
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AGENT-E: FROM AUTONOMOUS WEB NAVIGATION
TO FOUNDATIONAL DESIGN PRINCIPLES IN AGENTIC
SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Web agents that can automate complex and monotonous tasks are becoming es-
sential in streamlining workflows. Due to the difficulty of long-horizon planning,
abundant state spaces in websites, and their cryptic observation space (i.e. DOMs),
current web agents are still far from human-level performance. In this paper, we
present a novel web agent, Agent-E †. This agentic system introduces several ar-
chitectural improvements over prior state-of-the-art web agents, such as hierarchi-
cal architecture, self-refinement, flexible DOM distillation, and change observa-
tion to guide the agent towards more accurate performance. Our Agent-E system
without self-refinement achieves SOTA results on the WebVoyager benchmark,
beating prior text-only benchmarks by over 20.5% and multimodal agents by over
16%. Our results indicate that adding a self-refinement mechanism can provide an
additional 5.9% improvement on the Agent-E system without self-refinement. We
then synthesize our learnings into general design principles for developing agentic
systems. These include the use of domain-specific primitive skills, the importance
of state-sensing and distillation of complex environmental observations, and the
advantages of a hierarchical architecture.

1 INTRODUCTION

Recent studies indicate that generative AI and automation tools could handle 60-70% of an em-
ployee’s tasks (Chui et al., 2023). By reducing cognitive load, saving time, and optimizing
workflows, these tools can potentially contribute between $2.6 trillion and $4.4 trillion to global
GDP (Chui et al., 2023). With the rise of digital jobs and advancements in the reasoning abilities
of large language models (LLMs), these models are increasingly being integrated into autonomous
systems for a variety of tasks. LLM-agents can be seen in applications like software engineering
tasks (Jimenez et al., 2023; Huang et al., 2023a; Zhang et al., 2024b; Schick et al., 2023), personal
device control (Yan et al., 2023; Wu et al., 2024; Zhang et al., 2024a), and web navigation (He
et al., 2024; Zhou et al., 2023; Putta et al., 2024b; Lutz et al., 2024b). However, while these agents
have demonstrated promising results in some areas, their performance in web automation remains
limited.

Several unique challenges make planning difficult in a web navigation context. First, websites are
represented in HyperText Markup Language (HTML) Document Object Models (DOMs), which
organize elements in a nested format. These lengthy, dynamic text-based representations complicate
the identification of key elements in the observation space (Lutz et al., 2024b). Furthermore, DOMs
often exceed the context windows of current state-of-the-art LLMs. Second, while humans can
naturally execute complex web tasks, agents require careful, multi-step planning. Even a simple
task, like a Google search (e.g. clicking the search bar, typing each key, and pressing enter),
involves multiple fine-grained actions. Lastly, current state-of-the-art web agents remain error-prone
and unreliable for deployment, underscoring the need for further advancements in this area to create
a more reliable system (Wornow et al., 2024; He et al., 2024; Zhou et al., 2023).

In this paper, we introduce Agent-E, a state-of-the-art web agent capable of performing complex
web-based tasks. Our system presents several design elements that elevate challenges faced by prior

†Implementation available at: https://anonymous.4open.science/r/Agent-E-7E43

1

https://anonymous.4open.science/r/Agent-E-7E43

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

web navigation systems. Central to Agent-E are three LLM-powered components: the planner agent
browser navigation agent, and verification agent. The planner agent is responsible for high-level
planning and task management. It breaks down the user task into a sequence of high-level tasks
and delegates them to the browser navigation agent. The browser agent then plans and executes
the lower-level steps necessary to complete the delegated task. This tiered system breaks down the
planning into fine-grained actions that are more manageable tasks; this insulates the planner agent
from the low-level details of the observation space. To further improve the interpretability of DOMs,
our system utilizes different DOM distillation techniques. These techniques emphasize features in
the DOM relevant to completing an action to prevent an LLM agent from becoming overwhelmed
with the difficult observation space. In addition, our system employs a validation agent at the end of
each task. This validation agent provides feedback on incomplete tasks, leading to a self-correcting
system.

Using our proposed system, we demonstrate that web agents can achieve state-of-the-art perfor-
mance on realistic web navigation tasks without additional supervision. By combining our hierar-
chical system with DOM distillation techniques, we attain a new state-of-the-art 73.1% result on
the WebVoyager benchmark (He et al., 2024), which is 20.5% higher than previous text-only web
agents (Lutz et al., 2024b) and 16% higher than previous multi-modal web agents (He et al., 2024).
Additionally, we achieve a 5.9% boost in performance using a self-refinement mechanism.

1.1 CONTRIBUTIONS

• We introduce a novel hierarchical architecture for web agents that enables the execution
of more complex tasks through a clear separation of roles and responsibilities between a
planner agent and a browser navigation agent.

• We introduce two novel components in Agent-E, a flexible DOM distillation approach
where the browser navigation agent selects the most suitable DOM representation given
the task, and the concept of change observation, a Reflexion-like paradigm (Shinn et al.,
2024), where the agent monitors state changes after each action and receives verbal feed-
back to enhance awareness and performance.

• We propose a self-refinement mechanism for web navigation that enables workflows to be
verified and self-corrected during failures, leading to more reliable web navigation work-
flows where failures can be detected.

• We report detailed end-to-end evaluations of Agent-E on the WebVoyager benchmark and
show that it achieves new state-of-the-art results with a 73.1% success rate without self-
refinement. Our system shows consistent improvement over different modalities, show-
ing over a 20.5% improvement for text-based agents and 16% improvement for multi-
modal. And another 5.9% boost in performance on a subset of WebVoyager tasks when
self-refinement is added.

In Section 2, we give a lower-level view of Agent-E and how each of the design choices is imple-
mented. Then in Section 3, the web navigation evaluation procedure and results are presented. We
synthesize our findings into a list of design principles in Section 4. We provide related work and
summarize our findings in Section 5 and 6.

2 AGENT-E: SYSTEM DESCRIPTION

Agent-E is built using Autogen, the open-source programming framework for building multi-agent
collaborative systems (Wu et al., 2023b) and Playwright* for browser control. Our system simplifies
complex, long-horizon planning for web navigation workflows. Agent-E hierarchical system is
composed of three LLM-powered agents: Planner, Browser Navigation Planner, Validation Agents,
and one execution component. Each component plays an integral role in the system’s successful and
reliable workflow execution.

To manage the different granularity of sub-tasks necessary to complete a full workflow, our system
is split into a hierarchy: 1) high-level planning, which is performed by the planner agents, and 2)
low-level planning and execution, which is handled by the browser navigation planner and executor.

*https://playwright.dev/

2

https://playwright.dev/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Given a new user task, the planner agent decomposes the task into a sequence of high-level steps.
Then throughout the workflow, the planner agent delegates the execution of each high-level step to
the browser navigation subsystem and adapts to the plan based on the observation from the browser
navigation subsystem. Finally, once the planner indicates the workflow is completed, the validation
agent verifies the workflow. During workflow failures, the validation agent returns feedback to the
planner agents and prompts them to correct its workflow. The self-refinement mechanism is further
explained in Section 3.

To tackle the challenges of large observation spaces and fine-grained action space in browser in-
teractions, we introduce the notion of skills, a set of predefined actions the agents can execute.
These predefined can be associated with the execution of actions, or related to sensing the current
observation space.

Figure 1: A high-level architecture of Agent-E

Our browser navigation agent has a set of foundational skills for observing a simplified observation
space or controlling the browser. This agent uses the skills available to perform the sub-task and
return a summary of actions it took to perform the task and/or answer the planner if the task was
a question (See Table 2). Next in Section 2.1, we introduce our set of pragmatic predefined skills
which can significantly simplify complex fine-grained web navigation tasks to an agent.

Lastly, our sensing skill relies on change observations, the ability to monitor element attributes
(e.g., aria-expanded) or detect the addition of new elements (e.g., using the Mutation Observer Web
API). This enables immediate detection of DOM updates following an action execution, which is
particularly beneficial for highly dynamic pages, such as flight booking websites (e.g. Figure 4). A
more detailed explanation of our implementation is provided in Appendix E.

2.1 SKILLS DESIGN & DOM DISTILLATION FOR BROWSER NAVIGATION AGENT

There are two key novel components in skills design used in Agent-E.

• Sensing Skills & DOM Distillation: Agent-E supports three different DOM distillation
techniques (text only, input fields, all fields) that allow the browser navigation agent to
choose the approach best suited for the task (see Figure 2). If the task is to summarize
information on a page, it can simply use Get DOM with text only content type. If the task
is to identify and execute a search on a page, it can use the content type input fields. If the
task is to list all the interactive elements on a page, it can use all fields. This optimizes the
information available to the agent and prevents the problems associated with noisy DOM.
Another key aspect is that our DOM distillation techniques for all fields and input fields at-
tempt to preserve the parent-child relationship of elements wherever possible and relevant.
This is unlike some previous implementations which use a flat DOM encoding (e.g. Lutz

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

et al. (2024b)). Further, to make identifying and interacting with HTML elements easier,
Agent-E injects a custom identifier attribute (mmid) in each element as part of sensing,
similar to Zhou et al. (2023) and He et al. (2024).

• Action Skills: All the action skills are designed to not only execute an action but also report
on any change in state as an outcome of the action, a concept we call change observation.
This is conceptually similar to the Reflexion paradigm (Shinn et al., 2024) which uses
verbal reinforcement to help agents learn from prior failings. However, a key difference
is that change observation is not directly associated with or limited to a prior failure. The
observation returned can be any type of outcome of the action. For example, a click action
may return a response Clicked the element with mmid 25. As a consequence, a popup has
appeared with the following elements. Such detailed skill responses nudge the agent toward
the correct next step.

Figure 2: Skills registered to the Browser Navigation Agent for sensing and acting on the web page.

2.2 SELF-REFINEMENT

Our Agent-E system uses a self-refinement mechanism (Madaan et al., 2023) which allows the agent
to self-correct incorrect workflows. We complement our planner and browser navigation agents with
a validation agent that assesses the completion of the task. In cases where a task remains incomplete,
the agent leverages the validator’s feedback to revise its strategy and reattempt the task. The high-
level mechanism illustrated in Figure 3, will allow the agent to self-correct in detected failures. Note
the validation agent is only invoked once the planner agent finishes its workflow.

Figure 3: Self-refinement workflow.

Building on the concepts of LLM-as-a-judge (Zheng et al., 2024b) and self-critique mechanisms,
we utilize LLMs to form validation agents. Prior work has suggested that providing multimodal
observations leads to the best performance in LLM-based planners (Koh et al., 2024; He et al.,
2024). Thus, we implement and test different modalities of validator agents: text and vision. The
implementation details and investigation of our validator(s) can be found in Appendix B.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 EVALUATION

In this section, we test and demonstrate that our Agent-E system outperforms other web agent sys-
tems with the use of no additional supervision. Our results indicate that our hierarchical architecture,
sensing and action space, and use of self-refinement are able to make better use of LLM context win-
dows for planning.

WebVoyager Benchmark WebVoyager (He et al., 2024) is a recent web agent benchmark that
consists of web navigation tasks across 15 real websites (e.g. Amazon, Google Flights, Github,
Booking.com). Each website has about 40-46 tasks resulting in a benchmark dataset of 643 tasks.
We chose WebVoyager since it covers a diverse range of tasks across dynamic, live websites that are
representative of real-life use cases for web navigation. In contrast, alternative benchmarks either
focus narrowly on a single task domain (Yao et al., 2022), lack dynamic website observations (Deng
et al., 2023), or rely on custom websites with significantly less complex DOM structures than those
found in real-world environments (Liu et al., 2018; Zhou et al., 2023).

Experimental Details The entire benchmark was divided among 5 human annotators. For each
task, an annotator was instructed to classify the task as pass or fail along with a textual reason in
case of failures. A task is considered complete only if the agent successfully finishes all parts of the
instructed task and remains on the designated website. Overall accuracy measures the percentage
of times the validator’s label and human annotator’s labels match. To remain consistent with prior
work benchmarks on WebVoyager (He et al., 2024), we utilize GPT-4-Turbo (gpt-4-turbo-preview)
as a planner and browser navigator in our Agent-E implementation. And for the validation agent,
we employ GPT4-Omni(gpt-4o).

3.1 AGENT-E SYSTEM RESULTS

In this section, we present quantitative results measuring Agent-E’s performance on the WebVoyager
benchmark. Table 1 shows the summary of the evaluation of Agent-E w/o Self-Refinement on
WebVoyager. Due to limitations of annotator time, our results for Agent-E with self-refinement
include 456 uniformly selected Web-Voyager tasks. Table 2 presents the evaluation of Agent-E on
this subset of WebVoyager tasks.

Publication Task success rates on websites
Allrecipe Amazon Apple Arxiv Github Booking ESPN Coursera

He et al. (2024) (text) 57.8 43.1 36.4 50.4 63.4 2.3 28.6 24.6
He et al. (2024) (multi) 51.1 52.9 62.8 52.0 59.3 32.6 47.0 57.9

Lutz et al. (2024b) (text) 60 43.9 60.5 51.2 22.0 38.6 59.1 51.1
Agent-E (text) 71.1 70.7 74.4 62.8 82.9 27.3 77.3 85.7

Publication Task success rates on websites
Dictionary BBC Flights Maps Search Hug.Face Wolfram Overall

He et al. (2024) (text) 66.7 45.2 7.1 62.6 75.2 31.0 60.2 44.3
He et al. (2024) (multi) 71.3 60.3 51.6 64.3 77.5 55.8 60.9 57.1

Lutz et al. (2024b) (text) 86.0 81.0 0.0 39.0 67.4 53.5 65.2 52.6
Agent-E (text) 81.4 73.8 35.7 87.8 90.7 81.0 95.7 73.1

Table 1: Evaluation of Agent-E on 642 tasks WebVoyager across multiple websites..

Agent-E without self-refinement, completed 73.1% of the tasks, outperformed the text-only web
agent WILBUR (Lutz et al., 2024b) by 20.5% and multi-modal web agent (He et al., 2024) by 16%,
thus highlighting the importance of a system which 1) can break down tasks hierarchically and 2)
utilizes DOM distillation for simplified sensing of a complex observation space. Additionally, we
indicate the benefits of utilizing a self-refinement mechanism. We observe another 5.9% improve-
ment, across the board for both modalities, when self-refinement is added to our Agent-E system –
reaching a performance of 81.2% on the subset of WebVoyager tasks (for which Agent-E without
self-refinement had a task success rate of 75.3%).

Although the overall performance of modality has little variance (i.e. 80.9%-81.2%), the task-
specific performance is highly modality dependent. For example, for Google Flights, text validation

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

System configuration Task success rates on websites
Allrecipe Amazon Apple Arxiv Github Booking ESPN Coursera

Agent-E w/o Self-Refinement (text) 71.0 73.3 77.4 67.7 83.8 25.8 79.3 93.3
Agent-E (text) 77.3 86.4 95.5 90.9 100.0 27.3 72.3 86.4

Agent-E (vision) 73.7 91.3 86.4 66.7 100.0 41.2 100.0 95.2
Publication Task success rates on websites

Dictionary BBC Flights Maps Search Hug.Face Wolfram Overall
Agent-E w/o Self-Refinement (text) 80.7 74.2 37.9 83.3 93.6 87.1 100 75.3

Agent-E (text) 95.5 90.9 57.1 76.2 95.2 76.5 90.2 80.9
Agent-E (vision) 95.5 80.95 85.7 76.2 76.2 63.2 77.3 81.2

Table 2: Evaluation of Agent-E on a subset of 458 WebVoyager tasks across multiple websites.

achieves 57.1% while vision achieves 85.7%. Tasks that are primarily text-based and performed on
simple websites tend to perform best with the text validator (e.g., Google Search, Arxiv, Hugging
Face, WolframAlpha). In contrast, websites that are highly dynamic with complex DOMs perform
better with the vision validator (e.g., Google Flights and Booking.com). Notably, Booking.com
shows performance gains of over 13% using vision over text.

Moreover, it is important to note that WILBUR (Lutz et al., 2024b) uses task and website-specific
prompting, while He at al. (He et al., 2024) uses vision for observing the page. In contrast, Agent-E
is a planner agent and browser navigation is, a text-only web agent that does not employ any task
or website-specific instructions. The vision version of Agent-E is only reflected in the choice of the
validation agent. This suggests that there is likely room for further improvement in Agent-E using
website/task-specific strategies and vision.

3.1.1 TASK COMPLETION TIME

In Table 3, we can see the amount of time taken to complete each workflow with and without-
refinement. The average run time of Agent-E w/o refinement is ∼ 3 minutes while refinement is
∼ 6 minutes. Although the self-refinement mechanism was able to show improvement in overall
performance, this process is time-consuming, only allowing the agent to correct its workflow at the
end of each run. This indicates the cost associated with the outcome-based self-refinement process.

Allrecipe Amazon Apple Arxiv Github Booking ESPN Coursera
W/o Self-Refinement 140 282 132 156 161 299 450 115

Agent-E (text) 124 659 272 441 157 838 269 297
Agent-E (vision) 322 435 307 307 399 743 569 1266

Dictionary BBC Flights Maps Search Hug.Face Wolfram Overall
W/o Self-Refinement 106 108 248 120 90 147 69 173

Agent-E (text) 75 166 288 398 373 159 119 319
Agent-E (vision) 118 161 452 236 213 150 165 376

Table 3: Average Time (Seconds) Per Task Execution on 458 WebVoyager tasks.

For the case of Agent-E without self-refinement, we can see that easier tasks take less time to com-
plete. For example, tasks like Dictionary, Maps, and Search, which all have high success rates, also
have some of the lowest run times. Additionally, results on the task completion times of Agent-E
without refinement are provided in the Appendix A.

3.2 QUALITATIVE ANALYSIS

In this section, we present qualitative results with concrete examples showing how different design
choices made in Agent-E help perform complex web tasks.

HIERARCHICAL PLANNING HELPS ERROR DETECTION AND RECOVERY

The hierarchical architecture allows easy detection and recovery from errors. The planner agent is
prompted to perform verification (by asking questions or asking for confirmation) as part of the plan
whenever necessary. Shown in Appendix F, Figure 7 shows an example instance where the planner
agent asks the browser navigation agent for more information (i.e., list the search results), and from

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

the response (i.e., there are no specific search results) identifies that it may have made an error by
making the search query too focused. In the example, the planner creates a new plan of action for
performing the task. Another common pattern in the evaluation was the planner’s ability to detect
errors and easily backtrack to a previous page to continue execution. Given that the planner has
the URL of the page at each step available to it, it allows the planner to effortlessly backtrack to
a previous page by adding it as a step in the plan (e.g., navigate to the search result page using
the <url>). Refer to Appendix C for an ablation comparing the hierarchical system with a simpler
single-agent system.

THE NEED FOR MULTIPLE DOM OBSERVATION METHODS

Typical HTML DOMs can be extremely large (e.g., the YouTube homepage with all DOM elements
and attributes is about 800,000 tokens). Thus, it is important to denoise and encode the DOM such
that only task-relevant information is presented to the LLM. However, information relevant to a
given task is very dependent on the task at hand. Some tasks may only need a complete textual
representation (e.g., summarise the current page), and some tasks may only need input fields and
buttons (e.g., search on google). On the other hand, more exploratory tasks may need a complete
representation of the page (e.g., what elements are on this page).

Most previous web agents have used a single DOM representation, e.g. (Zhou et al., 2023) used
an accessibility tree,(He et al., 2024) used screenshots and (Lutz et al., 2024b) used direct encod-
ing and denoising of the HTML DOM. However, in our view, there is no single DOM observation
method that suits all the tasks. Thus, Agent-E supports three different DOM representation methods
text only, input fields, all fields. This allows Agent-E to flexibly select the DOM representation that
it feels is best suited for the task. Also, this allows Agent-E to fall back to different representations,
when one representation unexpectedly does not work well. There were numerous examples in our
benchmark where these multiple DOM representations were useful. Appendix A: Figure 6 illus-
trates an example where Agent-E adaptively uses all fields DOM representation for interaction and
text only for summarization. Refer to Appendix D for quantitative evaluation comparing the flexible
DOM distillation and directly using the accessibility tree.

CHANGE OBSERVATION HELPS GROUNDING

Change observation is a technique where each action execution is accompanied by observation of
state changes, and this is returned via linguistic feedback to the LLM. A typical scenario where this
is useful is when the browser navigation agent tries to click on a navigation item (e.g., click on the
soccer link on ESPN.com), and instead of navigating to the relevant section, the page instead opens
a popup menu that requires further selection. In this example, the interaction is not yet complete
(since completion requires clicking a popup link or selecting a drop-down entry, respectively), but
the browser navigation agent may assume it is complete. With change observation, the click skill
will return feedback to the LLM that as a consequence of the click, a menu has appeared where you
may need to make further selection. See Figure 4 in Appendix F for an example.

The purpose of change observation is to provide linguistic feedback to the LLM on whether the
action led to any tangible change in the environment, to inform subsequent actions. We also envision
efficiency improvements if the change observation can return a list of elements so that LLM can
make subsequent selections without again using the Get DOM skill to observe the state of the DOM.

Change observation is adjacent to the concept of Reflexion (Shinn et al., 2024). However, there
are nuanced differences between the two. The Reflexion technique provides feedback on a prior
failure, by using an LLM to analyze the scalar ‘success/failure’ signal based on an action and current
trajectory. In contrast, change observation is not a binary signal and instead observes the change in
the environment as a consequence of an action (e.g. new elements added to DOM, pop-up expanded,
etc). Change observation is implemented using mutation-observer API to observe the consequence
of an action and provide linguistic feedback of actions to help the system be better aware of the new
state of the environment, and nudge the system towards the correct next action.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4 AGENT DESIGN PRINCIPLES

In this section, we synthesize our learnings from the development and evaluation of Agent-E into a
series of agent design principles. We believe these principles can be generalized beyond the domain
of web automation.

1. Design with a Core Set of Primitive Skills to Enable Versatile Use Cases: An ensemble
of well-crafted foundational skills can serve as a building block to support more complex
functionalities. LLMs can effectively combine these skills to unlock a broad range of use
cases. These skills should be domain-dependent; in the case of Agent-E, these primitive
skills were click, enter text, get DOM, Open URL and Press Keys. These are only a subset of
potential user actions on a page (e.g. we do not support drag, double click, right-click, tab
management, etc). We consider the skills enabled in Agent-E enough for the vast majority
of general web automation tasks. However, websites with specialized interaction patterns
(e.g. right-click to select functionality) may benefit from additional skills. Examples of
prior related work leveraging domain-specific primitive skills include (Irpan et al., 2022;
Nakano et al., 2022; Lutz et al., 2024b) among several others, highlighting the generality
of the design principle.

2. Adopt Hierarchical Architectures for Managing Complex Task Execution: The idea
of using hierarchical AI planning for complex tasks has existed for decades (Tate, 1977;
Nau et al., 1991; Marthi et al., 2007); see Russell & Norvig (2009) for details. In agents
with multiple LLM-based components, a hierarchical architecture excels in scenarios where
tasks can be decomposed into sub-tasks that need to be handled at different levels of granu-
larity. In the case of Agent-E, this allows the high-level planner to be agnostic of browser-
level details. Additionally, it aids in the identification of tasks that can be executed in
parallel, leading to performance enhancements. It also supports the development and im-
provement of various components in isolation. Note that hierarchical architectures may not
always be necessary. In the case of Agent-E, if all we had to support were simple tasks like
navigating to specific URLs or performing a web search, a hierarchical architecture might
be over-complicated, and a simpler architecture may have sufficed.

3. Domain-Specific State Processing Improves Efficiency and Accuracy: Depending on
the domain, there may exist a large amount of environmental information, much of which
is irrelevant. An example is HTML DOMs for websites which may have hundreds of thou-
sands of tokens. This may lead to suboptimal LLM performance, especially for sequen-
tial decision-making tasks. Agent-E employs a variety of domain-specific processing and
sensing techniques to distill only task-relevant data. These include multiple DOM filtering
approaches that the agent adaptively uses given the task requirements. Removing as much
noise as possible from the environment before the system begins processing, is a crucial
requirement while building such agentic systems.

4. Integrate Linguistic Feedback to Summarize State Changes: Agent-E’s actions change
the state of the page, often in complex ways. We have found that, rather than relying on the
filtered DOM alone, explicitly detecting and summarizing state changes through linguistic
feedback enables the agent to more effectively understand the consequences of an action
(e.g., a dialog box appeared as a consequence of the click action). Change observation
helps refine the agent’s subsequent actions by providing a clear narrative of cause and
effect, and also improved awareness of the environment. This idea is also applicable in
other contexts, for example, in use cases such as desktop automation or automation in the
physical space (e.g robot control). Examples of systems that use related ideas in other
domains include (Wang et al., 2023c; Song et al., 2023; Wang et al., 2023a) among others.
Descriptive logging and tracking are highly beneficial in agentic systems.

5. Leverage Past Experience: For agentic systems to be adopted widely, they need to achieve
close to human-level performance. One approach is for agents to routinely reflect and learn
from their past experiences. Our Agent-E system introduces the use of self-refinement
for web automation. The 5.9% boost in performance achieved by this mechanism shows
that agents are capable of identifying and self-correcting their mistakes throughout a single
task execution. A more efficient approach to leveraging past workflows is to establish
offline workflows that routinely analyze, reflect on, and aggregate past tasks and human
demonstrations to convert them to more classical automation workflows. These automated

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

workflows could then be re-triggered upon a new task if it matches a workflow that has been
encountered in the past, with the exploratory agentic approach used only as a fallback. This
would enable faster and cheaper task completion, which should be a primary requirement
of agentic systems. Other examples of leveraging past experience can be found in prior
work on self-improving systems e.g. (Zelikman et al., 2022; Hosseini et al., 2024; Wang
et al., 2023c) and others.

6. Balance Between Generic and Task-Specific Agent Design: Generic agentic systems by
definition can perform a wide range of tasks. However, in many practical implementations,
a more focused set of capabilities may be desirable. For example, Agent-E is a generic
web agent that can perform a wide range of tasks on the internet but is not necessarily
optimized for any specific task. It would be possible to optimize Agent-E for specific types
of tasks (e.g., form filling) or specific websites (e.g., Atlassian Confluence pages) to achieve
significantly higher performance. Depending on the use case, an optimized agent may suit
better for certain workflows than a generic version.

5 RELATED WORK

LLM-based Planning and Reasoning Over the last few years, Large language models (LLMs)
have excelled in text generation, code generation, and the generation of multistep reasoning. This has
spurred the use of LLMs to solve multi-step reasoning and planning problems. The many variants of
‘chain-of-thought’ techniques (Wei et al., 2022; Chu et al., 2023) encourage the LLM to produce a
series of tokens with causal decoding that drive toward the solution of problems in math, common-
sense reasoning and other similar tasks (Chowdhery et al., 2022; Fu et al., 2023; Li et al., 2023; Mitra
et al., 2024). With tool-usage for sensing and acting, LLMs have also been used to drive planning
in software environments and embodied agents e.g., (Baker et al., 2022; Wang et al., 2023a;c; Irpan
et al., 2022; Bousmalis et al., 2023; Wu et al., 2023a; Bhateja et al., 2023). Finally, there has
been related work investigating the limits of LLMs when it comes to planning and validation. For
examples of negative results, see (Valmeekam et al., 2023b; Momennejad et al., 2023; Valmeekam
et al., 2023a; Huang et al., 2023b; Kambhampati et al., 2024) among others. In this paper, we
investigate multi-step planning for specialized web agents. We find that domain-specific techniques
including sensing (through DOM distillation and change-observation), hierarchical planning (with a
low-level browser agent), and multimodal self-refinement, are crucial for state-of-art performance.

Specialized Agents for Repetitive Tasks Beyond the examples above, and as described in Sec-
tion 1, there has been much recent interest in building specialized agents for the web (Zheng et al.,
2024a; He et al., 2024; Lutz et al., 2024b) and on device (Bai et al., 2024; Wen et al., 2024). Also
related is recent work on building agentic workflows to replace robotic process automation (Wornow
et al., 2024). Further, the work on building agents and training language models for API usage is
also related, given that many software tasks and workflows involve the use of APIs; examples in-
clude (Hosseini et al., 2021; Patil et al., 2023; Qin et al., 2024) and many more. As described in
Section 1, our proposed web agent employs multiple novel ideas that enable it to achieve state-of-art
performance on realistic web navigation tasks, significantly outperforming previous specialized web
agents.

Hierarchical Planning The notion of hierarchical AI planning has been around for five decades or
more. Instead of planning directly in the space of low-level primitive actions, planning in a space of
‘high-level actions’ constrains the size of the plan length (and hence the size of the planning space),
which can result in a more effective and efficient search. Examples from prior work include (Tate,
1977; Nau et al., 1991; Marthi et al., 2007) and many more; see Russell & Norvig (2009) for more
details. Also related is the use of temporal abstractions in planning and reinforcement learning, for
example, the use of options in (Sutton et al., 1999; Bacon et al., 2017). In recent years, multiple
papers have proposed the use of hierarchical planning for solving tasks in complex environments
or with embodied agents; examples include (Wang et al., 2022; Irpan et al., 2022) and others. In
this paper, we introduce a hierarchical architecture for web agents where responsibility for planning
and execution of complex web tasks is separated between a planner agent and a browser navigation
agent. We show hierarchical planning is a promising solution for long-horizon planning in web
navigation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Self-Improving Agents Recent research has focused on enhancing the capabilities of LLMs dur-
ing training or inference without additional human supervision (Wei et al., 2022; Chen et al., 2023;
Wang et al., 2023b; Kojima et al., 2023). Techniques like chain-of-thought prompting and self-
consistency, as used in Huang et al. (2023b), aim to generate higher-quality outputs. Other meth-
ods, such as Self-refine (Madaan et al., 2023), Reflexion (Shinn et al., 2023), and REFINER (Paul
et al., 2024), focus on iterative refinement of outputs using actor-critic pipelines or task decomposi-
tion. These approaches have been successfully applied to web agents, improving the performance of
LLMs in web automation tasks (Putta et al., 2024a; Pan et al., 2024; Lutz et al., 2024a). In this paper,
we design and evaluate three different auto-validators, and use these to create self-refinement mech-
anisms for our web agent. Our results indicate that self-refinement, using our text- and vision-based
auto-validators, shows notable additional gains in web navigation tasks.

6 CONCLUSION

This paper introduced Agent-E, a web agent that significantly advances the ability to handle complex
web navigation tasks. Web-based automation faces key challenges such as the complexity of DOM
interpretation and long-horizon task planning. Agent-E addresses these with flexible DOM distil-
lation techniques to focus on relevant content, hierarchical task management to reduce error-prone
low-level decisions and a self-refinement mechanism that allows the agent to correct its workflow
without human intervention. Our evaluation of the WebVoyager benchmark demonstrates Agent-E’s
ability to overcome these web navigation challenges. With a 73.1% success rate, Agent-E without
self-refinement sets a new state-of-the-art for web agents, surpassing prior text-based and multi-
modal systems by 20.5% and 16%, respectively. We observe another 5.9% improvement when self-
refinement is added to this system. We presented our learnings in the form of eight general design
principles for developing agentic systems that can be applied beyond the realm of web automation.

Although Agent-E presents state-of-the-art results on web navigation tasks, there are several key
observations and space for improvement. First, unlike prior state-of-the-art agents from He et al.
(2024), our planning and browser navigation agent is not multimodal. Transitioning the browser
navigation agent to handle multi-modal observations may improve its sensing capabilities. Second,
although self-refinement shows the best performance, this outcome-based refinement system comes
at a cost (i.e. requiring tasks to take 1.2-2x longer to complete). Lastly, we observed that differ-
ent modalities of validation agents perform best for different tasks. This highlights the need for
task-specific validation systems. In conclusion, Agent-E’s novel approach effectively tackles key
challenges in web navigation, offering a robust, adaptable framework that advances agentic sys-
tems in web automation and beyond. While task completion times can still be optimized, Agent-E
provides a significant leap forward in agent performance and reliability.

ETHICS STATEMENT

As web agents like Agent-E move beyond research prototypes, they can raise important ethical con-
cerns. First, web agents that operate on a personal device may introduce privacy issues for the
user. These agents may have access to user sensitive information including passwords and finan-
cial data. Second, such agents, if used by a malicious user, could potentially be used for harmful
purposes like sending spam and unauthorized web scraping. Thirdly, the widespread deployment
of web agents could violate websites’ terms of service. While our research advances the technical
capabilities of web agents, we recognize the critical importance of understanding failure modes and
potential risks before real-world deployment. We acknowledge that benchmark performance alone
is insufficient for ensuring safe deployment. Future work must establish robust security frameworks,
access controls, and oversight mechanisms before web agents can be safely entrusted with user data
and credentials. We emphasize that human oversight remains essential for deploying these systems
responsibly.

REFERENCES

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. AAAI Conference
on Artificial Intelligence, 2017.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr, Sergey Levine, and Aviral Kumar. Di-
girl: Training in-the-wild device-control agents with autonomous reinforcement learning. arXiv
preprint arXiv:2406.11896, 2024.

Bowen Baker, Ilge Akkaya, Peter Zhokhov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos, 2022.

Chethan Bhateja, Derek Guo, Dibya Ghosh, Anikait Singh, Manan Tomar, Quan Vuong, Yevgen
Chebotar, Sergey Levine, and Aviral Kumar. Robotic offline rl from internet videos via value-
function pre-training, 2023.

Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao, Coline Devin, Alex X. Lee, Maria Bauza,
Todor Davchev, Yuxiang Zhou, Agrim Gupta, Akhil Raju, Antoine Laurens, Claudio Fantacci,
Valentin Dalibard, Martina Zambelli, Murilo Martins, Rugile Pevceviciute, Michiel Blokzijl,
Misha Denil, Nathan Batchelor, Thomas Lampe, Emilio Parisotto, Konrad Żołna, Scott Reed,
Sergio Gómez Colmenarejo, Jon Scholz, Abbas Abdolmaleki, Oliver Groth, Jean-Baptiste Regli,
Oleg Sushkov, Tom Rothörl, José Enrique Chen, Yusuf Aytar, Dave Barker, Joy Ortiz, Martin
Riedmiller, Jost Tobias Springenberg, Raia Hadsell, Francesco Nori, and Nicolas Heess. Robo-
cat: A self-improving foundation agent for robotic manipulation, 2023.

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan Xiao, Pengcheng Yin, Sushant Prakash,
Charles Sutton, Xuezhi Wang, and Denny Zhou. Universal self-consistency for large language
model generation. arXiv preprint arXiv:2311.17311, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways,
2022.

Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang Yu, Tao He, Haotian Wang, Weihua Peng,
Ming Liu, Bing Qin, and Ting Liu. A survey of chain of thought reasoning: Advances, frontiers
and future, 2023.

Michael Chui, Eric Hazan, Roger Roberts, Alex Singla, and Kate Smaje. The economic potential of
generative ai. 2023.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web, 2023.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and Tushar Khot. Specializing smaller language
models towards multi-step reasoning, 2023.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
arXiv preprint arXiv:2401.13919, 2024.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
Agarwal. V-star: Training verifiers for self-taught reasoners, 2024. URL https://arxiv.
org/abs/2402.06457.

Saghar Hosseini, Ahmed Hassan Awadallah, and Yu Su. Compositional generalization for natural
language interfaces to web apis. arXiv preprint arXiv:2112.05209, 2021. URL https://
arxiv.org/abs/2112.05209.

11

https://arxiv.org/abs/2402.06457
https://arxiv.org/abs/2402.06457
https://arxiv.org/abs/2112.05209
https://arxiv.org/abs/2112.05209

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dong Huang, Qingwen Bu, Jie M Zhang, Michael Luck, and Heming Cui. Agentcoder: Multi-agent-
based code generation with iterative testing and optimisation. arXiv preprint arXiv:2312.13010,
2023a.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet, 2023b.

Alex Irpan, Alexander Herzog, Alexander Toshkov Toshev, Andy Zeng, Anthony Brohan, Brian An-
drew Ichter, Byron David, Carolina Parada, Chelsea Finn, Clayton Tan, Diego Reyes, Dmitry
Kalashnikov, Eric Victor Jang, Fei Xia, Jarek Liam Rettinghouse, Jasmine Chiehju Hsu, Jor-
nell Lacanlale Quiambao, Julian Ibarz, Kanishka Rao, Karol Hausman, Keerthana Gopalakrish-
nan, Kuang-Huei Lee, Kyle Alan Jeffrey, Linda Luu, Mengyuan Yan, Michael Soogil Ahn, Nico-
las Sievers, Nikhil J Joshi, Noah Brown, Omar Eduardo Escareno Cortes, Peng Xu, Peter Pastor
Sampedro, Pierre Sermanet, Rosario Jauregui Ruano, Ryan Christopher Julian, Sally Augusta Jes-
month, Sergey Levine, Steve Xu, Ted Xiao, Vincent Olivier Vanhoucke, Yao Lu, Yevgen Cheb-
otar, and Yuheng Kuang. Do as i can, not as i say: Grounding language in robotic affordances.
arXiv preprint arXiv:2204.01691, 2022. URL https://arxiv.org/abs/2204.01691.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Saldyt, and Anil Murthy. Llms can’t plan, but can help planning in llm-modulo
frameworks. arXiv preprint arXiv:2402.01817, 2024. URL https://arxiv.org/abs/
2402.01817.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. VisualWebArena: Evaluating
Multimodal Agents on Realistic Visual Web Tasks. 2024. URL http://arxiv.org/abs/
2401.13649.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners, 2023. URL https://arxiv.org/abs/2205.
11916.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report, 2023.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. In International Conference on
Learning Representations (ICLR), 2018. URL https://arxiv.org/abs/1802.08802.

Michael Lutz, Arth Bohra, Manvel Saroyan, Artem Harutyunyan, and Giovanni Campagna.
Wilbur: Adaptive in-context learning for robust and accurate web agents. arXiv preprint
arXiv:2404.05902, 2024a.

Michael Lutz, Arth Bohra, Manvel Saroyan, Artem Harutyunyan, and Giovanni Campagna.
Wilbur: Adaptive in-context learning for robust and accurate web agents. arXiv preprint
arXiv:2404.05902, 2024b.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-Refine:
Iterative Refinement with Self-Feedback. pp. 1–54, 2023. URL http://arxiv.org/abs/
2303.17651.

Bhaskara Marthi, Stuart Russell, and Jason Wolfe. Angelic semantics for high-level actions. Inter-
national Conference on Automated Planning and Scheduling, 2007.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math: Unlocking
the potential of slms in grade school math, 2024.

12

https://arxiv.org/abs/2204.01691
https://arxiv.org/abs/2402.01817
https://arxiv.org/abs/2402.01817
http://arxiv.org/abs/2401.13649
http://arxiv.org/abs/2401.13649
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/1802.08802
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ida Momennejad, Hosein Hasanbeig, Felipe Vieira, Hiteshi Sharma, Robert Osazuwa Ness, Nebojsa
Jojic, Hamid Palangi, and Jonathan Larson. Evaluating cognitive maps and planning in large
language models with cogeval, 2023.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt:
Browser-assisted question-answering with human feedback. arXiv preprint arXiv:2112.09332,
2022. URL https://arxiv.org/abs/2112.09332.

Dana Nau, Yue Cao, Amnon Lotem, and Hector Muñoz-Avila. Shop: Simple hierarchical ordered
planner. International Joint Conference on Artificial Intelligence, 1991.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
evaluation and refinement of digital agents. In First Conference on Language Modeling, 2024.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language
model connected with massive apis. arXiv preprint arXiv:2305.15334, 2023. URL https:
//arxiv.org/abs/2305.15334.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert West,
and Boi Faltings. REFINER: Reasoning feedback on intermediate representations. In Yvette
Graham and Matthew Purver (eds.), Proceedings of the 18th Conference of the European Chap-
ter of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1100–1126,
St. Julian’s, Malta, March 2024. Association for Computational Linguistics. URL https:
//aclanthology.org/2024.eacl-long.67.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents. pp.
1–22, 2024a. URL http://arxiv.org/abs/2408.07199.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents. arXiv
preprint arXiv:2408.07199, 2024b.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master
16000+ real-world apis. International Conference on Learning Representations, 2024.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: a modern approach. Pearson, 3 edition,
2009.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools, 2023. URL https://arxiv.org/abs/2302.04761.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M. Sadler, Wei-Lun Chao, and Yu Su. Llm-
planner: Few-shot grounded planning for embodied agents with large language models, 2023.
URL https://arxiv.org/abs/2212.04088.

Richard Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence Journal, 1999.

Austin Tate. Generating project networks. International Joint Conference on Artificial Intelligence,
1977. URL https://www.aiai.ed.ac.uk/project/nonlin/.

13

https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://aclanthology.org/2024.eacl-long.67
https://aclanthology.org/2024.eacl-long.67
http://arxiv.org/abs/2408.07199
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2212.04088
https://www.aiai.ed.ac.uk/project/nonlin/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Karthik Valmeekam, Matthew Marquez, and Subbarao Kambhampati. Can large language models
really improve by self-critiquing their own plans?, 2023a.

Karthik Valmeekam, Sarath Sreedharan, Matthew Marquez, Alberto Olmo, and Subbarao Kamb-
hampati. On the planning abilities of large language models (a critical investigation with a pro-
posed benchmark), 2023b.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models,
2023a. URL https://arxiv.org/abs/2305.16291.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023b. URL https://arxiv.org/abs/2203.111.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
explain, plan and select: Interactive planning with large language models enables open-world
multi-task agents. Advances in Neural Information Processing Systems, 37, 2022.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin,
Zhaofeng He, Zilong Zheng, Yaodong Yang, Xiaojian Ma, and Yitao Liang. Jarvis-1: Open-
world multi-task agents with memory-augmented multimodal language models, 2023c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao
Liu, Yaqin Zhang, and Yunxin Liu. Autodroid: Llm-powered task automation in android. In
Proceedings of the 30th Annual International Conference on Mobile Computing and Networking,
pp. 543–557, 2024.

Michael Wornow, Avanika Narayan, Krista Opsahl-Ong, Quinn McIntyre, Nigam H Shah,
and Christopher Re. Automating the enterprise with foundation models. arXiv preprint
arXiv:2405.03710, 2024.

Hongtao Wu, Ya Jing, Chilam Cheang, Guangzeng Chen, Jiafeng Xu, Xinghang Li, Minghuan Liu,
Hang Li, and Tao Kong. Unleashing large-scale video generative pre-training for visual robot
manipulation, 2023a.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint arXiv:2308.08155, 2023b.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
arXiv preprint arXiv:2402.07456, 2024.

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu
Zhong, Julian McAuley, Jianfeng Gao, et al. Gpt-4v in wonderland: Large multimodal models
for zero-shot smartphone gui navigation. arXiv preprint arXiv:2311.07562, 2023.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with
reasoning, 2022. URL https://arxiv.org/abs/2203.14465.

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei
Lin, Saravan Rajmohan, et al. Ufo: A ui-focused agent for windows os interaction. arXiv preprint
arXiv:2402.07939, 2024a.

14

https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2203.111
https://arxiv.org/abs/2203.14465

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation
with tool-integrated agent systems for real-world repo-level coding challenges. arXiv preprint
arXiv:2401.07339, 2024b.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web
agent, if grounded. arXiv preprint arXiv:2401.01614, 2024a.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024b.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A ADDITIONAL RESULTS: AGENT-E WITHOUT SELF-REFINEMENT

This section presents an additional quantitative evaluation of Agent-E without Self-Refinement,
which was tested on WebVoyager. We report three additional measures relevant to the compre-
hensive evaluation of web agent and understanding of their practical implementation readiness.

• Self-aware vs. Oblivious failure rates: Detecting when the task was not completed success-
fully is of utmost importance since it can be used for enabling a fallback workflow, to notify
the user of failure, or used as an avenue to gather human demonstration for the same task.
Self-aware failures are failures where the agent is aware of their own failure in completing
the task and responds with a final message explicitly stating so, e.g. I’m unable to provide
a description of the first picture due to limitations in accessing or analyzing visual content.
or ‘Due to repeated rate limit errors on GitHub while attempting to refine the search...’. The
failures could be due to technical reasons or an agent deeming the task unachievable since
it could not complete the task after repeated attempts. On the other hand, oblivious failures
are cases where the agent wrongly answers the question or performs the wrong action (e.g.
adds the wrong product to the cart or provides the wrong information). For mainstream
utility, oblivious failures should be as minimal as possible. For the current evaluation, fail-
ures were categorized as self-aware and oblivious failures by manual annotation. However,
it would be trivial to employ an LLM critique to automatically do the same task, similar to
Wornow et al. (2024).

• Task completion times: The average time required to complete the task, across websites for
failed and successful tasks.

• Total number of LLM calls: The average number of LLM calls (both planner and browser
navigation agent) that were required to perform the task. This includes both successful and
failed cases.

Allrecipe Amazon Apple Arxiv Github Booking ESPN Coursera
Failure modes Agent-E Error Analysis on Websites

Overall failures % 28.9 29.3 25.6 37.2 17.1 72.7 22.7 14.3
Self-aware failures % 17.8 14.6 9.3 18.6 12.2 4.5 13.6 4.8
Oblivious failures % 11.1 14.6 16.3 18.6 4.9 68.2 9.1 9.5

TCT Agent-E Avg. Task Completion Times (seconds)
TCT (Success) 116 286 122 137 104 183 187 119
TCT (Failed) 196 246 200 176 384 317 387 177

LLM Calls Agent-E Avg. Number of LLM calls
Total 22 23.1 21.5 25.5 21.5 36.4 24.0 25.5

Planner 6.5 6.4 5.9 6.9 5.4 6.6 6.3 6.3
Browser Nav Agent 15.5 16.7 15.6 18.6 16.1 29.8 17.7 19.2

Table 4: Evaluation of Agent-E without Self-Refinement on WebVoyager.

Dictionary BBC Flights Maps Search Hug.Face Wolfram Overall
Failure modes Agent-E Error Analysis on Websites

Overall failures % 18.6 26.2 64.3 12.2 9.3 19.0 4.3 26.9
Self-aware failures % 16.2 9.6 57.1 12.0 4.6 14.3 2.1 14.1
Oblivious failures % 2.4 16.6 7.1 0 4.6 4.7 2.1 12.8

TCT Agent-E Avg. Task Completion Times (seconds)
TCT (Success) 98 105 244 127 106 140 68 150
TCT (Failed) 136 110 234 177 135 167 94 220

LLM Calls Agent-E Avg. Number of LLM calls per Task
Total 22.0 21.3 53.8 22.9 19.4 22.8 14.5 25.0

Planner 6.6 6.0 11.4 5.8 5.6 6.2 4.4 6.4
Browser Nav Agent 15.4 15.3 42.2 17.0 13.7 16.6 10.15 18.6

Table 5: Evaluation of Agent-E on WebVoyager without Self-Refinement (Contd.)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

LLM Calls On an average it took 25 LLM calls to execute a task (6.4 calls by the planner and
almost 3 times as much by the browser navigation agent). The average number of LLM calls per
website, as expected, is consistent with task completion times. See Tables 4 and 5 in Appendix B
for detailed analysis on LLM calls.

Task Completion Times On average, it took significantly longer for completion when the task
was a failure, versus on successful tasks (an average of 220 seconds on failed tasks vs 150 seconds
on successful tasks, in our experiments). The longer duration for failed tasks is expected, since
given a difficult task, Agent-E may try multiple approaches to complete the task before giving up
on it. There were also significant differences in task completion times across websites (e.g., 68
seconds to successfully complete a task in WolframAlpha vs. 286 seconds in Amazon), reflecting
the differences in task and website complexity. See Tables 4 and 5 in Appendix B for detailed
analysis.

Self-aware vs Oblivious failure rates We found that Agent-E was self-aware of failures, even
without the self-validation process, for more than 52% of the failed tasks, i.e. it was obvious from
Agent-E response that it could not complete the task (e.g. I’m unable to provide a description of
the first picture due to limitations in accessing or analyzing visual content.). Typically, self-aware
failures occur when the reason for failure are technical in nature (e.g., navigation issues, inability
to extract certain information from DOM elements such as Iframes, canvas or images, inability to
operate a button, anti-scraping policies employed by websites, inability to find the answer despite
multiple attempts etc.).

On the other hand, oblivious failures are scenarios where Agent-E gave a response that was wrong.
These are typically scenarios where the agent overlooks certain task requirements and provides an
answer that only partially meets the requirements. These also stem from DOM observation issues
(e.g., not being aware that the date got reset due to incorrect format in Google Flights) or issues
in understanding website capabilities (e.g., not using advanced search capability when needed, or
assuming search functionalities are perfect and every search result will completely satisfy the search
requirements). Similar error modes were also observed by He et al. (2024) who classify them as
agent hallucinations.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B AUTO-VALIDATOR RESULTS

This section demonstrates the effectiveness of three different LLM/VLM-based validation models.
We implement our validator model using three different workflow representations:

1. Task Log (Text): This method utilizes only the chat log between the planner agent and
user proxy, containing the high-level actions and observations.

2. Screenshots (Vision): This method employs a sequence of screenshots taken throughout
the workflow execution.

3. Screenshots & Final Response (Hybrid): This method combines a sequence of screen-
shots with the final text response provided by the planner agent.

Our validator is tested on workflows produced by Agent-E on the WebVoyager benchmark. Each
workflow is labeled by human annotators to asses the accuracy. Our auto-validators are implemented
with GPT4-Turbo for modalities with text only and GPT4-V for modes with vision.

Table 6 summarizes the performance of each modality of the validator. The Task Log (text) valida-
tor demonstrated the best performance, of 84.24%, with the hybrid validator performing similarly at
83%. The vision validator performed notably worse than the hybrid validator, indicating the impor-
tance of the agent’s final answer in some tasks. However, between 17.68 − 19.67% of tasks were
labeled True Negatives.

True Positive True Negative False Positive False Negative Validator Accuracy

Task Log (text) 66.56 17.68 7.40 8.36 84.24
Screenshots (vision) 52.03 18.02 3.60 26.13 70.04

Screenshot & Final Resp. (hybrid) 63.33 19.67 5.00 12.00 83.00

Table 6: Confusion matrix and accuracies of validators.

The task-specific performance of the validators can be seen in Table 7. Although overall the text
validator outperforms the vision validator, this section indicates there are tasks where the vision val-
idator performs better. The Booking.com site has a notably difficult DOM, making it consistently
one of the most challenging tasks for web navigation. For these tasks, the vision validator signifi-
cantly outperforms the Task Log (text) validator. Additionally, the vision validator also performed
notably better for Google Flight tasks. This website is highly dynamic and requires navigating wid-
gets which are difficult to represent in the DOM. On the other hand, highly text-based tasks perform
significantly better with some text modality (e.g., Google, Huggingface, Wolfram Alpha). This
difference in task-specific performance highlights the benefit of having task-specific validators.

Allrecipes Amazon Apple Arxiv BBC Booking Coursera Dictionary
Task Log (text) 82.22 75.61 79.07 88.37 92.86 69.77 95.24 93.02

Screenshots (vision) 80.00 77.50 80.49 88.37 90.48 85.00 92.86 95.24
Screenshot & Final Resp. (hybrid) 84.44 65.85 81.40 90.70 88.10 83.72 92.86 95.35

ESPN Github Google Maps Flights Hug.Face Wolfram Overall
Task Log (text) 93.18 90.24 93.02 90.24 90.48 70.00 91.30 84.24

Screenshots (vision) 95.35 94.74 65.38 66.67 92.11 56.25 33.33 70.04
Screenshot + Final Resp. (hybrid) 95.35 87.80 92.31 90.48 95.12 75.00 90.48 83.00

Table 7: Validation agent accuracy by website.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B.1 VALIDATION VERSIONS

In practice, our self-refinement mechanisms are implemented using GPT-4o, which serves as the
backbone for generating reliable validation outputs. To evaluate the comparative performance of
GPT-4o and GPT-4-Turbo-Preview as validation agents, we conducted a detailed analysis focused
on accuracy and error rates across different metrics. The comparison aims to determine not only
which model achieves higher accuracy but also which one offers a better balance of efficiency and
reliability for deployment in real-world scenarios. The results of this evaluation are summarized in
Table B.1.

True Positive (%) True Negative (%) False Positive (%) False Negative (%) Validator Accuracy (%)

GPT-4-Turbo 66.56 17.68 7.40 8.36 84.24
GPT-4o 70.51 14.51 9.20 5.77 85.02

Table 8: Confusion matrix and accuracies of validators.

As shown in Table B.1, GPT-4o achieves slightly higher accuracy compared to GPT-4-Turbo-
Preview. Beyond accuracy, GPT-4o offers practical advantages such as faster execution times and
greater cost efficiency, making it a more suitable option for large-scale deployment in computa-
tionally intensive pipelines. These benefits are particularly critical in scenarios where validation is
performed repeatedly, as they contribute to reduced latency and operational expenses while main-
taining high performance.

C SINGLE AGENT VS HIERARCHICAL SYSTEM

We conducted an evaluation of the single agent system and the hierarchical system (comprising of
browser navigation agent and planner agent), using GPT-4-Turbo as the LLM for all agents in both
configurations. The purpose of the evaluation was to better understand the trade-offs introduced by
the hierarchical planner in terms of task success rates, task completion time, and number of LLM
calls. We performed the evaluation using a subset of WebVoyager (75 tasks = 5 tasks randomly
sampled tasks from each website * 15 websites). The results are presented below in Table 9.

The hierarchical system achieves higher task success rates. However, introduces increased compu-
tational overhead which is evident from longer task completion times and the number of LLM calls.
The single-agent system, despite its lower computational cost, often struggles with tasks requiring
multiple steps, exploration, or backtracking. Common failure modes included giving up prematurely
if early attempts fail and providing incomplete answers without finishing the task in full. In con-
trast, the hierarchical system leverages its structured architecture to break down complex tasks into
manageable sub-tasks, allowing the agents to handle long-horizon workflows more effectively, and
allowing backtracking when a sub-task fails. Although this results in higher computational costs due
to the additional steps required, it enables the system to complete these workflows successfully.

Success Rate TCT (seconds) Avg. LLM Calls
Single Agent System (GPT-4-Turbo) 48% 68.2 9.2
Hierarchical System (GPT-4-Turbo) 70.6% 170 29

Table 9: Performance Comparison of Agent-E Configurations

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D FLEXIBLE DOM DISTILLATION ABLATION

A key distinction between Agent-E and other web agents (e.g. He et al. (2024) and Lutz et al.
(2024b)) is that Agent-E supports multiple DOM observation techniques that the LLM can choose
from, given the task at hand. Our DOM distillation method consists of three DOM observation
techniques which can be selected by the Browser Navigation Agent depending on the task:

1. all fields: This is the most comprehensive DOM representation, provided in JSON format.
It starts with the Accessibility Tree (AXTree) of the webpage—a simplified version of
the DOM that omits non-semantic elements like <div> tags used purely for styling. We
the enrich this view with additional details, such as the names of HTML tags and inner
text content where necessary. This representation is useful for tasks requiring detailed
interaction with page elements.

2. input fields: This is a subset of all fields where only input fields and interactive el-
ements from the DOM are returned. This strips away all the non-interactive text elements
and allows the agents to use a much more succinct version of the DOM for purely interac-
tion purposes.

3. text only: This is a plain text view of the current page (gathered by using
body.innerText in JavaScript of the current page). This will not have DOM iden-
tifiers to interact with screen elements but will have full text visible on the page. This is
best suited for summarizing page content or answering specific questions from the page
(e.g., What is the price of iPhone 16? or Is this product waterproof?). Answering such
questions with all fields is a lot more challenging since the information can be frag-
mented across multiple DOM fields and thereby multiple JSON nodes.

Prior work typically uses a single DOM observation method such as a simplified version of the
HTML DOM based on heuristics (Lutz et al. (2024b)) or directly uses the accessibility tree (AxTree)
of the current page (e.g. Zhou et al. (2023), He et al. (2024)).

To better understand the value provided by the flexible DOM distillation, we conducted an evaluation
comparing Agent-E with flexible DOM distillation with a variant that directly uses AxTree. We
performed the evaluation using a subset of WebVoyager (75 tasks = 5 tasks randomly sampled tasks
from each website * 15 websites), the same as described in Appendix C.2. The results are presented
below in Table 10. Note the experiment below is Agent-E without self-refinement.

Flexible DOM distillation significantly improves success rates (+16%) by tailoring observations to
task-specific needs. Using AXTree directly is marginally faster since the AXTree enrichment steps
we perform for ’all fields’ and ’input fields’ take some processing time (typically an additional 1-
2 seconds per call depending on the complexity of the webpage). These findings emphasize the
importance of adaptive DOM distillation in enhancing Agent-E’s effectiveness across diverse web
navigation tasks.

Success Rate TCT (seconds) Avg. LLM Calls
Flexible DOM distillation 70.6% 170 29
AXTree only 54.6% 161 37

Table 10: Performance Comparison of Agent-E Configurations

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E CHANGE OBSERVATION IMPLEMENTATION DETAILS

Identifying what has changed on a website as a consequence of an action is a non-trivial problem
because websites are implemented using diverse approaches. For example, some websites dynam-
ically add new elements to the Document Object Model (DOM) after an action. Other websites
achieve similar effects by modifying properties like visibility, opacity, position or display styles of
existing elements, without adding new ones. In Agent-E, we implement Change Observation us-
ing two complementary approaches: tracking changes in aria-expanded attribute and tracking new
elements added using Mutation Observer.

Tracking changes in aria-expanded attribute: The ariaexpanded attribute is a standard accessi-
bility feature that indicates whether a particular element (e.g., a menu or dropdown) is expanded or
collapsed. By observing if aria-expanded changes from False to True, we can infer if the element
has changed state (e.g. “Click action on the element [mmid=25] was performed successfully). As
a consequence a menu has appeared where you may need to make further selections. Get all fields
DOM to complete the action.” a relatively straightforward approach that tells the LLM that a menu is
now open and likely further actions are needed. This method works effectively on websites that ad-
here to accessibility standards, regardless of how the underlying site is implemented. Figure 4 shows
an example and the following steps describe how change observations for aria-expanded attribute is
implemented in Agent-E:

1. LLM invokes an action skill (e.g. click on element with mmid 823)
2. Check if the element has an aria-expanded property and its value
3. Perform the click operation
4. Wait 100ms.
5. Check the new aria-expanded property and if it toggled from False to True.
6. If no, return a standard response: Success. Executed JavaScript Click on element with

selector: [mmid=’823’]
7. If yes, return an additional message Success. Executed JavaScript Click on element with

selector: [mmid=’823’]. As a consequence a menu has appeared where you may need to
make further selection. Get all fields DOM to complete the action.

Using a DOM Mutation Observer: Mutation observers are tools that monitor changes in the DOM,
such as the addition or modification of elements. We use this mechanism to detect if new elements
are added after an action. In our case, we listen to changes that relate to the addition of new elements
(if developers of the website are using a different approach, e.g. toggling the visibility of existing
elements, this will not return any changes). Before any action is invoked, we subscribe to a mutation
observer on that page and listens to any changes during the skill execution and an additional 100ms.
The mutation observer returns a list of new elements that were added and we return that list to the
LLM with an additional message. The following steps describe how change observations for newly
added elements is implemented in Agent-E.

1. LLM invokes an action skill (e.g. enter text “fake news detection model” on element with
mmid 122)

2. Subscribe to DOM mutation observer for the full page
3. Perform the enter text operation
4. Wait 100ms
5. Unsubscribe the DOM mutation observer
6. Analyse if any new elements were added during this window.
7. If No, simply return a success message: Success. Text “fake news detection model” set

successfully in the element with selector [mmid=’122’]
8. If new elements were added, return a short list of elements with the return message. In the

above example, it would return: Success. Text “fake news detection model” set successfully
in the element with selector [mmid=’122’]. As a consequence of this action, new elements
have appeared in view: [’tag’: ’UL’, ’content’: ’No results found :(’,, ’tag’: ’a’, ’content’:
’Use full text search instead’]. This means that the action of entering text fake news detec-
tion is not yet executed and needs further interaction. Get all fields DOM to complete the
interaction.,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 4: An example of Agent-E nested chat execution loop for the sub task “Navigate to the plans
and pricing section” which is part of the larger task introduced earlier “Find the price of Canva
Teams subscription and minimum number of users required for it”

. The figure shows an example of change observation feedback as a result of change in
aria-expanded attribute.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

F AGENT-E WORKFLOW ILLUSTRATIONS

Figure 5: An example of Agent-E execution highlighting communication between the planner and
browser navigation agent for the user task Find the price of Canva Teams subscription and minimum
number of users required for it

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 6: Providing multiple options for DOM observation allows to flexibly select one fit for task.
The conversation is truncated with ‘...’ to enhance readability in the image.

Figure 7: An example instance of Agent-E detecting and recovering from errors. The conversation
is truncated with ‘...’ to enhance readability in the image.

24

	Introduction
	Contributions

	Agent-E: System Description
	Skills Design & DOM Distillation for Browser Navigation Agent
	Self-Refinement

	Evaluation
	Agent-E System Results
	Task Completion Time

	Qualitative Analysis

	Agent Design Principles
	Related Work
	Conclusion
	Additional Results: Agent-E without Self-Refinement
	Auto-Validator Results
	Validation Versions

	Single Agent vs Hierarchical System
	Flexible DOM Distillation Ablation
	Change Observation Implementation Details
	Agent-E Workflow Illustrations

