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Learning 1000 Tasks in a Day

Figure 1: Real-world evaluation rollouts of our MT3 system learning 1,000 tasks from a single
demonstration each, all collected in 17 hours. A task is defined as an interaction between the robot
and a single object. This data efficiency is achieved by decomposing manipulation trajectories into
alignment and interaction phases and using retrieval-based methods for each phase, which in our
experiments outperform behavioural cloning alternatives when demonstrations per task are limited.

ABSTRACT
Humans are remarkably efficient at learning tasks from demonstrations, but to-
day’s imitation learning methods for robot manipulation often require hundreds
or thousands of demonstrations per task. To bridge this gap, we discovered that
decomposing reasoning into two sequential phases – object alignment and then
object interaction – can enable robots to learn everyday tasks from just a single
demonstration. We systematically evaluated this decomposition by comparing dif-
ferent design choices for each phase of reasoning, and by studying the generalisa-
tion and scaling trends with respect to today’s dominant paradigm of behavioural
cloning with a single-phase monolithic policy. Through 3,450 real-world policy
rollouts, we found compelling conclusions that, focussing on efficient learning
from few demonstrations per task, decomposition significantly outperforms learn-
ing the full trajectory in a single phase, and for each phase, reasoning via retrieval
in a learned latent space outperforms behavioural cloning. Building on these in-
sights, we then designed Multi-Task Trajectory Transfer (MT3), a novel imitation
learning method based on decomposition and retrieval which is capable of learn-
ing everyday manipulation tasks from only a single demonstration each, whilst
also generalising efficiently to novel objects. We found that this major leap in
data efficiency ultimately enabled us to teach a robot 1000 distinct everyday tasks
within just 24 hours of human demonstrator time. Videos of our experiments can
be found on our website.

*Joint First Author Contribution
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1 INTRODUCTION
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Figure 2: Decomposition of trajecto-
ries into an alignment and an interaction
phase. Monolithic approaches use a sin-
gle policy to handle entire trajectories,
while decomposition-based approaches
use two specialised policies - one to
align the end-effector with target ob-
jects, and another to perform the precise
manipulations. We explore both BC and
retrieval-based methods for each phase
of this decomposition.

Humans are remarkably efficient learners, with behaviour
imitation playing a fundamental role in skill acquisition.
Research shows the importance of demonstrations for ef-
ficient learning, with infants learning manipulation skills
substantially faster when guided by expert demonstra-
tions compared to unguided exploration (Somogyi et al.,
2015; Fagard et al., 2016). This efficient learning through
demonstration is widespread in nature, with primates
learning manipulation tasks from fewer than five demon-
strations (Hayes & Hayes, 1952; Horner & Whiten, 2004;
Call et al., 2004; Rigamonti et al., 2005; Tennie et al.,
2006) and rodents acquiring both behaviour and naviga-
tion skills from fewer than ten (Meister, 2022).

In stark contrast, robots lag far behind in learning effi-
ciency, requiring hundreds or thousands of expert demon-
strations per task (Jang et al., 2021; Jiang et al., 2022;
Shafiullah et al., 2022; Brohan et al., 2023; Zitkovich
et al., 2023; Zhao et al., 2023; Bharadhwaj et al., 2024;
Kim et al., 2024; Black et al., 2024; Octo Model Team
et al., 2024). State-of-the-art imitation learning systems
using BC demonstrate this inefficiency: BC-Z required
125 hours to collect ∼26K demonstrations for 100 tasks
(∼250 demonstrations per task) (Jang et al., 2021), RT-
1 needed 17 months for ∼130K demonstrations across
744 tasks (∼175 demonstrations per task) (Brohan et al.,
2023), MT-ACT took 2 months for 7.5K demonstrations
on 38 tasks (∼200 demonstrations per task) (Bharadhwaj
et al., 2024). Moreover, for very complex tasks, ALOHA
Unleashed suggests the need for ∼8K demonstrations per
task (Zhao et al., 2024).

While all these methods can be effective at scale, scaling them to learn thousands of tasks would
require massive real-world datasets that demand enormous financial and human resources to collect.
Improving learning efficiency is thus crucial to reduce the eventual data requirements for highly
capable and general robotic systems. To this end, we discovered the following. These behavioural
cloning methods learn reasoning with a single monolithic policy; but if reasoning is instead decom-
posed into two specialist, sequential phases of reasoning, we achieve an order of magnitude leap in
data efficiency. Through a series of experiments exploring this decomposition and its scaling and
generalisation trends, we ultimately developed a highly efficient, novel imitation learning method,
Multi-Task Trajectory Transfer (MT3). To showcase its significant efficiency, we evaluated MT3 by
teaching a robot one thousand distinct tasks from just a single demonstration each, in less than 24
hours of human demonstrator time (see Figure 1).

This paper presents our research that led to the emergence of MT3. First, we study the structural
prior which decomposes trajectories into two sequential phases – alignment and interaction (see
Figure 2). The first phase enables a robot to reason about how to align its end-effector with a target
object, whilst the second phase enables a robot to reason about how to physically interact with the
target object. Importantly, each phase has different motion requirements, as illustrated by a plug
insertion task. While many different trajectories can successfully align the plug with the socket, the
subsequent insertion demands precise control to ensure task success. We show that by using two
specialised policies, one optimised for aligning with objects and the other optimised for interacting
with them, we achieve significant efficiency gain compared to using a single monolithic policy to
handle entire manipulation trajectories.

We then evaluate the effectiveness of this decomposition prior in learning behaviours and generaliz-
ing to novel objects, by examining – for both the alignment and interaction phases – the performance
of retrieval-based methods as an alternative to standard BC methods. These methods differ in their
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Figure 3: An overview of the 1000 evaluated tasks. This figure illustrates the diversity of our
approach by showcasing examples from our collection of 402 distinct objects, highlighting some of
the skills our robot has learned, and emphasizing the data efficiency achieved.

training data and inference processes. BC uses demonstrations to train a policy, and then at in-
ference, directly predicts actions using the policy. In contrast, our retrieval-based methods do not
require real-world demonstration data at training time but instead rely on it at test time as a form
of guidance. As a result, we devised our own retrieval pipeline to autonomously select the best
demonstration to use at inference.

Through 3,450 real-world experimental rollouts across 70 different objects, we systematically anal-
yse the effects of the decomposition prior and retrieval-based generalisation on learning efficiency.
In total, we study all four combinations of BC and retrieval-based policies when used for the two
phases of a trajectory, and compare these against a standard monolithic BC method that learns en-
tire manipulation trajectories without decomposition. By varying both the number of tasks and the
number of demonstrations per task, we analyse how each method performs across different data
regimes, with a focus on scenarios with limited per-task data. The results from this experiment are
unambiguous: decomposing manipulation trajectories into alignment and interaction phases outper-
forms learning trajectories with a single monolithic policy, especially when learning from only a
few demonstrations per task. Furthermore, using retrieval-based methods to align and interact with
objects leads to more efficient learning than when using BC alternatives.

After establishing the effectiveness of the decomposition prior and retrieval-based methods, we con-
duct what is to our knowledge, the largest-scale evaluation of robot manipulation in terms of task
and object diversity. Given MT3’s significant learning efficiency, we found that we were able to
teach a robot 1000 distinct and everyday tasks – involving interactions with over 400 objects – from
a single demonstration each, in less than 24 hours (see Figure 3). This dramatically exceeds the
scale of prior work, which has typically focused on learning policies to interact with fewer than
70 objects and required two orders of magnitude more demonstrations per task (Jang et al., 2021;
Brohan et al., 2023; Bharadhwaj et al., 2024). Through 2,200 experimental rollouts, we shed light
on MT3’s performance, generalisation capabilities, and common failure modes.

2 RELATED WORK

Trajectory Decomposition for Imitation Learning: A growing body of work demonstrates the
effectiveness of decomposing manipulation trajectories into independent components. Recent ap-
proaches like Perceiver-Actor (Shridhar et al., 2022) and ChainedDiffuser (Xian et al., 2023) break
down tasks into key waypoints connected by motion planning or learned controllers, achieving supe-
rior performance compared to end-to-end approaches with comparable demonstration data. Further-
more, decomposition approaches equivalent to the alignment-interaction decomposition have proven
particularly effective, and have been shown to be capable of learning tasks from single demonstra-
tions (Johns, 2021; Di Palo & Johns, 2021; Valassakis et al., 2022; Di Palo & Johns, 2024a;b). While
these works focused on specific implementations, we investigate the broader effectiveness of such
decompositions by exploring a wider range of learning strategies and their combinations.
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Retrieval for Imitation Learning: Retrieval-based methods offer an alternative to end-to-end learn-
ing in robot manipulation. VINN (Pari et al., 2022) is an early attempt to nearest-neighbour retrieval
for learning from demonstrations, storing observations and actions in a memory buffer and averaging
the actions of the k most similar frames at inference. Other works have explored different retrieval
strategies, such as (Du et al., 2023) which retrieves task-related data from an unlabelled buffer to
train an end-to-end policy. The closest prior work, from Di Palo & Johns (2024b), also examines
retrieval and decomposition for manipulation but differs in key aspects. Their study does not explore
how these approaches scale with dataset size and diversity, as we do. Additionally, they compare
structurally different methods, making it harder to isolate the impact of specific algorithmic design
choices, as opposed to our controlled experiments. Finally, their retrieval pipeline is more limited,
relying solely on RGB images rather than incorporating task descriptions and object geometries.

Scaling Up Imitation Learning for Manipulation: Recent work has demonstrated the potential
of large neural networks trained on diverse robotics datasets to enable general-purpose manipula-
tion. RT-1 (Brohan et al., 2023) showed that training on a large-scale dataset could yield a single
policy capable of executing hundreds of manipulation tasks. This was extended by RT-2 (Zitkovich
et al., 2023) and RoboCat (Bousmalis et al., 2024) through internet-scale vision-language pretrain-
ing to enhance generalisation. Several subsequent robot foundation models have emerged, including
Octo (Octo Model Team et al., 2024), Open X-Embodiment (Vuong et al., 2023), and π0 (Black
et al., 2024), all trained on large-scale manipulation datasets. While these approaches have shown
impressive capabilities, they require hundreds of demonstrations per task. In contrast, our work
leverages the structural decomposition of manipulation trajectories into distinct phases of reasoning
to achieve efficient learning from single demonstrations.

3 METHOD

In this work, we focus on teaching a robot multiple tasks, where each task involves a single inter-
action between the robot’s end-effector or a grasped object, and a target object. For tasks involving
grasped objects, we assume that their pose in the gripper is the same during demonstrations as test-
ing. This formulation covers most common manipulation tasks - from grasping, to insertion, to
tool usage. And while we focus on single-interaction tasks, multi-step behaviours such as pick-and-
place operations can be achieved by chaining them together using existing high-level planners (see
our website for videos). Our evaluation considers both seen tasks, and unseen tasks where meth-
ods must generalise to novel object instances within known categories. For clarity, we define three
terms:

1. Macro skill: A verb (e.g. “unzip”)
2. Micro skill: A verb plus a target object category (e.g. “unzip handbag”)
3. Task: A verb plus a specific target object instance (e.g. “unzip the round pink handbag”)

3.1 SYSTEM OVERVIEW

To ensure a fair comparison between using the decomposition prior (i.e. two policies - one to
align and the other to interact with objects) and a single policy, we establish a consistent system
architecture across all methods. The robot receives two inputs: a segmented point cloud of the target
object and a language description of the task. A multi-task policy processes these inputs to generate
robot actions. In terms of policy design, we compare four decomposition-based methods against a
monolithic BC baseline that learns entire trajectories (see Figure 4). Below we describe the intuition
behind each of these approaches.

3.2 DECOMPOSITION-BASED METHODS

The decomposition prior divides manipulation trajectories into two phases of reasoning (Figure 2):

1. Alignment Phase: Before interacting with an object, the robot must move its end-effector
to a pose relative to the target object that is sensible for the upcoming manipulation. The
specific path taken to reach this pose is not critical, provided that the robot satisfies envi-
ronmental constraints during its motion. For example, in a plug insertion task, the robot
can take many different paths to position the plug in front of the socket.
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Figure 4: The puzzle pieces in the purple area are the building blocks of the five methods compared
in our study. A trajectory is composed of an alignment phase (semi-sphere) followed by an inter-
action (triangle) phase. The monolithic policy handles both phases without making any distinction
(the puzzle piece with both semi-sphere and triangle). On the other hand, decomposed methods are
made by the combinations of BC or retrieval-based policies specialised in either phase. Ultimately,
a policy processes a segmented point cloud and task description as input and outputs robot actions.

2. Interaction Phase: This phase consists in the actual manipulation and requires precise
execution, as the specific trajectory is crucial for task success. For example, during the
actual insertion of the plug into the socket, the motion must be carefully controlled to
ensure a proper connection.

As such, all four decomposition-based methods use two policies. The first to align with objects,
and the second to interact with them. Due to the different natures of the alignment and interaction
phases, we show that having specialised policies for each phase can yield efficiency gains compared
to using a single policy, especially when learning from few demonstrations per task. We investigate
two contrasting approaches for designing the alignment and interaction policies: BC and retrieval-
based methods. We explain both in the following subsections.

Behaviour Cloning Alignment and Interaction: Since BC is a prominent approach in the field
of robot manipulation, we believe it can be insightful to explore what happens when this same
technique is applied within the decomposition framework. BC consists in training a neural net-
work to encode demonstrated behaviours into its weights. For our BC implementation, we chose
a transformer-based backbone that employs variational inference (Shankar & Gupta, 2020; Graves,
2011), as it has demonstrated effective and efficient learning of various manipulation tasks (Bharad-
hwaj et al., 2024). This architecture resembles that of MT-ACT (Bharadhwaj et al., 2024) adapted to
work with the expected inputs and outputs discussed in our system overview. By selectively training
this architecture on demonstration data pertaining to either aligning or interacting with objects, we
obtain specialised BC policies for each of the phases. More information regarding our behaviour
cloning implementation can be found in Appendix A.4.

Retrieval-Based Alignment and Interaction: Instead of encoding demonstrations in network
weights, retrieval-based methods store demonstrations in memory, and at test time, retrieve a single
demonstration and infer actions from it (see Figure 5 for an overview and Appendix A.3 for more
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Figure 5: Retrieval-based alignment and interaction policies. Both policies use language, and a
segmented point cloud to find, within a demonstration buffer, a demo for the same micro skill with
the most similar object considering pose and geometry. For alignment, retrieved demonstrations
show how to position relative to objects, while for interaction, they guide manipulation motions.

details). For alignment, they use pose estimation to map initial poses of demonstrations to deploy-
ment scenes (Vitiello et al., 2023) and reach these poses with motion planning. For interaction, the
robot simply executes the retrieved interaction trajectory in the test scene, preserving exact motion
patterns.

Resulting Decomposition-Based Methods: Combining these two approaches (BC and retrieval-
based methods) across both phases (alignment and interaction), creates four distinct methods:

• BC-BC: Behaviour Cloning for Alignment - Behaviour Cloning for Interaction.
• BC-Ret: Behavior Cloning Alignment, Retrieval-based Interaction.
• Ret-BC: Retrieval-based Alignment, Behaviour Cloning Interaction.
• Ret-Ret (MT3): Retrieval-based Alignment, Retrieval-based Interaction.

Throughout this paper, we refer to Ret-Ret as Multi-Task Trajectory Transfer (MT3). MT3 extends
Trajectory Transfer (Schulman et al., 2016; Vitiello et al., 2023) to multi-task learning by first using
retrieval to identify the most relevant demonstration, and then using Trajectory Transfer to replicate
the demonstrated task in the deployment scene.

3.3 MONOLITHIC BEHAVIOUR CLONING BASELINE

To evaluate the benefits of incorporating the decomposition prior (i.e. using two policies), we com-
pare all four decomposition-based methods against a baseline that uses a single monolithic policy
(MT-ACT+). We train this policy using BC and use the same network architecture as the BC policies
used to align and interact with objects in BC-BC, BC-Ret and Ret-BC (see Appendix A.4 for de-
tails). The only difference is that instead of training it to replicate either the alignment or interaction
phase of tasks, we train it to handle entire manipulation trajectories.

3.4 DIFFERENT PROPERTIES OF LEARNING STRATEGIES

Generalisation to Unseen Object Instances: BC and retrieval-based methods represent contrast-
ing approaches for generalising to unseen object instances. BC policies encode demonstrations in
network weights, enabling interpolation between demonstrated behaviours based on geometric simi-
larities. In contrast, retrieval-based policies do not attempt to interpolate behaviours when presented
with novel instances. Instead, they identify the single closest demonstration object and treat the
novel object exactly as if it were the training instance. For alignment, they position relative to the
novel object as they would for the training one, while for interaction, they execute the precise demon-
strated trajectory. This simplified approach is effective because optimal trajectories often maintain
similar structures across object instances within a category, with task tolerance accommodating ge-
ometric variations. For example, when grasping different mugs, while sizes and handle shapes vary,
the core approach and grasp motion remains consistent.

Learning from Multiple Demonstrations: Another difference between BC and retrieval-based
methods is how they benefit from multiple demonstrations. BC incorporates all demonstrations
during training to learn a policy that can generalise across different conditions. In contrast, retrieval-
based methods do not require demonstrations during training, and instead only require them during
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A. Scaling Demos per Task Experiment: Micro Skills and Objects
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Figure 6: (A) The micro skills used to evaluate the methods’ response to scaling the demonstrations
per task. We also show the various seen and unseen objects used. (B) The micro skills used to
evaluate the methods’ response to scaling the number of tasks. These are in addition to those found
in (A). (C) The objects used in the latter experiment.

the retrieval step of inference. By having access to more demonstrations, retrieval can identify a
better suited demonstration for the test object instance and pose.

4 CONTROLLED EXPERIMENTS

To evaluate how each method performs across different data regimes, we design two complementary
experiments that independently vary two dimensions of learning: dataset size (demonstrations per
task) and dataset diversity (total number of tasks). We now provide an overview of each experiment.

Scaling Demonstrations per Task: In the first experiment, we fix the number of tasks and study
how effectively each method can leverage additional demonstrations of the same tasks to improve
performance. For this experiment, we select four micro skills that span diverse manipulations: artic-
ulated object manipulation, deformable object interaction, scooping, and insertion. For each micro
skill, we include three seen tasks and two unseen tasks, yielding a total of 12 seen and 8 unseen
tasks. The four micro skills and all tasks are shown in Figure 6.A. We evaluate the performance of
all methods as we scale from a single demonstration up to 50 demonstrations per task, which has
been shown to be enough for learning complex manipulation trajectories (Zhao et al., 2023).

Scaling Number of Tasks: In the second experiment, we fix the total number of demonstrations at
150 and study how performance changes as we distribute these demonstrations across an increasing
number of tasks. We do this to investigate whether performance degrades when we have fewer
demonstrations per task, or if some methods can benefit from exposure to more object instances
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Figure 7: Analysis of dataset size and diversity effects on task performance. (A) Performance
comparison across all considered methods, with error bars showing Wilson confidence intervals.
(B) Comparison between decomposition-based approaches (aggregated results from Ret-Ret (MT3),
Ret-BC, BC-Ret, and BC-BC) and monolithic learning (MT-ACT+), averaged across seen and un-
seen tasks, with error bars showing Wilson confidence intervals, and statistical significance assessed
using the two-proportion Z-test. (C) Analysis of strategies to align and interact with objects: align-
ment plots compare behaviour cloning (BC-BC, BC-Ret) versus retrieval-based methods (Ret-BC,
Ret-Ret (MT3)) to align with objects, while interaction plots compare behaviour cloning (BC-BC,
Ret-BC) versus retrieval-based methods (BC-Ret, Ret-Ret (MT3)) to interact with objects. Success
rates are shown as a function of dataset size (number of demonstrations per task) and diversity (num-
ber of tasks).

even with fewer demonstrations per task. For this experiment, we select 10 different micro skills,
which we show in Figure 6.A and 6.B. We start with 10 tasks with 15 demonstrations each, then
increase to 30 tasks with 5 demos each, and finally 50 tasks with 3 demos each. For each diversity
regime, we maintain consistent evaluation across 2 unseen tasks per micro skill (20 unseen tasks
total). All objects used for this experiment are shown in Figure 6.C.

Evaluation Procedure: For both experiments we conduct three evaluations per task and average
results across all micro skills (see Appendix A.5 for more details). All results from these experiments
are shown in Figure 7.

4.1 INDIVIDUAL METHOD PERFORMANCE

Figure 7.A shows the results from our dataset size and diversity experiments across all evaluated
methods. These results reveal a clear performance hierarchy among the evaluated methods. MT3,
the fully retrieval-based method, consistently demonstrates superior performance across all consid-
ered data regimes. This is particularly evident when noticing that for both seen and unseen tasks,
MT3 with just three demonstrations per task outperforms all other methods even when they are pro-
vided with fifty demonstrations per task. The strong performance of MT3 on unseen tasks demon-
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strates that while being simple, retrieval is a viable approach for tackling generalisation to unseen
object instances. Decomposition also shown its benefits, with the remaining methods relying on it
(Ret-BC, BC-Ret and BC-BC) generally outperforming the monolithic baseline MT-ACT+.

4.2 SUPERIOR EFFICIENCY THROUGH DECOMPOSITION

Next, we investigate whether decomposing manipulation trajectories into alignment and interaction
phases provides benefits on average over learning complete trajectories end-to-end. To isolate the
impact of the decomposition prior from specific design choices, Figure 7.B averages the results
shown in Figure 7.A across all decomposition-based methods (MT3, Ret-BC, BC-Ret and BC-BC).
The average decomposition performance is then compared against MT-ACT+’s results (monolithic),
with success rates for both the average decomposition performance and MT-ACT+ aggregated across
seen and unseen tasks.

Distinct Scaling Patterns: The dataset size results (top Figure 7.B) demonstrate fundamentally
different learning dynamics between the approaches. Explicitly leveraging the natural separation
of manipulation tasks into alignment and interaction phases shows rapid improvement in the criti-
cal 1-10 demonstrations per task range, with the average decomposition performance with just one
demonstration per task surpassing that of MT-ACT+ when learning with up to 10 demonstrations per
task. However, improvements in performance seem to approach saturation for decomposition-based
methods when given 50 demonstrations per task. On the other hand, for the monolithic baseline, ini-
tial progress is slow, but performance increases substantially when increasing from 10 to 50 demon-
strations per task, narrowing the gap in performance with the decomposition-based methods. This
highlights how the monolithic strategy requires substantially more data to learn the task structure
that decomposition-based methods leverage by construction.

Response to Task Diversity: When maintaining a fixed budget of 150 demonstrations but varying
their distribution across tasks, we uncover striking differences. As seen from the two rightmost plots
in Figure 7.A, decomposition-based methods achieve peak performance when focussed on fewer
tasks, with seen-task performance declining as demonstrations spread thinner across more tasks.
However, unseen task performance still improves because having demonstrations distributed across
more diverse objects increases the likelihood that the demonstration data includes an object with
similar geometry to the test object. Conversely, MT-ACT+ shows improvement in both seen and
unseen task performance with increased task diversity. This suggests that learning complete trajec-
tories might facilitate BC’s ability to find patterns across manipulations of different object instances.
However, it is worth noting that even though the performance trend is better for the monolithic
approach, its absolute performance is still lower than that of decomposition-based methods.

Strength of Decomposition: Overall, the results are clear: on average, decomposing manipulation
trajectories into alignment and interaction phases is beneficial across all tested experimental condi-
tions. Moreover, the benefit of trajectory decomposition holds even when the underlying method
remains unchanged - as shown in Figure 7.A, BC-BC substantially outperforms MT-ACT+ despite
both fundamentally relying on the same BC implementation. This advantage stems from the distinct
properties of alignment and interaction phases, best leveraged by specialised policies.

4.3 SURPRISING EFFECTIVENESS OF RETRIEVAL

In this section, we are interested in how BC and retrieval compare when used to align and interact
with objects, with Figure 7.C showing the comparison of these two approaches within the decom-
position framework. To generate these graphs, we take all the results for the decomposition-based
methods (MT3, Ret-BC, BC-Ret and BC-BC) shown in Figure 7.A. Then for each phase (alignment
and interaction), we aggregate the task success rates across methods that share the same strategy.
For example, combining MT3 (Ret-Ret) and Ret-BC to evaluate retrieval-based alignment, while
combining BC-Ret and BC-BC to evaluate alignment using BC.

Performances and Trends: Our analysis shows that retrieval-based strategies outperform BC across
all experimental conditions when used to both align and interact with objects. All the while, the
trends in performance across all data regimes seem very similar between retrieval and BC ap-
proaches, suggesting that both can benefit from additional data or diversity in a similar manner.
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Interacting with Novel Object Instances: Surprisingly, even though retrieval-based interaction
methods simply replicate a demonstration’s motion, they work well for generalising to unseen ob-
jects. The effectiveness of this approach stems from two key insights. First, optimal interaction
trajectories often remain similar across different instances of the same object category, even when
their geometry varies substantially. Second, many manipulation tasks exhibit natural tolerance to
variations in object geometry. Yet, it is worth noting that these insights also benefit BC approaches.

5 SCALING TO A THOUSAND TASKS

While numerous studies have explored scaling up monolithic BC across both tasks and demon-
strations using large numbers of demonstrations per task (Bharadhwaj et al., 2024; Brohan et al.,
2023; Zitkovich et al., 2023; Zhao et al., 2024), far less attention has been paid to the challenge of
scaling any BC alternative, especially while relying only on a few demonstrations per task. Our con-
trolled experiments demonstrate MT3’s superior performance without requiring large demonstration
datasets, yet a crucial question remains: could this efficiency scale to learning a truly diverse range
of real-world manipulation tasks?

Figure 8: Example test scenes from MT3 evalu-
ation. Each scene contains 5-20 distractor objects
with varied backgrounds and randomised lighting
conditions.

To answer this, we conducted an unprecedented
robotic manipulation study, teaching a robot
1000 distinct manipulation tasks in under 24
hours using just a single demonstration per task.
This represents the first work to demonstrate
learning manipulation skills at this scale with-
out relying on large demonstration datasets,
dramatically surpassing previous studies which
typically focused on tens or hundreds of tasks
while requiring many more demonstrations per
task. The focus on diversity is further under-
scored when considering that the considered
tasks fall under 31 different macro skills and
make use of 402 different objects.

Setting an Ambitious Challenge: The scale
of this experiment marks a significant depar-
ture from prior work in robot learning. Recent
approaches have typically focused on learning
less than 750 tasks from extensive demonstra-
tion datasets collected over long periods (Jang
et al., 2021; Brohan et al., 2023; Bharadhwaj
et al., 2024). In contrast, our decomposition
prior enabled collection of demonstrations for
all 1000 tasks within 24 hours using a single
robot, while maintaining comparable task com-
plexity and achieving significantly higher task
diversity.

This efficiency gain allowed us to explore a far broader range of manipulations than previously pos-
sible. Our tasks span 31 distinct macro skills (e.g., ”pour”, ”insert”, ”fold”) and 534 micro skills (e.g.
”pour wine from wine bottle into wine glass”, ”pour milk from carton into bowl”, ”insert plate into
plate rack” ”insert plug into socket”, ”fold towel”, ”fold t-shirt”), representing most common house-
hold manipulation scenarios. This diversity dwarfs both our earlier controlled experiment (10 micro
skills) and prior work, which typically focused on 9-12 macro skills within a more constrained set of
objects, 12 to 70 (Jang et al., 2021; Brohan et al., 2023; Bharadhwaj et al., 2024), compared to our
402 different instances. To rigorously evaluate generalisation, we further tested on 100 additional
unseen tasks spanning the same set of macro skills.

This efficiency gain allowed us to explore a far broader range of manipulations than previously pos-
sible. Our tasks span 31 distinct macro skills (e.g., ”pour”, ”insert”, ”fold”) and 534 micro skills
(e.g. ”pour wine from wine bottle into wine glass”, ”pour milk from carton into bowl”, ”insert plate
into plate rack” ”insert plug into socket”, ”fold towel”, ”fold t-shirt”), representing most common
household manipulation scenarios. This diversity dwarfs both our earlier controlled experiment (10
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micro skills) and prior work, which typically focused on 9-12 macro skills within a more constrained
set of objects, 12 to 70 (Jang et al., 2021; Brohan et al., 2023; Bharadhwaj et al., 2024), compared
to our 402 different instances. To rigorously evaluate generalisation, we further tested on 100 ad-
ditional unseen tasks spanning the same set of macro skills. Furthermore, we deliberately designed
the experiment to stress-test MT3’s capabilities across multiple dimensions (see Figure 8 for ex-
ample test scenes and Appendix A.6 for further detail on our experimental design). Hereafter we
discuss the results of our evaluation of MT3, which consisted of 2,200 total rollouts (Figure 12 in
Appendix A.6), with two trials per task for both seen and unseen categories.

Seen

Unseen

Figure 9: Success rates of MT3 across dif-
ferent macro skills for seen (top) and unseen
(bottom) tasks.

Task Complexities: Understanding Performance
Patterns: MT3 achieved a 78.25% average success
rate on seen tasks and 65.66% on unseen tasks (see
Appendix A.6 for detailed failure case analysis) -
strong results that gain additional significance given
that only a single demonstration was provided per
seen task, together with the unprecedented task di-
versity and challenging real-world conditions.

Task performance across different macro skills (Fig-
ure 9) reveals that the success rates strongly corre-
late with precision requirements, as expected. Tasks
with high tolerance to imperfections in execution,
such as stacking and dusting, achieved success rates
above 80-90%. These macro skills permit small
deviation in approach angles and contact positions
while rarely affecting task completion. In contrast,
tasks demanding precise execution like insertions
and hanging objects achieved lower success rates,
reflecting their lower tolerance for execution errors.
These results illustrate that MT3 is a viable approach
for learning a very large number of diverse tasks
from minimal data. Moreover, generalisation per-
formance on unseen tasks highlights how a purely
retrieval-based approach can still effectively bridge
the gap between demonstrated and novel instances,
while relying on explicit geometric reasoning rather
than data-intensive learning.

Our evaluation of MT3 has also generated a rich
dataset of robot execution rollouts, which we open
source. These rollouts, collected under challenging
real-world conditions with diverse objects and back-
grounds represent a valuable resource for future de-
velopments.

6 CONCLUSIONS
In this paper, we demonstrate that decomposing manipulation trajectories into distinct alignment and
interaction phases enables significant improvements in learning efficiency compared to a standard
monolithic BC approach. While state-of-the-art BC systems typically require hundreds of demon-
strations per task collected over months, our large-scale evaluation involving 3,450 real-world roll-
outs shows that decomposition-based approaches achieve effective learning from as little as a single
demonstration per task. Furthermore, our systematic evaluation reveals that retrieval-based methods
are viable and competitive alternatives to BC for both aligning and interacting with objects when the
data per task is scarce.

These findings led us to the development of MT3, our highly-efficient fully retrieval-based method.
In order to discover how MT3’s effectiveness would scale, we evaluated at an unprecedented scale
of task diversity. We have taught our system 1000 distinct tasks, manipulating over 400 objects,
using just a single demonstration per task, in under 24 hours. This large-scale evaluation provided
valuable insights into MT3’s performance across different types of manipulation skills and revealed
specific failure modes, pointing to clear paths for future improvements.
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A APPENDIX

A.1 HARDWARE OVERVIEW

Our experimental hardware consists of a Sawyer robot equipped with a 2F-85 Robotiq gripper and
is shown in Figure 4. For perception, we use a single RealSense D415 RGB-D camera mounted on
the robot’s head, providing sufficient visual information for manipulation tasks while minimising
hardware costs.

A.2 DEMONSTRATION DATA COLLECTION AND PROCESSING

In this section, we explain how we represent, collect and process demonstrations for all methods.

Demonstration Representation: We denote a demonstration τ = {oi, ei}Ni=1 as a sequence of
observations o and end-effector states e recorder at 30 Hz, where i indexes time-steps and N is the
sequence length. Each observation oi is an RGB-D image from a calibrated head-mounted camera.
The corresponding end-effector state ei includes the 6D pose of the end-effector frame E in the
robot’s base frame R, TRE ∈ SE(3), and the binary gripper state that indicates if the gripper
is opened or closed. Each demonstration is paired with a language description l to differentiate
between tasks. This creates a dataset D of M demonstrations and their corresponding descriptions:
D = {τj , lj}Mj=1.

Demonstration Data Collection: During data collection, we record only the interaction phase of
each task. This is because, in the alignment phase, the critical factor is the final pose of the end-
effector relative to the object, rather than the specific trajectory taken to reach it. In contrast, the
interaction phase defines how the object should be manipulated, making it rich in task-relevant
information. In practice, we start recording demonstrations only once the end-effector is positioned
close to the target object (the exact pose does not matter as long as the end-effector is in the proximity
of the target object).

This formulation offers two key advantages: (1) Since only the final pose matters for alignment, we
can generate synthetic alignment trajectories when needed, as detailed in Appendix A.4. (2) The
decomposition of demonstrations into two phases becomes straightforward — interaction trajec-
tories are collected from real-world demonstrations, while alignment trajectories are synthetically
generated.

Demonstration Data Processing: For each of our methods, we segment all RGB-D images and
convert them to target object point clouds. We segment the images to enhance efficiency and ro-
bustness against background changes and distractors. To this end, for the initial RGB image of
each demonstration, we use Grounding DINO (Liu et al., 2025) to segment the target object using
the target object name extracted from the task description l. For simplicity, we extract this name
using template-based natural language parsing, though more sophisticated approaches using large
language models could be employed. For each subsequent frame of each demonstration, we propa-
gate the target object segmentation using XMem (Cheng & Schwing, 2022), which handles partial
and full occlusions.

RGB-D images and segmentation masks are then processed into target object point clouds using
known camera parameters and serve as our policy inputs. For retrieval-based methods, we express
these point clouds in the robot frame as this is required by the pose estimator used by the retrieval-
based method for alignment (see Section A.3). For training BC policies, we transform the point
clouds into the end-effector frame to improve learning efficiency and spatial generalisation (Liu
et al., 2022).

A.3 RETRIEVAL-BASED ALIGNMENT AND INTERACTION

We designed two different retrieval-based policies, one to align with objects and the other to interact
with them. At test time, both policies require a single demonstration of the desired task to infer
actions from. As such, they both rely on a retrieval system to autonomously identify the demonstra-
tion that best matches the test scenario by finding one which performs the same manipulation on a
similar object.
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Figure 10: Our hierarchical retrieval pipeline consists of two stages. First, language-based retrieval
identifies all demonstrations associated with the specific micro-skill mentioned in the task descrip-
tion, drawing from the entire dataset of available demonstrations. Second, geometry-based retrieval
refines this selection by finding the closest demonstration in terms of object shape and pose.

After retrieving a demonstration, the policies differ in how they use it. The alignment policy uses
pose estimation to map the initial end-effector pose from the demonstration to the test scene, fol-
lowed by motion planning to reach this pose. The interaction policy directly replays the demon-
strated trajectory in the end-effector frame, preserving the exact motion patterns. Below, we detail
each of these components.

Hierarchical Retrieval: Our retrieval system uses a two-stage approach that is illustrated in Fig-
ure 10. In the first stage, we use the micro skill name inferred from the task description (e.g., ”open
bottle”) to find all demonstrations for that same micro skill. For simplicity, we extract this micro
skill name from the task description l using a template matching approach, though more sophisti-
cated approaches using large language models could be used.

In the second stage, we identify the demonstration with the most similar object to the test object in
terms of geometry and object pose. We rely on geometry as we believe that objects that have similar
shapes and sizes will also require similar interactions. Additionally, selectivity in object pose allows
us to retrieve demonstrations that are as close as possible to the test scene, narrowing the covariate
shift. To capture geometry and pose similarity for the purpose of retrieval, we use a point cloud
encoder based on the PointNet++ (Qi et al., 2017) architecture to generate object embeddings. The
encoder was trained as part of an auto-encoder, which compresses a point cloud into an embedding
that is then decoded to predict an occupancy grid trained with binary cross-entropy using the object-
centric dataset generated as part of prior work (Vitiello et al., 2023). The demonstration with the
highest cosine similarity between its object embedding and the test object embedding is selected.

Figure 11 shows a t-SNE plot of object embeddings from one of our controlled experiments (learn-
ing 12 tasks with 50 demonstrations per task - see Section 4). This plot reveals clustering by object
category (e.g., backpacks, toasters) with subclusters corresponding to different object instances,
demonstrating the encoder’s ability to capture both broad category-level features and fine-grained
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Geometric retrieval aims at 
differentiating between:

● different object classes
● different instances
● different object poses

Figure 11: t-SNE visualisation of geometry encodings from the dataset size experiment with 50
demonstrations per object (see Section 4), showing clustering by object category (backpack, toaster,
box, and pan). Each category exhibits subclusters corresponding to different object instances, with
similar geometries (box, toaster) positioned closer in the embedding space. Within subclusters,
points from similar object poses have closer embeddings.

geometric differences. This hierarchical organisation of the embedding space is crucial for general-
isation in two ways. First, objects with similar global geometry are mapped to nearby regions in the
embedding space, making it more likely to retrieve demonstrations of interactions with objects that
share similar manipulation requirements. Second, the clustering of similar poses within each ob-
ject’s subcluster helps match novel object poses to demonstrations where the object was in a similar
pose, enabling more relevant demonstration selection.

Retrieval-Based Alignment: At inference, the retrieval-based alignment policy receives the target
object point cloud and a demonstration of the desired task, and its goal is to align the end-effector
and the target object in the same way as shown at the beginning of the demonstration. To this end,
the policy first uses geometric reasoning to infer the required end-effector pose for the test scene and
then reaches this pose through motion planning.

In this work, we calculate the end-effector pose for the test scene that aligns the end-effector and
target object in the same way as shown at the beginning of the demonstration using Trajectory
Transfer (Vitiello et al., 2023). The intuition behind Trajectory Transfer is that given the relative
target object pose between the demonstration and test scene Tδ , we can map the end-effector pose
at the beginning of the demonstration to the test scene using

T Test
WE = TδT

Demo
WE

where T Test
WE and TDemo

WE are the end-effector poses for the test and demonstration scenes respec-
tively that correspond to the same end-effector to target object pose. We estimate Tδ by refining the
output of the regression method proposed by Vitiello et al. (2023) using the Open3D (Zhou et al.,
2018) implementation of Generalised ICP (Segal et al., 2009).

Retrieval-Based Interaction: Similar to the retrieval-based alignment policy, at inference, the in-
teraction policy receives a demonstration of the desired task. The demonstrated trajectory is then
replicated in the test scene by executing the demonstrated end-effector velocities expressed in the
end effector frame, preserving the exact demonstrated motion patterns.
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A.4 BEHAVIOURAL CLONING IMPLEMENTATION

We use the same network architecture and loss function to learn to align and interact with objects,
and to learn the single policy for the MT-ACT+ baseline. The only difference between these appli-
cations is the training data they rely on. Below we describe our chosen backbone architecture, the
loss function used, and the data all these policies have been specifically trained on.

Network Architecture and Design Choices: For all three applications, we need the policy archi-
tecture to address three requirements. First, it must process point cloud and language inputs for a
fair comparison with our retrieval-based components. Second, it must effectively handle multi-task
learning to enable a comparison with the retrieval-based policies across diverse tasks. Third, it needs
to capture the multi-modal nature of manipulation demonstrations, where multiple trajectories may
be valid for completing the same task (or phase of the task).

To handle point cloud inputs, we employ a PointNet++ (Qi et al., 2017) encoder which clusters
the point clouds and computes an embedding per cluster. For multi-task learning, we condition
these embeddings on the task description using FiLM (Perez et al., 2018). This modulation takes
a CLIP (Radford et al., 2021) embedding of the task description l and uses it to adapt the point
cloud features for the specific task at hand. To address the multi-modal nature of demonstrations, we
employ variational inference, which enables the policy to model the multi-modal distribution of valid
actions. While diffusion models offer an alternative approach, variational inference provides a more
computationally efficient solution, while still being suitable for modelling multi-modal distributions.

This combination of design choices results in an architecture that closely resembles the MT-ACT
architecture proposed by Bharadhwaj et al. (2024), with modifications to handle point cloud inputs.
Additional differences from MT-ACT include incorporating action history as input to help infer
task progress, removing proprioception from the input which our preliminary experiments showed
improved spatial generalisation, and adding a terminal action output to explicitly signal task com-
pletion. We refer to our backbone architecture as MT-ACT+. To ensure peak performance under
all experimental conditions, we independently optimise the number of network parameters for each
method that uses a BC policy and for each data regime.

Loss Function: Just like the network architecture, the loss function used to train all BC policies was
kept consistent. During training, all policies maximize the log-likelihood of demonstration action
chunks, i.e.

min
θ

Σoi,ai,l∼D πθ (ai:i+k|oi, l) ,

with the standard VAE objective which has a reconstruction loss and a term that regularizes the
encoder to a Gaussian prior. Here, oi and ai:i+k are a sampled target object point cloud and an action
chunk (see below) and l is the corresponding task description. We further augment this loss by using
learned weighting with homoscedastic uncertainty (Kendall & Cipolla, 2017) to automatically learn
the weighting between different components of the reconstruction loss.

Additional Demonstration Processing: We further process all demonstrations to be suitable to
train policies to interact with objects (used by Ret-BC and BC-BC), and to be suitable for training
the MT-ACT+ baseline (see the “Combining Simulated Alignment Trajectories and Demonstrations”
subsection below). First, we encode the task descriptions l using CLIP (Radford et al., 2021). Next,
to ensure a uniform spatial resolution across demonstrations, we subsample demonstrated trajecto-
ries to maintain consistent 1cm distances between consecutive waypoints while preserving impor-
tant events like gripper state changes. We then compute actions ai:i+k as relative poses between the
current end-effector pose and future poses within the prediction horizon k, using angle-axis repre-
sentation for orientations. Similarly, we compute history action labels as relative poses between the
current pose and past poses within the history horizon.

Data Augmentation: Regardless of whether we would like a policy to learn to align, interact or
to handle both phases, we apply common augmentation steps whenever an observation-action tuple
is sampled during training. To improve robustness to partial occlusions and varied object poses
encountered during deployment, we mask out random portions of the target object point cloud. To
this end, we perform furthest point sampling followed by nearest neighbour clustering to create 10
clusters, of which we randomly mask 4. We have found this to help during preliminary experiments.
And to improve robustness to noise in point clouds and action history labels, we add Gaussian
noise to both. Next, we explain how we further process demonstrations to be able to train the BC
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architecture to interact with objects, how we simulate end-effector trajectories to train the BC policy
to align with objects, and finally, how we combine the processed demonstrations and simulated
trajectories to obtain training data for our monolithic baseline MT-ACT+.

To achieve better robustness to covariate shift when learning from limited data to interact with ob-
jects, whenever an observation-action tuple is sampled during training, we perturb the end-effector
pose within 0.9 cm of its original position and 5 degrees of its original orientation. We then update
the corresponding state, first action label, and history label to reflect this perturbation. This augmen-
tation helps the policy become robust to small deviations from the demonstrated trajectories that
may occur during deployment and is only feasible because the policy takes as input the target object
point cloud expressed in the end-effector frame.

Simulating Alignment Trajectories for Behaviour Cloning: To be able to learn to align the end-
effector with target objects, both the alignment BC policy used by BC-Ret and BC-BC, and the
MT-ACT+ baseline need trajectories for training that move the end-effector to the first pose of
each demonstration. To this end, we simulate 1000 alignment trajectories per demonstration, by
sampling starting poses within a 30x80x80 cm cuboid above the robot’s taskspace and generating
linear trajectories to the end-effector poses at the beginning of demonstrations. We achieve this by
simply moving the target object point cloud captured during the first frame of the demonstration in
the end-effector frame, while maintaining a fixed distance of 1cm between waypoints. This is only
feasible because we use the target object point cloud expressed in the end-effector frame as the input
to the policy.

Furthermore, to help the alignment policies used by BC-Ret and BC-BC learn to accurately align
with objects, we supplement their training data with additional observation-action pairs near each
final alignment pose. For each waypoint in a simulated alignment trajectory, we generate an addi-
tional observation-action pair by randomly perturbing the end-effector pose within 1mm-1cm and
0.5-5 degrees of the final alignment pose.

Combining Simulated Alignment Trajectories and Demonstrations: Our monolithic baseline,
MT-ACT+, requires training data for both the alignment and interaction phases of demonstrated
tasks. As such, we combine the simulated alignment trajectories with demonstrated trajectories to
create a dataset of entire manipulation trajectories, adjusting the history and action labels at the
boundary between alignment and interaction phases.

A.5 CONTROLLED EXPERIMENT EVALUATION PROCEDURE

For both experiments (scaling demonstrations per task and scaling number of tasks), we conduct
three evaluations per task and average results across all micro skills. For each evaluation, we ran-
domize the object’s position within the 80 x 45 cm taskspace, and orientation by ±180 degrees
around the vertical axis from the demonstration pose. Success rates are determined through manual
evaluation, where an expert observer monitors each rollout and classifies it as successful only if the
robot completes the manipulation task.

A.6 SCALING TO A THOUSAND TASKS

Experimental Design: We deliberately designed the experiment to stress-test MT3’s capabilities
across multiple dimensions:

• Manipulation Complexity: Tasks ranged from simple grasping and placing motions, to
tasks requiring precise insertion or complex non-linear trajectories.

• Object Variety: We included particularly challenging items for depth sensors, including
semi-transparent and transparent objects like plastic containers and glass cups, highly de-
formable objects like clothing, reflective metallic objects like toasters, and articulated ob-
jects such as cabinets and boxes.

• Environmental Variation: During evaluation, each task execution faced substantial real-
world complexity. For testing, we placed 5-20 distractor objects in the scene alongside the
target object. Between different evaluation rollouts, we actively varied the lighting condi-
tions by changing both the color and intensity of an LED light source. To further challenge
robustness, we randomised object placement anywhere within the workspace with up to
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i. Scoop egg from black pan

ii. Fold dark jeans shorts

iii. Wipe the microwave window

Figure 12: Examples of recorded rollouts from the 1000 tasks experiment.

45-degree rotational variation from demonstration poses. Furthermore, we deliberately
changed the colour of the surface on which objects were placed between demonstration
and testing phases. Figure 8 illustrates these diverse test environments, showcasing the sig-
nificant variations in lighting, surface colour, and scene composition that our system was
challenged with.

This experimental design represents one of the most comprehensive evaluations of robot manipula-
tion learning to date, combining unprecedented task diversity with challenging real-world conditions
- all while maintaining the constraint of single-demonstration learning. Figure 12 showcases exam-
ple rollouts of from this experiment.

Failure Mode Analysis: To better understand MT3’s limitations and identify paths for improve-
ment, we conducted a detailed analysis of failure cases on seen tasks. An expert evaluator assessed
each rollout across four key aspects: correct segmentation, exact retrieval, pose estimation success,
and motion execution. Figure 13 presents this systematic breakdown of failure modes.

The objective of retrieval is to identify the most suitable demonstration for the test scenario by
finding one which performs the same micro skill on a similar object both in appearance and pose.
This process however has emerged as the primary challenge, accounting for 22.3% of failures. These
occurred most frequently with partially occluded objects or in cases where the relevant variations in
object geometry regarded smaller object parts that are therefore harder to discern. While multiple
cameras would provide more complete object observations for retrieval, isolating the relevant object
part remains challenging.

Segmentation and pose estimation problems each contributed significantly to system failures, at
19.5% and 23.9% respectively. Segmentation challenges arose predominantly with transparent ob-
jects and in cluttered scenes with similar-looking items. However, as segmentation models con-
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Figure 13: A sankey diagram illustrating MT3’s failure modes when evaluated across 1000 seen
tasks.

tinue to advance, these issues are expected to diminish over time. Pose estimation proved partic-
ularly challenging with drastic changes in pose with respect to the demonstration, as these also
result in substantially different partial point clouds due to asymmetric geometries and perspective
changes. A multi-camera setup would provide more complete geometric information and reduce
these perspective-related challenges.

Notably, issues due to pure motion planning and kinematic did occasionally occur, but they were
rare, accounting for only 5.3% of failures. The remaining 29% of failures were mainly from tasks
with grasped objects (20.2%), such as insertions or scooping, where the grasped object could have
been placed inconsistently between demonstration and deployment. Such failures can be mitigated
using the method proposed by Papagiannis et al. (2024), which enables learned skills to general-
ize across different grasps without additional training. The remainder of failures were difficult to
pinpoint, but could include calibration drift and fine-grained misalignment errors.
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