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Abstract

In real-world applications, large language mod-001
els (LLMs) often need to handle diverse and002
complex instructions. Specifically, when in-003
structions are subject to multiple constraints,004
some of which are somewhat ambiguous,005
LLMs often fail to produce answers that sat-006
isfy all constraints, limiting their effectiveness007
in various tasks. To address this challenge,008
we examine the different constraints in the in-009
structions and discover that the difficulty of010
determining whether an answer meets a con-011
straint varies widely, from extremely straight-012
forward to exceptionally perplexing. Corre-013
spondingly, we propose to assign constraints014
to different constraint levels. Furthermore,015
inspired by chain-of-thought (CoT) and self-016
taught reasoner (STaR), we propose a two-017
stage method named CARE-STaR (Constraint-018
AwaRE STaR). Our method distinguishes con-019
straints within instructions by generating differ-020
ent CoTs and guides LLMs to autonomously021
learn optimal answers by setting the positive022
rewards to the CoTs that are beneficial to gener-023
ating accurate answers and iteratively optimiz-024
ing these answers. We have conducted exten-025
sive experiments on three instruction-following026
benchmarks, taking three existing LLMs as027
base LLMs, respectively. Experimental re-028
sults indicate that our method substantially en-029
hances the capability of these LLMs to han-030
dle complex instructions, outperforming super-031
vised fine-tuning (SFT). Our code is available032
at https://anonymous.4open.science/r/carestar-033
649C.034

1 Introduction035

In recent years, large language models (LLMs),036

which have been used in a wide range of applica-037

tions, such as dialogue systems, text summariza-038

tion, and machine translation (Achiam et al., 2024),039

have achieved significant success. As LLMs are ap-040

plied to an expanding range of domains, the instruc-041

tions that users input into these LLMs have become042

Use 'needed', 'money', 'computer', 'bought',
'happy' in the story, with no restrictions on
tense.

Generate a story that satisfies the following constraints.

+ Contain exactly 5 sentences1

+ 2

... John realized he needed money quickly. He decided

... old computer for parts. To his surprise, he found ...
and bought it. With the refurbished machine, ... he
needed. Now, John feels happy ... his financial future. 

... urgent need for money to ... purchase a computer, ...
new opportunities. With savings ... making a well-
informed decision. Upon ... and happiness washed over
him, ... improve his prospects. 

+ Please use a formal tone3

Figure 1: An example to illustrate the instruction-
following capability of the LLM, indicating its short-
coming. The answer generated by the LLM meets con-
straints (1) and (2) when only these are given in the
instruction, but fails when constraint (3) is added.

increasingly complex and diverse. In real-world ap- 043

plications, users expect models to handle intricate 044

domain-specific tasks and adapt to evolving scenar- 045

ios. They impose multiple constraints on instruc- 046

tions to optimize outputs and ensure compliance 047

with specific measurements. The increasing com- 048

plexity of instructions poses significant challenges 049

to the understanding capabilities of LLMs. Enhanc- 050

ing the capability of LLMs to deal with complex in- 051

structions remains an important yet under-explored 052

research topic. 053

Recent research on instruction following (Xu 054

et al., 2024; Sun et al., 2024; He et al., 2024a) 055

has highlighted the importance of diverse and 056

high-quality training data but can be divided into 057

two categories in terms of the training strategy. 058

One is to apply Supervised Fine-Tuning (SFT) 059

(Ouyang et al., 2022) to complex instructions, and 060

another is to employ Direct Preference Optimiza- 061

tion (DPO) (Rafailov et al., 2024). However, both 062

kinds of methods face the same issue: they only 063
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capture direct associations between instruction and064

response, lacking a nuanced understanding of in-065

struction. This lack of understanding is particularly066

pronounced when dealing with multi-constraint in-067

structions. As shown in Figure 1, we have found068

that when an additional constraint is added to an069

instruction in an attempt to generate more accurate070

answers, the LLM fails to provide satisfactory an-071

swers. We argue that the reasons behind this are072

twofold. 1⃝ Due to the inherent ambiguity of073

natural language, certain constraints cannot be074

expressed precisely, and this vagueness can make075

it difficult for the model to correctly understand076

the task objective, leading to outputs that deviate077

from user expectations. Balancing such constraints078

presents a challenge to the model’s comprehension079

capabilities. 2⃝ Due to the complexity of the task,080

the model sometimes cannot satisfy multiple con-081

straints based solely on limited prior knowledge, es-082

pecially when there are interdependencies between083

the constraints. Generating a response that satisfies084

a high proportion of constraints poses a challenge085

to the model’s constraint-handling capabilities.086

In this paper, we first examine the different con-087

straints in the instructions. Existing instruction-088

following methods typically treat all constraints089

equally, which results in a lack of fine-grained opti-090

mization when the model handles constraints. How-091

ever, we discover that some constraints are "vague"092

and often involve factors like language style, cre-093

ative expression. These constraints can be adjusted094

within a certain range and do not need to be fol-095

lowed rigidly in every detail. We call these con-096

straints Soft Constraints. In contrast, some con-097

straints are "precise" and typically can be checked098

by quantitative metrics, with evaluation results cat-099

egorized as either "satisfied" or "not satisfied". We100

call them Hard Constraints. For instance, con-101

straints related to length or format are typically102

hard constraints that must be strictly adhered to.103

Meanwhile, there are numerous constraints, and104

the difficulty of assessing whether they are satis-105

fied lies somewhere on the spectrum between soft106

and hard constraints. This distinction creates new107

optimization space for LLMs, enabling the opti-108

mized LLMs to handle soft constraints more flexi-109

bly while ensuring adherence to hard constraints,110

ultimately producing responses that balance preci-111

sion with creativity.112

To echo this line of thought, we formulate the113

instruction-following task in LLMs to stipulate the114

optimization goal of LLMs, while also revealing115

the role of constraints. Subsequently, we propose 116

to assign constraints to different constraint levels 117

by the difficulty level of satisfying the different con- 118

straints, and put forward a two-stage method named 119

CARE-STaR (Constraint-AwaRE Self-Taught Rea- 120

soner) to help LLMs strengthen the understanding 121

of instructions and improve the capability to handle 122

constraints, aiming to enable the models to provide 123

answers that satisfy constraints well in different 124

scenarios, thus enhancing the user experience. 125

CARE-STaR is inspired by the chain-of-thought 126

(CoT), which has been successful in helping mod- 127

els deal with mathematical problems or reasoning 128

tasks (Wei et al., 2022; Nye et al., 2021; Kojima 129

et al., 2022; Rajani et al., 2019; Shwartz et al., 130

2020). That is, we utilize CoT to guide LLM in dis- 131

tinguishing constraint levels, as well as analyzing 132

these constraints in greater detail to further enhance 133

the capability of the model to handle them effec- 134

tively. Meanwhile, CARE-STaR is also an expan- 135

sion of Quiet-STaR (Zelikman et al., 2024). In par- 136

ticular, our method first employs GPT-4 (Achiam 137

et al., 2024) for a cold start in CoT generation, 138

improving the stability of training. It then incor- 139

porates a reinforcement algorithm to optimize pa- 140

rameters, enabling the model to refine its CoT gen- 141

eration strategy, achieve more precise constraint 142

analysis and better assist in answering questions. 143

This ultimately leads to answers with higher con- 144

straint satisfaction. 145

The main contributions of this paper can be sum- 146

marized follows. 147

• We formulate the instruction-following task 148

within the framework of the fuzzy set. This 149

formulation is flexible enough to allow set- 150

ting different constraint levels for constraints, 151

thus supporting fine-grained optimization of 152

instruction following. 153

• We adopt two stages for improving instruction 154

following: first employ a few labeled CoT ex- 155

emplars to warm up the LLM, and then design 156

a reinforcement algorithm to autonomously 157

optimize the generation of COTs that best con- 158

tribute to instruction following. 159

• We conduct three instruction-following bench- 160

marks. The results on the three LLMs show 161

that each of them, when trained using our 162

method, exhibits greater performance im- 163

provement compared to the same LLM trained 164

with SFT. 165
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2 Formulation of Instruction Following166

In this section, we borrow the concept of mem-167

bership function from fuzzy theory (Fullér et al.,168

1998) to formulate the instruction-following task in169

LLMs, taking into consideration that the optimiza-170

tion of LLM has similarities with fuzzy control171

process.172

A multi-constraint instruction refers to an in-173

struction issued by a user to LLM that incorporates174

multiple constraints, all of which should be satis-175

fied simultaneously when generating a answer. Let176

I = {q, c1, c2, ..., cm} denote the multi-constraint177

instruction, where q denotes the question, ci de-178

notes the i-th constraint and m is the total number179

of constraints. Let the set X be the set of answers180

of the LLM to the instruction I that satisfy the con-181

straint ci. Since the set X is considered a typical182

fuzzy set, we introduce the membership function183

µc(a, ci) ∈ [0, 1], which is used to determine the184

extent that the linguistic variable a belongs to the185

set X and outputs a crisp value. The larger the186

value of the membership function, the more a be-187

longs to that fuzzy set X. Similarly, we introduce188

the membership function µq(a, q) ∈ [0, 1] for ques-189

tion q in the instruction I . Thus, the ideal goal190

pursued by the LLM is that the answer a to the in-191

struction I = {q, c1, ..., cm} satisfies the following192

equation:193

µq(a, q) +

m∑
i=1

µc(a, ci) = 1 +m (1)194

However, it is often hard for LLM to achieve this195

objective. As a result, the instruction following is196

proposed to train the LLM so that it satisfies the197

following requirement:198

max(µq(a, q) +
m∑
i=1

µc(a, ci)) (2)199

Notably, the roles of µq(a, q) and µc(a, ci) can200

be undertaken by any SOTA LLM.201

In the light of this definition, we set fuzziness202

of constraint for each constraint and a constraint203

level function L(ci) to qualify its degree of hard-204

ness or softness. A lower value indicates that ci205

is a highly fuzzy constraint, which means that it206

allows for flexible interpretation, while a higher207

value signifies that ci is highly precise, requiring208

strict adherence. For simplification, the range of209

L is currently set to L(ci) ∈ {1, 2, 3, 4, 5}. ci is210

identified as a hard constraint if L(ci) = 5, or as a 211

soft constraint if L(ci) = 1. 212

In our implementation, we employ chain-of- 213

thought (CoT) to perform "constraint analysis", 214

which adopts the LLM to be trained to conduct 215

the L(ci) evaluation. Furthermore, guided by the 216

fuzziness of constraint, we perform the instruction- 217

following task as described in the next section to 218

reach the goal listed in Eq. (2). 219

3 Method 220

We now describe our method, which is targeted for 221

teaching LLMs to effectively follow instructions 222

and obtain satisfactory answers. Our method con- 223

sists of two stages, i.e., the initial cold-start stage, 224

followed by the self-taught stage. 225

In the first stage, we warm up the LLM to be 226

trained to improve its generation capability of high- 227

quality CoTs. In the second stage, whose process 228

is shown in Figure 2, we first guide the model 229

to generate multiple candidate CoTs for each in- 230

struction in the training dataset of stage 2. Then, 231

we evaluate the quality of each CoT based on its 232

impact on the answer prediction. Finally, we adjust 233

the probabilities of generating CoTs according to 234

the evaluation results. We iterate the process above 235

to automate the generation of "constraints analysis" 236

until finishing the designated number (defaulted to 237

three) of epochs. 238

To be noted, we can adopt any typical instruction- 239

tuning dataset D = {x(i), y(i)}Ni=1 as our training 240

dataset, which is not required to provide CoTs for 241

fine-tuning. Here, x(i) denotes an instruction and 242

y(i) denotes an answer. The dataset is randomly 243

split into two disjoint subsets, which are used for 244

the two stages of the method, respectively. 245

3.1 Cold Start 246

In the cold-start stage, we leverage GPT-4 (Achiam 247

et al., 2024) to generate a CoT for each input in- 248

struction in the training set of stage 1, using the 249

prompt shown in Appendix Table 4. Then we per- 250

form SFT on the LLM to be trained using the (in- 251

struction, CoT) pairs as training exemplars, thus 252

helping LLM learn to discern effective CoTs before 253

it begins to generate CoTs autonomously. 254

This stage is necessary because we have ob- 255

served that if we enter the second stage directly 256

without the first stage, then the LLM often gen- 257

erates lengthy and suboptimal CoTs in the initial 258

steps. These inaccurate CoTs will fail to effectively 259
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Figure 2: The framework of our self-taught stage. We first generate CoTs for each instruction in the training
dataset. Then, we apply our designed reinforcement algorithm to increase the likelihood of CoTs that help the
model complete the answer better. The dashed line indicates the fine-tuning outer loop.

guide response generation, ultimately impacting260

the stability of model training. Ideally, CoTs are261

expected to be concise, enabling the model to pro-262

duce more accurate and coherent answers through263

simple reasoning. To bridge the gap between ideal264

and reality CoTs, we design the cold-start stage.265

By first training on these exemplars, we improve266

the capability of the model, which enables it to pro-267

duce concise and accurate CoTs in the second stage,268

thereby enhancing the stability and effectiveness of269

the overall training process.270

3.2 Sampling CoTs271

Stage 2, whose kernel is a reinforcement algorithm,272

comprises multiple training steps. At the begin-273

ning of each training step, we require the LLM to274

sample multiple candidate CoTs to complete the275

analysis of constraints in each instruction to get the276

corresponding constraint levels. The prompt used277

is also the one listed in Appendix Table 4. Specifi-278

cally, for a given input instruction x(i), we obtain279

a set of CoT candidates z(i) = {z(i)1 , z
(i)
2 , ...z

(i)
p },280

where p denotes the total number of sampled CoTs.281

Through this process, we construct an augmented282

dataset D′ = {x(i), y(i), z(i)}Ni=1.283

To separate the CoT from the answer, we use284

two learnable meta tokens (<|startthought|>285

and <|endthought|>) to mark the start and end286

positions of the CoT. <|startthought|> informs287

the LLM that it is in "thinking mode," while288

<|endthought|> indicates that the model has fin-289

ished thinking and needs to provide a answer. With290

this trick, we make the CoT implict, which can be291

completely hidden from the user, only presenting 292

the answer part. 293

3.3 Learning to Answer "after Thinking" 294

Since we have introduced implicit CoTs, the model 295

has not yet developed the ability to capture the rela- 296

tionship between the CoT and the response. There- 297

fore, we need to train the LLM to better utilize the 298

CoTs for providing responses. At the same time, 299

we do not want the answer of the LLM to overly 300

rely on the CoT, thus losing the capability to re- 301

spond directly. Hence, we divide the training of the 302

generation of responses into two parts: 303

Talk directly: This part of the training objective 304

aligns with the goal of SFT: the goal is to fine-tune 305

a pre-trained LLM through supervised learning to 306

generate the target answer. Specifically, SFT adopts 307

maximum likelihood estimation (MLE) for training 308

on the dataset D. The training objective is to min- 309

imize the following loss function of current LLM 310

πθ: 311

Losstalk = −E(x,y)∼D [log πθ(y | x)] (3) 312

Talk with thoughts: Inspired by the attention 313

mechanism and Quiet-STaR, we adopt a Mixing 314

Head (i.e., a 3-layer MLP) to output a weight value 315

for each token of the answer, to decide the degree 316

of reliance on CoTs or direct respond. Specifically, 317

in the initial few steps of the training, we set the 318

last layer of Mixing Head to zero, so that in the 319

early steps of training, the model primarily utilizes 320

the direct response (without CoTs). In the later 321
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steps of training, the model adjusts the weight val-322

ues according to the following rule. If the CoT323

helps the prediction of certain token of the answer,324

the weight value increases, enhancing the reliance325

on CoT; otherwise, it decreases, promoting a more326

direct response.327

Given an instruction x(i), the corresponding an-328

swer y(i), and the j-th candidate CoT z
(i)
j , we can329

get the weighting values w(i,j) and compute the330

log-likelihood of the response conditioned on the j-331

th CoT and the response without any CoT, denoted332

as ℓ(i,j)w/ CoT and ℓ
(i)
w/o CoT, respectively. At position333

k, the weighting value and log-likelihood are given334

by:335

w(i,j,k) = MH

(
h_stsθ([x(i); z

(i)
j ; y

(i)
:k−1]),

h_stsθ([x(i); y
(i)
:k−1])

)
(4)336

ℓ
(i,j,k)
w/CoT = log pθ(y

(i)
k | x(i), z(i)j , y

(i)
:k−1) (5)337

ℓ
(i,k)
w/oCoT = log pθ(y

(i)
k | x(i), y(i):k−1) (6)338

where MH(·) denotes Mixing Head and h_stsθ(·)339

denotes the output hidden states of the last layer of340

the LLM.341

Then we can compute a weighted sum at the342

position k, yielding the final log-likelihood.343

ℓ
(i,j,k)
final =

w(i,j,k) · ℓ(i,j,k)w/CoT + (1− w(i,j,k)) · ℓ(i,k)w/oCoT

(7)344

Similarly, we can define the loss for this stage of345

training, following the same principle as SFT:346

Losstalk_cot=−E(x,y,z)∼D′ [log πθ(y |x,z)] (8)347

3.4 Optimizing Generation of CoTs348

The key challenge in our method is to identify the349

most reasonable CoT that accurately completes350

the constraints analysis. We believe that if a351

CoT is sufficiently reasonable, it should lead to a352

higher generation probability of the gold response.353

Therefore, for each pair (x(i), y(i)) in the training354

dataset D, we aim to find a CoT ˜z(i) such that355

πθ(y
(i)|x(i), ˜z(i)) is maximized.356

Following the process outlined above, for357

the input x(i), we can obtain Loss
(i)
talk and358

{Loss(i,j)talk_cot|j = 1, 2, . . . , p}. If Loss(i,j)talk_cot is359

lower, it indicates that the j-th CoT is more help- 360

ful; otherwise, the CoT is less helpful. However, 361

due to the limited number of sampled CoTs, we 362

often cannot obtain the optimal one. Therefore, we 363

use Losstalk as a reference to filter the CoTs. For 364

the j-th CoT of the i-th instruction, we define the 365

reward r(i,j) as follows: 366

r(i,j) = max(0, Loss
(i)
talk − Loss

(i,j)
talk_cot) (9) 367

The reward signifies the improvement in predic- 368

tion of the answer when a CoT is involved. Follow- 369

ing the methods in TRICE (Hoffman et al., 2024) 370

and Quiet-STaR, we subtract the mean reward of 371

the corresponding mini-batch from the original re- 372

ward of each CoT, and remove any negative values 373

to improve training stability: 374

r(i,j) = max(0, r(i,j) − r(i)) (10) 375

We then use this reward to increase the probabil- 376

ity of generating CoTs that perform better than the 377

average: 378

Loss
(i,j)
think = −r(i,j) · log πθ(z

(i,j)|x(i)) (11) 379

Through the iterative learning process, the model 380

will gradually learn to generate CoTs, which not 381

only accomplishes the task of constraint analysis 382

but also enhances the response to ensure compli- 383

ance with the constraints. 384

4 Experiments 385

4.1 Experimental Setup 386

We conduct experiments on three popular base 387

LLMs: Mistral-7B-Instruct-v0.3 (Jiang et al., 388

2023a), LLaMA-3.2-3B-Instruct (Dubey et al., 389

2024), and Qwen2.5-7B-Instruct (Yang et al., 390

2024a). For brevity, we omit the suffix ’Instruct’ 391

from all model names below. 392

We employ WizardLM (Xu et al., 2024) as the 393

training dataset. The reason for this is that Wiz- 394

ardLM is a resultant dataset of executing the Evol- 395

Instruct approach that allows for incrementally gen- 396

erating more complex instructions by taking initial 397

seed instructions as input. This gradual generation 398

of increasingly sophisticated instructions makes 399

WizardLM a suitable choice for our training needs. 400

Apart from adopting our method to train the base 401

models, we also adopt SFT to train the base models 402

as baselines. 403
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Models Change Case Combination Content Format Keywords Language Length Punctuation StartEnd P-Level I-Level

Mistral-7B-v0.3
Base Model 0.6742 0.2615 0.8679 0.8471 0.7117 0.7742 0.5035 0.2121 0.8358 0.5268 0.6451
SFT 0.7303 0.5846 0.8113 0.8089 0.6564 0.7742 0.5315 0.2424 0.8507 0.5600 0.6630
Ours 0.7753 0.7538 0.8679 0.8918 0.7055 0.8387 0.5664 0.2425 0.7910 0.6248 0.7134

Llama-3.2-3B
Base Model 0.7753 0.3846 0.8679 0.8280 0.8037 0.9032 0.7552 0.9848 0.8358 0.6968 0.7889
SFT 0.7528 0.6154 0.7736 0.8599 0.7791 0.9355 0.6783 0.8636 0.8955 0.7024 0.7830
Ours 0.8090 0.4615 0.8868 0.8790 0.8221 0.9032 0.7343 0.8030 0.8657 0.7246 0.7974

Qwen2.5-7B
Base Model 0.7640 0.6769 0.8302 0.8854 0.7975 1.0000 0.6224 0.9697 0.9403 0.7320 0.8058
SFT 0.7640 0.6769 0.9433 0.9235 0.7791 0.9032 0.6434 0.8333 0.9403 0.7338 0.8058
Ours 0.8202 0.7692 0.8491 0.9172 0.7423 1.0000 0.6573 0.8636 0.9104 0.7579 0.8106

Table 1: Overall performance on IFeval.

For evaluation, we choose the following three404

challenging instruction-following benchmarks,405

which contain complex constraints and allow us406

to observe the effect of thoughts on instruction-407

following capability.408

• IFeval (Zhou et al., 2023) is designed to evalu-409

ate a series of "verifiable constraints" without410

relying on manual evaluation or LLM-based411

assessments.412

• FollowBench (Jiang et al., 2023b) aims to eval-413

uate the model performance across multiple414

types of scenarios (including content, situ-415

ation, format, and mixed) by progressively416

adding constraints.417

• CELLO (He et al., 2024b) designs eight sce-418

narios (such as QA, planning, summarization,419

etc.) using complex instructions to compre-420

hensively assess capability of LLMs to follow421

complex instructions.422

It is worth mentioning that instructions in the423

training dataset are mostly different from instruc-424

tions in three benchmarks. This show that our425

method is agnostic to the training dataset.426

4.2 Main Results427

Tables 1 and 2 lists results on three instruction-428

following benchmarks.429

From these Tables, we find that the models430

trained using our method perform excellently re-431

gardless of the benchmark. Taking the IFeval432

benchmark as an example, the models trained us-433

ing our method are, on average, 8.71% higher in434

terms of P-Level metrics and 4.09% higher in terms435

of I-Level compared to the corresponding original436

models. The models trained using our method is437

6% higher on the P-Level metric and 3.34% higher438

on average on the I-Level metric, compared to the439

corresponding models trained using SFT. In partic-440

ular, of the three base models, Mistral-7B-v0.3 can441

Models Followbench CELLO

CSL HSR SSR Avg

Mistral-7B-v0.3
Base Model 2.55 0.576 0.677 0.632
SFT 2.45 0.594 0.667 0.634
Ours 2.675 0.625 0.692 0.714

Llama-3.2-3B
Base Model 2.3 0.569 0.658 0.633
SFT 2.625 0.612 0.704 0.647
Ours 2.725 0.622 0.699 0.676

Qwen2.5-7B
Base Model 2.9 0.672 0.746 0.745
SFT 2.8 0.65 0.737 0.751
Ours 2.975 0.699 0.764 0.761

Table 2: Performance on Followbench and CELLO
benchmarks.

obtain the maximum performance improvement, 442

compared to the other base models. 443

4.3 Ablation Study 444

Ablation study is carried out to investigate the im- 445

pact of the soft and hard constraint concepts in- 446

troduced in Section 2, the cold-start stage and the 447

self-taught iteration proposed in Section 3. Here, 448

the constraint version refers to the base model us- 449

ing prompts that differentiate between constraints. 450

See Appendix A.2 for more details. 451

The results, summarized in Figure 3, reveal that: 452

• The introduction of distinction between 453

constraints has improved the constraint 454

handling capability of LLMs. For example, 455

the constraint version of Mistral-7B results in 456

a 6.28% improvement on IFeval, demonstrat- 457

ing that the model can more effectively handle 458

constraints in this benchmark, such as format- 459

ting and word counting, which are treated as 460

hard constraints. This result is particularly 461

promising, because no additional knowledge 462

is introduced to the base model during this pro- 463

cess. Instead, simply prompting LLM to be 464

aware of the differences in constraints within 465

the instruction appreciably improves the ex- 466

tent to which the answers given by the LLM 467

conform to the different constraints. 468

• After the cold-start stage, LLMs gain 469
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Figure 4: Effect of number of sampled thoughts on performance.

the capability to generate beneficial CoTs,470

which is helpful for the subsequent self-taught471

stage. Taking Llama-3.2-3B as an example, it472

results in a 7.4% improvement over the con-473

straint version and a 10.9% improvement com-474

pared to the baseline on Followbench. It al-475

ways outperforms the constraint version, as476

the LLM begins to analyze the constraints477

rather than merely pondering them.478

• After the self-taught stage, LLMs demon-479

strate further improvements in instruction-480

following tasks, validating the effectiveness481

of our reinforcement algorithm. Taking Mis-482

tral as an example, it achieves a 9.7% improve-483

ment on IFeval, an 11.2% improvement on484

CELLO, and a 1.9% improvement on Follow-485

bench compared to the model that finishes the486

cold-start stage of training.487

In sum, incrementally adding training stages pro-488

posed in our method into LLMs can progressively489

help LLMs enhance their handling of constraints.490

4.4 Effects of Number of Sampled Thoughts491

We investigate the impact of the number of CoTs492

sampled during training on performance. As Figure493

4 shows, we observe that for models with 3B or 7B494

parameters, setting the number to 3 usually yields495

the best results. Specifically, when the number is496

set to 2, the model often struggles to sample the op-497

timal CoT. Conversely, when the number exceeds 498

3, the limited capability of the model increases the 499

likelihood of introducing noise to our self-taught 500

stage, which in turn compromises training stability. 501

Additionally, we note that for different base mod- 502

els, those with higher performance tend to exhibit 503

greater training stability. For instance, in the case 504

of Qwen, we observe that as the number of CoTs 505

increases, there is only a slight improvement in 506

performance on the CELLO benchmark. 507

4.5 Case Study 508

Figure 5 presents an example of an instruction 509

that the original model fails to answer correctly 510

but the model after training with our method suc- 511

cessfully resolves. This instruction includes three 512

constraints, where the "formal tone" constraint is 513

more flexible and can influence the fulfillment of 514

the other constraints, as a formal tone often requires 515

adhering to specific norms, which may impact word 516

choice or sentence structure. 517

From the response, we find that these constraints 518

are rated accordingly. The constraints on "sen- 519

tence counting" and "word choice" are given high 520

scores, while the "formal tone" constraint is rated 521

a secondary score. The answer meets all the hard 522

constraints and incorporates less colloquial expres- 523

sions, such as "a sense of relief and excitement," to 524

fulfill the "formal tone" requirement. More details 525

are shown in Appendix A.3. 526
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Example:
Instruction:
Using words in the 'Input' to generate a story, with no
restrictions on tense. The story should contain exactly 5
sentences. Please using a formal tone.

Input:
needed, money, computer, bought, happy

Output:
<|startthought|>
   - Generate a story using words from the input: 5
   - The story should contain exactly 5 sentences: 5
   - Use a formal tone: 4
   …
<|endthought|>
John realized he needed a computer to ... in a few days. Despite
his tight budget, ... for the job. With determination, he ... at his
part-time job. Finally, he had enough money to buy ... eyeing.
Overwhelmed with happiness, John felt a sense of relief and
excitement... new computer home. 

Figure 5: Example of an LLM trained with our method
to answer an instruction with multiple constraints.

5 Related Work527

5.1 Complex Instruction Tuning528

Existing research on improving the capability of529

LLMs to handle complex instructions concentrates530

on the generation of different complex instructions.531

These generated instructions then are used to fine-532

tune the original pre-trained models. For example,533

Xu et al. (2024) proposed Evol-Instruct to rewrite534

seed instructions step by step into more complex535

instructions, aiming to enhance the overall capa-536

bility of LLMs for tasks with varying complexity.537

Yang et al. (2024b) introduced an effective data538

augmentation technique that breaks down complex539

instructions into simpler sub-instructions, and mod-540

ifies and reconstructs them to form new instruc-541

tions, enhancing the capability of LLMs to detect542

subtle variations.543

When fine-grained constraints are gradually544

added to the instruction, LLMs usually struggle545

to meet them (Sun et al., 2023). He et al. (2024a)546

found that training LLMs with instructions contain-547

ing multiple constraints can enhance their under-548

standing of complex instructions and proposed a549

"discriminative" approach to acquiring data with550

complex constraints. Conifer (Sun et al., 2024) pro-551

poses a progressive learning method by fine-tuning552

the model using instructions with increasing num-553

bers of constraints to improve its performance on554

complex constraints. However, these methods do555

not consider the differences between constraints,556

which makes it difficult for the model to handle 557

them with fine-grained processing. 558

5.2 Training to Think 559

LLMs exhibit enhanced performance on reason- 560

ing tasks when they explicitly write their reason- 561

ing steps first (Wei et al., 2022). However, try- 562

ing to equip LLMs with such capabilities often 563

requires the construction of massive reasoning 564

datasets. Consequently, recent research exploring 565

self-improvement techniques to enhance LLMs’ 566

reasoning capabilities has garnered our interest. 567

STaR (Zelikman et al., 2022) iteratively enhances 568

the model’s reasoning capability through the fol- 569

lowing process: using few-shot prompting to have 570

the model generate both thoughts and answers from 571

the training data, and then filtering the thoughts 572

based on the correctness of the answers for SFT. Its 573

extended method, V-STaR (Hosseini et al., 2024), 574

trains a verifier to assess the correctness of the 575

CoTs using DPO, by leveraging both correct and 576

incorrect CoTs generated during the iterative pro- 577

cess, and utilizes the verifier to select the correct 578

CoT during the inference phase. Quiet-STaR (Ze- 579

likman et al., 2024) aims to teach LLMs to gen- 580

erate a thought segment after each token to ex- 581

plain the future text, thereby improving predictions 582

for the next token. However, these methods have 583

only shown improvements in mathematical and 584

reasoning tasks and have not been applied to the 585

instruction-following tasks. Wu et al. (2024) argue 586

that CoTs can be applied to any task and propose an 587

algorithm called "TPO", which iteratively searches 588

and optimizes the process of thought generation, 589

allowing the model to learn how to think indepen- 590

dently. However, this approach does not account 591

for complex constraints. 592

6 Conclusion 593

In the paper, we propose the CARE-STaR method, 594

which trains LLMs in two stages to push the up- 595

per limit of the capability of the original LLMs 596

to follow instructions. Our method adopts a self- 597

taught mechanism to tackle multiple constraints in 598

the instruction, eliminating the need for any spe- 599

cific instruction dataset during training and thereby 600

enhancing cost effectiveness. Experimental results 601

show that our method outperforms SFT in handling 602

complex instructions. 603
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7 Limitations604

CARE-STaR enhances the performance of LLMs605

in instruction-following tasks by introducing CoTs606

to guide the differentiation of constraints within in-607

structions. However, generating multiple CoTs for608

each instruction in the training set incurs significant609

computational costs. Future work could optimize610

this process to improve its efficiency. Additionally,611

we have observed that our method results in only612

limited improvements for Qwen2.5-7B. One pos-613

sible explanation is that the model already demon-614

strates strong performance, reducing the impact of615

additional reasoning steps. Furthermore, the lim-616

ited relevance between our training dataset and the617

test set may have also played a negative role in618

these results.619

Besides, our experiments were conducted only620

on models of 3B and 7B sizes. Whether this621

method remains effective for larger models remains622

an open question for future exploration.623
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A Appendix751

A.1 Prompt for Generating Thoughts752

By incorporating a chain of thought, we can prompt753

the model to provide additional steps before an-754

swering, which helps it perform better. For in-755

stance, Zero-Shot Reasoner (Kojima et al., 2022)756

improved the performance of the model in vari-757

ous reasoning tasks by simply adding the phrase758

“Let’s think step by step". Our method optimizes759

the content of the chain of thought specifically for760

instruction-following tasks. We prompt the model761

to first evaluate the constraints within the instruc-762

tion, and then provide a step-by-step procedure to763

answering the instruction based on the evaluation764

results. Our prompt for generating thoughts is de-765

tailed in Table 4.766

A.2 Four LLM Versions for Ablation Study767

In the ablation study, we investigate the necessity768

of each component introduced in our method by769

gradually adding them to the base model. Given an770

LLM, the ablation study adopts four versions: base771

version, constraint version, cold-start version, and772

self-taught version.773

Base version: The base version is the base model it-774

self (i.e., Llama-3.2-3B, Qwen2.5-7B, or Mistral-775

7B-v0.3), which directly executes instructions to776

provide answers.777

Constraint version: Constraint version provides a778

simple implementation of soft and hard constraints779

on the base model, enabling it to consider the vary-780

ing nature of constraints in the instructions. In par-781

ticular, we use the prompt, one example of which782

is shown in Table 3, to inform the model that the783

instruction may contain multiple constraints, which784

can differ from one another and be categorized into785

hard and soft constraints. In this way, we attempt to786

guide the base model to revise the way it produces787

the answer.788

Cold-start version: This version is the one after789

the first stage of training. We aim to explore the790

quality of CoTs produced by the cold-start version.791

For this purpose, we first execute the cold-start792

version, taking the prompt in Table 4 as input, to793

generate a CoT for each instruction. Then, we exe-794

cute the base model by inputting the (Instruction,795

CoT) pair to generate a response. The quality of796

the generated response can serve as an indicator of797

the effectiveness of the CoT.798

Self-taught version: This version is the model799

trained by our two-stage method, which generates800

You are a helpful AI assistant. You will be given
an instruction that describes a task. The instruc-
tion may contain multiple constraints and the
constraints can be categorized into hard and soft
constraints. Hard constraints are precise and
quantifiable, with clear yes/no or pass/fail cri-
teria. They must be strictly followed (e.g., word
counting, specific format). Soft constraints are
more flexible, allowing for some variation in
their fulfillment (e.g., tone, creativity, or style).
You need to write a response that appropriately
completes the instruction directly.
Instruction:
%s

Table 3: An example of the prompt to handle the hard
and soft constraints.

implicit CoTs first and then utilizes these CoTs to 801

complete the final answer. 802

By comparing the results of the four versions 803

above, we can assess the impact of each component 804

of our method on the instruction-following task. 805

A.3 Case Study Details 806

We provide the complete answers to the instruc- 807

tions in the case study. As shown in Table 5, the 808

base model is able to successfully complete the 809

instruction when faced with only the constraints of 810

"sentence counting" and "word choice". However, 811

when the relatively vague constraint of "formal 812

tone" is added, the model fails to meet the first 813

two constraints. After trained with our method, 814

the model performs the aforementioned instruction 815

again. As shown in Table 6, it extracts and eval- 816

uates the constraints within the instruction. Then, 817

based on this analysis, it outlines the steps to per- 818

form the instruction. Finally, the model success- 819

fully handles the constraints. 820

A.4 Implementation Details 821

We conduct all experiments using four NVIDIA 822

A100 80GB GPUs. Our training leverages Deep- 823

Speed ZeRO Stage 2 for efficient memory manage- 824

ment. For optimization, we employ the AdamW 825

optimizer with a warmup of 20 steps, a weight de- 826

cay of 0.001, a learning rate of 5e-7, and a batch 827

size of 4. During training, we generate multiple 828

CoTs for each instruction using a sampling temper- 829

ature of T = 0.9. In contrast, for evaluation, we 830

employ greedy decoding to generate CoTs. The 831

maximum length for sampled CoTs is set to 200, 832

with any exceeding this limit being truncated. 833
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Instruction:
%s
Task:
Please analyze the provided Instruction.
Write your thought process briefly after "Here is my thought process:". In the thought process, divide
your response into two sections: "Requirement Evaluation" and "Steps to Answer".
1. Requirement Evaluation:
- Identify and list all requirements from the Instruction.
- Assign a rating score (1 to 5) to each requirement:
- The constraint with score 5 indicates that it should be strictly followed.
- The constraint with score 1 indicates that it can be loosely followed.
- Use concise bullet points without additional explanation.
2. Steps to Answer:
- Outline the minimal steps necessary to directly execute the Instruction.
- Do not include steps for analyzing, reasoning, or checking; limit steps to direct execution of the
Instruction.
- Keep steps concise, with no more than one sentence per step.
- If formatting is involved, provide examples in an abstract way (e.g., for the requirement ’separate 2
answers by ******’, you can give an example like ’[ANS1]******[ANS2]’).
Here is my thought process:

Table 4: Prompt for generating a CoT to complete constraint analysis.

/*Instruction with 2 constraints*/
Instruction:
Using words in the ’Input’ to generate a story, with no restrictions on tense. The story should contain
exactly 5 sentences.
Input:
needed, money, computer, bought, happy
Output:
After losing his job, John realized he needed money quickly. He decided to sell his old computer for parts.
To his surprise, he found a working computer at a thrift store and bought it. With the refurbished machine,
John was able to start freelancing, earning him the money he needed. Now, John feels happy and relieved,
knowing he has secured his financial future.

/*Instruction with 3 constraints*/
Instruction:
Using words in the ’Input’ to generate a story, with no restrictions on tense. The story should contain
exactly 5 sentences. Please using a formal tone.
Input:
needed, money, computer, bought, happy
Output:
The individual recognized the urgent need for money to secure his family’s future, and after much
deliberation, he decided to purchase a computer, which he believed would open up new opportunities. With
savings meticulously set aside, he visited several stores to compare models and features, ultimately making
a well-informed decision. Upon returning home with his new acquisition, a sense of accomplishment and
happiness washed over him, knowing this investment could significantly improve his prospects.

Table 5: Example of a base model to complete the "sentence counting", "word choice" and "formal tone" constraints.
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Instruction:
Using words in the ’Input’ to generate a story, with no restrictions on tense. The story should contain
exactly 5 sentences. Please using a formal tone.
Input:
needed, money, computer, bought, happy
Output:
<startthought>
1. Requirement Evaluation:
- Generate a story using words from the input: 5
- The story should contain exactly 5 sentences: 5
- Use a formal tone: 4
2. Steps to Answer:
- Identify the words from the input: needed, money, computer, bought, happy.
- Create a narrative that incorporates these words in a logical sequence.
- Ensure the story consists of exactly 5 sentences.
- Maintain a formal tone throughout the story.
<endthought>
John realized he needed a computer to complete his project, which was due in a few days. Despite his
tight budget, he understood the importance of having the right tools for the job. With determination, he
saved every penny he could, working extra hours at his part-time job. Finally, he had enough money to buy
the computer he had been eyeing. Overwhelmed with happiness, John felt a sense of relief and excitement
as he carried his new computer home.

Table 6: Example of the self-taught version of the base model to handle the hard and soft constraints.
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