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ABSTRACT

The nature of the relationship between Bayesian sampling and stochastic gradient
descent in neural networks has been a long-standing open question in the theory
of deep learning. We shed light on this question by modeling the long runtime
behaviour of SGD as diffusion on porous media. Using singular learning theory,
we show that the late stage dynamics are strongly impacted by the degeneracies of
the loss surface. From this we are able to show that under reasonable choices of
hyperparameters for SGD, the local steady state distribution of SGD is effectively
a tempered version of the Bayesian posterior over the weights which accounts for
local accessibility constraints. We then empirically verify the porous diffusion
picture across multiple models and datasets, and provide experimental evidence of
the steady state-Bayesian posterior correspondence.

1 INTRODUCTION

One of the core problems in developing a scientific theory of deep learning models is giving a
descriptive theory of how the internal model structure evolves during training as the model gains
"knowledge" about its training distribution ((McGrath et al., 2022), (Olsson et al., 2022)) and how
this evolution relates to the generalization ability of deep learning models. Classical methods for
understanding model generalization such as the Bayesian Information Criterion (Schwarz, 1978) fail
to give accurate descriptions of the generalization behavior of deep learning, due to its "singular"
nature (Wei et al., 2023).

This has lead recent research to utilize Watanabe’s singular learning theory (SLT) (Watanabe, 2009)
as the basis for studying deep learning models. The key result of singular learning theory is the widely
applicable Bayesian information criterion (Watanabe, 2012) which (broadly speaking) says that
the generalization error of a model with parameter w is controlled by the learning coefficient λ(w),
which corresponds to the "complexity" of some local area around the parameter. Measuring how this
quantity evolves over time has been proposed as a method to study the emergence of structure within
neural networks ((Lau et al., 2024), (Wang et al., 2024a)) and has given very promising results.

Despite this, it is not clear how the dynamical picture of SGD interacts with the purely Bayesian
description of SLT. It has been shown that there is seemingly some relationship between Bayesian
sampling of parameter space of neural networks and SGD, both experimentally (Mingard et al., 2020),
and theoretically under assumptions of non-degeneracy of minima of the loss (Mandt et al., 2016b)
(which is known to be false in general). Here we extend this connection to the more general case by
describing the late stage training dynamics of SGD using a fractional Fokker-Planck equation which
can be solved explicitly under reasonable assumptions. We show that the steady-state solution of this
equation is related to the purely Bayesian posterior by tempering probabilities based on accessibility
constraints determined by the learning coefficient. Potential practical applications of the results
presented here are discussed in appendix C.

2 RELATED WORK

2.1 SINGULAR LEARNING THEORY

Our work relies upon results coming from singular learning theory ((Watanabe, 2012), (Watanabe,
2022), (Watanabe, 2024), (Watanabe, 2009)), the known relationship between inference and thermo-
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dynamics (LaMont & Wiggins, 2019), and the application of singular learning theory to the study
of deep learning, referred to as developmental interpretability ((Wang et al., 2024b), (Wang et al.,
2024a), (Chen et al., 2023)). We make particular use of the estimation methods for the local learning
coefficient introduced in (Lau et al., 2024) using (van Wingerden et al., 2024).

2.2 GRADIENT NOISE AND SGD DYNAMICS

The methods used here are related to the Stochastic Gradient Noise model (SGN) of SGD ((Zhou
et al., 2021), (Battash & Lindenbaum, 2023), (Nguyen et al., 2019), (Simsekli et al., 2019), (Mignacco
& Urbani, 2022)) due to the relationship between the Fokker-Planck equation and the Langevin
equation used in SGN. This framework has been used, for example, to model escape times from local
minima (Xie et al., 2021).

Other works have studied the diffusive-like dynamics of SGD (Fjellström & Nyström, 2022), and
even modeled SGD as an Ornstein-Uhlenbeck process to relate the dynamics of SGD back to the
purely Bayesian case (Mandt et al., 2016b). However, this framework requires that the minima of the
loss be quadratic, which means it cannot accurately capture the behaviour of SGD in neural networks
due to the degeneracy of local minima. Furthermore, other works have also found connections
between SGD and fractal geometry ((Camuto et al., 2021), (Şimşekli et al., 2021)) by the use of
iterated function systems and Feller processes. Although related to the results here, the formalisms
used are significantly different and the exact relationship is not straightforward.

The most closely related to the work here is (Chen et al., 2021) who show that many networks
seem super-diffusive near initialization and decay into sub-diffusion over time. They also give a
relationship to a type of fractal diffusion to explain this. However, they give no theoretical results,
relying entirely on experimental results to draw conclusions. Our work instead focuses on a rigorous
theoretical model that allows us to develop a theory about the long runtime nature of SGD which
explains the observations made previously, and we provide experimental results to verify theoretical
predictions.

3 FRACTIONAL DYNAMICS OF DEEP LEARNING

3.1 GRADIENT NOISE AND THE FOKKER-PLANCK EQUATION

Consider a neural network defined by some set of parameters w ∈ W (where we assume W is
compact throughout) and let X be the set of tuples (xi, f(xi)) where f is the oracle that describes
our decision problem. Denote the loss function by L : X ×W → R and set L[X , w] = EX [L(x,w)].
Letting Xm ⊂ X be a randomly sampled subset of possible inputs, the empirical loss on Xm will
then be denoted Lm[Xm, w] = EXm

[L(x,w)]. For the purposes of the theoretical analysis, we will
assume that we are working in the large batch size regime so that the estimation noise of the loss (and
gradient) doesn’t dominate the dynamics of the system.

3.1.1 GRADIENT NOISE AND SUB-DIFFUSION

There is extensive literature which attempts to capture the dynamics of SGD by decomposing the
weight updates (under some abuse of notation) into the form

dw

dt
= −γ∇L(wt−1) + Σwt−1

(1)

where L is the population loss, t is the timestep, γ is the learning rate, and Σwt−1
is a random vector

(which we will assume in this work is an anisotropic Gaussian). This is what is generally referred to
as a Langevin stochastic differential equation. Systems governed by such SDEs have a displacement
R(t) ∝ t

1
2 , meaning they diffuse like Brownian motion.

However, most works which examine the weight dynamics don’t agree with this model. It has been
found that networks trained under SGD can behave super-diffusively early in training, becoming
sub-diffusive as training continues (Chen et al., 2021). Our experiments agree with this, finding
that the displacement of neural network weights after long run times are described well by a power
law like R(t) ∝ t

1
ν for ν ≥ 2 (Bouchaud & Georges, 1990) (an example of which can be seen in
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figure 1). Similarly, it has been observed that the weight movement of SGD (with momentum and
weight decay) can have weight displacement that scales logarithmically like R(t) ∝ ln t (Hoffer
et al., 2018). This behaviour cannot be captured by the traditional Langevin equation and requires
the introduction of a subordination term. Such non-Brownian diffusion is collectively referred to as
anomalous diffusion.

Figure 1: Mean weight displacement of a collection of fully connected neural networks trained using
SGD on a randomly generated Moons dataset (Pedregosa et al., 2011), compared with expected
displacement in the case of Brownian motion. It can be seen that this displays anomalous diffusion
corresponding to early super-diffusion followed by late stage sub-diffusion.

To tackle this problem, we move into a formalism which is dual to the SDE picture, being the
Fokker-Planck equation. Intuitively, the SDE picture describes the stochastic evolution of a single
run while the Fokker-Planck equation is what describes the deterministic evolution of the probability
distribution over parameter space over time determined by the SDE.

We now give the Fokker-Planck equation (FPE) in weight space (that is, ∇ = ∇w):

∂p(w, t)

∂t
= ∇ · (D(w, t)∇p(w, t)− γp(w, t)∇L(w)) (2)

where p is a probability density function (density of states), D is the diffusion coefficient, γ is a scalar
(usually called friction), and L is a loss function which in a physical sense acts as a potential energy.

While the standard FP equation describes the behaviour of standard Brownian motion, one can hande
the sub-diffusive case by introducing the (Caputo) fractional derivative operator(Diethelm, 2019)
Dα

t where 0 < α < 1 is a real number. Letting f be some arbitrary (differentiable) function of t the
Caputo fractional derivative operator is defined as

Dα
t f(t) =

1

Γ(1− α)

∫ t

0

f ′(t)

(t− τ)α
dτ (3)

We now define the (time) fractional Fokker-Planck equation (FFPE) for SGD1 as:

Dα
t p(w, t) = ∇ · (D(w, t)∇p(w, t)− γp(w, t)∇Lm[w]) (4)

1Since this is a continuous time formulation, it is more accurate to call it a stochastic gradient flow, however
the former is known to be reasonably well-approximated by the latter (Li et al., 2019).
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Where the Xm is dropped from the loss expression for simplicity. We note here that this equation
itself does not directly describe ultra-slow diffusion (that is, where the displacement R(t) ∝ ln t).
However, ultra-slow diffusion appears “in the limit" of power law sub-diffusion (Kochubei, 2008). A
discussion of this as well as the role of the fractional derivative are given in in the appendix.

One might now try to modify this to a “time-space fractional" Fokker-Planck equation to account
for the potential super-diffusive behaviour early in training. However, we are interested in studying
the steady states of the system, and under some very mild assumptions (namely that the probability
distribution doesn’t lose mass over training) the steady state of the system does not depend on this
early stage of training, and can be captured by solving the given time fractional FPE ((Barkai, 2001),
(Metzler et al., 1999)2). However, in our case, we still run into difficulty since the diffusion coefficient
is a location-dependent inhomogeneous diffusion tensor (that is, different dimensions have distinct
diffusion coefficients) instead of a single scalar. Luckily, as we will discuss in the next section, we
are able to approximate the diffusion tensor as a single scalar function late in training.

3.2 FRACTAL DIMENSIONS AND SUBDIFFUSION

3.2.1 SINGULAR LEARNING THEORY AND FRACTAL DIMENSIONS

In order to capture the local geometric structure that impacts the diffusive process we make use
of singular learning theory (Watanabe, 2009) via the local learning coefficient (LLC) (Lau et al.,
2024). We give a brief introduction to these ideas here, but a more substantial introduction is given in
appendix A.

Consider our loss function to be the Kullback-Leibler divergence3 Km[w]. Consider then the ball
Br(w

∗) of radius r about some "true parameter" w∗ such that K[w∗] = 0. Letting ϵ be some
arbitrarily small constant, and denote the set of parameters which have loss Km[w] < ϵ within the
ball Br(w

∗) of radius r as Br(w
∗, ϵ). Consider then the singular integral

V (ϵ) =

∫
Br(w∗,ϵ)

ρ(w)dw (5)

where ρ(w) is some arbitrary choice of prior distribution on the parameter space. Now letting
0 < a < 1 be some arbitrary constant, the local learning coefficient Lau et al. (2024) is defined as

λ(w∗) = lim
ϵ→0

log V (aϵ)
V (ϵ)

log(a)
(6)

We then have that asymptotically as ϵ → 0 (under some mild assumptions):

V (ϵ) ∝ ϵλ(w
∗) (7)

In the diffusion picture, the LLC behaves as a localized mass (Minkowski-Bouligand) fractal dimen-
sion which determines the geometry of (potentially degenerate) near critical points. The nature of
this relationship is discussed in greater depth in appendix B.1.

3.3 LAWS OF FRACTAL DIFFUSION AND SGD

3.3.1 THE SPECTRAL DIMENSION

While the LLC captures the geometry of the loss, we all need to capture the dynamics of SGD on this
geometry. To this end we utilize a second fractal dimension which describes the trajectory of particles
under a potential called the spectral dimension ds ((Millán et al., 2021), (Bouchaud & Georges,
1990)). We start with the definition in the "homogeneous" case (e.g when the fractal dimension of the
medium is the same everywhere) and then adapt it to our multifractal case. If we consider the LLC
as being the scaling exponent for the volume of "good parameters" in a particular area, the spectral
dimension determines then the volume of states that the diffusive process over that area can actually
reach over some period of time (in our case, the volume of states SGD can actually reach in that area).
We define this dimension below.

2The super-diffusive component matters for studying things like relaxation and crossover time.
3We can just as well use the log loss (as it only differs by an additive constant) but using the KL-divergence

simplifies the analysis.
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Definition 3.1 (Spectral Dimension (Bouchaud & Georges, 1990)). Let Vs(t) be the total volume
of occupied states which result from running a diffusive process on porous media from some initial
distribution. The spectral dimension ds is then defined as:

Vs(t) ∼ t
ds
2 (8)

In non-homogeneous systems one can have that the spectral dimension changes on different timescales
{t1, ..., tm} where we have different scaling exponents ds(ti) such that

Vs(t) = t
ds(ti)

2 (9)
if t belongs to timescale ti. If the variation between these different dimensions is too large, the
theoretical framing becomes more difficult. Luckily, we find that for SGD this spectral dimension is
well-captured by a single constant over training. Thus for vanilla SGD we can use what is known as
the asymptotic spectral dimension defined as:

Vs(t) ∼ t
d∞s
2 as t → ∞ (10)

and simply take ds = d∞s ((ben Avraham & Havlin, 2000), (Paladin & Vulpiani, 1987)). More
information and intuition about the spectral dimension is provided in appendix B.2

3.3.2 WEIGHT DISPLACEMENT AND FRACTAL DIMENSIONS

We would now like to figure out the relationship between the local fractal dimension (the local
learning coefficient) and the spectral dimension.
Definition 3.2 (Walk Dimension ((Paladin & Vulpiani, 1987), (Bouchaud & Georges, 1990))). Let
R(t) be the displacement of a particle at time t. The walk dimension is defined by

R(t) ∼ t
1

dwalk (11)
with dwalk being the walk dimension with dwalk > 2 for sub-diffusion.

We note here that these values are defined almost identically even when the process displays initially
super-diffusive dynamics (details in appendix B.3).

It is known that in particular regimes the walk dimension takes on a particular form. This is known
as the Alexander-Orbach (AO) relation and relates the walk dimension to the fractal dimension of
the medium (the LLC for us) and the spectral dimension. While originally stated in the context of
homogeneous media this relation is known to hold locally for porous media which are homogeneous
on a sufficiently small scale (Hambly et al., 2002). Restating these results in our framing gives:
Theorem 3.1. The walk dimension at a point wt on the loss surface can be given as

dwalk(t) =
2λ(wt)

ds
(12)

near critical points.

The idea that neural networks trained by SGD are close to some critical point is a direct result of
the prevalence degenerate saddle points of the loss surface ((Dauphin et al., 2014), (Advani et al.,
2020), (Fukumizu & Amari, 2000), (Choromanska et al., 2015)). In cases where there are no nearby
saddle points (which is more common in early training), this does relation does not need to hold as
the diffusion is dominated by the gradient behaviour. This is the sense in which the relation is local.
However, as noted, so long as this behaviour is largely isolated to early training it does not impact the
theoretical results.

3.3.3 DIFFUSION COEFFICIENTS AND LOCAL BEHAVIOUR

We would like to use these fractal dimensions to define a diffusion coefficient. Importantly, we find
that the diffusion coefficient is reasonably approximated by a scalar function. We also should expect
that late in training, the localized dynamics nearby degenerate points should be directly proportional
to the volume of low loss parameters. We state the results informally below, with the formal results
and proofs in appendix D.

First we state the following theorem:

5
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Theorem 3.2 (Small Scale Dynamics are LLC Dependent). Let w∗ ∈ W be a point such that the
Hessian of the loss H(w∗) is positive semidefinite. Let W = B(r, w∗) be a small area about w∗. If
the diffusion coefficient D along degenerate directions is isotropic then for fixed error tolerance ε the
first passage time T (ε) through W is ∝ ϵλ(w∗)

DC where C is the "capacitance" of the escape set.

An important thing to note about the above theorem is that this is what would be considered a "pore
scale" model of the diffusion, and is determined by the small scale dynamics and as such is less
useful for experimentally capturing the behaviour. For experimental purposes we develop a more
coarse-grained theory which relies on the following result:
Lemma 3.1 (Diffusion Coefficient Approximation (informal)). For reasonable choices of the learning
rate in the large batch size regime, the diffusion tensor can be approximated by a scalar function for
long runtimes.

Since the steady state is determined by the long-runtime dynamics, we can study the FFPE with a
scalar diffusion coefficient.

To study the coarse-grained diffusive behaviour use a physics-inspired scalar diffusion coefficient for
porous media that captures the essential behaviors of the diffusion at some choice of measurement
scale called the characteristic length scale ξ. Under some assumptions we have the following:
Lemma 3.2. Letting ξ be some characteristic length scale, the diffusion coefficient can be approxi-
mated as Dξ = ξ2−dwalk .

A thing to note is that the choice of ξ is effectively how far we are zooming out and averaging over
the local dynamics, which gives a scaling law, not an exact relation. A general practice is to pick
a value of ξ which is large enough to average out the fluctuations in an area but not so large that
it starts to ignore large scale changes in structure. The effect of choice of ξ is shown in section 4.
One may also notice that this implies that the diffusion coefficient is higher for a small LLC which
seemingly contradicts the pore-scale diffusion derived earlier where low LLC was slower. However,
this is explained through the spectral dimension (as we shall see) as it is bounded above by the LLC,
meaning that a small LLC is only faster if the dynamics allow very free movement inside of the
domain.

Combining lemma 3.2 with the definition of the walk dimension given earlier we get:
Corollary 3.1 (Fractal Effective Diffusion Coefficient). Let ξ be a choice of the characteristic length
scale. One can then define the effective (local) diffusion coefficient for length scale ξ as

Dξ(w) = ξ2−
2λ(wt)

ds (13)

3.4 STATIONARY STATES OF THE SGD FOKKER-PLANCK EQUATION

We now present theoretical results about the diffusive process with proofs in appendix D. In appendix
D we provide a brief discussion of impacts when particular assumptions about the system are not met
and how the results here can be extended.

Assuming some fixed scale ξ, using the effective diffusion coefficient, we can actually find the local
steady-state solutions for the SGD Fractional Fokker-Planck equation (if it exists):
Lemma 3.3. Consider a subset W ⊂ W such that the effective diffusion coefficient Dξ is (approx-
imately) constant on W . Suppose then that there exists steady-state solutions of the SGD-FFPE
on this subset with true parameter(s) w∗ so Dα

t p(w
∗, t) = 0. The steady-state ps(w|Xm) = ps(w)

distribution is then given by ps(w) ∝ e
−γLm[w]

Dξ .

Note that the above holds even if Dξ does not have the form given in definition 3.1 so long as it is
simply a scalar. However, if it does have the form, due to the definition of Dξ, the above condition
that it be constant is actually simply saying that λ(w) be locally constant in W which tends to be the
case away from phase transitions (Wang et al., 2025). We can also get from this a relationship with
the Bayesian posterior perspective of singular learning theory.
Corollary 3.2. Letting γ = 1 for simplicity, if L is the log-loss and w ∈ W then

ps(w)
mDξ ∝ p(Xm|w) (14)

6
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so

p(w|Xm) =
ρ(w)ps(w)

mDξ

ZmDξ

(15)

where ZmDξ
is the partition function and ρ is an arbitrary choice of prior.

This explains the observed relationships between Bayesian sampling and SGD seen in (Mingard
et al., 2020). We can see that SGD effectively scales the likelihood of certain states of the underlying
purely Bayesian distribution at the measurement scale ξ based on how accessible they are to the
model under the optimization process. That is, the distribution of solutions found by SGD from some
initial distribution concentrate more heavily in particular areas than the Bayesian posterior since SGD
simply cannot reasonably reach those areas.

Another important aspect of the local learning coefficient is that it can be considered the quantity that
“bounds" the movement of network weights. For notational simplicity let w(t) be the parameters of
the system at time t, so we can formally state the above as:
Lemma 3.4. Suppose the loss function L is non-convex and non-constant on W . Then with spectral
dimension ds as t → ∞ with fractal dimension λ(w(t)) on W ⊂ W , the inequality ds ≤ λ(w(t))
holds (in the small learning rate regime).

In the above lemma the timescale condition is used to account for the fact that at early times such
sub-diffusive processes can appear nearly linear. Given the above, we get the following corollary:
Corollary 3.3. For time t as t → ∞, we have ds ≤ λ̄(w(t)) where

λ̄(w(t)) = lim
τ→∞

1

τ

∫ τ

0

λ(w(t))dt (16)

Notice that since small λ(w) implies greater local volume, but larger ds implies that the volume
spreads faster over time, large local volumes trap the spread of SGD, slowing it down. This aligns
with previous research examining the eigenvalues of the Hessian of the loss (Sagun et al., 2016). In
the next section we will show that the above result holds experimentally as well as examine other
properties of our fractal diffusion theory of SGD.

4 EXPERIMENTAL RESULTS

4.1 DIFFUSIVE BEHAVIOUR

Here we present experimental results to validate the diffusive theory across multiple model architec-
tures and tasks. Namely we look at small language models trained on the TinyStories dataset(Eldan &
Li, 2023), vision models trained on Tiny Imagenet (Le & Yang, 2015), as well as extensive ablations
on the MNIST dataset (Deng, 2012) with fully connected architectures with ReLU activations and
batch normalization. More extensive experimental details can be found in appendix G.

To compute the LLC we utilize the estimator provided by (van Wingerden et al., 2024). To compute
the spectral dimension ds we first compute the value log(R(t)) where R(t) is the total weight
displacement at time t. We then find ds by solving the linear regression problem

log(R(t)) =
ds

2λ(w)
log(t) + c (17)

where c is simply an offset term.

Using this setup, we are able to experimentally test the result of lemma 3.4 and corollary 3.3, which
can be seen in figure 2 for an extensive collection of various models over MNIST, as well as various
vision and language models in table 1. We also check the accuracy of the sub-diffusion model.

We find that in general, the sub-diffusive prediction is very accurate for most models tested which
are trained to convergence. In particular we note that despite our theory not explicitly accounting
for adaptive optimizers and learning rate schedulers, the dynamics vision models fine-tuned using
an initial adaptive optimizer, followed by a low learning rate SGD are well-predicted by the theory.
Furthermore, by taking pretrained language models which have already been trained to convergence in
the weights and then continuing training on their initial pretraining dataset agrees with the predictions
of the theory. More results are available in appendices I and H.
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(a) Visualization of lemma 3.4 (MNIST)
(b) Correlation between learning coefficient (average)
and total weight displacement (MNIST).

Figure 2: In a) we check that the result of lemma 3.4 holds. In b) we check that independent of our
choice of diffusion model, the total displacement and average learning rate are strongly correlated in
the large batch, low learning rate regime.

Model name λ ds α r2

TinyStories-1M 32 21.422 0.33 0.98
TinyLlama-15M 76.1 48.3 0.32 0.98
TinyStories-33M 39.3 38.7 0.49 0.98

ResNet18 72.05 0.57 0.004 ≈ 1
ResNet34 73.5 0.62 0.004 ≈ 1
VGG16 159.7 0.14 0.001 ≈ 1

Table 1: Results for different models.

4.2 POSTERIOR CONCENTRATION

In order to check the results of lemma 3.3 and corollary 3.2 we train a large number of identical fully
connected networks on a generated moons dataset (Pedregosa et al., 2011) using SGD. To compare
the distribution of solutions found via SGD vs. the (local) Bayesian posterior, we use SGLD (Welling
& Teh, 2011) to approximate the Bayesian posterior. We then identify clusters of solutions, and
identify the concentrations of SGD and Bayesian solutions within each cluster. To select the scale
ξ for tempering, we check how the choice of ξ impacts the KL-divergence between the empirical
SGD distribution and the theoretical SGD distribution (figure 3). We can see in figure 4a that the
solutions found by SGD do tend to concentrate around lower LLC areas. Figure 4b and table 2 shows
how the tempering of the distribution of SGD solutions effectively agrees with approximate Bayesian
posterior of SGLD.

Metric Value
K(Bayes∥Tempered SGD) 0.009
Wass(Bayes,Tempered SGD) 0.002
JS(Bayes,Tempered SGD) 0.003

Table 2: The KL divergence, the Wasserstein distance, and the Jensen-Shannon divergence for the
approximated Bayesian posterior and the tempered SGD distribution.

8
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Figure 3: KL-divergences between the empirical vs. theoretical distribution for different choices of ξ.

(a) LLC Histogram (b) The cluster concentrations

Figure 4: a) Shows the histogram of local learning coefficients of solutions found by SGD. Notice
that as predicted by the theoretical results, they tend to concentrate near lower LLC values (better
generalizing solutions). b) The probability concentrations of solutions found by SGD (blue), the
approximate Bayesian posterior (orange), and the tempered SGD distribution (green) for each cluster.
Notice that despite SGD itself preferring the cluster C1, after tempering (ξ = 0.5), the tempered SGD
steady state distribution almost entirely agrees with the Bayesian posterior. Statistical measures can
be seen in table 2.

5 DISCUSSION

5.1 LIMITATIONS

While we believe our theory is useful and tends to capture dynamics of most optimizers empirically, it
does not explicitly take into account complex dynamics of adaptive optimizers like Adam (Kingma &
Ba, 2017) as adaptive optimizers can exhibit multiple spectral dimensions over the course of training
meaning the theory here is incomplete and should occur as a "special case" of a more general theory.
Some experimental results and discussions around this can be seen in appendices I and H.

Another limitation to consider is that we assume the existence of an approximate steady state. While
this is a common practice in the study of SGD ((Pesme et al., 2020), (Mandt et al., 2016a), (Mandt
et al., 2018)). In general, SGD iterates do not converge to exact equilibria, but under standard
assumptions and suitable learning-rate schedules (or a sufficiently small learning rate) they approach

9
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the set of stationary points and attain iterates with small gradient norm. One can in theory have
instances where no approximate steady state exists since label noise can in theory produce a non-
equilibrium flow through states, so SGD might have a non-equilibrium steady state with probability
flow driven by said noise. While examining such situations is outside the scope of this work, it is an
important avenue of future work to examine a) the time to equilibrate of SGD and b) if it does not
equilibrate, can we quantify its non-equilibrium steady state?

5.2 CONCLUSION AND AVENUES FOR FUTURE WORK

Here we have argued that the long runtime dynamics of SGD are captured by taking the corresponding
Fokker-Planck equation to describe diffusion on a porous geometry. This porous geometry corre-
sponds is described by the learning coefficient, drawing a direct relationship between the dynamics of
SGD to Bayesian statistics via singular learning theory. Our experimental results validate this claim.

We believe our theory helps provide insight into the learning process and adds to the groundwork
needed to build a foundational theory of learning dynamics. Our theory says that the learning process
is governed partially by the model’s behavioral phases as described by the learning coefficient. This
opens up a framework for studying emergence and phase transitions during training by considering
properties of the dynamical system. Adapting this framework explicitly to adaptive optimizers and
checking how this impacts the diffusive structure is an important avenue for future work.

5.2.1 REPRODUCIBILITY STATEMENT

To encourage reproducibility we provide source code for the experiments included along with
extensive documentation in appendices J and I.
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A SINGULAR LEARNING THEORY BASICS

Here we give an informal introduction to singular learning theory. For more in-depth but still
accessible introduction, we recommend the Distilling Singular Learning Theory series of blog posts
(Carroll, 2023), along with the the seminal work by Watanabe (Watanabe, 2009). For us, it’s mostly
important to understand the problems that singular learning theory solves. To do this, we first must
consider a classical idea in machine learning, the Bayesian Information Criterion. The BIC is used to
determine which model from a set of different models is likely to generalize the best. Let aw be a
model with d free parameters w in the collection of models, trained over m datapoints and denote the
minimum loss achievable by aw as Ln(a

0
w). The BIC says that we should select the model from our

collection of models which minimizes the following:

BIC := nLn(a
0
w) +

d

2
log n (18)

This more-or-less says that we should choose the simplest model that fits our data.

The caveat about the BIC however is it makes the assumption that the models we care about are
“regular statistical models". There are two key things that are required for a statistical model to be
regular. First, the model must be identifiable, which effectively means that any set of parameters for
a are unique in that if aw1

(x) = aw2
(x) then w1 = w2. Second, the Fisher Information matrix near

the true parameters a0w must be positive definite. This condition is easiest to understand if we assume
the loss is the KL-divergence (or log loss), as it corresponds to saying that the Hessian of the loss
H(Ln(a

0
w)) is non-degenerate, having only non-zero eigenvalues.

14

https://api.semanticscholar.org/CorpusID:220969981
https://api.semanticscholar.org/CorpusID:220969981
https://arxiv.org/abs/1208.6338
https://arxiv.org/abs/1208.6338
https://arxiv.org/abs/2211.10049
https://arxiv.org/abs/2406.10234
https://arxiv.org/abs/2406.10234
http://dx.doi.org/10.1109/TNNLS.2022.3167409
http://www.jstor.org/stable/2371513
https://arxiv.org/abs/2002.03495
https://arxiv.org/abs/2002.03495
https://arxiv.org/abs/2010.05627
https://arxiv.org/abs/2010.05627
http://dx.doi.org/10.1088/1742-5468/ac3ae7


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

This fact is key for how one derives the BIC. While the formal derivation of the BIC is straightforward,
it is time consuming and there’s a much simpler way to intuitively see why it matters. First, the
non-degeneracy of H(Ln(a

0
w)) means the geometry of the loss surface is a paraboloid about a0w. We

want to then measure how many configurations of a have a loss less than ϵ, so we want to measure
the volume of a paraboloid of height ϵ in our parameter space. The nice thing about a parabaloid is
that its volume is half of that of the cylinder that encloses it. This can be computed straightforwardly
from the d-dimensional volume of tubes formula(Weyl, 1939):

Vd(2ϵ)
d
2√

det(H(Lm(a0w)))
(19)

Here Vd is the volume of the d-sphere. This formula is effectively where the d
2 comes from in the

BIC. Now, one might notice that if we are considering potentially degenerate local minima, this
formula cannot be applied since the degeneracy of the Hessian means the determinant is 0. In this
case, the BIC is not well defined either. Models with degenerate minima are called singular models.
In some sense, most model classes are singular. Neural networks for instance are highly singular
and generally admit many equivalent parametrizations for computing the same function. Singular
learning theory attempts to handle this problem by finding a method for computing the volume of
degenerate local minima.

This is done by considering the singular integral(Watanabe, 2009):

V (ϵ) =

∫
{w∈W |L(w)<ϵ}

ρ(w)dw (20)

where ρ(w) is a prior distribution over the parameter space so ρ(w)dw behaves as a measure, and L
is the population loss. Unlike the quadratic minima case, there is no straightforward volume formula
one can use here. However, as is shown in (Watanabe, 2009), as ϵ → 0 asymptotically this integral is:

V (ϵ) = c1ϵ
λ(− log ϵ)m−1 + o(ϵλ(− log ϵ)m−1) (21)

where λ is learning coefficient and m the multiplicity. One can define this integral at level sets which
are non-true parameters by shifting the value in the integrand like {w ∈ W |0 < L(w)− δ < ϵ}.

In short, one can show that the volume about a local minima scales with the height ϵ according to
the learning coefficient λ so the volume of the degenerate minima scales ∝ ϵλ as ϵ → 0 (Watanabe,
2009). This can be used to derive the Widely Applicable Bayesian Information Criterion (Watanabe,
2012) which is given by:

WBIC := nLn(a
0
w) + λ log n (22)

The natural interpretation of λ is as the “effective dimension" of a model. We note here as well that it
is relatively common to treat the multiplicity as taking the value m = 1 to simplify working with
singular models as the relative contributions for most applications are negligible in their effects.

A.1 THE LOCAL LEARNING COEFFICIENT

In the above, we discussed the global learning coefficient of (Watanabe, 2009). A local version of
this was defined in (Lau et al., 2024). This is given straightforwardly by simply restricting from
the singular integral over the whole set of ϵ-true parameters to some local neighborhood of some
parameter of interest w∗. One normally considers a ball of some radius r about said parameter
Br(w

∗) and then defines the local singular integral as

Vw∗(ϵ) =

∫
{w∈Br(w∗)|L(w)<ϵ}

dµ(w) (23)

where dµ(w) is the standard Lebesgue measure. The local learning coefficient and local multiplicity
are of the same form as the global case:

Vw∗(ϵ) ≈ ϵλ(w
∗)(− log ϵ)m(w∗)−1 (24)
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When looking at the local learning coefficient, one must make a choice of scale r. However, we note
that increasing r cannot increase the value of λ(w∗). This comes from a fundamental property of the
learning coefficient which says that the learning coefficient in an area is the smallest of all possible
local learning coefficients as r → 0. The reasoning for this is non-trivial, and the interested reader is
referred to (Watanabe, 2009) for details.

We now briefly explain how the local learning coefficient is computed in practice. Suppose that we
define some distribution over Br(w

∗). The local learning coefficient estimator of (Lau et al., 2024) is
given as

λ̂(w∗) =
n

log n
[Ew|Br(w∗)(Ln(w))− Ln(w

∗)] (25)

This accords with our intuition that if w∗ is simple/flat then perturbing the value of w∗ should not
change the loss. For in-depth experimental results for the accuracy of this estimator we refer readers
to (Lau et al., 2024) and (Wang et al., 2024b).

A.1.1 DEPENDENCE OF THE LLC ON r

While this question is addressed more formally in appendix B of (Lau et al., 2024), we address this
point here informally. Under the standard assumptions of Singular Learning Theory (Watanabe,
2009), the local learning coefficient on a ball of radius r around a true parameter w∗ converges to
some fixed "pointwise" learning coefficient. This is because as r becomes small, the behaviour of the
loss L(w) for some w ∈ Br(w

∗) is dominated by the leading order of the singular expansion about
w∗. Shrinking r cannot change the monomial exponents obtained after resolution of singularities;
those exponents are geometric invariants of the germ of L at the point.

B FOKKER-PLANCK EQUATIONS AND FRACTAL DIMENSIONS

B.1 THE MASS DIMENSION

In section 3.2.1 we claim that the local learning coefficient is effectively a mass dimension. To see
this, let’s start by considering a large collection of (non-interacting) particles diffusing through an
arbitrary fractal media. An important thing to note here is that diffusion on fractal media is actually a
special case of the more general “diffusion on porous media" where the volume of the pores scales
like a fractal dimension. Keeping notational consistency, we are interested in the valid states in some
ball B(w∗). To measure this, we need something called the “characteristic linear dimension" which
we can scale asymptotically. In porous media, this is something like the “pore diameter" (since
particles can occupy any point in a pore). For consistency again, we denote this value as ϵ.

The mass dimension is then the fractal dimension that determines the relative volume of the pores to
the total volume as we restrict the diameter of the pores by taking ϵ → 0. One way to see what this is
doing is to consider the mass dimension of an empty sphere (that is, the whole thing is a pore and
nothing is there to impede a particle). As we take ϵ to 0, we end up with every possible point being a
pore, so the relative volume is 1.

So we can imagine that for some ball centered about a reference point B(w∗), and we care about
the volume of states a particle could exist in within this ball, usually denoted as M(ϵ). The relative
volume is given identically to the learning coefficient case like

M(ϵ)

M(B(w∗))
(26)

We get the fractal dimension which determines the relative volume df (w
∗) as:

M(ϵ) ∝ ϵdf (w
∗) (27)

as ϵ → 0 asymptotically. One can see that this coincides with the definition of the local learning
coefficient((Kinsner, 2005), (Bouchaud & Georges, 1990)). From a fractal geometric viewpoint, the
normal mass dimension is computed as a “Minkowski sausage" which can be thought of as similar
how the volume of a “sausage casing" wrapping a pore scales as you decrease the radius. The learning
coefficient is similar, except it uses a different “gauge function" since our pores are not tubes, but are
instead like basins, so we look at how the volume of water in the basin changes as we decrease the
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height of the water. This fractal dimension has been used to model the diffusion of water through
ground soil of different types (Tyler & Wheatcraft, 1990). They find diffusion is much slower and
has a larger fractal dimension through clay-like media where there are very few channels to move
through, where more sand-like media has faster diffusion and a lower fractal dimension. This is
conceptually the same as the results given here.

B.2 THE SPECTRAL DIMENSION

The spectral dimension is easiest to understand if you think “how fast does diffusion manage to
explore new places?” rather than “what is the geometric dimension of the space?”. In the main text we
introduce the spectral dimension as the scaling exponent of the “volume of visited/occupied states".
That is, Vs(t) simply denotes the volume of states which have been visited by the process at time t.
The spectral dimension is then:

Vs(t) ∼ t
ds
2 (28)

Intuitively ds says how fast diffusion fills out the medium you are diffusing on, and in that sense it is
the “dimension that diffusion sees”.

In this work, the medium is (a region of) parameter space, and the diffusive process is the long-run
stochastic motion of SGD (modeled via the Fokker–Planck equation). The spectral dimension then
measures how quickly SGD can spread over the set of weight configurations that are dynamically
accessible from some initial condition. To see this a bit more formally we will discuss the spectral
dimension of normal Brownian motion.

B.2.1 SPECTRAL VS. GEOMETRIC DIMENSION

On a flat surface like Rd, a random walk driven by Brownian motion has a displacement R(t) ∝ t
1
2

so the region which gets explored after time t can be seen straightforwardly to have a volume which
simply scales with the displacement, since the diffusion is uniform in d dimensions. That is we have:

Vs(t) ∝ R(t)d (29)

so
Vs(t) ∝ t

d
2 (30)

One can see though that by introducing obstructions into this free space changes the diffusion
rate. Moving through a medium with many obstructions changes the geometry that diffusion
experiences, which can be very different from the naive ambient dimension. Narrow channels,
dead ends, bottlenecks, and local degeneracies all slow down or redirect the random walk. The
process might live in a very high-dimensional ambient space, but only a much smaller effective set of
directions is actually accessible on the timescales we care about. In such cases one typically has that
ds ̸= d. In our setting, the ambient dimension is the number of parameters, while the local “mass
dimension” of low-loss regions is given by the local learning coefficient λ(w). Consider this in the
same context as the Brownian motion example. Since the learning coefficient captures the volume
of low loss states, a diffusive process on those states can only ever access at most that many states,
bounding the spectral dimension. So the spectral dimension literally captures the number of states
SGD can actually visit over some time frame.

B.2.2 WHY SGD HAS A SPECTRAL DIMENSION

For simplicity we are going to imagine a very localized picture of SGD here. Suppose we initialize in
some area W which has learning coefficient λ which approximates the volume of low loss points in
W . The spectral dimension ds of this area tells us how efficiently the SGD-induced diffusion spreads
into that volume over time. The walk dimension dw = 2λ

ds
ties the two together and governs the

displacement scaling.

From the perspective of diffusion theory, ds is therefore the right quantity to describe the effective
dimensionality of SGD dynamics.. It is “spectral” because, in principle, it could be read off from
the spectrum of the Fokker–Planck operator governing SGD; in practice, we estimate it through the
observed power-law scaling of displacement, which is equivalent information in the regime we study.
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B.3 IMPACT OF EARLY SUPER-DIFFUSIVE DYNAMICS ON DIFFUSION EXPONENTS

Given the displacement equation
R(t) ∼ t

1
dwalk(t) (31)

we can give a rather straightforward way to incorporate the super-diffusive component. If a given
trajectory goes from super-diffusive to sub-diffusive, there exists a crossover time tc where the
dynamics change. Given this, let r(t) be the super-diffusive component such that for t > tc we have
r(t) = r(tc). Letting Itc(t) = 1 for t ≥ tc we can then write the displacement as

R(t) ∼ Itc(t)(t− tc)
1

dwalk(t) + r(t) (32)

A similar trick works for the volume. This means that one can account for the early super-diffusive
behaviour without directly impacting the exponents if one accounts for the crossover time. In general,
we find experimentally in many cases that the initial super-diffusive regime is short enough that the
dynamics are still well approximated by the entirely sub-diffusive equations.

C TOWARDS PRACTICAL APPLICATIONS

While the results here are largely theoretical, we believe they provide important avenues and insights
for practical applications. We discuss some of these below.

C.1 TRANSFER LEARNING AND ROBUSTNESS

C.1.1 PARAMETER CHOICE FOR TRANSFER LEARNING

In transfer learning, you start from a pretrained minimum and fine-tune with SGD on a new task. The
value of λ at initialization tells you how wide that basin is. If one maintains a record of the weight
displacement from pretraining, one can estimate how the effect the new data distribution has on ds
during the initial steps. These tell you how “wide” and “connected” the accessible region is, which
can inform how aggressively to tune the learning rate and batch size. For example if the spectral
dimension is low, but the loss is high, you are likely stuck in a wide flat basin, so one might increase
the learning rate or decrease the batch size.

C.1.2 ROBUST MODEL SELECTION

Our theory indicates that model parameters with a low λ but a high relative spectral dimension ds
represent models which had more movement within the same large basin. Selecting for such models
might result in more robust generalizing models as the minima they exist in are “flat"

C.2 LEARNING RATE SCHEDULERS AND OPTIMIZERS

C.2.1 DESIGNING LEARNING RATE SCHEDULERS

Warmup and decay can be viewed as shaping ds over time. This suggests the potential for structural
schedule design: e.g. maintain higher ds early (more exploration), then lower ds later (stronger
localization).

C.2.2 EVALUATING OPTIMIZERS

Another application is evaluating optimizers for particular structural properties. That is, one can look
at how the spectral dimension or the learning coefficient change over time and compare these with
SGD to better understand how the optimizer impacts generalization behaviour.

C.3 APPROXIMATE BAYESIAN INFERENCE

One can potentially apply the theory here to calibrating uncertainty in SGD. In practice, “Bayesian”
approximations often assume Langevin dynamics with quadratic minima. Our theory gives a way to
correct for degeneracy and accessibility so that posterior variances and predictive intervals reflect the
actual dynamics of SGD, not an idealized model.
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D PROOFS

D.1 LLC DETERMINES PORE SCALE DYNAMICS NEAR DEGENERATE POINTS

The proof of this relies on results from the theory of first passage times, homogenization, and
porous diffusion, namely the estimation of mean first passage times of porous media. However, the
components needed are straightforward to state. First we need the following definition(Baxter, 1985):
Definition D.1. Let K ⊂ Rd. The Newtonian capacity Cap(K) is defined as

inf{
∫
Rd

|∇u|2dx : u ∈ C∞
c , u ≥ 1 on K} (33)

Intuitively: if K is “big” or “accessible,” you can spread charge thinly and keep fields weak which
makes them low energy, large capacity; if it’s tiny or shielded, fields must be intense → high energy,
small capacity. Next we give a known result of first passage times in porous media(Redner, 2001).
Theorem D.1. Let Ω ⊂ Rd be a porous domain and let dXt be a brownian process on Ω and let Γ
be the set of all absorbing walls in Ω. If we consider then Γδ to be the subset of absorbing walls with
area less than δ then the mean first passage time of a Brownian particle through Ω is (asymptotically)
proportional to

T̄ ∝ |Ω|
DCap(Γδ)

(34)

as δ → 0 where D is the diffusion coefficient of the Brownian process.

Intuitively this says that for isotropic noise the time spent in some domain is proportional to how big
the domain is and how large the escape walls are. We can use this to get the mean first passage time
for SGD around degenerate saddle points under some simplifying assumptions.
Theorem D.2. Let w∗ ∈ W be a point such that the Hessian of the loss H(w∗) is positive semidefinite.
Let W = B(r, w∗) be a small area about w∗ with local learning coefficient λ(w∗) with Wε = {w ∈
W|L(w) < ε}. assume we have small istropic noise D and that there is a reflective boundary at
height ε along the wall, and some escape set (absorbing boundary) Γ(W) then the time it takes to
traverse distance with error tolerance ε is inversely proportional to the LLC.

Proof. First note that in the above picture, we effectively have Brownian motion along a submanifold
Wε = {w ∈ W|L(w) < ε}, which we can treat as diffusion through a porous media where the pores
have height ε. Then from theorem D.1 we know that asymptotically as δ → 0 we should have

T̄ (Wε) ∝
|Wε|

DCap(Γδ(Wε))
(35)

and since we can take |Wε| = V (ε). This gives the desired result.

While the above result requires isotropic noise and zero gradient, analogous results likely hold
under weak anisotropy and weak gradients by considering potential driven Brownian motion on a
submanifold which is tilted to behave like a porous media.

D.2 DIFFUSION COEFFICIENT HAS A SCALAR APPROXIMATION

First we would like to prove that the diffusion coefficient is well-approximated by a constant. To
do this we prove a handful of results. In the following let γ ≪ 1 be a small learning rate and let n
denote the batch size. Letting Dα

t be the Caputo fractional derivative, take

Dα
t wt = −γ∇Ln(wt−1) + Σwt−1 (36)

to be the overdamped Langevin equation with

Σwt−1
=

√
2D(wt−1)dWt (37)

where dWt is a d-dimensional Wiener process. Let T be the time to equilibration for an instance of the
system. Then as t → T , assume for almost all eigenvalues ei of the Hessian H(wt−1) of Ln(wt−1)
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we have ei ≪ 1 are ≈ 0 (which has been shown in (Sagun et al., 2016)). Furthermore, we start with
the assumption that the full diffusion tensor is proportional to the Hessian so D(wt−1) ∝ H(wt−1)
which has been shown previously (both experimentally and rigorously under particular assumptions,
see (Xie et al., 2021) and (Smith & Le, 2018)). We start with the following:
Lemma D.1 (Effective Diffusion Tensor is Low Rank). As t → T , assuming L is in C2, the diffusion
tensor is well-approximated by an effective diffusion tensor Deff(w) with rank deff ≪ d with w ∈ Rd.

Proof. Since D(wt−1) ∝ H(wt−1) and we know that almost all eigenvalues are ≈ 0, the result
follows almost immediately from the Eckart–Young–Mirsky theorem. That is, approximating via the
truncated eigendecomposition

Dk =

k∑
i

eiqiq
T
i (38)

and considering the ordering |e1| ≥ |e2| ≥ ...|en| we get the approximation error

∥D −Dk∥ =
∑
i>k

e2i (39)

and if ei ≈ 0 for all i > k, then
∑

i>k e
2
i ≈ 0.

Lemma D.2. As t → T , taking D(wt) ≈ γ
nH(wt) (Xie et al., 2021) for batch size n and learning

rate γ. For any ϵ there exists some choice of γ and n such that there is a scalar value a with

∥D(wt)− aI∥ < ϵ (40)

Proof. Since D(wt) is symmetric, it can be rewritten as QΛQT = D(wt) where Λ = diag(e1, ..., en).
We can then take

D(wt)− aI = Q(Λ− aI)QT (41)
and by the unitary invariance of the Frobenius norm we get:

∥D(wt)− aI∥ = ∥(Λ− aI)∥ (42)

which is
d∑
i

(ei − a)2 (43)

Then since for almost all i, ei = 0 we have

= ca2 +
∑
j

(ej − a)2 (44)

where the sum is over all non-zero eigenvalues and c is the number of 0 eigenvalues. Let a∗ =
argmina∈Rca

2 +
∑

j(ej − a)2. Notice that since ej is an eigenvalue of γ
nH(wt) we can rewrite it

ej =
γ
ne

′
j where e′j is the corresponding eigenvalue in the unscaled Hessian.

Letting e′1 be the largest unscaled eigenvalue, notice that as γ → 0 and/or n → ∞ that the value for
e1 dominates the sum, and all the other ej go to 0, so the sum is then

≈ (d− 1)a2 + (e1 − a)2 (45)

so setting a = e1 we get
∥(Λ− aI)∥ ≈ (d− 1)e21 (46)

= (d− 1)(
γ

n
e′j)

2 (47)

and since the learning rate and the batch size can be made arbitrarily small/large, our result follows.

We now prove the general form of the scalar diffusion coefficient at some effective scale. This is a
well-known result within the diffusion literature (Bouchaud & Georges, 1990) but we include it here
for completeness. We prove it for the homogeneous case. The inhomogeneous case follows from
application of this to a restricted sub-domain.
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Lemma D.3. Let ξ be some choice of length scale and dwalk be the walk dimension. The diffusion
coefficient can be approximated by a scalar as Dξ = ξ2−dwalk .

Proof. The effective diffusivity is defined as Dξ = length2

length traversal time . Since R(t) ∼ t
1

dwalk we get that
R(t)dwalk ∼ t so setting R(t) = ξ and rewriting t(ξ) as the time t such that R(t) = ξ, we get t ∼ ξdwalk

we can write

Dξ =
ξ2

ξdwalk
(48)

= ξ2−dwalk (49)
as desired.

D.3 STEADY STATES

Here we will give proofs of the results given in section 3.
Lemma. Consider a subset of the parameter space W ⊂ W such that the effective diffusion
coefficient Dξ is (approximately) constant on W . Suppose then that there exists steady state solutions

on this subset w∗ so ∂p(w∗,t)
∂t = 0. The steady-state distribution is then given by ps(w) ∝ e

−γLm[w]
Dξ .

Proof. First, by definition of the steady state we have Dα
t p(w, t) = 0 which reduces the fractional

FPE to effectively the normal FPE, so we must solve the following PDE:

0 = ∇ · (D(w, t)∇p(w, t)− γp(w, t)∇Lm[w]) (50)

Now under the assumption that for all w1, w2 ∈ W that D(w1) ≈ D(w2), then the long-term
behavior of the diffusion coefficient at length scale ξ can be approximated by the effective diffusion
coefficient given in definition 3.1, giving

0 = ∇ · (Dξ∇p(w, t)− γp(w, t)∇Lm[w]) (51)

One can also see that the values of Dξ and Lm[w] are not dependent on p (that is, the change in
the probability of w does not change the loss or geometric properties determining diffusion at w)
meaning that the SGD-FFPE reduces to a linear partial differential at steady state solutions. The
solution is then readily obtained by solving the normal Fokker-Planck equation, which is simply the

Boltzmann distribution for the system giving ps(w) ∝ e
−γLm[w]

Dξ as desired.

Corollary. Letting γ = 1 for simplicity, if L is the log-loss, then

ps(w)
mDξ ∝ p(Xm|w) (52)

so

p(w|Xm) =
ρ(w)ps(w)

mDξ

ZmDξ

(53)

where ZmDξ is the partition function. and ρ is the prior.

Proof. First, note that the empirical negative log loss is

Lm[w] = − 1

m

m∑
i=1

p(yi|xi, w) (54)

This is a dimensionless quantity, however, we can consider the coarse-graining of the parameter space
by some scale ξ so that w 7→ B(w, ξ). By taking the appropriate choice of measurement scale ξ
(given some general regularity assumptions about the structure of the loss surface implicit in singular
learning theory) we have that if w1, w2 ∈ B(w, ξ) then Lm[w1] ≈ Lm[w2]. Now consider that:

e−mLm[w] =

m∏
i=1

p(yi|xi, w) (55)

= p(Xm|w) (56)
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Now given the result of lemma 3.3 one gets ps(w) = e

−Lm[w]
Dξ

Zs
for partition function Zs. We then get

that

(e
−Lm[w]

Dξ )mDξ = e−mLm[w] (57)

= p(Xm|w) (58)

Letting ZmDξ
be the appropriate partition function, the result then follows from application of Bayes’

theorem.

Lemma. Suppose the loss function L is non-convex and non-constant on W . Then with spectral
dimension ds as t → ∞ with fractal dimension λ(w(t)) on W ⊂ W , the inequality ds ≤ λ(w(t))
holds (in the small learning rate regime).

Proof. Consider two points w1, w2 be two points visited in the long timescale regime at times t1, t2
separated by distance R. If we suppose that there exists a linear path connecting w1 to w2 along the
manifold and we remove all other paths linking the two points we have diffusion on a linear structure.
Now using the definition of the walk dimension, following the arc A of this restricted structure
gives RA(t) ∝ t

1
dwalk but since this restricted structure has only a single path, it has walk dimension

dwalk = 2. Now, suppose that this is true for any pair of points. Notice that this implies that all
points are connected by a linear path at arbitrary distances along the loss manifold meaning the loss
surface would have dwalk = 2. Furthermore this would imply that the loss does not change for any
choice of parameter, violating the fact that it is non-constant so we must have dwalk > 2. Now since
dw = 2λ(w)

ds
we have ds =

2λ(w)
dwalk

and clearly if dwalk > 2 then 2λ(w)
dwalk

≤ λ(w) so ds ≤ λ(w)

Corollary. For time t as t → ∞, we have ds ≤ λ̄(w(t)) where

λ̄(w(t)) = lim
τ→∞

1

τ

∫ τ

0

λ(w(t))dt (59)

Proof. Let τ0 be the time such that for all τ > τ0, the inequality of lemma 3.4 holds. Consider then a
time T ≫ τ0 and consider the integral∫ T

0

λ(w(t))dt =

∫ τ0

0

λ(w(t))dt+

∫ T

τ0

λ(w(t))dt (60)

and since τ0 is finite we can take the first portion of this integral to be a constant (since we know that
the LLC is bounded above by d

2 where d is the number of free parameters):∫ τ0

0

λ(w(t))dt = C (61)

By the result of lemma 3.4 we have that for all times greater than τ0, we must have∫ T

τ0

λ(w(t))dt ≥
∫ T

τ0

dsdt (62)

and since ds is constant ∫ T

τ0

λ(w(t))dt ≥ (T − τ0)ds (63)

which means that by adding C to both sides and dividing by T we get

1

T

∫ T

0

λ(w(t))dt ≥ (T − τ0)ds
T

+
C

T
(64)

From this we get
1

T

∫ T

0

λ(w(t))dt ≥ ds +
(C − τ0)ds

T
(65)

where the term (C−τ0)ds

T vanishes as T → ∞ since C must be finite.
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D.4 EXTENDED RESULTS

Below we give an extra result which explains a domain where the theory can fail, as well as a
discussion about complexities regarding how the diffusion process relaxes towards stationary states.

In the following result, consider the large-batch small learning rate regime. What happens if instead
of the long runtime being sub-diffusive it has a small linear component?

Proposition D.1. Suppose that R(t) ∼ t
1

dwalk +ct for small constant and has no stationary distribution.

Proof. The proof is straightforward. Let τ2 be the crossover time where for all t > τ2, ct > t
1

dwalk

so on long timescales the small linear term dominates the sub-diffusive term, so R(t) for t > τ2

can be effectively approximated as R(t) ∼ ct+R(τ2) + o(t
1

dwalk ) and as t → ∞ the constant term
ct dominates. However, a stationary distribution must be independent of time. This cannot be the
case however as at any point in time the diffusive process has non-trivial movement away from
initialization so the distribution p(w, t) spreads continuously over all timescales.

The thing that causes the problem with linear diffusion is if the space is unbounded. If one bounds
the space with a reflective boundary one can recover a stationary state but the dynamics become
more complicated. One way to approach studying this system would be to assume that the process
eventually reaches a global minima and that such minima form a connected submanifold. One could
then consider certain directions on the manifold to be confining, and others to be free. Processes on
this submanifold can be studied using tools like Morse-Bott theory.

E HOMOGENIZATION

Ultimately the theory presented here relies on the process of homogenization, which is a well-known
technique in the study of diffusion. We will give a basic informal overview here, but a full treatment
can be found in (Cioranescu & Donato, 1999). We will then discuss how the method used for
estimating the local learning coefficient in (Lau et al., 2024) is related to homogenization.

Homogenization is a process used to understand diffusive processes where the underlying governing
structure can have small but rapid variations on small scales. These fluctuations might matter for a
diffusing particle on short length/time scales but they should effectively average out at some larger
scale. A bit more formally, if we imagine something like a chemical concentration cϵ(x, t) which is
diffusing according to the PDE

∂cϵ

∂t
= ∇ · (D(

x

ϵ
)∇cϵ) (67)

where the diffusion D coefficient varies rapidly when ϵ ≪ 1. However, if D is bounded, then
homogenization theory tells us that there is some other function c0 given by ϵ → 0 such that there is
some effective PDE:

∂c0

∂t
= ∇ · (D̂(

x

ϵ
)∇c0) (68)

where D̂ is an effective diffusion coefficient which only varies over a much larger scale. This is
effectively taking the PDE and averaging out the fluctuations over a particular scale to get something
that is easier to model. When performing a homogenization one normally picks a scale that they
are “averaging over". This scale can be picked somewhat arbitrarily but making the scale too large
or too small can negatively impact how accurately one captures the dynamics of the system. If one
takes the scale too small, homogenization is not effective. If one takes the scale too large, you start to
ignore how the distribution of fluctuations can change in different areas of the media, leading to an
inaccurate theory.

There is a sense in which the local learning coefficient estimation introduced in (Lau et al., 2024)
is related to homogenization. For a particular value w∗ in the parameter space (which is assumed
to be a local minima) and a ball Bδ(w

∗) of radius δ about w∗, they define the learning coefficient
estimator as

λ̂(w∗, δ) = mβ[EBδ(w∗)[Lm(w)− Lm(w∗)]] (69)
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where w ∈ Bδ(w
∗) and β = 1

logm . The choice of δ is effectively the scale over which one is
homogenizing, and the estimate of the LLC is akin to the average fluctuation over that area. This is
also why when trying to accurately estimate the LLC it is recommended to not make δ too large.

F ROLE OF THE FRACTIONAL DERIVATIVE

F.1 THE FRACTIONAL DERIVATIVE

The Caputo fractional derivative

Dα
t f(t) =

1

Γ(1− α)

∫ t

0

f ′(t)

(t− τ)α
dτ (70)

is essentially like a derivative with memory of past derivatives, weighted by a power law decay in
time controlled by α. To see this, one can consider two extreme cases. First, taking α → 0 you get
the total net change of f(t)− f(0). Taking α → 1 you recover something more akin to the “slope"
between the time t and the start time. α effectively controls how quickly you ignore the past.

If we want to see how it induces power law subdiffusion consider the linear function f(t) = at+ b.
Assuming 0 < α < 1, we find

Dα
t f(t) =

a

Γ(2− α)
t1−α (71)

So notice that as α → 0 the process becomes more linear, so α controls how “sublinear" the process
is.

F.2 FRACTAL DIMENSION AND FRACTIONAL DERIVATIVE

The relationship between the fractal dimension and the fractional derivative operator has been a
subject of investigation for nearly 3 decades, starting with (TATOM, 1995). The authors used
numerical simulations to study the relationship between the fractional derivative and the fractal
dimensions of particular curves, finding a linear relationship between the order of the fractional
operator and the fractal derivative. Since then, extensive theoretical results have been proven for
different types of special functions (see (Liang & Su, 2024) for an overview). It was proven in
(Songping, 2004) that there is a linear relationship between the Minkowski–Bouligand dimension of
the Weierstrass function and the Minkowski–Bouligand dimension of its corresponding fractional
calculus. We hypothesize that the fractional derivative in the FFPE for SGD accounts for the change
in λ(w) as one moves through the parameter space. More concretely:

Hypothesis F.1 (Shared Slopes). Let α(t) be the fractional derivative exponent at time t. The value
of α(t) ∝ dλ(wt)

dt .

Since α(t) is effectively a local property of a point that is related to the derivative about the point,
this should be unsurprising as the learning coefficient directly describes degenerate directions of the
space.
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(a) Jump in Weights with SGD Optimizer

(b) Drop in LLC

Figure 5: The corresponding changes in weight vs. the LLC.

As mentioned in section 3 we see more complex dynamics when we operate in the grokking regime.
Experimentally we see (figure 5b) that the appropriate choice of hyperparameters result in sudden
large jumps in weight space (and the LLC) when the batch size is sufficiently small. The general
sub-diffusive behaviour of these systems is captured by the fractional derivative in time Dα

t . However,
the large jumps indicate the need for a fractional derivative in space to fully account for grokking
behavior. This could be done by introducing a fractional Laplacian operator to equation 3.1.1 however
we don’t explore this analytically here. We do note however that the introduction of the space
fractional derivative is effectively the same as a Levy noise Langevin equation.
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Figure 6: Train/test accuracy over time. Notice that sudden jumps in the accuracy correspond to
sudden jumps in the weights and the LLC.

We believe that this is evidence that the concept of stage boundaries and developmental stages
introduced in (Wang et al., 2024a) is seemingly a very natural way to discuss stages of learning.
They suggest delineating phases of learning by critical points in the (noise mitigated) LLC evolution
curve. Our experiments indicate that the rate of change of the local learning coefficient should
roughly capture the impact of the time and space fractional derivatives. Discontinuities (or very
sharp changes) seemingly account for the action of the spatial fractional derivative, while more stable
changes seemingly relate to actions of the time fractional derivative.

G EXPERIMENT DETAILS

For all experiments, we use the following configuration for the learning coefficient estimation:

Table 3: Hyperparameters for LLC Estimation

Hyperparameter Value
optimizer_lr 1e-5
optimizer_localization 100.0
sampling_method SGLD
num_chains 1
num_draws 400
num_burnin_steps 0
num_steps_bw_draws 1

G.1 MNIST

To investigate our theory using the MNIST dataset, we take a subset of 10000 images, and create a
50/50 train-test split. We then conduct two different sets of experiments. The first set of experiments
are ran on 50 identical models with different random initializations, each trained for 100 epochs with
batch size 256 and a learning rate of 0.001. For the other set of experiments we run against a set of
18 different architectures which vary in depth and layer widths, training these for 250 epochs but
with the other parameters fixed (a table of architectures is provided in appendix J). We found for
our purposes that it is sufficient to use a basic set of hyperparameters for the estimator (appendix
J). We compute the LLC every 100 steps, as well as log the displacement of the network from its
initial position. We then take the final LLC to be the average over the last 10 estimates. We also
performed extensive ablation experiments over optimizers and parameters on MNIST, whose details
can be found in appendix H.
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G.2 TINY IMAGENET

Tiny ImageNet (Le & Yang, 2015) is a subset of 200 classes of the full ImageNet dataset, which have
been down-sampled to 64× 64 pixels. In our experiments we rescale the images back to 224× 224
as well as apply the standard Imagenet normalization. We conduct experiments on the following
models pretrained on ImageNet:

• ResNet18 (He et al., 2015)

• ResNet34 (He et al., 2015)

• VGG11 (Simonyan & Zisserman, 2015)

To conduct our experiments we finetune the above mentioned models after replacing the original
output layer with an output layer with 200 neurons. In order to train this network we follow general
fine-tuning practices. That is, we freeze the original weights, and fit the new classification head using
the Adam optimizer for a maximum 20 epochs with a learning rate of 0.001 and a weight decay of
0.0001, with a batch size of 128. If the loss does not decrease more than 0.0001 over 3 epochs, we
stop training, switching to SGD with 0 weight decay and a learning rate of 0.00001 for 2000 steps
with batch size 128. We note here that our vision experiments are conducted slightly differently than
the language model or MNIST experiments. This was done to test the theory on the “fine-tuning"
stage of model development.

G.3 TINYSTORIES

The TinyStories dataset (Eldan & Li, 2023) was selected as it allows us to explicitly test our theory
on late stage training without training models from scratch, but where there are multiple reasonably
sized pretrained models which we can compute the LLC for multiple times throughout training. In
particular we run experiments on the following models from HuggingFace trained on TinyStories:

• roneneldan/TinyStories-1M (hug, b)

• nickypro/tinyllama-15M (hug, a)

• roneneldan/TinyStories-33M (hug, c)

Each of these models are trained for 1000 steps with a batch size of 16, with a learning rate of
0.00001, with the LLC computed every 100 steps.

G.4 POSTERIOR CONCENTRATION

To test the posterior concentration predictions we use a simple toy model and dataset where one can
reasonably approximate the Bayesian posterior. We use the moons dataset (Pedregosa et al., 2011)
with 512 samples, a noise ratio of 0.2, and a batch size of 128. Using this we train a 2 hidden layer
ReLU network where each hidden layer has 64 neurons. Each model is trained using SGD with
a learning rate of 0.01 for a total of 200 epochs. We do this for 500 random initializations of the
network on the same dataset. At the end of training for each model, we compute the LLC, discarding
any non-converged training runs. Since our theory is largely about the local posterior, we take the
solutions found by SGD and use these to seed SGLD. In particular, since the Bayesian posterior will
concentrate around the model with the lowest loss and lowest learning coefficient, we use the SGD
samples which have the lowest loss and the lowest LLC. For each run of SGLD we take draw 1000
samples with 200 burn in steps, and 10 steps per sample with a learning rate of 0.00001.

H MNIST ABLATIONS

Ablations were ran across optimization various hyperparameters for a fully connected network
trained on MNIST to better understand the effects hyperparameter choices have on the diffusion
characteristics. Experiments are ran for both SGD and Adam to test if the theory is effective for
adaptive optimizers. We highlight some of these experiments here.
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Optimizer ds (mean) ds (std) λfinal (mean) λfinal (std) Test Acc (mean)
adam 0.4061 0.9068 3.0957 5.7533 90.4297
sgd 7.8165 10.2494 12.5270 11.8393 94.0592

(a) Spectral dimension (b) Learning coefficient (final)

Figure 7: Learning coefficient and spectral dimension for vanilla SGD with varying batch size and
learning rate.

Figure 8: Correlation between momentum and spectral dimension.

(a) Spectral dimension (b) Learning coefficient (final)

Figure 9: Learning coefficient and spectral dimension for Adam with varying batch size and learning
rate.
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(a) Spectral dimension (b) Learning coefficient (final)

Figure 10: Correlation of Learning coefficient and spectral dimension for with batch size for SGD

(a) Spectral dimension (b) Learning coefficient (final)

Figure 11: Correlation of Learning coefficient and spectral dimension with learning rate for SGD

We note that interestingly when using Adam, the spectral dimension seems to have a stronger
correlation with performance than the learning coefficient as can be seen in figures 12 and 13.
Another interesting phenomena that supports our theory is that there is relatively little correlation
between λ and the learning rate, but there is relatively substantial correlation between the spectral
dimension ds and the learning rate (figure 11) which aligns well with the theory. We note that the
correlation between λ and the batch size reflects the sensitivity of the empirical LLC estimator of
(Lau et al., 2024) to the batch size.

(a) SGD test accuracy (b) Adam test accuracy

Figure 12: Correlation of spectral dimension with test accuracy for Adam and SGD.
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(a) SGD test accuracy (b) Adam test accuracy

Figure 13: Correlation of the final learning coefficient with test accuracy for Adam and SGD.

(a) Predicted vs. true displacement for SGD (b) Predicted vs. true displacement for Adam

Figure 14: Predicted vs. true displacements.

Figure 15: The correlation between the predicted displacement and the true displacement.
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Figure 16: The correlation between the final displacement and the final λ vs. batch size and learning
rate.

(a) The correlation between the final displacement and
the final λ vs. batch size and learning rate for SGD.

(b) The correlation between the final displacement and
the final λ vs. batch size and learning rate for adam.

Figure 17: Correlations between the displacement and learning coefficient.

H.0.1 SLT AND ADAM

Note that in figure 17 it seems that while the learning coefficient correlates very strongly with SGD,
Adam does not. We suggest that this is because the LLC measures a quantity associated with the
same Riemannian metric over the data as is used by SGD while adam effectively changes the metric
structure via preconditioning. It is well known that variable-metric methods, including adaptive
optimizers like Adam, can be interpreted as performing gradient descent in a Riemannian metric
defined by a positive-definite preconditioner matrix. In the case of Adam, this preconditioner is the
diagonal matrix built from the running average of squared gradients. Recent work has made this
connection explicit, showing that Adam can be viewed as an approximate natural-gradient method
using a diagonal empirical Fisher information matrix as a data-dependent metric, so the singularity
structure of the Adam metric is likely different.

I ADDITIONAL EXPERIMENTS AND RESULTS

I.1 DIFFUSION PREDICTION ACCURACY

If the weight diffusion is indeed fractal, we should expect that using the spectral dimension as
estimated by equation 17 we should be able to accurately predict the movement of the weights. While
this is seen in the runs presented in table 1 they are not presented in the main body for MNIST due to
the volume of models trained We can see the histogram of the R2 scores in figure 18. An important
thing to note here is that these estimations don’t explicitly account for the early super-diffusive
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behaviour seen during initial training, so large periods of super diffusion should decrease the accuracy.
However, in other settings where we can account for early super-diffusion behaviours, the predictions
become nearly exact. An instance of this is in the case of the Tiny ImageNet models where we can
explicitly factor out the adaptive training component and simply fit to the SGD component at the end
of training (as our theory explicitly cares about late training stages of SGD). This shift in dynamics
can be seen in figure 19. However, in instances where we can start with SGD, if the model is already
near equilibrium, we can see the sub-diffusive behaviour very early with vanilla SGD. An example of
this can be seen in figure 20.

Figure 18: The distribution of the R2 scores for identical MNIST models.

Figure 19: Displacement of the ResNet18 model on Tiny ImageNet. A sharp transition from Adam to
SGD can be seen near step 5000, at which point the dynamics become distinctly subdiffusive.
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Figure 20: Displacement of the TinyStories-33m model along with the displacement predicted by the
theory.

I.1.1 TINYSTORIES USING ADAM

Model name λ ds α r2

TinyStories-1M 32.05 36.6 0.57 0.99
TinyLlama-15M 77.02 48.06 0.31 0.97
TinyStories-33M 40 31.95 0.39 0.98

Table 4: Results for language models trained using the Adam optimizer.

Note that while the theory does seem to hold for Adam in some cases, it is less consistent, reflecting
the more complex way in which Adam interacts with the geometry.

I.2 AVERAGE SPECTRAL DIMENSION

We also check the result of corollary 3.3. This can be seen in figure 21

I.3 CIFAR EXPERIMENTS

We ran additional experiments using various convolutional architectures on CIFAR10 to explore how
the super-diffusive component impacts the theoretical results. We find that while these models display
stronger super-diffusive behaviours (increasing in intensity with model size) the super-diffusive
behaviour attenuates quickly enough that the theoretical results still hold, even when the super-
diffusive behaviour is not factored out. Note as well that the runtimes were not as long, so one might
expect the super-diffusive component to have a larger impact. In the following we restrict ourselves
to a subset of 10000 samples from the CIFAR10 dataset where all models are initialized using Xavier
initialization, with 0 bias and ReLU activations.
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Figure 21: The average LLC vs. the spectral dimension. These results align with corollary 3.3.

Table 5: Spectral Dimension vs. LLC across runs for convolutional architectures

Num Params Spect. Dim LLC Channels Batch Epochs LR

1184 0.085 2.585± 0.779 32 64 50 0.001
19936 3.374 5.929± 0.963 32, 64 64 50 0.001
94304 4.887 11.829± 1.960 32, 64, 128 64 50 0.001

372928 7.483 16.176± 2.175 64, 128, 256 64 50 0.001

Figure 22: Weight displacement over time across a subset of the CIFAR10 dataset for Convolutional
Architectures.

We also investigated the weight displacement for residual architectures. These can be seen in table 6
where the first number is the number of channels in between residual blocks.
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Table 6: Spectral Dimension vs. LLC across runs for residual architectures

Num Params Spect. Dim LLC (final) Channels Batch Epochs LR

1216 0.085 2.585± 0.779 32 64 50 0.001
208448 3.481 14.729± 4.394 16, 32, 64 64 50 0.001
167424 4.534 10.408± 2.127 32, 64 64 50 0.001
831616 5.795 24.756± 7.614 32, 64, 128 64 50 0.001
872640 9.652 37.731± 8.332 16, 32, 64, 128 64 50 0.001

Figure 23: Weight displacement over time across a subset of the CIFAR10 dataset for residual
architectures.

If we look at both figures 23 and 22 we can see that larger models exhibit more super-diffusive
behavior.
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Table 7: Spectral Dimension vs. LLC with hyperparameters for varying model architectures.

Num Params Spect. Dim LLC (Final) Layers

242304 2.910 30.514 784, 256, 128, 64
125568 3.749 31.424 784, 128, 64, 128, 64
117376 7.373 40.128 784, 128, 64, 32, 64, 32, 64
244384 8.310 38.866 784, 256, 128, 64, 32, 16
127296 8.661 33.361 784, 128, 64, 128, 64, 32
126112 12.458 33.385 784, 128, 64, 128, 64, 16
121472 12.909 61.920 784, 128, 64, 32, 64, 32, 64, 32, 64
118016 12.996 23.551 784, 128, 64, 128
109184 13.763 20.324 784, 128, 64 1
125568 14.603 73.419 784, 128, 64, 32, 64, 32, 64, 32, 64, 32, 64
234752 15.021 23.299 784, 256, 128
143680 15.838 51.999 784, 128, 64, 128, 64, 128, 64, 32
141952 19.357 44.844 784, 128, 64, 128, 64, 128, 64
134400 20.268 36.134 784, 128, 64, 128, 64, 128
143872 20.925 41.541 784, 128, 64, 128, 64, 256
244032 21.719 35.879 784, 256, 128, 64, 32
158336 24.465 71.359 784, 128, 64, 128, 64, 128, 64, 128, 64

In table 8 we can see instances where the spectral dimension is negative. This is related to the
model having a negative LLC (which occurs generally when there are no near-stable solutions).
When negative LLCs occur, it is almost always near initialization where the model also displays
super-diffusive displacement (as it is likely moving strongly along a steep gradient). The negative
spectral dimension is a remnant of how the spectral dimension is computed in our case. One can
reasonably remove occurrences of a negative LLC and perform the estimation which would capture
the behavior of the model on the fractal landscape it traverses away from initialization (which is
shown to be theoretically valid in appendix B.3). For transparency we do not do this as it illustrates
that SGD has complex multifaceted dynamics.
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Table 8: Spectral Dimension vs. LLC across runs with different initializations.

Num Params Spect. Dim LLC Channels/Layers Batch Epochs LR

110912 -0.327 19.553 784, 128, 64, 32 256 100 0.001
110912 -0.252 18.440 784, 128, 64, 32 256 100 0.001
110912 0.048 21.552 784, 128, 64, 32 256 100 0.001
110912 0.163 20.071 784, 128, 64, 32 256 100 0.001
110912 0.356 19.785 784, 128, 64, 32 256 100 0.001
110912 0.455 20.136 784, 128, 64, 32 256 100 0.001
110912 1.462 22.654 784, 128, 64, 32 256 100 0.001
110912 2.396 21.117 784, 128, 64, 32 256 100 0.001
110912 2.401 20.125 784, 128, 64, 32 256 100 0.001
110912 2.407 19.733 784, 128, 64, 32 256 100 0.001
110912 3.790 19.628 784, 128, 64, 32 256 100 0.001
110912 3.824 19.682 784, 128, 64, 32 256 100 0.001
110912 3.839 21.184 784, 128, 64, 32 256 100 0.001
110912 3.882 21.821 784, 128, 64, 32 256 100 0.001
110912 3.899 20.301 784, 128, 64, 32 256 100 0.001
110912 5.013 22.756 784, 128, 64, 32 256 100 0.001
110912 5.881 20.381 784, 128, 64, 32 256 100 0.001
110912 5.968 20.591 784, 128, 64, 32 256 100 0.001
110912 6.410 22.074 784, 128, 64, 32 256 100 0.001
110912 6.556 20.343 784, 128, 64, 32 256 100 0.001
110912 6.713 20.250 784, 128, 64, 32 256 100 0.001
110912 6.801 21.056 784, 128, 64, 32 256 100 0.001
110912 7.036 21.386 784, 128, 64, 32 256 100 0.001
110912 7.240 19.237 784, 128, 64, 32 256 100 0.001
110912 7.311 21.323 784, 128, 64, 32 256 100 0.001
110912 7.360 20.886 784, 128, 64, 32 256 100 0.001
110912 7.794 21.724 784, 128, 64, 32 256 100 0.001
110912 8.293 23.803 784, 128, 64, 32 256 100 0.001
110912 8.739 20.638 784, 128, 64, 32 256 100 0.001
110912 8.749 21.454 784, 128, 64, 32 256 100 0.001
110912 8.796 22.440 784, 128, 64, 32 256 100 0.001
110912 8.812 22.730 784, 128, 64, 32 256 100 0.001
110912 9.081 21.760 784, 128, 64, 32 256 100 0.001
110912 9.408 19.758 784, 128, 64, 32 256 100 0.001
110912 9.605 21.916 784, 128, 64, 32 256 100 0.001
110912 9.795 20.633 784, 128, 64, 32 256 100 0.001
110912 9.838 20.142 784, 128, 64, 32 256 100 0.001
110912 9.898 22.295 784, 128, 64, 32 256 100 0.001
110912 10.230 22.213 784, 128, 64, 32 256 100 0.001
110912 10.742 22.556 784, 128, 64, 32 256 100 0.001
110912 11.060 23.296 784, 128, 64, 32 256 100 0.001
110912 11.966 20.767 784, 128, 64, 32 256 100 0.001
110912 12.204 20.973 784, 128, 64, 32 256 100 0.001
110912 12.308 19.877 784, 128, 64, 32 256 100 0.001
110912 13.253 20.701 784, 128, 64, 32 256 100 0.001
110912 13.889 22.577 784, 128, 64, 32 256 100 0.001
110912 13.907 21.487 784, 128, 64, 32 256 100 0.001
110912 13.952 23.129 784, 128, 64, 32 256 100 0.001
110912 14.258 21.386 784, 128, 64, 32 256 100 0.001
110912 15.516 23.590 784, 128, 64, 32 256 100 0.001
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K COMPUTE RESOURCES

All experiments were run on a single Nvidia RTX A4000 GPU, a single Intel Xeon W-2223 CPU,
and 32GB of physical RAM. The individual runs vary greatly in compute times, ranging from ≈ 5
minutes to ≈ 1 hour, with the total compute time at ≈ 30 hours.

L LLM USAGE DISCLOSURE

LLMs were used in this work primarily to locate results (formulas, etc) in papers and textbooks.
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