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ABSTRACT

Empirically it is observed that Graph Convolution Networks (GCNs) often
generalize better than fully connected neural networks (FCNNs) on graph-
structured data. While this observation is often attributed to the ability
of GCNs to exploit knowledge about the underlying graph structure, a
rigorous theoretical explanation remains limited. In this work, we theoret-
ically prove that one factor for the improved generalization of GCNs arises
from the spectral representation of the filters or graph convolutional layers.
Specifically, we derive generalization bounds that are independent of the
number of parameters and instead scale nearly linearly with the number
of graph nodes, offering a compelling explanation for their superior perfor-
mance in over-parameterized regimes. Furthermore, in the limit of infinite
number of nodes, we prove that under certain regularity conditions on the
spectrum, GCNs escape the curse of dimensionality and continue to gener-
alize well. We demonstrate our conclusions through numerical experiments.

1 INTRODUCTION

Graph convolutional neural networks (GCNs) (Defferrard et al., 2016; Kipf & Welling, 2017;
He et al., 2022) have emerged as a powerful tool for learning from graph-structured data,
enabling applications in various domains such as social networks (Fan et al., 2019), rec-
ommender systems (Wu et al., 2022), and protein design (Strokach et al., 2020). The
remarkable success of GCNs is largely attributed to their superior performance on unseen
data compared to FCNNs, when the data has an underlying graph structure (Dwivedi et al.,
2023). However, despite strong theoretical support for the use of GCNs in terms of their
expressive power (Zhang et al., 2025), stability (Gama et al., 2020), and transferability (Ruiz
et al., 2020), a rigorous theoretical understanding of conditions that allow for an improved
generalization capability compared to FCNNs is largely unexplored in the literature.

Several existing works (Liao et al., 2020; Tang & Liu, 2023; Wang et al., 2025a) characterizing
the generalization of GCNs are built on the classical statistical learning theory frameworks
such as VC dimension (Vapnik, 2013), PAC-Bayes (Shawe-Taylor & Williamson, 1997), and
Rademacher complexity (Bartlett & Mendelson, 2002). However, these bounds typically
scale with the raw parameter count in the network, often resulting in very loose bounds
compared to empirical observations. In the context of FCNNs, this has led more recent gen-
eralization theory frameworks to explore bounds based on information-theory, algorithmic
stability, the so-called “double-descent” phenomenon, and properties of the training loss
landscape (Hochreiter & Schmidhuber, 1997; Schaeffer et al., 2024; Hellstrom et al., 2025).
For GCNs, there are very few attempts to apply these more modern techniques. Shi et al.
(2024) recently showed that GCNs exhibit a phenomenon where test error first increases
and then decreases with the label ratio, but their analysis is limited to simple linear GCNs
with one filter tap for community stochastic block models (¢SBMs). There lacks a general
framework for analyzing the generalization of GCNs beyond the classical approaches.

GCNs are highly structured models that exploit the underlying graph structure using the
graph convolution/message passing/filtering operations that share parameters across nodes,
unlike FCNNs. This suggests that the intrinsic dimension of the convolutional layers is
often significantly lower than more basic notions of model dimension like the raw parameter
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count. This structure is often not exploited in the literature, and here we argue that the
spectral domain of the convolutional filters provides a natural representation for the analysis
of GCN generalization. Specifically, leveraging ideas from classical signal processing, we note
that filters or convolutional layers can be effectively represented in terms of their frequency
response, which lies in a space whose dimension is the number of nodes in the graph rather
than the full parameter space. In practice, we need larger number of parameters to have
better expressive power for GCNs. This shift in the perspective from the parameter space
to the frequency response will be crucial to obtain tighter generalization bounds.

Paper contributions. In this work, we formally exploit the spectral structure of GCNs
to derive sharper generalization bounds. Specifically,

(i). We present a general framework that provides generalization bounds for GCNs on
arbitrary graph structures. Our bounds only require computation of well-known and easy-
to-compute complexity measures, such as covering numbers in the spectral domain.

(ii). We provide a generalization bound which scales as \/n;/N, where n, represents
number of nodes and N is number of data points. Our bounds are independent of the
total number of model parameters. These bounds provide an explanation for the empirical
success of GCNs even when the number of parameters is comparable to or larger than that
of FCNNs. Moreover, these bounds are significantly tighter than state-of-the-art results.

(iii). We extend our analysis to graphons (countably infinite sized-graph). By assuming
mild spectral regularity, the bounds scale as N~1/¢ and are dimension-free, thus effectively
escaping the curse of dimensionality.

(iv). Finally, we corroborate our theoretical insights with numerical simulations.

The remainder of the paper is organized as follows. In §2, we formulate the learning problem,
discuss the limitations of existing generalization bounds, and motivate the need for a new
approach. In §3, we present our general generalization bounds for GCNs and then present
its application in various regimes. We validate our theoretical findings through numerical
experiments in §4, and conclude the paper in §5.

Notation. The Hermitian (transpose-conjugate) of a matrix M is denoted by M". The
set O(n,, C) denotes all n, X n, unitary (orthonormal) matrices with complex entries. The
operator diag(-) constructs a diagonal matrix with the given vector as its diagonal elements,
while diagT(-) denotes the inverse operation, extracting the diagonal entries into a vector.

The abbreviations “w.p.” and “a.s.” stands for “with probability” and “almost surely”,

respectively. A function f is said to be Lipschitz continuous if there exists a constant L > 0
such that for all x1,x2 € X, we have || f(x1) — f(x2)|| < L||x1 —x2|. Moreover, the function
f is said to be Lipschitz smooth if its gradient is Lipschitz continuous.

We write 8 < (or >) O(«) to mean that there exists a constant C' > 0 such that 8 < (or >)
Ca for all « in the domain of interest. The notation [A] denotes the index set {1,2,..., A}.
The set R represents the set of all countably infinite sequences of real numbers.

2 PROBLEM FORMULATION

Consider a graph G = (V, &, A), where V C [n,] is the vertex set, £ C [ny] X [n,] is the edge
set, and A € R™"**"= is the adjacency matrix (where A;; = 1¢((4,7))). Suppose x € R™* is
a vector supported on the graph G, also referred to as a graph signal, where each entry x;
corresponds to the scalar feature at the i-th node. In this work, we are interested in learning
GCN that map the graph signal x to target y € R™v, where the tuple (x,y) is a random
variable drawn from an unknown joint distribution p.

Graph Convolutional Neural Networks (GCNs) are among the first proposed graph
neural network (GNN) architectures (Defferrard et al., 2016; Kipf & Welling, 2017). GCNs
are constructed by a sequence of compositions of graph convolutional layers, non-linearities,
and pooling operations. The graph convolution (or filtering) operation is the key building
block of GCNs that aggregates features (or messages) from neighboring nodes in a linear
fashion. Let H C R be the set of graph filter coefficients. At the layer I € [L], the
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convolutional map ¢; : H x R%* — R% is defined as

¢1(h,z) == > S}z, (1)
keN

where S; € S% is called convolutional operator associated with the graph G at layer [ (e.g., A
or any Laplacian operator such as diag(A1) — A; see Defferrard et al. (2016); Kipf & Welling
(2017)). ny represents the number of filter taps, i.e., the number of non-zero coefficients in
h. At each layer | € [L], we have non-linear activation o; : R% — R%_ (such as ReLU, tanh,
or sigmoid functions). Finally, we have a pooling or resampling operation P, : R%-1 — R%
that reduces (or increases) the size of the graph at each layer, gradually making the final
prediction compatible with the target vector. The intermediate output at layer [ € [L] and
channel ¢ € [C}] is denoted by x{ € R% and is computed as

xi=Flo| S am x| |- 2)

g€[Ci-1]

The map x}(= x) — x1 (=) is called the GCN and is denoted by ® : # x R — R"s,
where the set # = {H“*-1},.(1) consists of all the filter coefficients. Convolutional

neural networks (CNNs) (Denker et al., 1988) are a special case of GCNs, since CNN con-
volutions operate on regular grid graphs like images, where pixels are nodes (see §A.1).

Statistical learning problem. We consider the learning problem of minimizing the un-
regularized risk with loss function ¢ : R™ x R™ — R, sample space {2, and measure v:

Ry, (H) := / QE(Y(W),‘I’(H(w),X(w)))dV(W)- (3)
The goal is to minimize the risk gxefaluated on the probability measure u, referred to as
the population risk,i.e., Hy € arg mingge ,» R, (H). However, in practice, complete access
to u is unavailable. For tractability (Vapnik, 2013), we relax the optimization problem to
the empirical risk minimization by using finite data points {(x;,y;)}, drawn from the
distribution p that forms a empirical distribution p and solve the program:

X 1
Hy € arg min § Ry, (H) = & > Uy ®(H,x;)) o (ERM)
Hes? i€[N]

There arises a natural question of whether the learned parameters Hy perform well on
unseen data; i.e., R,(Hy) = R,y (Hpy)? The discrepancy between the population and
empirical risk is called Generalization Error or Gap, GE : 7 — RT U {0} and is defined as

GE (H) == |RP«(H) —Run (H)[. (4)

Our aim is to derive non-asymptotic probabilistic upper bounds for the random variable
GE(Hy) that depend explicitly on n,, 5, and N.

Existing approaches to generalization theory. Before delving into the details of our
main results, we first discuss several commonly used approaches to generalization theory
and highlight their limitations in the context of GNNs. Broadly speaking, generalization
bounds can be categorized into the following paradigms:

e Classical uniform concentration: This framework aims to compute the generalization error
in the worst-case scenario, in other words, over the entire parameter space. The treatment
of the data distribution varies as follows:

— VC theory (Vapnik & Chervonenkis, 1971): One of the earliest and most classical
approaches, VC theory, provides uniform guarantees over the hypothesis class and all
distributions. However, computing VC dimensions for general neural networks is NP-
HARD (Kranakis et al., 1995), and the resulting bounds are often vacuous.

— Distribution specific (Shalev-Shwartz et al., 2009): In contrast to VC theory, these
approaches tighten the bounds by restricting attention to specific classes of data dis-
tributions that are close to practical settings (e.g., sub-Gaussian). While this leads
to improved generalization estimates, the analysis still relies on uniform concentration
over the entire parameter space.
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o Geometric Analysis (Hochreiter & Schmidhuber, 1997): These connect the geometric
properties of empirical risk landscape near found solutions with generalization capability.
However, such connections are not always necessary, and counterexamples exist (Dinh
et al., 2017; Mulayoff & Michaeli, 2020).

e PAC-Bayes Bounds (McAllester, 1998): These adopt a Bayesian perspective, requiring a
prior belief over the parameter space, and a posterior observation once training data is
seen. The generalization error is then bounded via the KL-divergence between the prior
and the posterior, which is typically intractable to compute for general network.

e Rademacher and Gaussian complexity (Bartlett & Mendelson, 2002): These capture the
ability of models to fit noise and act as a proxy for bounding generalization error. However,
they are difficult to compute for deep architectures without strong assumptions.

o Algorithmic stability (Bousquet & Elisseeff, 2002): These bounds measure the stability of
learning algorithms under perturbations to the training data. While potentially tight, the
stability of infamously used algorithms such as stochastic gradient descent (SGD), ADAM
(Kingma & Ba, 2015) does not always hold true for generic networks (Zhang et al., 2022).

o Information theory (Hellstrom et al., 2025): These bounds infer about the generalization
error by quantifying the mutual information between the learned parameters and the
training data. While these bounds can be tight, they often infeasible to compute in deep
learning settings due to similar issues as that of PAC-Bayes.

Limitations of prior approaches. Given the trade-offs of the aforementioned approaches,
we focus on a classical generalization error bound from Shalev-Shwartz et al. (2009), which
is based on uniform concentration over the parameter space under a fixed bounded data
distribution p. We present this result as a corollary (see §A.6 for proof) and then point out
the limitations of this setting in the context of single-layered, and single-channeled GCN.

Corollary 1. Let L =1, ¢ C B, ,(B), and support of p be bounded by G. Then w.p of at
least 1 — 9 it holds that

sup GE (H) < O (GB\/ ny (N xn("f / 5)) . (5)

Heo

Discussion. For a single layer GCN, the bound in Equation (5) scales with the total number
of trainable filter coefficients, ny. In the limit when ny — oo, the upper bound grows
unboundedly, which is undesirable. This is particularly problematic in over-parameterized
regimes. However, it is worth noticing the set of functions that can be represented by this
GOCN is significantly smaller due to the convolutional structure of the layer (see Equation 1).
Specifically, since the graph signals are finite-length vectors, the Fourier transform is band-
limited and can be represented by C™= (see Oppenheim (1999)).

At the crux of proof techniques for uniform concentration bounds lies the computation of
hypothesis class complexity, measured by the covering number (to be defined precisely later),
which represents the minimal number of hypotheses required to accurately represent the en-
tire hypothesis class under a specified error tolerance. Since network parameters are directly
used to construct the hypothesis class, the covering number scales exponentially with the
number of parameters, ny, leading to the bound in Equation (5). However, Fourier theory
provides an equivalence between filter coefficients and their spectral representation. Here,
we exploit this structure to represent the hypothesis class in terms of the spectral representa-
tion of the filters. This makes the covering numbers scale exponentially with the number of
nodes, n,, rather than parameters, leading to tighter bounds in over-parameterized regimes.

3 MAIN RESULT

In this section, we present upper bounds for generalization error for GCNs. In §3.1, we
state and discuss the standing assumptions that are required for our main results to hold.
Later, in §3.2, our main theorem for GCNs is presented. Finally, in §3.3 we apply our main
theorem in various regimes of interest.
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3.1 STANDING ASSUMPTIONS

Here, we introduce standing assumptions, and necessary tools. First, we assume that the
unknown data distribution p belongs to sub-Gaussian family.

Assumption 1. The input signal x is a non-degenerate sub-Gaussian vector with prozy
variance o; i.e., for any a € S"* 1 and for all t > 0, we have

E[exp (t(x — E[x],a))] < exp (t0?/2) , and E [||x[3] > 0.

The target signal takes the form y = g(x) + €, where g : R" — R" s Lg-Lipschitz
continuous function, and € is an independent sub-Gaussian vector with proxy variance o>.
As a result, the joint distribution u is part of sub-Gaussian family.

Sub-Gaussian models encompass a wide range of practical scenarios, including bounded dis-
tributions, Gaussian distributions (and their mixtures), beta and Dirichlet families, among
others. This assumption is mild and widely adopted in the statistical learning theory lit-
erature (Pensia et al., 2018; Cao et al., 2021; Tadipatri et al., 2025). In GCN literature,
boundedness of data is often assumed (Liao et al., 2020), making our assumption general.

Next, we assume certain regularity condition on loss and activation function.

Assumption 2. The loss { is convex and ¢ smooth. The activation function in each layer
is 1-Lipschitz continuous.

The convexity and smoothness condition on loss is is very common assumption in the lit-
erature. Lipschitz continuity on activation plays a pivotal role in our theoretical analysis
similar to Shalev-Shwartz et al. (2009), as it enables sharp concentration guarantees when
the inputs are drawn from sub-Gaussian distributions. Importantly, this assumption is not
strictly necessary for concentration: weaker conditions can also yield such bounds, albeit
with slower rates (Adamczak & Wolff, 2015). Commonly used activations such as ReLU,
sigmoid, tanh, and softmax follow Lipschitz continuity (Gao & Pavel, 2017).

Spectral representation. Foundational blocks of GCNs are the graph filters and they
admit a spectral representation. Since the convolutional operators are symmetric, they can
be diagonalized as S = VAVH. The matrix A € C* whose diagonal entries are referred to
as graph spectrum. The Graph Fourier Transform (GFT) for any signal z € R™» is defined
as Fz := V1z = 2 € C", and similarly the inverse GFT is defined as 7z = z. By applying
GFT on both the sides of Equation (1) we obtain

Fo(hyz) = hAVhz = (Z hkAk> Faz, (6)

k=1 k=1

from which we have the spectral representation of graph filter / spectra as h(\) =
ZZil hiA*. For future use we denote spectra as

ny
TFH = {Z hidiag" (A%) : V{h,.} € H} ccre, (7)
k=1

and likewise the set F.7# denotes the spectra of all layers and channels.

Finally, we introduce the notion of covering numbers that will be used in our main results.
Definition 1 (e-Covering Number (Vershynin, 2018)). Let A be a set equipped with a semi-
metric d. An e-net of set A, denoted by C(A,d,€), is any set of points {h}.} C A such that
every point h € A lies within distance € of some h}; i.e.,

C(A,d,e) :={h}}:Vh € A, 3h}, € A such that d(h,h}) <e.

The e-covering number of A, denoted by N (A,d,e) is the minimal cardinality of C(A,d,¢).
The natural logarithm of covering number is called the metric entropy of the set A.

3.2 A SHARP GENERALIZATION BOUND FOR GCNs

With the above assumptions and definitions in place, We now present the main generaliza-
tion error bound. To avoid notional clutter, we omit few deterministic constants, and proofs
they can be found in the §A.4, and §A.5 respectively.
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Theorem 1. Under the Assumptions 1, and 2. Suppose {(Xs,¥:)}icin) are i.i.d. samples
drawn from the distribution p and € be a compact set. Define the quantities

Ly:= | [] Cisup |Fbl2 | Ly := |E[lx|2]+ sup |IFihl
=0 het le[L H

s

K :=n,( (LY + L})o* +0?2], K" :=max{kLy [LA,(H) +oL(0)] , K +1},

where Kk is a deterministic constant. Fiz a 6 € (0,1]. Then for any global minimizer Hy of
(ERM) w.p of at least 1 — 6 we have

N In(3/6) + In(N(FH, | - |2, e/ K"
GE (HN) < inf 25+K\/ 0(3/0) + Xy mW(FH, | - ll2, ¢/ K™)) ®
e€(0,K] 2N

Remarks. The bound in Equation (16) parallels classical uniform concentration results
for Lipschitz continuous functions under sub-Gaussian data distributions. We now have
flexibility to substitute the covering number of class of spectra considered. The infimum
can be easily upper bounded by certain choices of ¢, like demonstrated in §3.3.

Proof outline. Our proof technique relies on applying union bound for the tail probabilities
of the empirical process GE, over the hypothesis class . This requires computing the
covering number of H under the metric d'(h,h’) := || Zje[nf](hk — h},)S*|l2. However,

by Parseval theorem (Parseval, 1806), we can equivalently compute the metric d’(h,h’) =
|Fh — Fh'||2. This equivalence is crucial, as it allows us to transfer from R/ to C"=.

Limitations. (i) While our results require p belong to sub-Gaussian class. Although
we employ this for technical convenience, applying GFT is still applicable. Extensions to
heavy-tailed distributions are possible (Li et al., 2024), albeit with slower error rates.

(ii) Tt is not necessary to solve (ERM) exactly, our results extend to any first-order stationary
points. This requires positive homogeneity of the network ®(H;-) w.r.t its parameters, which
enables connecting the nonconvex and convex programs (Tadipatri et al., 2025).

(iii) Finally, our bounds apply only when the convolutional operator S is fixed. For
GNNs that learn S from data, such as Graph Attention Networks (Velivckovié et al., 2018;
Franceschi et al., 2019), extending our results is non-trivial, since GFT is not uniform across

draws from p. Here, prior art often resorts to classical frameworks (Vasileiou et al., 2025).

3.3 ESCAPING OVER-PARAMETERIZATION IN GCNs

In this section, we apply Theorem 1 to graphs in different regimes. In Corollary 2, we
consider the case when graph is finite sized. In Corollary 3, and 4, we study the case
of infinite sized graphs, or referred to as graphons (Ruiz et al., 2020). For simplicity of
exposition, we restrict our applications to single-channeled GCNs (i.e., C; = 1).

Optimization algorithms such as SGD, ADAM to solve (ERM) often lead to parameters
that are bounded (Reddy & Vidyasagar, 2023). For GCNs this implies that the spectrum
is bounded, such phenomenon is also observed in Ruiz et al. (2020); Wang et al. (2025Db).
We now apply Theorem 1 under this boundedness condition.

Corollary 2. Let various symbols be as in Theorem 1 with L = 1. If F I is bounded by 1,
then w.p of at-least 1 — § it holds that

GE (I:IN) <K 2%ln <l—|—max{4llgu\/f,e— 1}) + K/ IHS\/[&). 9)

Remarks. From Equation (9) we conclude that the sample complexity is N > O(n,)
and independent of the number of parameters ny. Meanwhile, FCNNs would require N >

O(nyng) (Bartlett et al., 2019). Ours bound provide theoretical evidence for the empirical
success of GCNs over FCNNs.
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Table 1: Comparison of generalization error bounds for 1-layer GCN.

Model Work Technique CE(Hy) < O()
FCNN  Bartlett et al. (2019) VC-dimension /nyng /N
Scarselli et al. (2008) VC-dimension A /n‘}n%/N
GCN Liao et al. (2020) PAC-Bayes vng/N
Garg et al. (2020)  Rademacher complexity Vn2/N
Ours Covering number ng /N

Comparison with state-of-the-art bounds. Our generalization bounds are not only
independent of the number of parameters, but also outperform existing state-of-the-art
bounds for GCNs (see Table 1). Scarselli et al. (2008) employ VC-theory framework, their

analysis yields a sample complexity of N > O (n‘}nz), which scales poorly with both the n

and ng. Liao et al. (2020) obtained slightly tighter bound N > O (ny) by using PAC-Bayes
framework. This bound scales linearly with the ny, making it less effective in simply cases
when trying to to predict low-pass graph signals, which require countably infinite number of
filter coefficients (see Oppenheim (1999)). Garg et al. (2020) showed bounds that have no
dependence on n¢, and require a sample complexity of N > O (ng) by using Rademacher
complexity. However, quadratic dependence on n, makes it loose compared to our bound.
Tang & Liu (2023) provides generalization bounds through algorithmic stability properties
of SGD, but lacks explicit dependence on ny or n,. Other works (Wang et al., 2025b;c), use
the term “generalization bounds” for GCNs in a different context. Their settings consider
the closeness of test performance to the best possible in expectation when the graph itself
is generated by a fixed manifold, which is different from our setting. In comparison to other
works, our bounds do not scale with ny. To the best of our knowledge, these are the first
theoretical results that analyze generalization properties in the spectral domain.

Now we extend our results to infinite node regime where the number of nodes n, — oo,
these graphs are called as graphons (Ruiz et al., 2020). Graphons are very relevant to the
study of network science (Vizuete et al., 2021), game theory (Parise & Ozdaglar, 2019), and
controls (Gao & Caines, 2019b). In this regime, error bounds in Equation 9 quickly becomes
vacuous. The poor scaling is often referred to as “curse of dimensionality”, this term was first
coined by Bellman (1954). However, the spectrum of graphons filters are known to exhibit
certain regularity conditions (Ruiz et al., 2020). This curse of dimensionality can be avoided
by imposing certain regularity conditions on the spectrum such as Lipschitz continuity or
low-pass nature. We now apply Theorem 1 when the spectrum is also Lipschitz continuous.

Corollary 3. Let various symbols be as in Theorem 1 with L = 1. If the hypothesis class
FH C {{z;}:VieN, fe Az, = f(\)}, where A :={f : C - C:V\XN € C,|f(\) —
T < PIX=XN|,|Ifllc <1,f(0)=0}. Then w.p of at-least 1 — & we have

GE (Hy) <0 ((ﬁjéi) + ln(]3v/6)> . (10)

1/6

Remarks. The error rate only scales as N7*/° which is slower than the central limit
theorem rate of N~1/2. However, the astounding aspect is that the dependence on ng
and ny vanishes, effectively escaping the curse of dimensionality. Moreover, it has been
well studied that Laplacian of graphons tend to have bounded eigenvalues (Gao & Caines,
2019a). Therefore, the spectrum being Lipschitz continuous is merely an assumption.

Nt & Maehara (2019) observed that GCNs naturally learn low-pass filters for certain
datasets. This suggests that spectral response is much more regular that just Lipschitz
continuity. We formalize this regularity and call a spectrum is low-pass with bandwidth ~
and order k if the magnitude of the spectra is of form

. A if A <
| < pass ) 11
|h(N)] < {Apass/|>\|k otherwise. )
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Figure 1: Effect of Lipshitz constant, and filter length on generalization error. Heterophilous
datasets are marked with “*”. Dashed line indicates the lowest testing standard error.
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Figure 2: Effect of low-pass spectrum on the generalization error. v is band-width, and k
is exponent of spectrum decay. Heterophilous datasets are marked with “*”. Dashed line
indicates the lowest testing standard error.

Next, we apply Theorem 1 when the spectrum is also low-pass.

Corollary 4. Let various symbols be as in Theorem 1 with L = 1. If the hypothesis class
H consists of low-pass spectrum with order k > 1/2. Then there are deterministic constants
g, Br > 0 such that w.p of at-least 1 — § we have

A In (1 + max {8 N @Zk-1)/4k ¢1/(2k=1)% _ 1 In(3/0)
GEHy) < Ozk\/ ( { N(@h—1)/2k }) + K ON (12)

Moreover, in the limit as k — oo the above relation evaluates to

GB(HLy) §8\/1n(1+;15;55¢8W) K /1n§;\/[5). (13)

Remarks. For kth order low-pass spectrum, the generalization error scales as N~ (2k—1)/4k
as soon as k > 0.75 we obtain a faster rate than Corollary 3. In the limit when k& — oo,
we recover the best possible rate of N~1/2. This indicates that enforcing low-pass filters
is beneficial for generalization. However, it not necessarily true that such constraints yield
better expressive power or training performance.
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4 NUMERICAL SIMULATIONS

In this section, we corroborate our insights by performing transductive node classification
(we only observe a few nodes in each sample) on homophilic (node features are similar when
targets are similar) and heterophilic (node features are not similar when targets are similar)
real datasets including, Cora, Citeseer, Pubmed (Yang et al., 2016), Photo, Computers
(Shchur et al., 2018), Wikics (Mernyei & Cangea, 2020), Minesweeper, Tolokers, Roman-
empire, Amazon-ratings, and Questions (Platonov et al., 2023).

We use the ChebNet architecture (Defferrard et al., 2016) with ReLU activations, cross-
entropy loss, and multiple layers. We use the ADAM optimizer (Kingma & Ba, 2015) for
200 epochs with a learning rate of 0.01 for training. We provide experimental evidence
to verify the theoretical bounds from Corollaries 2, 3, and 4. The results are averaged
over 5 random seeds. Since the test set itself is random and finite-sampled, we ignore the
generalization errors that are less than the standard deviation of the test error fluctuations,
i.e., In(n.)\/1/2M, where n. is the number of classes, and M is the number of test samples.
In our simulations, datasets such as Computers, Wikics, Tolokers, Amazon-ratings, and
Questions are not shown because the obtained generalization errors are of order ~ 1077,
which is less than the standard deviation of the test error fluctuations, ~ 1073 (see §A.2).

Generalization performance is insensitive to the filter length. Corollary 2 estab-
lishes that generalization error is independent of ny. To verify this claim, we train a 1-layer
ChebNet on different datasets while clipping the norm of the parameters to be less than 103
for boundedness of the spectrum, with a varying number of filter taps, ny. Figure 1a shows
that the generalization error is relatively constant across large variations in ny.

Lower Lipschitz constant improves generalization. To verify Corollary 3, we train
a 2-layer ChebNet on different datasets via projected ADAM, at each iteration we project
the parameters onto a Euclidean ball of desired radius R. This allows us to control the
Lipschitz constant of the GCN, since the Lipschitz constant of the filter spectrum is directly
proportional to the ¢ norm of the spectrum. In Figure 1b, we vary the R, and observe that
lower R (i.e., lower Lipschitz constant) yields better generalization performance consistently
across datasets. This empirical evidence supports the upper bound in Equation 10.

Low-pass spectrum yield better generalization. To verify Corollary 4, we train a
1-layer ChebNet composed with a graph low-pass filter having varying bandwidth ~, and
order k. Figure 2 shows that the generalization error on a log scale remains invariant to
(2k — 1)/4k, which is consistent with the exponent in the upper bound of Equation 12.
Errors for the Minesweeper dataset is not visible because it is very close to zero.

5 (CONCLUSIONS

In this work, we derived sharp generalization bounds for multi-layer, multi-channel GCNs by
leveraging classical tools from signal processing and modern techniques in statistical learning
theory. Unlike prior approaches that analyze GCNs purely through their parameter space,
we adopt a spectral viewpoint of GCN convolutional layers, which admit lower intrinsic
dimensionality. By exploiting this spectral structure, we derive generalization bounds that
are independent of the total number of trainable parameters, and instead scale nearly lin-
early with the input dimension or number of nodes. In the finite-node setting, the sample
complexity scales nearly linearly with the number of nodes. In the infinite-node setting, un-
der certain mild regularity conditions on the filter spectrum, we show that GCNs provably
escape the curse of dimensionality. Our theoretical findings are corroborated by extensive
numerical simulations on real-world datasets.
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A APPENDIX

In this supplementary material we discuss the reminder of proofs for mathematical state-
ments made, extra technical discussion and related work. The below is the table of contents
for the appendix.
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A.1 EXTENSIONS TO CNNs

Example 1. Let X € R™*" be an image. We interpret the graph signal as x = vec(X) €
R™ ™ where vec(+) is the vectorization of X obtained by column-wise stacking.

Consider the pizel location (a,b) € [m]x[n] the corresponding location in the vectorized image
is a+ (b—1)m. Suppose that each pizel location (a,b) is connected to its 8-neighbhors (if
exists) namely (a — 1,b— 1), (a — 1,b), (a — 1,0+ 1), (a,b—1), (a,b+1), (a+1,b—1),
(a+1,b), (a+1,b+1). The corresponding locations of these pizels in the vectorized image
are

a,b) > i:=a+(b—1)m

a—lb) (a—1)+b-1m=i—-1
a—1b+1)—=(a—-1)+(bm=i+(m—1)
b—2m=i—m

+
a,b+1) — a+ (b)
a+1,b—1) = (a)
a+1,b) = (a)+(b-1)m=1i+1

)

(
(
(
(
(a,b—1) = a
(
(
(
(a+1,b+1) = (a)+ (b)m =i+ (m+1).



Under review as a conference paper at ICLR 2026

Effectively the adjacency matriz of the graph is a m - n X m - n matrix with 8-neighborhood
structure. The adjacency matriz A is given by

Ai’j:{l’ if li =3l € {1,m = 1,m,m + 1} »

0 otherwise.

Pictorial representation of such transformation for 3x3 image is show in Figure 3.

(1,1) (1,2) (1,3)

/ \

Image X € R3*? (2,1) /2,2) (2,?);\

=N
vec(X) e R| 1 2 3 4 5 6 7 8 9
m 1 0 1 1 0 0 0 0
1 011 1 1 0 0 O
01 0 0 1 1 0 0 O
110 01 0 1 1 O
Adjacency matrix A=|1 1 1 1 0 1 1 1 1| eR%®
01 1 0 1 0 0 1 1
00 0 1 1 0 0 1 0
0 00 1 1 1 1 01
10 0 0 0 1 1 0 1 0

Figure 3: 3 x 3 image X with symbolic pixel locations (a,b), its vectorized form vec(X),
and 8-neighborhood (if exists) adjacency matrix A.

From the above example, we can see that the any image can be represented as a graph signal
x € R™" where m and n are the number of rows and columns of the image respectively.
Therefore, our results also apply to CNNs.

A.2 EXTRA NUMERICAL SIMULATIONS

We describe the dataset details in Table 2. We demonstrate both the test error and the
generalization error for 2-layer and 10-layer ChebNet in Figure 4. To run our experiments,
we use the PyTorch Geometric library for implementing GCNs.

In §A.2.1, we discuss the error in estimating the expected risk using empirical test samples.

A.2.1 EMPIRICAL TEST SAMPLES

In practice, we do not have access to the true access to the test samples. Therefore, we cannot
compute the expected risk to verify the closeness of the empirical risk and the expected
risk. Instead, we use a held-out data to estimate the mean. This arises a small error in the
estimation of the expected risk. In the experiments, we consider node classifications tasks
with cross-entropy loss, therfore the loss random variables always lies in [0, ln(n.)], where
n is the number of classes. Therefore, we can use Hoeffding’s inequality (Hoeffding, 1963)
to bound the error in the estimation of the expected risk.
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Figure 4: Dataset comparison showing performance across different graph datasets and configura-
tions.
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Table 2: Graph datasets used in numerical experiments with their characteristics.

Dataset Nodes | Edges | Features | Classes | Homophily Description
Citeseer 3,327 9,104 3,703 6 Yes Citation network
Cora 2,708 10,556 1,433 7 Yes Citation network
Pubmed 19,717 | 88,648 500 3 Yes Citation network
Amazon-computers | 13,752 | 491,722 767 10 Yes Product co-purchase network
Amazon-photo 7,487 119,043 765 8 Yes Product co-purchase network
Amazon-ratings 24,492 | 93,050 300 5 No Product rating prediction
Minesweeper 10,000 | 39,402 7 2 No Mine detection in grid
Questions 48,921 | 153,540 301 2 No Question classification
Roman-empire 22,662 | 32,927 300 18 No Historical network
Tolokers 11,758 | 519,000 10 2 No Worker classification
Wikics 11,701 | 216,123 300 10 Unknown Wikipedia CS pages

Proposition 1. Let ¢ be a cross-entropy loss with n. classes and u), beAthe empirical dis-

tribution of the test set with M samples drawn i.i.d from p. Suppose that Hy is independent
from py;. Fiz a § € (0,1]. Then w.p of at-least 1 — 6 we have
In(2/6)

(Fx) = Ry(Hy)| < In(ne)y 75772 (15)

R,
2M

(233

A.3 EXISTING APPROACH

Table 1 summarizes existing generalization bounds for GCNs.

Uniform concentration of measure. The analysis in Shalev-Shwartz et al. (2009) is
typically based on uniform concentration inequalities for Lipschitz continuous functions.
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Since the learnt parameters Hy are correlated with the empirical distribution py classical
concentration arguments do not directly apply, that is, closeness of empirical risk to popu-
lation risk. Instead, one must control the deviation uniformly over the parameter space ¢

i.e., GE(Hy) < supger GE(H) a.s. By the monotonicity of probability measures under
inclusion, for any € € R we have

P (GE(ﬂN) > E) <P (Hsggf GE(H) > 5)

To upper bound the right-hand side, one needs a uniform control over the generalization error
across the entire parameter space. A key idea is to relate this to the “size” of the parameter
space, which is captured by the notion of covering numbers (Dudley, 1974; Vershynin, 2018).

For instance, suppose the generalization error GE(H) is K-Lipschitz continuous with respect
to H under the semi-metric d a.s., that is, for all Hy,Hs € 5#: |GE(H;) — GE(Hy)| <
K - d(Hy,H,). Then via few simple algebraic manipulations we can show that

P ( sup GE(H) > 5) <P < sup GEMH) > (1+ K)e) :
Hes HeC(H#,d,e)

Since the right-hand side is a union over an e-net, we can further bound it using the covering
number and for some fixed H' € ## independent from pp, that is,
P (GE(ﬂN) > 5) <N (A,d,€) - P (for a fixed H' € # : GE(H') > (1 + K)e).

The probability term on the right can be upper bounded using standard concentration in-
equalities (e.g., sub-Gaussian). The tightness of the bound depends on the covering number
N (S, d,e)—smaller values yield tighter generalization bounds.

Suppose # C R™f (i.e., L = 1) then the covering number for p > 1 we have N (A, ||-||p, €) <
O(1/e"™), which roughly leads to the bound GE (I:IN) x y/ns/N. However, in the over-

parameterized regime where ny > O(n;), this results in vacuous generalization bounds,
highlighting the need for re-thinking the analysis.

A.4 CONSTANTS

K w
Ak = 4(2(%—1)\/71

(16A2 )1/(2k—1)

, where w; =

)(Qk—l)/(Qk) >171/2k

, and B = wa (72(2’;1) 2

w1

pass

2k—1

, and wg = 445, K" \/((2k), here ((-) is the Riemann zeta function.

A.5 MAIN PROOFS

In this section, we discuss the proof of Theorem 1, Before which we restate the general
theorem that is applicable to multi-channel GNNs.

Theorem 2. Under the Assumptions 1, and 2. Suppose {(X;,¥:)}icin) are i.i.d. samples
drawn from the distribution p and € be a compact set. Define the quantities

Ly:=| [] Gisw |Fbls | L= |Ellx|2)+ sup || Fihls
le[L) heH le[L],heH

K :=n,([(Ly + L)o* + 0], K":=max{kLy LA ,(H)+0oL(0)], K +1},

where K is a deterministic constant. Fiz a 6 € (0,1]. Then for any global minimizer Hy of
(ERM) w.p of at least 1 — § we have

. \/1n(3/5) + Tiey ln;/]vvﬁﬂ, - ll2,2/K"))

GE (HN) < inf (16)

e€(0,K]

17
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Proof. We use Lemma 6 to estimate the Lipschitz constants of the GCN function ®, denote
the input Lipschitz constant by Ly, and the parameter Lipschitz constant by L _». Now by
invoking Lemma 2 with K, K’ we obtain

P (GE(ﬂN) > it <25+K\/ In(V(FI# sup [ -,/ max{ Ky, K +1}) +1n<3/5>)>

£€(0,K] 2N
<.
By upper bounding In(N (F, sup [|-||2, £/ max{ Ky, K+1})) by 32, (1) CiCi—1 In(N (FH, ||-
l2,e/ max{K;, K + 1})) and re-scaling the € we obtain the desired result. O

First we re-state the uniform concentration of convex functions. In other words, the closeness
of empirical loss and population loss for a given function map.

Lemma 1 (Concentration of Convex loss (Tadipatri et al., 2025)). Suppose the distribution
W satisfies the Assumption 1. Consider the estimators from the set of functions fg : R™"* —
R™ as parameterized by 0 € © that are Lo-Lipschitz continuous with respective to inputs.
Consider a loss function £ : R™v x R™ — R that is convex and (-smooth.

Let C C R™ be some convex set independent of empirical samples {X;}ie[ny that are drawn
i.i.d from p such that P(Vi € [N], X; € C) > 1 — éc. Define the quantities

L© = su M’ BO .— 2)|,
boeonec  d(0,0) eee,fec”f"( )l )
K =ny([(Ld + L2)o% + o2] , and

Brrm(C) := S o [ for 0 Pe(2) = fo 0 Pe(@)3] = Eanp [llfor(2) = fo(2)II3]|  (18)

where Pc(-) denotes the Euclidean projection operator onto the set C. If L© BO K < oo,

and . Then for any global minimizer of R, , € € (0, K] and some universal constant ¢ > 0
we have

P ([Ryn (0) = R, (6)

> €+ Bum(C)) < 2N(6,die/(2LOBO))exp (N (¢/K)’)
+ dc.

(19)
Lemma 2. Under the settings of Lemma 1, suppose fy is constant with value Fy, and there
evists positive constants a and b such that L(®) = asup,c¢ ||z| +b. Define

Ky = 284(0) (al[E[x] |2 + b)° + 2Fy (al| E[x][l2 +b)

Then there exists a universal positive constant ¢ such that w.p of at least 1 — § we have

inf (25 _'_K\/ln(J\/'(@,d,E/max{Khl+K}))+ln(3/5)).

Ry (0) = Ru(0)] <

e€(0,K] cN

Proof. The proof involves invoking Lemma 1, and we break it into multiple steps. (I) We will
choose a convex set C that contains the data points x with high probability. (II) Then we
will bound the key constants such as Lipschitz constant L(¢) and B(©). With these constants
we will move on (III) to controlling the metric entropy, (IV) projection error By, (C), and
(V) existence of data points in C. Each of the earlier steps induces constraints on the choice
of C. In (VI) we will show that a good choice of C exists that satisfies all the constraints,
obtaining the final bound.

(I) Choosing C: Set C = E[x] + Bz (z) for some z > 0.

(ITI) Bounding key constants: From our assumption we have

L©) = az + a||[E[x]|2 + b.
To bound the term B(©), on application of the triangle inequality we have

BE < sup | fo(z) = for(2)ll2 + || fo(2) |2 < L Au(O) + sup || fo(2)]|2-
0e€0,zcC zeC

18
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(ITI) Controlling the metric entropy: Combing the above two inequalities we have
2
2L B <284(0) [LO] + 2R, L.
By plugging the choice of C we have
2L BO) < 242A4(0)22 + (4aA4(0) + 2F) (a||E[x]||2 + b) 2
+2A4(0) (al|E[x] ]2 + b)* + 2F (al|E[X][l2 + 1) ,

Define A; := 2a2A4(0), and By = (4al4(0O) + 2F) (a||E[x]||2 + b). For some arbitrary
v > 0and a € (0,1) for the relation ¢/2L)B©) > ¢~ /4@ to hold true, the following
inequality must hold

(ey)* < A122 + Biz + Ky,

as z > 0, it is necessary and sufficient for z to satisfy

1+ (E'Y)QB%_ S 1] . (20)

By

0<z<z(e7,a) = A
1

The admissible € is when B} > 4A4;(C; — (7)) = € > %Kll/a.

z1(€,7, ) is a continuous function in its arguments, a increasing function of €, . In the case
when ey > 1, it is increasing in « and decreasing in « otherwise.
(IV) Controlling the projection error: From Corollary 5 we have that

Brrm(C) < C10? (ao + a||E[X]||2 + b) Lo Ag(©) exp (70222/02) .
Therefore, for B, (C) < € to hold true, it is sufficient for

2 (010'2 (ao’—|—a||E[XH|2—|—b) L@Ad(@)) .

z > 2o(€,7, ) = 2 (21)

Ca

€

The function 25 is continuous in its arguments, is strictly decreasing in €, and constant in y
and a.

(V) Probability of existence of x in C: Since x is sub-Gaussian distribution for some
universal constant ¢ > 0 we have

P(Vi € [N],X; ¢ C) < 2exp (—cNz*/0?).
Therefore, it is sufficient to choose z such that
exp (—cNz?/o?) < exp (ln (N(@, d, e/(ZL(C)B(C)))) —cN (e/K)2> ,
when z < z; we have that
exp (—eN22/0?) < exp (1n (N(@, d, e/(2L<C>B<C>))) _eN (E/K)Q) ,
< exp (m (N(©,d, /7)) — cN (e/K)2> .

Therefore, we have that

€2

1
z > z3(e,v,a, N) := 030\/max {K2 - Nln (N(O,d, el /y2)) ,0}. (22)

The function z3 is continuous in its arguments, is increasing in €, decreasing in ~, increasing
in o when ey < 1, and decreasing in o when ey > 1.

(VI) Existence of good z: We claim that there exists a good z such that z; > z >
max{za, z3} with a proof presented next. With such a good choice of z we have that

P (’RW (@) — Rﬂ(é)] > ze) < 3exp (1n (N(O,d, e~ /4)) — cN (e/K)Q) . (23)
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Proof of the (VI): We will consider the equilibrium point of z3 and z3 for finite N, and
in the limit as N — oo, that is, we consider the programs

) .= int(")e s.t. zo(€,7y, @) = 2z3(€, v, a, N),
€>

€, :=1inf € s.t. 2z2(e,v,a) = lim 23(€,v,a, N) = cz0¢/ K.
e>0 N—oo

Clearly e, is independent of v and «, because in the limit the metric entropy term vanishes.

From the definition of z3 we have that z3(e,v,a, N) < czo¢/K, and 25 does not depend on

N. Therefore, it is true that e, < g(“f’a’N) for any N > 0.

Now we find a feasible candidate for 7, consider the program

Yy 1= info'y s.t. z1(€x, 7, @) > 29(€s, 7, ) > 23(€s,7, 0, N).
>

From earlier dicussion we know that in terms of 7, z; is increasing, zs is constant, and z3 is
decreasing. Moreover, z; can grow unboundedly with v and since z; is constant . Therefore,
v« certainly exists and is finite. Recall from Equation (23) that for any arbitrary 8 > 0 and
S [22 (e*,NB'y*,a) , 21 (E*,Nﬁ'y*,()z)]7 we have that

P ([Ryn (0) = R, (6)

> 26) < exp (ln (3-N(©,d,¢/(e7sN")*)) — cN (e/K)Q) :

Now for € € [7 }vﬂ Kll/'l7 K} and by instantiating Lemma 1 we have that

P ([Rn (0) - R (0)

> 26) < exp (m (3-N(O,d, e/(K7.N?)*)) — cN (E/K)Q) . (24)

the metric entropy was upper bounded due its non-increasing nature in e.
Failure rate flipping: Let 0 be such that

exp (m (3-N(O,d,e/(K7.NP)*)) — ¢/ N (e/K)Q) <4,
by re-arranging the terms we have that

In(3-N(©,d,e/(Kv.NP)®)) +1n(1/5)
0= K\/ cN

<e.

Now we add 2¢ on both sides to obtain

2 < 2 + K\/ln (3-N(©,d, 6/(12;*N5)“)) +In(1/0) _ 4 (25)

The intermediate term in Equation (25) is a tight estimate in €, using this we obtain

N 2€+K\/ln(3-N(@,d,e/(K%Nﬂ)“))—Hn(l/&)) <

P (\RM (6) ~ Ru(6) =
Since the choices, a € (0,1) and 8 > 0 are arbitrary, we make good choices to obtain the
tight rates as possible. We have the following cases:
(a) K+ 1> Kj: Define
In(1+ K)/a — In(K~.)

In(N) ’

(§N)

(o) :=

Then we have that e/(K7, N2 = ¢/(1+ K). Set a := max{ll?l((?jf)), 1}, and 3 = B(a),

1/«
then for any a < o, and € € [K (lf}() ,K] we have that

P (‘RM (6) — R (0)] > 2¢ + K\/ln W(®,d, e/(lcij))) i ln(3/5)> <.
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We choose a sequence {ay} such that a — 0 and bounded away from 0, and «. Then we
obtain the bound

i (’Rw(é) —R“(é)’ > inf <2e+K\/ln(N(®’d’€/(HK)))Hn(?’/&))) <.

 €€(0,K] cN

(b) K +1 < Kj: Define
Blo) = 2In(K1)/a — In(K.)
'_ In(N) ’

In(K~.)?
Now we choose a sequence {ay} such that ay — 0 and bounded away from 0, and @. Then
we obtain the bound

P ((Rw(é) —Ru(é)’ > inf <2e+K\/ln(N(®’d’e/Kl))HH(S/‘S))) <.

e€(0,K] cN

Then we have that for all 8 = B(a), e/(Kv.NP@)* = ¢/K;. Set @ := max{zln(Kl) 1}.

This concludes the proof. O]

Lemma 3. Suppose V0 € O, fy is Lo-Lipschitz continuous with respect to inputs, and
LB20))_Lipschitz continuous with respect to parameter for a fized x. Then the projection
difference satisfies the inequality:

By (C) < 2LoAg(O)E [L© + L<Bz(>‘>>] E|

Pe(x) = x||2]

Proof. Recall that the projection difference is defined as
Bnrm(c) = Gseup@ |IE [Hf@’ oPc — f9 © PCH% - ”fe/ - feug] |
S

= eselllg@ [E[{fooPc— fo— (for oPc — for), o o Pc— for oPe+ fo— for)ll

< osalllgeE [Ifo o Pe — fo — (for o Pc — for) l2] E |l fo o Pe — for o Pe + fo — forll2)

sup E[||fo o Pc — foll2 + || for o Pe — fol|2]
9,6'c@

X E[||fo o Pc = for o Pell2 + || fo — forl|2]

sup 2LoE[[|Pe — I|2] x d(6,6") [E [L@ + L<Bz<x>>H
6,0/cO

— 2L A4(O)E [L<C> n L<B2<x>>] E[|[Pe(x) — x||2] -

IN

IN

The second equality is obtained by identity [|a]|? — [b||2 = (a —b,a+b),. Then the third
inequality follows from the Cauchy-Schwarz inequality. The fourth inequality follows from
triangular inequality. The fifth inequality follows from the Lipschitz continuity of f with
respect to inputs and parameters. O

Corollary 5. Under the settings of Lemma 3, if x is a sub-Gaussian vector with proxy

variance 0% and L) = asup,c 4 ||z| + b for some a,b € RY, then there are universal
constants Cy,Cy > 0 such that
Byrm (E[x] 4+ Ba(2)) < C10*(||E[x]|| + ao + b) Lo Ag(©) exp (—Ca2%/0?) . (26)

Proof. From Lemma 3, we have
Burn(€) < 2LoAa(O)E [L©) + LECD | E[|Pe(x) - x|l2].

Now since x is a sub-Gaussian vector with proxy variance o2, we utilize the results from

Lemma 4 and Lemma 5 to obtain the desired result. O

21



Under review as a conference paper at ICLR 2026

Lemma 4. Consider the function f(x) = al|x|| 4+ b, for some a,b € R*. If x is a sub-
Gaussian vector with prozy variance o2, there is a universal constant Cs > 0 such that

E[f(x)] < Csac +b. (27)

Proof. By linearity of expectation, we have

E[f(x)] = aE[||x][] + .

For any sub-Gaussian vector X with proxy variance o2

(see Vershynin (2018)), we have
Eflx|l] < Csa, (28)

where C3 is a universal constant. Substituting this into the expectation obtains our desired
result. O

Lemma 5. If x is a sub-Gaussian vector with prozy variance o2, then for any z > 0 there
are universal constants C1,Coy > 0 such that

E [||Ix — Prpqam. ) (X)[13] < Ci0” exp (—Ca2%/0?) . (29)

Proof. By the definition of the projection operator, we have

z
X — Phlx]+Ba(2) (X) = {1— qTE—T ] (x —E[x]).
) Ix —ERll,)

Taking the expectation of the squared norm, we have

2
z
B (I~ Pospszuco GOIE) =B | |1 = e |~ BB

E[x]| 5]

By the homogeneity of ReLU, we can factor out the squared norm to get
E [ — Perej 520 (0I13] = E [[lc — Bl - 212
_ / P (llx ~ EBllo - 212 > k) dk
0
o0
_ /0 P (llx ~ERll> - 2], > VF) dk
- / P (Ix— Epdlls > = + VF) db.
0
For some universal constants ¢/, ¢4 > 0 we have that

E [||x — P]E[xPng(z)(X)”%] < /0 exp (—02(2' + \/E)Q/(ﬂ) dk.

Set u = z + vk, then we have dk = 2(u — z)du. Substituting this into the integral gives us
E [||Ix — Prpgam. () (X)[13] < 2¢) / (u— z)exp (—cou®/0?) du,

=2c) / uexp (—cou?/o?) du — 20’12/ exp (—cou?/0?) du.

For the first term, we can use the substitution v = chu? /o2, which gives us (02 /ch)dv = 2udu.
Observe that second term is negative, so we can upper-bound it by 0. Thus, we have

2. os} /
o’c c
B [l - PepsnaGOIE) < 0 [ exp(-u)do = So%exp(-che2/o).
Co chz? /o2 Cy
By setting C1 = ¢} /¢, and Cy = ¢}, we obtain the desired result. O

Lemma 6. Under the assumption 2, the map ® satisfies the following statements:
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1. For any H € J#, and x,x’ € R™ we have that

lo(H, %) — a(E. <) < | ] € [suplmhz} N
le[L] heH

2. For anyx € C and H,H' € JZ, and some positive constants c1,cq dependent on {C;} we
have

[@(H, x) — ©(H',x)||2 < [cl sup[|x|[ + ¢z sup IIEhIQ]
xeC le[L],heH

" sup H]_.lhl(c,g) _ ]_-lh/l(c,g)H2 )
le[L],ce[C1],9€[C1-1]

Proof. Statement 1 is straight forward, each layer and channel has a input Lipschitz constant
| >0 Pkete,gSEll2 = H]—'lhl(c’g)Hg. Therefore, the effective is just layer-wise product of the
Lipschitz constants, and using the inequality ||z||2 < V/d||z| ~, when z € RY.

e For Statement 2 it is cumbersome, but a useful trick is the identity

[fu(h, x) — ¢u(h',x")[[2 < [[[x[|2 + |Fh[|2] max{|| Fth — Fh'|l2, [x — %[}
e For ¢ channel at layer [, we have

=l < D0 [yl + 17 | masc{ | Fib ) - FW o, ]~ )
9€[Cr-1]

e At layer [ for some positive constants K1, Ko we have

x; x'] x{_y
=] 0 (<[] 5 | ll2+ Kasup [ Fb/ {59
l

[e]] ,C Cr—1
Xy X Xi—1

R
max : ]sup[ ] H]:lhl(c'g) - .th'gc’g) II2; : — . [l2
ce[Cy),9€[C;_1 o :
x, 1—1 x/Ile1

o We recursively apply this inequality for all layers.

A.6 PROOF OF COROLLARY |

First we state a classical theorem from Shalev-Shwartz et al. (2009) with our notation that
we will use in the proof.

Theorem 3 (Theorem 5 (Shalev-Shwartz et al., 2009)). Let 7 C R? be bounded by R and

let ®(H,2z) be G-Lipschitz continuous with respect to H for any z. Then with probability at
least 1 — 0 over a sample of size N, for all H € © we have:

et < 0 (o[ TR )

Proof of Corollary 1. For single-layer, single-channel GCN under the Assumption 2, we
have that ®(H, x) is ||x||2-Lipschitz continuos with respective to H. From the boundedness
assumption of the data, we have that ®(#, x) is G-Lipschitz continuos with H for all inputs
x. Finally since all the filter coefficients are bounded, i.e, 7 C R"f we can instantiate
Theorem 3. This concludes our proof.
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A.7 PROOFS OF COROLLARY 2

In this section, we provide the proof of Corollary 2. The proof relies on substituting the
metric entropy of bounded spectral filters into Theorem 1 and computing the infimum.
First we provide classical results on the metric entropy of finite-dimensional spaces which
Corollary 2 and 6 are based on.

Lemma 7 (Volume ratios and metric entropy Wainwright (2019)). Consider a pair of norms
|1l and |- | on R%, and let B and B be the unit balls (i.e., B := {6 € R? | [|0]| < 1}, with

B’ similarly defined). Then the e-covering number of B in the norm || - || obeys the bounds
d d
1\" vol(B) , 2\ " vol(B)
- <N(B,]| - <|1+- . 31
() mE = velre s (1+2) = (31)
As a special case, if || - || and || - || are the same norm, then the metric entropy satisfies the
bound
dIn(1/e) < (B, | - [,€)) < dIn(1 +2/2). (32)

Lemma 7 gives us a way to compute the metric entropy for the scenario in Corollary 2.
Next, we introduce an auxilary proposition that helps us compute the inf in Theorem 1.

Proposition 2. Suppose a > 0 then the following holds true:

ig% (az +ay/In(1 4+ 1/3:)) < 2a-max{l,y/In(1+1/a)} (33)

Proof. Define f(z,a) := (x + ay/In(1 + 1/95))7 clearly by the definition of infimum we have

inf,~o f(z,a) < f(x,a). Choose z = a, then we have

gicr;%f(x,a) <a (1 ++/In(1 + l/a)) ) (34)

when a > 1/(e—1) we have In(1+1/a) < 1, therefore we can upper bound inf, f(z,a) < 2a.
When a < 1/(e — 1) we have In(1 + 1/a) > 1, therefore we can upper bound

ir;ff(x,a) < ay/In(l1+1/a) + a\/ln(l +1/a+/In(1 4+ 1/a)) < 2a+4/In(1 4+ 1/a). (35)

This concludes the proof. O

Proof of Corollary 2. We instantiate Theorem 1 with L = 1, with metric entropy from
Lemma 7, we have

Ly o 4
P(GEMy) > inf 25—|—K\/n“L In(1 + 2max{K’, K + 1}/¢) + In(3/0) <4
e€(0,K] 2N

Define K" = max{K’, K + 1}. Now re-scale ¢ = 2K"¢’ this gives us
- sIn(l+1/e")+1 )
P (GE(HN) > inf {4K”5’+K\/n n(1+1/¢") +1In(3/ )}> <.

e'€(0,K/2K") 2N

We take 4K as common to have

" . K ng In(l 4+ 1/¢") +1n(3/4)
P | GEH 4K" . f ! \/ <.
(G () = o€ (0.K /2K {E i 4K"\/2N 2N =0

Now we upper bound the summands in the square root to have

N 111(3/(5) 17 . / K Ny /
. <o.
IP’(GE(HN) > K +4K inf W+ im o VIn(1+1/e) 0 | <6

2N e'€(0,K/2K"

We upper bound the inf using the Proposition 2 to have

p|cE@y) > K /lng\/fd)—FK anln(l—i—max{%\/%,e—l}) .

N

This concludes the proof.
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A.8 PROOFS OF COROLLARY 6

Authors of Yang et al. (2022) observed that GCN filter spectra are not only bounded but
also sparse on real-world datasets like ZINC (Irwin et al., 2012), suggesting that Corol-
lary 2 can be tightened. We now present generalization bounds for s-sparse spectra, i.e.,
diag" (R(A)]lo < s.

Corollary 6. Let various symbols be as in Theorem 1 with C; = L = 1. If the hypothesis
class H is such that the spectrum is bounded, and s-sparse, then w.p of at-least 1 — § we
have

. 2s 4K" [2N sln (eng/s) +1n (2)
< J— _ — .
GE (Hy) < K,| Tl <1+max{ —\ e 1}>+K\/ T~ (36)

Remarks. When the spectrum of learned filters are very sparse s << n, we observe that
error bounds and sample complexity are very sharp; i.e., N > O (s + sln(eny/s) + In(1/9)).

Proof. We use the classical result on the covering numbers for s-sparse vectors (Chan-
drasekaran et al., 2012), the metric entropy satisfies In(FH,| - ||2,¢) < O(sln(1/e) +
sln(eny/s)). The rest follows as in Corollary 2. Now we state the metric entropy of the set
of sparse vectors.

Lemma 8 (Metric entropy of sparse vectors). The e-metric entropy of the set of s-sparse
vectors By = {6 € R?: ||0]|o < s ||0]]2 < 1} is given by

In(N(Bs, || - ||2,¢)) < sln(1+2/¢) + sln(eny/s). (37)
Proof. For a fixed support S C [d] of size s, the set of vectors is a s-dimensional ball in R*

with radius 1. Lemma 7 gives us the upper bound (1 + 2/¢)*. Since we do not know the
support, we need to choose s coordinates from d and then cover the ball. The number of

ways to choose s coordinates is (f) < (ed/s)®. Therefore, the effective metric entropy is
In(N(Bs, || - l|2,¢)) < sln(1+2/¢) + sln(ed/s).
O

Proof of Corollary 6. Following the proof technique of Corollary 2, define K" =
max{K’, K + 1}, we have

P (GE(ﬂN) > inf {25 + K\/Sln(1 LRI % s nlena )+ I0(3)0) }) <.

e€(0,K] 2N

Now we re-scale ¢ = 2K"'¢’, this gives us

{4K"a'—|—K\/Sln(1+ 1/e’") + sln(en,/s) + 1In(3/9) }) <5

P (GE(ﬂN) > SN

inf
e'€(0,K/2K"]

By upper bounding the summands in the square root we have

. sln(eny/s) +1n(3/0) . " sln(l1+1/e’)
P GE(H K f 4K K\| ————=
(G (Hy) > \/ 2N +E’E(O,II%/2K”] S 2N

< 4.

We take 4K" as common to have

P(GE(ﬂN) S K\/sln(er%/s) +1n(3/4)

2N
+ 4K// .

o\ m VRF T }) <6

. f /
8’6(0,1?(/21(”] {5 + 4K\ 2N
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We upper bound the inf using Proposition 2 to have

- sln(en,/s) +1n(3/9) 2s 4K" [2N
P GE(HN)>K\/ 5N + K Nln 1+ max 7 Pl 1

< 6.

This concludes the proof. O

A.9 PROOFS OF COROLLARY 3

Next, we move onto the metric entropy of infinite-dimensional spaces. First, we consider
the set of all Lipschitz functions on the d-dimensional unit ball B<.

Lemma 9 (Metric entropy of Lipschitz functions Wainwright (2019)). Consider the class
of Lipschitz functions

F={f:10, 11 5 R | £(0) =0, and || f(x) — fF(x)|2 < L||x —x'|]2 ¥x,x" €0, 1]d}.
Then the e-metric entropy of F on the sup-norm || - |leo satisfies

Lemma 10. Consider the set A({\;}) = {{z:i}:Vie N, f e A;z; = h(\,)}, where A :=
{f:C—=C:VAN € Cf(N) = f(N)] < LIA = X[, [|fllec <1,f(0) = 0}. Then for any
€ > 0 the metric entropy satisfies the inequality:

(VAN - [l2,€)) < O ((L/e)*). (39)

Proof. Consider two elements {z;},{z;} € A({)\;}), then we have [[{z;} — {z/}||c =
[{A(A)} = {W (N\i)}|oo for some h,h' € A. By definition we have that

{2} = {2iHloo = I{R ()} = {B (X)) oo < (1B = h[loo- (40)
For any arbitrary {z;} € A({\;}) generated by h € A, we can find a function ' € A such

that ||h — h/||cc < € generating a sequence {h/(A;)}. Now clearly, e-net of A can generate a
sequence that forms a e-net of A({\;}).

Therefore, we have that In(N(A({N;}), | - llec,€)) < In(N(A, || - ||, €)). We obtain the
desired inequality by invoking result from Lemma 9 using the fact that C = R2. O

Next, we provide an auxiliary proposition that helps us compute the infimum in Theorem 1
for the scenario in Corollary 3.

Proposition 3. Suppose a,p > 0 then the following holds true:

inf (z+az?) < (p1/<1+p> n p—p/<1+p>) o1/ (+p). (41)

Proof. We set the derivative of the objective to zero, i.e,
1—apr™P™t =0= 2* = (ap)¥/ PV,

Plugging this into the objective gives us the desired result. O

Proof of Corollary 3. Now we instantiate Theorem 1 with L = 1, and metric entropy
from Lemma 10. Then for some constant C' > 0 we have

P (GE(fIN) > inf {25 + K\/C(L/E)4 + In(3/9) }) <6,

c€(0,K] 2N

where K" = max{K’, K + 1}. We re-scale ¢ = Le’/C'/*, this gives us

) 2L 1/ +1n(3/9)
f "+ Ky L—— <.
5’6(0,;(11C1/4/L] {01/46 + 2N

P (GE(ﬂN) >
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Now we upper bound the summands in the square root to have

. m(3/6) 2L . , KOV,
P|GE(Hy) > K : f <.
( (Hy) 2N + ct/4 E’E(O,Il{nCl/“/L] {6 i L\/SNE B

From the Proposition 2 with p = 2, we have

: (GE(ﬂN) > K In(3/9) + 2L ( /3 4 2—2/3) <K01/4)1/3> <9

N C/A IO

Simplifying the constants gives us the desired result.

A.10 PRroOOFS OF COROLLARY 4
Lemma 11. Consider the set of countably infinite dimensional vector whose entries poly-

nomially decay as C/i%, i.e., A= {{z;} € (R):Vi € N;|z;| < &}. If o > 1/2, then for
any € > 0 the metric entropy satisfies the inequality:

1/(2a—1)
In(N(A, || - [|2,¢)) < ( 16C° > o—2/(2a=1) (1 + 4CV((2a) \/f(%‘)> ’ (42)

200 — 1
where ((-) is the Riemann zeta function.

Proof. We will construct a sub-set defined as

Ay = {{yl} € (R):Vield,|yl < z% and Vj > d,y; = 0}. (43)

For any element {z;}, {z}} € A, {y:} € Aq and {y}} € C(Aq4,e/2) we have the inequality
{ai} = {@idlle < [{ai} = {wibllz + [{yi} — {2z + {yi} — {widl2- (44)
Using the fact that {y,} € C(Aqg,e/2) we have
{2} = {2tz < e/2+ {zi} = {2 + I{yi} — {2} l2, (45)

we now apply the triangular inequality to obtain,

c\? 20
Hzi} —{zi}]2 <e/2+2 Z <]“> < % 4= g (a-1)/2 (46)

j>d

Now choose d such that \/%d_(m_l)p < &/2. This requires that

4C B 2/(2a—1)
d > d(E) = (m{f 1) .

When d > d(e) we have that ||[{z;} — {z}}||2 < e. By definition the metric entropy of A is
smaller than the metric entropy of A4(¢). Then

(A, - 12:6)) < IV (Agey | - a,2/2)) < ) [ 142

(ZO%M) . (47)

>0

On simplification we have

1/(20—1)
(A |- [2,0)) < ( 16¢” ) 2/Ca D <1 1 A0VE(2a) VC(M) R

200 — 1

This gives us the desired result. O
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Corollary 7. Consider the set of countably infinite dimensional vector whose entries poly-
nomially decay as C/i, i.e., A:= {{z;} € (C):Vi e N;|z;| < £}. If & > 1/2, then for
any € > 0 the metric entropy satisfies the inequality:

1/(2a—1)
WA o) <2 (50 ) e (1 MEEVACL VC(M) )

200 — 1

where ((-) is the Riemann zeta function.

Proof. The proof is same as Lemma 11, except that the metric entropy of Ag() is upper

bounded by 2d(¢) In (1 + 4 /(20 C? /i2a)). O
Proposition 4. Suppose a,p > 0 then the following holds true:

ir;fo (x +ayx=?In(l + 1/:17)) < Z(ap)l/(p+1)\/ln (1 + max{(ap)~1/(+P) er* —1}). (50)

Proof. Choose = = (ap)l/(p'H) as the candidate point to upper bound the infimum. Then
we have

iI;% (a: +av/z7?PIn(1 + 1/37)) < (ap)V/ P+ 4 a\/(ap)—QP/(zH—l) In(1 + (ap)~1/(+D).
Taking (ap)'/P*1) out common we have
ir>1% (m +ay/z7?PIn(1 + 1/33)) < (ap)¥/P+D (p + \/ln(l + (ap)—l/(p+1))> )

By applying Cauchy-Schwarz inequality we have the desired result. O

Proof of Corollary 4. From Theorem 1 and Corollary 7 we have

Ky —2/(2k—1)1 1 1
P|GEHy)> inf <2+ K\/w1€ n(1l+ wsy/e) +1n(3/0) -
€€(0,K] IN

, and wo = 445,661/ C(2k) - max{K’, K + 1}.

Now re-scale € = wpe’, this gives us

2ue’ + K\/ wywy /D =2/@k ) In(1 4 1/¢) + In(3/9)
]

1642\ 1/(2k=1)
2h—1 )

where wy = 2 ( pass

P|GEMEy) > inf
e'€(0,K /w2

2N
<.
Now we upper bound the summands in the square root to have

In(3/9)
2N

K w1
S - f g 2 [ 2/ (2k-1) n(1 1/ < 4.
+ 2wy e/e(éflx/m]{g +2w§k/(2k71) \/;\/‘E n(l+ /E)}> -

From Proposition 4 with p = 1/(2k — 1), we have

P (GE(ﬂN) > K

(2k—1)/(2k)
., In(3/6) K wy (k1) /4K
P( GE(H K 4 = N—(@k=1)/4k
(GB(EN) > oN (2(%1) 2
1-1/2k
« |1n (1 + max {w2 (2(%_1) 2) N@k=1)/ak_¢1/(2k=1)% _ 1}))
K w1
<.
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Now let us apply the limit k& — oo, the term limg_, N@k=1)/4k _y \/N, limy oo el/(2k=1)* _
1 — 0. limg_yoo wo — 4Ap.s because limy_, o ((2k) — 1. Finally we have the coefficient

term
k—1)/(2k _
lim K \/U)>1 (2 )/ (2k) — lim K (2k=1)/(2k) w(Qk—l)/4k
oo \2(2k — 1)\ 2 k=00 \ 2(2k — 1)/2 '

KO\ YWD
~ O <2f k)
5 1/4k
x lim 2(2k—1)/4k 164505 — V2.
k—oc0 2]€ —1

Thus when k — co we have

P

111(3/5) \/hl 1 + Apassr)
2N

This concludes the proof.
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