178.63 1.11 ± 0.44 2553 55.81 ± 104.77 0.64 ± 0.33
RedPajama-V1 470 143066.88 ± 1234461.86 0.99 ± 0.44 2331 1220812.64 ± 29688717.59 0.52 ± 0.35
The Pile 120 46281.74 ± 138909.80 0.97 ± 0.44 861 19881.87 ± 55441.02 0.60 ± 0.33

D Related Work

UQ for LLMs A wide range of methods for uncertainty quantification in LLMs have been proposed
(Vashurin et al., 2025; Liu et al., 2025). Many methods rely on the predictive distribution p. The most
prominent approaches here quantify the variation in p, with Semantic Entropy (Kuhn et al., 2023)
being the most widely adopted, alongside variants such as Duan et al. (2024); Nikitin et al. (2024).

Ambiguity in QA Tasks Previous work are benchmarked on QA datasets like TriviaQA (Joshi
et al., 2017) which only contain a single correct answer per question (Devic et al., 2025). Few works
consider the presence of aleatoric uncertainty. Hou et al. (2024) introduce aleatoric uncertainty
through ambiguity in the question’s phrasing. Crucially, this does not cover the case where the
ambiguity is inherent to the answer. Yadkori et al. (2024) proposes a method based on the idea that an
epistemically confident model should be less likely to be misled by the inclusion of a wrong answer
in the input context. While their estimator is theoretically well argued for by analyzing the joint
distribution of responses, their assumption on the LLM behavior (Assumption 5.3) seems not to hold
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in reality, which is supported by the emerging research field of knowledge conflicts (Xie et al., 2024;
Xu et al., 2024). Correspondingly, our results show that the method is ineffective under ambiguity as
well.

The absence of evaluations under ambiguity is a consequence of the lack of suitable benchmarks.
Only few datasets explicitly consider ambiguous questions, namely AmbigQA (Min et al., 2020) and
MAQA Yang et al. (2025). To our knowledge, MAQA is the only dataset with questions for which we
ambiguity is inherent to the task and can not be resolved with a more precise phrasing. It, however,
does not quantify the true distribution p∗ and, therefore, can not be used for a quantitative study on
UQ under ambiguity.

E Proofs

Proposition 1 (Non-Identifiability of Epistemic Uncertainty). Let K ≥ 2 and ∆K−1 be the prob-
ability simplex over K classes. For any function f : ∆K−1 → R and any p ∈ ∆K−1, there exist
p∗1, p

∗
2 ∈ ∆K−1 such that

KL(p∗1 ∥ p) = 0 and KL(p∗2 ∥ p) = − logmin
i
pi ≥ logK,

Thus, any function f(p) can both indicate zero or high (≥ log(K)) epistemic uncertainty.

Proof. Fix p ∈ ∆K−1. Set p∗1 := p. Then KL(p∗1 ∥ p) = 0. Let j ∈ argmin
i

pi and define

p∗2 := 1[y = j]. Then
KL(p∗2 ∥ p) = − log pmin.

Thus, for the same p, EU can be 0 or large, while f(p) is fixed.

Proposition 2 (Zero aleatoric uncertainty implies EU is NLL).

H(p∗) = 0 =⇒ EU = − log(p(y = y∗))

Proof. If H(p∗) = 0, then p∗(y) = 1[y = y∗]. From this it follows:

EU = KL(p∗ || p) = −
∑
y ̸=y∗

0 log(p(y))− log(p(y = y∗)) = − log(p(y = y∗))

Theorem 1 (High Entropy ⇒ High Epistemic Uncertainty). Let there be K ≥ 2 classes and δ ∈
[0, logK] be a threshold on the entropy. Furthermore, let αδ be the maximal possible probability on
some class s.t. H(p) ≥ δ. Then the epistemic uncertainty with H(p) ≥ δ is at least:

EU ≥ − logαδ.

Proof. We first define αδ mathematically and how to obtain it.

αδ = max
{
max

j
pj : H(p) ≥ δ

}
, δ ∈ [0, logK].

Let Hmax(α) = −α logα − (1 − α) log 1−α
K−1 . This is the maximum entropy achievable by a

distribution whose largest class probability is α ∈ [1/K, 1]. Then αδ is the solution of Hmax(α) = δ.
Now we seek the lowest possible EU = −log(p(y = y∗)) under the constraint H(p) ≥ δ. This
exactly occurs if the maximal possible probability αδ is on the correct class and hence EU =
− log(p(y = y∗)) ≥ − log(αδ)

Theorem 2 (Low Entropy ⇒ Low Epistemic Uncertainty with High Probability). Let there be K≥2
classes and δ ∈ [0, log 2] be a threshold on the entropy. Furthermore let L = E(x,y)[− log py] the
average loss and γδ be the minimal possible maximum probability on some class s.t H(p) ≤ δ. Then
the probability that the epistemic uncertainty with H(p) ≤ δ will be less than − log(γδ) satisfies:

P(EU ≤ − log(γδ) | H(p) ≤ δ) ≥ 1− L
− log(1− γδ) ∗ P(H(p) ≤ δ)
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Proof. We first define γδ mathematically and how to obtain it:

γδ = min
{
max

j
pj : H(p) ≤ δ

}
, δ ∈ [0, log 2],

Denote HB(γ) = −γ log γ − (1 − γ) log(1 − γ) as the binary entropy function. Then γδ is the
solution of HB(γ) = δ for γ ∈ [1/2, 1] and we can now proceed:

L = E(x,y∗)

[
− log py∗

]
(1)

= E(x,y∗)

[
− log py∗ | H(p) ≤ δ

]
P(H(p) ≤ δ) (2)

+ E(x,y∗)

[
− log py∗ | H(p) > δ

]
P(H(p) > δ)

= E(x,y∗)

[
− log py∗ | H(p) ≤ δ ∩ argmax p ̸= y∗

]
P(H(p) ≤ δ ∩ argmax p ̸= y∗) (3)

+ E(x,y∗)

[
− log py∗ | H(p) ≤ δ ∩ argmax p = y∗

]
P(H(p) ≤ δ ∩ argmax p = y∗)

+ E(x,y∗)

[
− log py∗ | H(p) > δ

]
P(H(p) > δ)

≥ − log(1− γδ)P(H(p) ≤ δ ∩ argmax p ̸= y∗)− log(αδ)P(H(p) > δ) (4)

Where we use in 2 the law of total expectation to separate into high and low entropy predictions. In 3,
we further partition the space of low entropy predictions into correct and incorrect ones. Lastly, in 4,
we bound the expectation values. High entropy predictions occur at least loss − log(αδ) according
to theorem 1. Low entropy predictions that are incorrect will have maximally 1 − γδ mass on an
correct class and as such occur at least − log(1 − γδ) loss. Rearranging terms and substituting
P(H(p) > δ) = 1− P(H(p) ≤ δ)yields

P(H(p) ≤ δ ∩ argmax p ̸= y∗) ≤ L+ (1− P(H(p) ≤ δ)) log(αδ)

− log(1− γδ)

Dividing by P(H(p) ≤ δ) we finally get the conditional bound:

P(argmax p ̸= y∗ | H(p) ≤ δ) ≤ L+ (1− P(H(p) ≤ δ)) log(αδ)

− log(1− γδ)P(H(p) ≤ δ)

which can be rewritten to obtain an upper bound as:

P(argmax p = y∗ | H(p) ≤ δ) ≥ 1− L+ (1− P(H(p) ≤ δ)) log(αδ)

− log(1− γδ)P(H(p) ≤ δ)
(5)

= 1− L
− log(1− γδ)P(H(p) ≤ δ)

(6)

+
− log(αδ)(1− P(H(p) ≤ δ))

− log(1− γδ)P(H(p) ≤ δ)
(7)

Realizing that − log(py∗) ≤ − log(γδ) ⇐⇒ argmax p = y∗ - since γδ is the minimum possible
maximum probability - we get:

P(log py∗ ≤ − log(γδ) | H(p) ≤ δ) ≥ 1− L
− log(1− γδ)P(H(p) ≤ δ)

(8)

+
− log(αδ)(1− P(H(p) ≤ δ))

− log(1− γδ)P(H(p) ≤ δ)
(9)

Abbreviating − log py∗ as epistemic uncertainty EU and simplifying by leaving out the second term,
we obtain the bound stated in the theorem.

P(EU ≤ − log(γδ) | H(p) ≤ δ) ≥ 1− L
− log(1− γδ) ∗ P(H(p) ≤ δ)

(10)
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E.1 Non-trivial aleatoric uncertainty

When constraining H(p∗) = 0, we implicitly restrict p∗ to be a an indicator vector over one of the
K classes. As shown in Theorems 1 and 2, this setting allows for informative bounds on epistemic
uncertainty. However, this is only one case. Consider instead the situation where p∗ is known exactly.
While this assumption is unrealistic (since complete knowledge of p∗ makes estimation redundant), it
helps to illustrate non-trivial aleatoric uncertainty. For example, if p∗ is uniform, we obtain maximal
aleatoric uncertainty with H(p∗) = logK. However, we can, in fact, exactly determine the epistemic
uncertainty:

EU = KL(p∗ || p) =
∑
y

1

K
log(

1

Kp(y)
) = − log(K)− 1

K

∑
y

log(p(y))

Similarly when relaxing the constraint slightly to allow p∗ be a high entropy distribution (e.g.,
H(p∗) ∈ [logK−ϵ, logK]) estimation of epistemic uncertainty usingH(p) should work reasonably:
low predictive entropy necessarily implies high epistemic uncertainty, whereas high predictive entropy
indicates lower epistemic uncertainty.

These illustrations clarify what we mean by non-trivial aleatoric uncertainty: cases where no strong
restrictions on H(p∗) are imposed. This is the typical regime in realistic applications, since constrain-
ing H(p∗) would require prior knowledge about the ambiguity structure of the task itself. This is
especially the case in many linguistic problems, as a specific language task can have an arbitrary
structure.
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Table 9: Examples of entailment check in the co-occurrence pipeline for Wikipedia English
Idx Question Keyword Answer Positive Example Negative Example
72 Who was the recipi-

ent of the Bharat Ratna
award when it was first
awarded?

Bharat Ratna [’C. Ra-
jagopalachari’]

article rajaji national park, sec-
tion abstract: rajaji national
park was named after c. ra-
jagopalachari (rajaji), a promi-
nent leader of the freedom strug-
gle, the first and last governor-
general of independent india and
one of the first recipients of
india’s highest civilian award,
bharat ratna (in 1954).

article central college, banga-
lore, section notable students:
bharat ratna sir m. visvesvaraya,
harshavardhan mudaliar, prof in
english, bharat ratna c. ra-
jagopalachari, bharat ratna c. n.
r. rao, indian chemist, shiv-
akumara swami, pusapati vija-
yarama gajapati raju, maharaja
of vizianagaram, h. narasimha-
iah, guruswami mudaliar, hospet
sumitra, n. santosh hegde, jus-
tice, navaratna rama rao, lead-
ing administrator, author and
founder of the sericulture depart-
ment, n. s. subba rao, maya rao
(1928-20...

186 What is one specific type
of agricultural product
the Wachau Valley is
known for?

Wachau Valley [’grapes’] article wachau, section wine: the
wachau valley is well known
for its production of apricots
and grapes, both of which are
used to produce specialty liquors
and wines. the wine district’s
rolling vineyards produce com-
plex white wines. wachau is a
source of austria’s most prized
dry rieslings and grüner veltlin-
ers, some of the best from the
steep stony slopes next to the
danube on which the vines are
planted. the temperature varia-
tion in the valley between day
and cold nights has a significant
ro...

No negative example found

198 What is the name of one
Unforgivable Curse from
the Harry Potter books?

Unforgivable
Curses

[’Imperio’] article imperio, section abstract:
imperio, a curse in the harry pot-
ter series (see magic in harry pot-
ter#unforgivable curses), impe-
rio (band), austrian band

No negative example found

205 Who was one of the main
cast members of ’The
Big Valley’ TV show?

The Big Valley [’Barbara
Stanwyck’]

article the big valley, sec-
tion reception : popularity:
in the comedy film airplane!
(1980), the wacky air traffic con-
troller johnny, played by stephen
stucker, paid homage to big val-
ley ’ s penchant for big drama
in one of his many asides. af-
ter lloyd bridges ’ character frets
about a pilot who cracked under
pressure, johnny says: "it hap-
pened to barbara stanwyck!" and
"nick, heath, jarrod – there’s a
fire in the barn!" the big valley
also has seeped into the darker
cinematic subconscious. in b...

article peter breck, section career
: after the big valley: on january
20, 1990, while teaching at the
drama school, breck was notified
of barbara stanwyck’s death. she
requested no funeral nor memo-
rial.

297 Which stadium did the
New Orleans Saints use
for their home games
in the seasons follow-
ing Hurricane Katrina in
2005?

New Orleans
Saints

[’Alamodome’] article tom benson, section bi-
ography : new orleans saints
: saints relocation controversy:
when it became clear that hur-
ricane katrina ’s extensive dam-
age to new orleans and the su-
perdome would make it impossi-
ble for the saints to play there
in 2005, the team temporar-
ily relocated its operations to
san antonio and began negoti-
ations to play home games at
the alamodome. (the saints, af-
ter discussions with the nfl and
louisiana state university, eventu-
ally agreed to play one "home"
game at giants...

article 2001 minnesota vikings
season, section preseason : game
summaries : week 1: at new or-
leans saints: at alamodome, san
antonio, texas
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Prompt 5: Prompt for keyword extraction.
You are a keyword extraction assistant helping to identify the
keywords in a question for a co-occurrence search.
The goal is to check how often the answer to a specific question
(fact) appears in a text corpus.
To do this , you must identify the keywords in the question that are
needed to find the fact in the text corpus.

Your job is to analyze a question/answer pair and pull out:
- The minimal term(s) that , when paired with the known answer entities

, reliably locate the same fact in a text corpus.
- The goal is to have as few terms as possible while still being able

to find the fact.

Guidelines:
- Extract the main keyword from the question that shrinks the search

space.
E.g., for a song title question , the main keyword is the title of

the song.
- Extract additional keywords needed to find the fact in a text corpus

.
E.g., for a song title , additional keywords are the artist and album

.
- The main keyword should be a single term or short phrase that

captures the essence of the question.
- Additional keywords should be a short list of terms (not too long).

Return exactly this JSON (no extra fields or explanation):

{
"main_keyword ": [string],
"additional_keywords ": [ string , .. ]

}

Example 1
Input:
Question: "Who were the writers of the song ’Tell Your Heart to Beat

Again ’?"
Answer: "Bernie Herms , Mathew West , Randy Phillips"
Output:
{

"main_keyword ": ["Tell Your Heart to Beat Again"],
"additional_keywords ": [" writers "]

}

Example 2
Input:
Question: "What are the names of recognized dwarf planets in the solar

system as of 2024?"
Answer: "Ceres , Eris , Pluto , Makemake , Haumea"
Output:
{

"main_keyword ": [" dwarf planet"],
"additional_keywords ": ["solar system "]

}

Example 3
Input:
Question: "What is the legal age of marriage in the United States ?"
Answer: "18, 19, 21"
Output:
{

"main_keyword ": [" marriage"],

21



"additional_keywords ": ["legal age", "United States "]
}

Now process the following and produce **only** the JSON:

Question: "{ question }"
Answer: "{ answer }"
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