

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ALMOST BAYESIAN: DYNAMICS OF SGD THROUGH SINGULAR LEARNING THEORY

Anonymous authors

Paper under double-blind review

ABSTRACT

The nature of the relationship between Bayesian sampling and stochastic gradient descent in neural networks has been a long-standing open question in the theory of deep learning. We shed light on this question by modeling the long runtime behaviour of SGD as diffusion on porous media. Using singular learning theory, we show that the late stage dynamics are strongly impacted by the degeneracies of the loss surface. From this we are able to show that under reasonable choices of hyperparameters for SGD, the local steady state distribution of SGD is effectively a tempered version of the Bayesian posterior over the weights which accounts for local accessibility constraints. We then empirically verify the porous diffusion picture across multiple models and datasets, and provide experimental evidence of the steady state-Bayesian posterior correspondence.

1 INTRODUCTION

One of the core problems in developing a scientific theory of deep learning models is giving a descriptive theory of how the internal model structure evolves during training as the model gains "knowledge" about its training distribution ((McGrath et al., 2022), (Olsson et al., 2022)) and how this evolution relates to the generalization ability of deep learning models. Classical methods for understanding model generalization such as the Bayesian Information Criterion (Schwarz, 1978) fail to give accurate descriptions of the generalization behavior of deep learning, due to its "singular" nature (Wei et al., 2023).

This has lead recent research to utilize Watanabe's *singular learning theory* (SLT) (Watanabe, 2009) as the basis for studying deep learning models. The key result of singular learning theory is the *widely applicable Bayesian information criterion* (Watanabe, 2012) which (broadly speaking) says that the generalization error of a model with parameter w is controlled by the *learning coefficient* $\lambda(w)$, which corresponds to the "complexity" of some local area around the parameter. Measuring how this quantity evolves over time has been proposed as a method to study the emergence of structure within neural networks ((Lau et al., 2024), (Wang et al., 2024a)) and has given very promising results.

Despite this, it is not clear how the dynamical picture of SGD interacts with the purely Bayesian description of SLT. It has been shown that there is seemingly some relationship between Bayesian sampling of parameter space of neural networks and SGD, both experimentally (Mingard et al., 2020), and theoretically under assumptions of non-degeneracy of minima of the loss (Mandt et al., 2016b) (which is known to be false in general). Here we extend this connection to the more general case by describing the late stage training dynamics of SGD using a fractional Fokker-Planck equation which can be solved explicitly under reasonable assumptions. We show that the steady-state solution of this equation is related to the purely Bayesian posterior by tempering probabilities based on accessibility constraints determined by the learning coefficient. Potential practical applications of the results presented here are discussed in appendix C.

2 RELATED WORK

2.1 SINGULAR LEARNING THEORY

Our work relies upon results coming from singular learning theory ((Watanabe, 2012), (Watanabe, 2022), (Watanabe, 2024), (Watanabe, 2009)), the known relationship between inference and thermo-

054 dynamics (LaMont & Wiggins, 2019), and the application of singular learning theory to the study
 055 of deep learning, referred to as *developmental interpretability* ((Wang et al., 2024b), (Wang et al.,
 056 2024a), (Chen et al., 2023)). We make particular use of the estimation methods for the local learning
 057 coefficient introduced in (Lau et al., 2024) using (van Wingerden et al., 2024).

059 2.2 GRADIENT NOISE AND SGD DYNAMICS

061 The methods used here are related to the *Stochastic Gradient Noise model* (SGN) of SGD ((Zhou
 062 et al., 2021), (Battash & Lindenbaum, 2023), (Nguyen et al., 2019), (Simsekli et al., 2019), (Mignacco
 063 & Urbani, 2022)) due to the relationship between the Fokker-Planck equation and the Langevin
 064 equation used in SGN. This framework has been used, for example, to model escape times from local
 065 minima (Xie et al., 2021).

066 Other works have studied the diffusive-like dynamics of SGD (Fjellström & Nyström, 2022), and
 067 even modeled SGD as an Ornstein-Uhlenbeck process to relate the dynamics of SGD back to the
 068 purely Bayesian case (Mandt et al., 2016b). However, this framework requires that the minima of the
 069 loss be quadratic, which means it cannot accurately capture the behaviour of SGD in neural networks
 070 due to the degeneracy of local minima. Furthermore, other works have also found connections
 071 between SGD and fractal geometry ((Camuto et al., 2021), (Şimşekli et al., 2021)) by the use of
 072 iterated function systems and Feller processes. Although related to the results here, the formalisms
 073 used are significantly different and the exact relationship is not straightforward.

074 The most closely related to the work here is (Chen et al., 2021) who show that many networks
 075 seem super-diffusive near initialization and decay into sub-diffusion over time. They also give a
 076 relationship to a type of fractal diffusion to explain this. However, they give no theoretical results,
 077 relying entirely on experimental results to draw conclusions. Our work instead focuses on a rigorous
 078 theoretical model that allows us to develop a theory about the long runtime nature of SGD which
 079 explains the observations made previously, and we provide experimental results to verify theoretical
 080 predictions.

081 3 FRACTIONAL DYNAMICS OF DEEP LEARNING

082 3.1 GRADIENT NOISE AND THE FOKKER-PLANCK EQUATION

085 Consider a neural network defined by some set of parameters $w \in W$ (where we assume W is
 086 compact throughout) and let \mathcal{X} be the set of tuples $(x_i, f(x_i))$ where f is the oracle that describes
 087 our decision problem. Denote the loss function by $L : \mathcal{X} \times W \rightarrow \mathbb{R}$ and set $\mathcal{L}[\mathcal{X}, w] = \mathbb{E}_{\mathcal{X}}[L(x, w)]$.
 088 Letting $X_m \subset \mathcal{X}$ be a randomly sampled subset of possible inputs, the empirical loss on X_m will
 089 then be denoted $\mathcal{L}_m[X_m, w] = \mathbb{E}_{X_m}[L(x, w)]$. For the purposes of the theoretical analysis, we will
 090 assume that we are working in the large batch size regime so that the estimation noise of the loss (and
 091 gradient) doesn't dominate the dynamics of the system.

092 3.1.1 GRADIENT NOISE AND SUB-DIFFUSION

095 There is extensive literature which attempts to capture the dynamics of SGD by decomposing the
 096 weight updates (under some abuse of notation) into the form

$$097 \frac{dw}{dt} = -\gamma \nabla \mathcal{L}(w_{t-1}) + \Sigma_{w_{t-1}} \quad (1)$$

100 where \mathcal{L} is the population loss, t is the timestep, γ is the learning rate, and $\Sigma_{w_{t-1}}$ is a random vector
 101 (which we will assume in this work is an anisotropic Gaussian). This is what is generally referred to
 102 as a *Langevin stochastic differential equation*. Systems governed by such SDEs have a displacement
 103 $R(t) \propto t^{\frac{1}{2}}$, meaning they diffuse like Brownian motion.

104 However, most works which examine the weight dynamics don't agree with this model. It has been
 105 found that networks trained under SGD can behave super-diffusively early in training, becoming
 106 sub-diffusive as training continues (Chen et al., 2021). Our experiments agree with this, finding
 107 that the displacement of neural network weights after long run times are described well by a power
 108 law like $R(t) \propto t^{\frac{1}{\nu}}$ for $\nu \geq 2$ (Bouchaud & Georges, 1990) (an example of which can be seen in

108 figure 1). Similarly, it has been observed that the weight movement of SGD (with momentum and
 109 weight decay) can have weight displacement that scales logarithmically like $R(t) \propto \ln t$ (Hoffer
 110 et al., 2018). This behaviour cannot be captured by the traditional Langevin equation and requires
 111 the introduction of a *subordination* term. Such non-Brownian diffusion is collectively referred to as
 112 *anomalous diffusion*.
 113

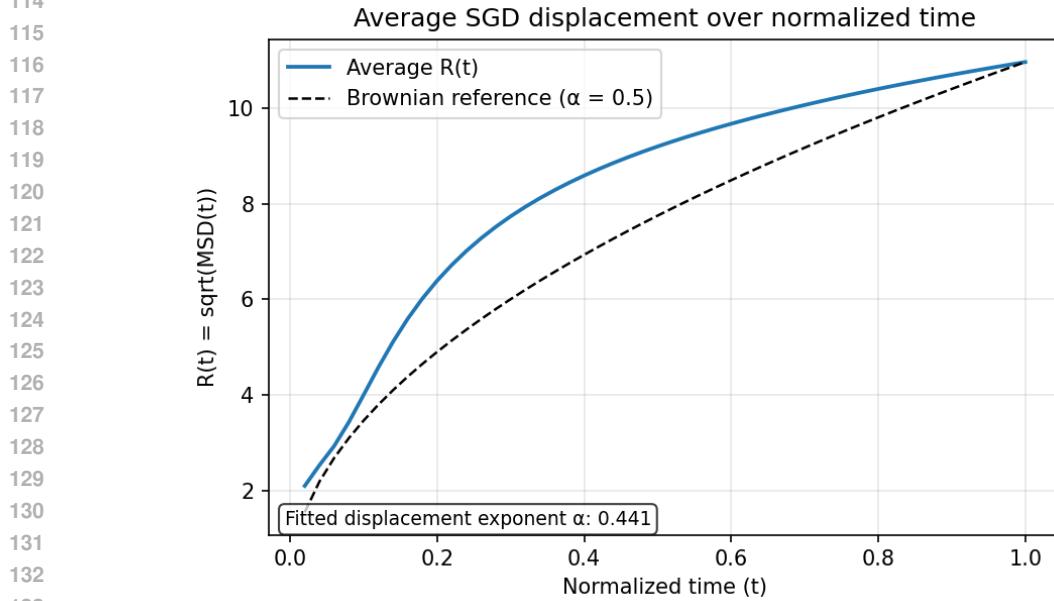


Figure 1: Mean weight displacement of a collection of fully connected neural networks trained using SGD on a randomly generated Moons dataset (Pedregosa et al., 2011), compared with expected displacement in the case of Brownian motion. It can be seen that this displays anomalous diffusion corresponding to early super-diffusion followed by late stage sub-diffusion.

To tackle this problem, we move into a formalism which is dual to the SDE picture, being the Fokker-Planck equation. Intuitively, the SDE picture describes the stochastic evolution of a single run while the Fokker-Planck equation is what describes the deterministic evolution of the probability distribution over parameter space over time determined by the SDE.

We now give the Fokker-Planck equation (FPE) in weight space (that is, $\nabla = \nabla_w$):

$$\frac{\partial p(w, t)}{\partial t} = \nabla \cdot (D(w, t) \nabla p(w, t) - \gamma p(w, t) \nabla \mathcal{L}(w)) \quad (2)$$

where p is a probability density function (density of states), D is the diffusion coefficient, γ is a scalar (usually called friction), and \mathcal{L} is a loss function which in a physical sense acts as a potential energy.

While the standard FP equation describes the behaviour of standard Brownian motion, one can handle the sub-diffusive case by introducing the (*Caputo*) *fractional derivative operator* (Diethelm, 2019) \mathcal{D}_t^α where $0 < \alpha < 1$ is a real number. Letting f be some arbitrary (differentiable) function of t the Caputo fractional derivative operator is defined as

$$\mathcal{D}_t^\alpha f(t) = \frac{1}{\Gamma(1-\alpha)} \int_0^t \frac{f'(t)}{(t-\tau)^\alpha} d\tau \quad (3)$$

We now define the (time) fractional Fokker-Planck equation (FFPE) for SGD¹ as:

$$\mathcal{D}_t^\alpha p(w, t) = \nabla \cdot (D(w, t) \nabla p(w, t) - \gamma p(w, t) \nabla \mathcal{L}_m[w]) \quad (4)$$

¹Since this is a continuous time formulation, it is more accurate to call it a stochastic gradient flow, however the former is known to be reasonably well-approximated by the latter (Li et al., 2019).

162 Where the X_m is dropped from the loss expression for simplicity. We note here that this equation
 163 itself does not directly describe ultra-slow diffusion (that is, where the displacement $R(t) \propto \ln t$).
 164 However, ultra-slow diffusion appears "in the limit" of power law sub-diffusion (Kochubei, 2008). A
 165 discussion of this as well as the role of the fractional derivative are given in the appendix.

166 One might now try to modify this to a "time-space fractional" Fokker-Planck equation to account
 167 for the potential super-diffusive behaviour early in training. However, we are interested in studying
 168 the steady states of the system, and under some very mild assumptions (namely that the probability
 169 distribution doesn't lose mass over training) the steady state of the system does not depend on this
 170 early stage of training, and can be captured by solving the given time fractional FPE ((Barkai, 2001),
 171 (Metzler et al., 1999)²). However, in our case, we still run into difficulty since the diffusion coefficient
 172 is a location-dependent inhomogeneous diffusion tensor (that is, different dimensions have distinct
 173 diffusion coefficients) instead of a single scalar. Luckily, as we will discuss in the next section, we
 174 are able to approximate the diffusion tensor as a single scalar function late in training.

175

176 3.2 FRACTAL DIMENSIONS AND SUBDIFFUSION

177 3.2.1 SINGULAR LEARNING THEORY AND FRACTAL DIMENSIONS

179 In order to capture the local geometric structure that impacts the diffusive process we make use
 180 of singular learning theory (Watanabe, 2009) via the local learning coefficient (LLC) (Lau et al.,
 181 2024). We give a brief introduction to these ideas here, but a more substantial introduction is given in
 182 appendix A.

183 Consider our loss function to be the Kullback-Leibler divergence³ $\mathcal{K}_m[w]$. Consider then the ball
 184 $B_r(w^*)$ of radius r about some "true parameter" w^* such that $\mathcal{K}[w^*] = 0$. Letting ϵ be some
 185 arbitrarily small constant, and denote the set of parameters which have loss $K_m[w] < \epsilon$ within the
 186 ball $B_r(w^*)$ of radius r as $B_r(w^*, \epsilon)$. Consider then the *singular integral*

$$187 \quad V(\epsilon) = \int_{B_r(w^*, \epsilon)} \rho(w) dw \quad (5)$$

190 where $\rho(w)$ is some arbitrary choice of prior distribution on the parameter space. Now letting
 191 $0 < a < 1$ be some arbitrary constant, the *local learning coefficient* Lau et al. (2024) is defined as

$$192 \quad \lambda(w^*) = \lim_{\epsilon \rightarrow 0} \frac{\log \frac{V(a\epsilon)}{V(\epsilon)}}{\log(a)} \quad (6)$$

195 We then have that asymptotically as $\epsilon \rightarrow 0$ (under some mild assumptions):

$$196 \quad V(\epsilon) \propto e^{\lambda(w^*)} \quad (7)$$

198 In the diffusion picture, the LLC behaves as a localized *mass (Minkowski-Bouligand) fractal dimension*
 199 which determines the geometry of (potentially degenerate) near critical points. The nature of
 200 this relationship is discussed in greater depth in appendix B.1.

201

202 3.3 LAWS OF FRACTAL DIFFUSION AND SGD

203 3.3.1 THE SPECTRAL DIMENSION

205 While the LLC captures the geometry of the loss, we all need to capture the dynamics of SGD on this
 206 geometry. To this end we utilize a second fractal dimension which describes the trajectory of particles
 207 under a potential called the *spectral dimension* d_s ((Millán et al., 2021), (Bouchaud & Georges,
 208 1990)). We start with the definition in the "homogeneous" case (e.g when the fractal dimension of the
 209 medium is the same everywhere) and then adapt it to our multifractal case. If we consider the LLC
 210 as being the scaling exponent for the volume of "good parameters" in a particular area, the spectral
 211 dimension determines then the volume of states that the diffusive process over that area can actually
 212 reach over some period of time (in our case, the volume of states SGD can actually reach in that area).
 213 We define this dimension below.

214 ²The super-diffusive component matters for studying things like relaxation and crossover time.

215 ³We can just as well use the log loss (as it only differs by an additive constant) but using the KL-divergence
 simplifies the analysis.

216 **Definition 3.1** (Spectral Dimension (Bouchaud & Georges, 1990)). Let $V_s(t)$ be the total volume
 217 of occupied states which result from running a diffusive process on porous media from some initial
 218 distribution. The spectral dimension d_s is then defined as:

$$219 \quad 220 \quad V_s(t) \sim t^{\frac{d_s}{2}} \quad (8)$$

221 In non-homogeneous systems one can have that the spectral dimension changes on different timescales
 222 $\{t_1, \dots, t_m\}$ where we have different scaling exponents $d_s(t_i)$ such that

$$223 \quad 224 \quad V_s(t) = t^{\frac{d_s(t_i)}{2}} \quad (9)$$

225 if t belongs to timescale t_i . If the variation between these different dimensions is too large, the
 226 theoretical framing becomes more difficult. Luckily, we find that for SGD this spectral dimension is
 227 well-captured by a single constant over training. Thus for vanilla SGD we can use what is known as
 228 the asymptotic spectral dimension defined as:

$$229 \quad 230 \quad V_s(t) \sim t^{\frac{d_s^\infty}{2}} \text{ as } t \rightarrow \infty \quad (10)$$

231 and simply take $d_s = d_s^\infty$ (ben Avraham & Havlin, 2000), (Paladin & Vulpiani, 1987)). More
 232 information and intuition about the spectral dimension is provided in appendix B.2

233 3.3.2 WEIGHT DISPLACEMENT AND FRACTAL DIMENSIONS

235 We would now like to figure out the relationship between the local fractal dimension (the local
 236 learning coefficient) and the spectral dimension.

237 **Definition 3.2** (Walk Dimension ((Paladin & Vulpiani, 1987), (Bouchaud & Georges, 1990))). Let
 238 $R(t)$ be the displacement of a particle at time t . The *walk dimension* is defined by

$$240 \quad 241 \quad R(t) \sim t^{\frac{1}{d_{\text{walk}}}} \quad (11)$$

242 with d_{walk} being the *walk dimension* with $d_{\text{walk}} > 2$ for sub-diffusion.

243 We note here that these values are defined almost identically even when the process displays initially
 244 super-diffusive dynamics (details in appendix B.3).

245 It is known that in particular regimes the walk dimension takes on a particular form. This is known
 246 as the *Alexander-Orbach (AO) relation* and relates the walk dimension to the fractal dimension of
 247 the medium (the LLC for us) and the spectral dimension. While originally stated in the context of
 248 homogeneous media this relation is known to hold locally for porous media which are homogeneous
 249 on a sufficiently small scale (Hambly et al., 2002). Restating these results in our framing gives:

250 **Theorem 3.1.** *The walk dimension at a point w_t on the loss surface can be given as*

$$252 \quad 253 \quad d_{\text{walk}}(t) = \frac{2\lambda(w_t)}{d_s} \quad (12)$$

254 *near critical points.*

255 The idea that neural networks trained by SGD are close to some critical point is a direct result of
 256 the prevalence degenerate saddle points of the loss surface ((Dauphin et al., 2014), (Advani et al.,
 257 2020), (Fukumizu & Amari, 2000), (Choromanska et al., 2015)). In cases where there are no nearby
 258 saddle points (which is more common in early training), this does relation does not hold as
 259 the diffusion is dominated by the gradient behaviour. This is the sense in which the relation is local.
 260 However, as noted, so long as this behaviour is largely isolated to early training it does not impact the
 261 theoretical results.

263 3.3.3 DIFFUSION COEFFICIENTS AND LOCAL BEHAVIOUR

264 We would like to use these fractal dimensions to define a diffusion coefficient. Importantly, we find
 265 that the diffusion coefficient is reasonably approximated by a scalar function. We also should expect
 266 that late in training, the localized dynamics nearby degenerate points should be directly proportional
 267 to the volume of low loss parameters. We state the results informally below, with the formal results
 268 and proofs in appendix D.

269 First we state the following theorem:

270 **Theorem 3.2** (Small Scale Dynamics are LLC Dependent). *Let $w^* \in W$ be a point such that the*
 271 *Hessian of the loss $H(w^*)$ is positive semidefinite. Let $\mathcal{W} = B(r, w^*)$ be a small area about w^* . If*
 272 *the diffusion coefficient D along degenerate directions is isotropic then for fixed error tolerance ε the*
 273 *first passage time $T(\varepsilon)$ through \mathcal{W} is $\propto \frac{\varepsilon^{\lambda(w^*)}}{DC}$ where C is the "capacitance" of the escape set.*

274
 275 An important thing to note about the above theorem is that this is what would be considered a "pore
 276 scale" model of the diffusion, and is determined by the small scale dynamics and as such is less
 277 useful for experimentally capturing the behaviour. For experimental purposes we develop a more
 278 coarse-grained theory which relies on the following result:

279 **Lemma 3.1** (Diffusion Coefficient Approximation (informal)). *For reasonable choices of the learning*
 280 *rate in the large batch size regime, the diffusion tensor can be approximated by a scalar function for*
 281 *long runtimes.*

282 Since the steady state is determined by the long-runtime dynamics, we can study the FFPE with a
 283 scalar diffusion coefficient.

284 To study the coarse-grained diffusive behaviour use a physics-inspired scalar diffusion coefficient for
 285 porous media that captures the essential behaviors of the diffusion at some choice of measurement
 286 scale called the *characteristic length scale* ξ . Under some assumptions we have the following:

287 **Lemma 3.2.** *Letting ξ be some characteristic length scale, the diffusion coefficient can be approxi-*
 288 *mated as $D_\xi = \xi^{2-d_{\text{walk}}}$.*

289 A thing to note is that the choice of ξ is effectively how far we are zooming out and averaging over
 290 the local dynamics, which gives a scaling law, not an exact relation. A general practice is to pick
 291 a value of ξ which is large enough to average out the fluctuations in an area but not so large that
 292 it starts to ignore large scale changes in structure. The effect of choice of ξ is shown in section 4.
 293 One may also notice that this implies that the diffusion coefficient is higher for a small LLC which
 294 seemingly contradicts the pore-scale diffusion derived earlier where low LLC was slower. However,
 295 this is explained through the spectral dimension (as we shall see) as it is bounded above by the LLC,
 296 meaning that a small LLC is only faster if the dynamics allow very free movement inside of the
 297 domain.

298 Combining lemma 3.2 with the definition of the walk dimension given earlier we get:

299 **Corollary 3.1** (Fractal Effective Diffusion Coefficient). *Let ξ be a choice of the characteristic length*
 300 *scale. One can then define the effective (local) diffusion coefficient for length scale ξ as*

$$303 D_\xi(w) = \xi^{2 - \frac{2\lambda(w)}{d_s}} \quad (13)$$

305 3.4 STATIONARY STATES OF THE SGD FOKKER-PLANCK EQUATION

306 We now present theoretical results about the diffusive process with proofs in appendix D. In appendix
 307 D we provide a brief discussion of impacts when particular assumptions about the system are not met
 308 and how the results here can be extended.

309 Assuming some fixed scale ξ , using the effective diffusion coefficient, we can actually find the local
 310 steady-state solutions for the SGD Fractional Fokker-Planck equation (if it exists):

311 **Lemma 3.3.** *Consider a subset $\mathcal{W} \subset W$ such that the effective diffusion coefficient D_ξ is (approx-
 312 imately) constant on \mathcal{W} . Suppose then that there exists steady-state solutions of the SGD-FFPE
 313 on this subset with true parameter(s) w^* so $D_t^\alpha p(w^*, t) = 0$. The steady-state $p_s(w|X_m) = p_s(w)$
 314 distribution is then given by $p_s(w) \propto e^{-\frac{\gamma \mathcal{L}_m[w]}{D_\xi}}$.*

315 Note that the above holds even if D_ξ does not have the form given in definition 3.1 so long as it is
 316 simply a scalar. However, if it does have the form, due to the definition of D_ξ , the above condition
 317 that it be constant is actually simply saying that $\lambda(w)$ be locally constant in \mathcal{W} which tends to be the
 318 case away from phase transitions (Wang et al., 2025). We can also get from this a relationship with
 319 the Bayesian posterior perspective of singular learning theory.

320 **Corollary 3.2.** *Letting $\gamma = 1$ for simplicity, if \mathcal{L} is the log-loss and $w \in \mathcal{W}$ then*

$$321 p_s(w)^{mD_\xi} \propto p(X_m|w) \quad (14)$$

324

so

325

326

$$p(w|X_m) = \frac{\rho(w)p_s(w)^{mD_\xi}}{Z_{mD_\xi}} \quad (15)$$

327

where Z_{mD_ξ} is the partition function and ρ is an arbitrary choice of prior.

328

This explains the observed relationships between Bayesian sampling and SGD seen in (Mingard et al., 2020). We can see that SGD effectively scales the likelihood of certain states of the underlying purely Bayesian distribution at the measurement scale ξ based on how accessible they are to the model under the optimization process. That is, the distribution of solutions found by SGD from some initial distribution concentrate more heavily in particular areas than the Bayesian posterior since SGD simply cannot reasonably reach those areas.

335

Another important aspect of the local learning coefficient is that it can be considered the quantity that “bounds” the movement of network weights. For notational simplicity let $w(t)$ be the parameters of the system at time t , so we can formally state the above as:

338

Lemma 3.4. *Suppose the loss function \mathcal{L} is non-convex and non-constant on W . Then with spectral dimension d_s as $t \rightarrow \infty$ with fractal dimension $\lambda(w(t))$ on $\mathcal{W} \subset W$, the inequality $d_s \leq \lambda(w(t))$ holds (in the small learning rate regime).*

341

In the above lemma the timescale condition is used to account for the fact that at early times such sub-diffusive processes can appear nearly linear. Given the above, we get the following corollary:

343

Corollary 3.3. *For time t as $t \rightarrow \infty$, we have $d_s \leq \bar{\lambda}(w(t))$ where*

344

$$\bar{\lambda}(w(t)) = \lim_{\tau \rightarrow \infty} \frac{1}{\tau} \int_0^\tau \lambda(w(t)) dt \quad (16)$$

347

Notice that since small $\lambda(w)$ implies greater local volume, but larger d_s implies that the volume spreads faster over time, large local volumes trap the spread of SGD, slowing it down. This aligns with previous research examining the eigenvalues of the Hessian of the loss (Sagun et al., 2016). In the next section we will show that the above result holds experimentally as well as examine other properties of our fractal diffusion theory of SGD.

352

4 EXPERIMENTAL RESULTS

353

4.1 DIFFUSIVE BEHAVIOUR

356

Here we present experimental results to validate the diffusive theory across multiple model architectures and tasks. Namely we look at small language models trained on the TinyStories dataset (Eldan & Li, 2023), vision models trained on Tiny Imagenet (Le & Yang, 2015), as well as extensive ablations on the MNIST dataset (Deng, 2012) with fully connected architectures with ReLU activations and batch normalization. More extensive experimental details can be found in appendix G.

362

To compute the LLC we utilize the estimator provided by (van Wingerden et al., 2024). To compute the spectral dimension d_s we first compute the value $\log(R(t))$ where $R(t)$ is the total weight displacement at time t . We then find d_s by solving the linear regression problem

365

366

$$\log(R(t)) = \frac{d_s}{2\lambda(w)} \log(t) + c \quad (17)$$

367

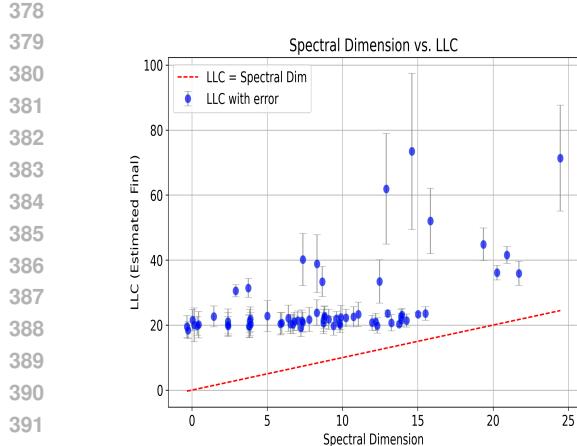
where c is simply an offset term.

368

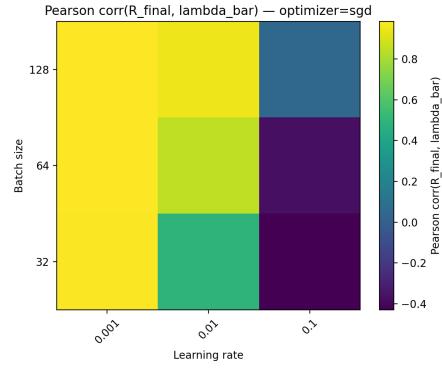
Using this setup, we are able to experimentally test the result of lemma 3.4 and corollary 3.3, which can be seen in figure 2 for an extensive collection of various models over MNIST, as well as various vision and language models in table 1. We also check the accuracy of the sub-diffusion model.

372

We find that in general, the sub-diffusive prediction is very accurate for most models tested which are trained to convergence. In particular we note that despite our theory not explicitly accounting for adaptive optimizers and learning rate schedulers, the dynamics vision models fine-tuned using an initial adaptive optimizer, followed by a low learning rate SGD are well-predicted by the theory. Furthermore, by taking pretrained language models which have already been trained to convergence in the weights and then continuing training on their initial pretraining dataset agrees with the predictions of the theory. More results are available in appendices I and H.



(a) Visualization of lemma 3.4 (MNIST)



(b) Correlation between learning coefficient (average) and total weight displacement (MNIST).

394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431

Figure 2: In a) we check that the result of lemma 3.4 holds. In b) we check that independent of our choice of diffusion model, the total displacement and average learning rate are strongly correlated in the large batch, low learning rate regime.

Model name	λ	d_s	α	r^2
TinyStories-1M	32	21.422	0.33	0.98
TinyLlama-15M	76.1	48.3	0.32	0.98
TinyStories-33M	39.3	38.7	0.49	0.98
ResNet18	72.05	0.57	0.004	≈ 1
ResNet34	73.5	0.62	0.004	≈ 1
VGG16	159.7	0.14	0.001	≈ 1

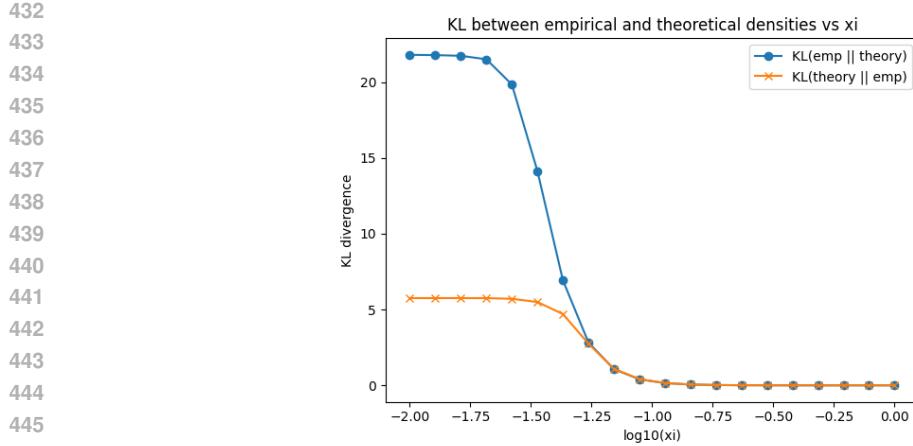
Table 1: Results for different models.

4.2 POSTERIOR CONCENTRATION

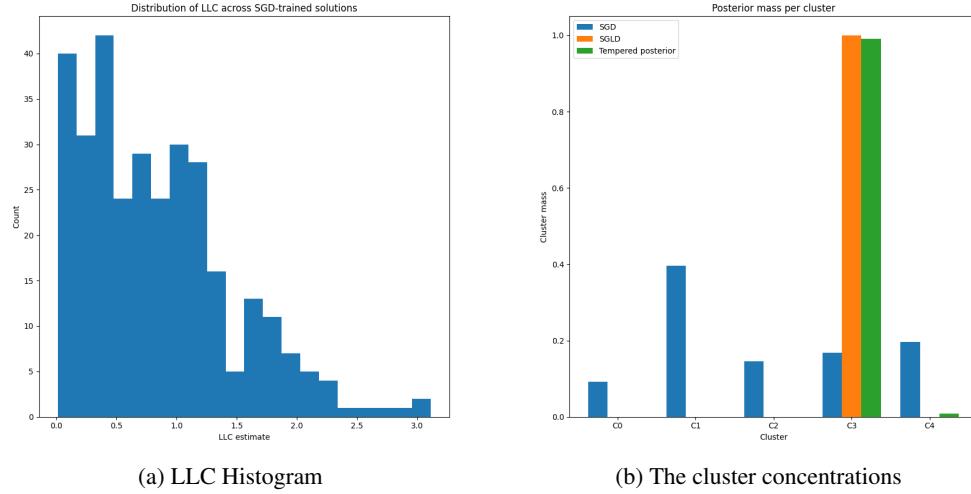
In order to check the results of lemma 3.3 and corollary 3.2 we train a large number of identical fully connected networks on a generated moons dataset (Pedregosa et al., 2011) using SGD. To compare the distribution of solutions found via SGD vs. the (local) Bayesian posterior, we use SGLD (Welling & Teh, 2011) to approximate the Bayesian posterior. We then identify clusters of solutions, and identify the concentrations of SGD and Bayesian solutions within each cluster. To select the scale ξ for tempering, we check how the choice of ξ impacts the KL-divergence between the empirical SGD distribution and the theoretical SGD distribution (figure 3). We can see in figure 4a that the solutions found by SGD do tend to concentrate around lower LLC areas. Figure 4b and table 2 shows how the tempering of the distribution of SGD solutions effectively agrees with approximate Bayesian posterior of SGLD.

Metric	Value
$\mathcal{K}(\text{Bayes} \parallel \text{Tempered SGD})$	0.009
Wass(Bayes, Tempered SGD)	0.002
JS(Bayes, Tempered SGD)	0.003

Table 2: The KL divergence, the Wasserstein distance, and the Jensen-Shannon divergence for the approximated Bayesian posterior and the tempered SGD distribution.



449



465
466 Figure 4: a) Shows the histogram of local learning coefficients of solutions found by SGD. Notice
467 that as predicted by the theoretical results, they tend to concentrate near lower LLC values (better
468 generalizing solutions). b) The probability concentrations of solutions found by SGD (blue), the
469 approximate Bayesian posterior (orange), and the tempered SGD distribution (green) for each cluster.
470 Notice that despite SGD itself preferring the cluster C1, after tempering ($\xi = 0.5$), the tempered SGD
471 steady state distribution almost entirely agrees with the Bayesian posterior. Statistical measures can
472 be seen in table 2.
473

474 5 DISCUSSION

475 5.1 LIMITATIONS

476 While we believe our theory is useful and tends to capture dynamics of most optimizers empirically, it
477 does not explicitly take into account complex dynamics of adaptive optimizers like Adam (Kingma &
478 Ba, 2017) as adaptive optimizers can exhibit multiple spectral dimensions over the course of training
479 meaning the theory here is incomplete and should occur as a "special case" of a more general theory.
480 Some experimental results and discussions around this can be seen in appendices I and H.
481

482 Another limitation to consider is that we assume the existence of an approximate steady state. While
483 this is a common practice in the study of SGD ((Pesme et al., 2020), (Mandt et al., 2016a), (Mandt
484 et al., 2018)). In general, SGD iterates do not converge to exact equilibria, but under standard
485 assumptions and suitable learning-rate schedules (or a sufficiently small learning rate) they approach

486 the set of stationary points and attain iterates with small gradient norm. One can in theory have
 487 instances where no approximate steady state exists since label noise can in theory produce a non-
 488 equilibrium flow through states, so SGD might have a non-equilibrium steady state with probability
 489 flow driven by said noise. While examining such situations is outside the scope of this work, it is an
 490 important avenue of future work to examine a) the time to equilibrate of SGD and b) if it does not
 491 equilibrate, can we quantify its non-equilibrium steady state?

492 5.2 CONCLUSION AND AVENUES FOR FUTURE WORK

493 Here we have argued that the long runtime dynamics of SGD are captured by taking the corresponding
 494 Fokker-Planck equation to describe diffusion on a porous geometry. This porous geometry corre-
 495 sponds is described by the learning coefficient, drawing a direct relationship between the dynamics of
 496 SGD to Bayesian statistics via singular learning theory. Our experimental results validate this claim.

497 We believe our theory helps provide insight into the learning process and adds to the groundwork
 498 needed to build a foundational theory of learning dynamics. Our theory says that the learning process
 499 is governed partially by the model’s behavioral phases as described by the learning coefficient. This
 500 opens up a framework for studying emergence and phase transitions during training by considering
 501 properties of the dynamical system. Adapting this framework explicitly to adaptive optimizers and
 502 checking how this impacts the diffusive structure is an important avenue for future work.

503 5.2.1 REPRODUCIBILITY STATEMENT

504 To encourage reproducibility we provide source code for the experiments included along with
 505 extensive documentation in appendices J and I.

506 REFERENCES

507 nickypro/tinyllama-15M · Hugging Face — huggingface.co. <https://huggingface.co/nickypro/tinyllama-15M>, a. [Accessed 16-11-2025].

508 roneneldan/TinyStories-1M · Hugging Face — huggingface.co. <https://huggingface.co/roneneldan/TinyStories-1M>, b. [Accessed 16-11-2025].

509 roneneldan/TinyStories-33M · Hugging Face — huggingface.co. <https://huggingface.co/roneneldan/TinyStories-33M>, c. [Accessed 16-11-2025].

510 Madhu S. Advani, Andrew M. Saxe, and Haim Sompolinsky. High-dimensional dynamics of
 511 generalization error in neural networks. *Neural Networks*, 132:428–446, 2020. ISSN 0893-6080.
 512 doi: <https://doi.org/10.1016/j.neunet.2020.08.022>. URL <https://www.sciencedirect.com/science/article/pii/S0893608020303117>.

513 E. Barkai. Fractional fokker-planck equation, solution, and application. *Phys. Rev. E*, 63:046118,
 514 Mar 2001. doi: 10.1103/PhysRevE.63.046118. URL <https://link.aps.org/doi/10.1103/PhysRevE.63.046118>.

515 Barak Battash and Ofir Lindenbaum. Revisiting the noise model of stochastic gradient descent, 2023.
 516 URL <https://arxiv.org/abs/2303.02749>.

517 John Baxter. Classical potential theory and its probabilistic counterpart (j. l. doob). *SIAM Review*, 27
 518 (3):460–462, 1985. doi: 10.1137/1027124.

519 Daniel ben Avraham and Shlomo Havlin. *Diffusion and Reactions in Fractals and Disordered Systems*.
 520 Cambridge University Press, 2000.

521 Jean-Philippe Bouchaud and Antoine Georges. Anomalous diffusion in disordered media: Sta-
 522 tistical mechanisms, models and physical applications. *Physics Reports*, 195(4):127–293,
 523 1990. ISSN 0370-1573. doi: [https://doi.org/10.1016/0370-1573\(90\)90099-N](https://doi.org/10.1016/0370-1573(90)90099-N). URL <https://www.sciencedirect.com/science/article/pii/037015739090099N>.

540 Alexander Camuto, George Deligiannidis, Murat A Erdogdu, Mert Gurbuzbalaban, Umut Simsekli,
 541 and Lingjiong Zhu. Fractal structure and generalization properties of stochastic optimization
 542 algorithms. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
 543 (eds.), *Advances in Neural Information Processing Systems*, volume 34, pp. 18774–18788. Cur-
 544 ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/9bdb8b1faffa4b3d41779bb495d79fb9-Paper.pdf.

545 Liam Carroll. Distilling singular learning theory, 2023. URL <https://www.lesswrong.com/s/czrXjvCLsqGepybHC>. Accessed: 2025-01-20.

546 Guozhang Chen, Cheng Kevin Qu, and Pulin Gong. Anomalous diffusion dynamics of learning in
 547 deep neural networks, 2021. URL <https://arxiv.org/abs/2009.10588>.

548 Zhongtian Chen, Edmund Lau, Jake Mendel, Susan Wei, and Daniel Murfet. Dynamical versus
 549 bayesian phase transitions in a toy model of superposition, 2023. URL <https://arxiv.org/abs/2310.06301>.

550 Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. The
 551 loss surfaces of multilayer networks, 2015. URL <https://arxiv.org/abs/1412.0233>.

552 Doina Cioranescu and Patrizia Donato. *An Introduction to Homogenization*. Oxford University
 553 Press, 11 1999. ISBN 9780198565543. doi: 10.1093/oso/9780198565543.001.0001. URL
 554 <https://doi.org/10.1093/oso/9780198565543.001.0001>.

555 Yann Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
 556 Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex
 557 optimization, 2014. URL <https://arxiv.org/abs/1406.2572>.

558 Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
 559 web]. *IEEE Signal Processing Magazine*, 29(6):141–142, 2012. doi: 10.1109/MSP.2012.2211477.

560 Kai Diethelm. General theory of caputo-type fractional differential equations, 2019.

561 Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak coherent
 562 english?, 2023. URL <https://arxiv.org/abs/2305.07759>.

563 Carmina Fjellström and Kaj Nyström. Deep learning, stochastic gradient descent and diffusion maps,
 564 2022. URL <https://arxiv.org/abs/2204.01365>.

565 K. Fukumizu and S. Amari. Local minima and plateaus in hierarchical structures of multilayer
 566 perceptrons. *Neural networks : the official journal of the International Neural Network Society*, 13
 567 3:317–27, 2000. doi: 10.1016/S0893-6080(00)00009-5.

568 B. M. Hambly, Jun Kigami, and Takashi Kumagai. Multifractal formalisms for the local spectral
 569 and walk dimensions. *Mathematical Proceedings of the Cambridge Philosophical Society*, 132(3):
 570 555–571, 2002. doi: 10.1017/S0305004101005618.

571 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 572 recognition, 2015. URL <https://arxiv.org/abs/1512.03385>.

573 Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the generaliza-
 574 tion gap in large batch training of neural networks, 2018. URL <https://arxiv.org/abs/1705.08741>.

575 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
 576 <https://arxiv.org/abs/1412.6980>.

577 W. Kinsner. A unified approach to fractal dimensions. In *Fourth IEEE Conference on Cognitive
 578 Informatics, 2005. (ICCI 2005)*, pp. 58–72, 2005. doi: 10.1109/COGINF.2005.1532616.

579 Anatoly N. Kochubei. Distributed order calculus and equations of ultraslow diffusion. *Journal of
 580 Mathematical Analysis and Applications*, 340(1):252–281, April 2008. ISSN 0022-247X. doi:
 581 10.1016/j.jmaa.2007.08.024. URL <http://dx.doi.org/10.1016/j.jmaa.2007.08.024>.

594 Colin H. LaMont and Paul A. Wiggins. Correspondence between thermodynamics and inference.
 595 *Physical Review E*, 99(5), May 2019. ISSN 2470-0053. doi: 10.1103/physreve.99.052140. URL
 596 <http://dx.doi.org/10.1103/PhysRevE.99.052140>.
 597

598 Edmund Lau, Zach Furman, George Wang, Daniel Murfet, and Susan Wei. The local learning
 599 coefficient: A singularity-aware complexity measure, 2024. URL <https://arxiv.org/abs/2308.12108>.
 600

601 Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge, 2015. URL <https://api.semanticscholar.org/CorpusID:16664790>.
 602

603 Qianxiao Li, Cheng Tai, and Weinan E. Stochastic modified equations and dynamics of stochastic
 604 gradient algorithms i: Mathematical foundations. *Journal of Machine Learning Research*, 20(40):
 605 1–47, 2019. URL <http://jmlr.org/papers/v20/17-526.html>.
 606

607 Yong Shun Liang and Wei Yi Su. A geometric based connection between fractional calculus
 608 and fractal functions. *Acta Mathematica Sinica, English Series*, 40(2):537–567, Feb 2024.
 609 ISSN 1439-7617. doi: 10.1007/s10114-023-1663-3. URL <https://doi.org/10.1007/s10114-023-1663-3>.
 610

611 Stephan Mandt, Matthew Hoffman, and David Blei. A variational analysis of stochastic gradient
 612 algorithms. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), *Proceedings of The 33rd
 613 International Conference on Machine Learning*, volume 48 of *Proceedings of Machine Learning
 614 Research*, pp. 354–363, New York, New York, USA, 20–22 Jun 2016a. PMLR. URL <https://proceedings.mlr.press/v48/mandt16.html>.
 615

616 Stephan Mandt, Matthew D. Hoffman, and David M. Blei. A variational analysis of stochastic
 617 gradient algorithms, 2016b. URL <https://arxiv.org/abs/1602.02666>.
 618

619 Stephan Mandt, Matthew D. Hoffman, and David M. Blei. Stochastic gradient descent as approximate
 620 bayesian inference, 2018. URL <https://arxiv.org/abs/1704.04289>.
 621

622 Thomas McGrath, Andrei Kapishnikov, Nenad Tomašev, Adam Pearce, Martin Wattenberg, Demis
 623 Hassabis, Been Kim, Ulrich Paquet, and Vladimir Kramnik. Acquisition of chess knowledge in
 624 alphazero. *Proceedings of the National Academy of Sciences*, 119(47), November 2022. ISSN
 625 1091-6490. doi: 10.1073/pnas.2206625119. URL <http://dx.doi.org/10.1073/pnas.2206625119>.
 626

627 Ralf Metzler, Eli Barkai, and Joseph Klafter. Anomalous diffusion and relaxation close to thermal
 628 equilibrium: A fractional fokker-planck equation approach. *Phys. Rev. Lett.*, 82:3563–3567, May
 629 1999. doi: 10.1103/PhysRevLett.82.3563. URL <https://link.aps.org/doi/10.1103/PhysRevLett.82.3563>.
 630

631 Francesca Mignacco and Pierfrancesco Urbani. The effective noise of stochastic gradient de-
 632 scent. *Journal of Statistical Mechanics: Theory and Experiment*, 2022(8):083405, August 2022.
 633 ISSN 1742-5468. doi: 10.1088/1742-5468/ac841d. URL <http://dx.doi.org/10.1088/1742-5468/ac841d>.
 634

635 Ana P. Millán, Giacomo Gori, Federico Battiston, Tilman Enss, and Nicolò Defenu. Complex
 636 networks with tuneable spectral dimension as a universality playground. *Physical Review Research*,
 637 3(2), April 2021. ISSN 2643-1564. doi: 10.1103/physrevresearch.3.023015. URL <http://dx.doi.org/10.1103/PhysRevResearch.3.023015>.
 638

639 Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, and Ard A. Louis. Is sgd a bayesian sampler?
 640 well, almost, 2020. URL <https://arxiv.org/abs/2006.15191>.
 641

642 Thanh Huy Nguyen, Umut Simsekli, Mert Gurbuzbalaban, and Gael Richard. First exit time
 643 analysis of stochastic gradient descent under heavy-tailed gradient noise, 2019. URL <https://arxiv.org/abs/1906.09069>.
 644

648 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
 649 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
 650 Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
 651 Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
 652 and Chris Olah. In-context learning and induction heads. *Transformer Circuits Thread*, 2022.
 653 <https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html>.

654 Giovanni Paladin and Angelo Vulpiani. Anomalous scaling laws in multifractal objects.
 655 *Physics Reports*, 156(4):147–225, 1987. ISSN 0370-1573. doi: [https://doi.org/10.1016/0370-1573\(87\)90110-4](https://doi.org/10.1016/0370-1573(87)90110-4). URL <https://www.sciencedirect.com/science/article/pii/0370157387901104>.

656 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
 657 hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
 658 E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*,
 659 12:2825–2830, 2011.

660 Scott Pesme, Aymeric Dieuleveut, and Nicolas Flammarion. On convergence-diagnostic based step
 661 sizes for stochastic gradient descent, 2020. URL <https://arxiv.org/abs/2007.00534>.

662 Sidney Redner. *A Guide to First-Passage Processes*. Cambridge University Press, 2001.

663 Levent Sagun, L. Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singularity
 664 and beyond. *arXiv: Learning*, 2016.

665 Gideon Schwarz. Estimating the Dimension of a Model. *Annals of Statistics*, 6(2):461–464, July
 666 1978.

667 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 668 recognition, 2015. URL <https://arxiv.org/abs/1409.1556>.

669 Umut Simsekli, Levent Sagun, and Mert Gurbuzbalaban. A tail-index analysis of stochastic gradient
 670 noise in deep neural networks, 2019. URL <https://arxiv.org/abs/1901.06053>.

671 Samuel L. Smith and Quoc V. Le. A bayesian perspective on generalization and stochastic gradient
 672 descent, 2018. URL <https://arxiv.org/abs/1710.06451>.

673 Zhou Songping. On the fractional calculus functions of a type of weierstrass function. *Chinese Annals
 674 of Mathematics, series A*, 2004. URL <https://api.semanticscholar.org/CorpusID:123419022>.

675 FRANK B. TATOM. The relationship between fractional calculus and fractals. *Fractals*, 03(01):
 676 217–229, 1995. doi: 10.1142/S0218348X95000175. URL <https://doi.org/10.1142/S0218348X95000175>.

677 S W Tyler and S W Wheatcraft. Fractal processes in soil water retention. *Water Resources Research;
 678 United States*, 26:5, 05 1990. ISSN ISSN WRERA. doi: 10.1029/WR026i005p01047. URL
 679 <https://www.osti.gov/biblio/5454405>.

680 Stan van Wingerden, Jesse Hoogland, George Wang, and William Zhou. Devinterp. <https://github.com/timaeus-research/devinterp>, 2024.

681 George Wang, Matthew Farrugia-Roberts, Jesse Hoogland, Liam Carroll, Susan Wei, and Daniel
 682 Murfet. Loss landscape geometry reveals stagewise development of transformers. In *High-
 683 dimensional Learning Dynamics 2024: The Emergence of Structure and Reasoning*, 2024a. URL
 684 <https://openreview.net/forum?id=2JabyZjM5H>.

685 George Wang, Jesse Hoogland, Stan van Wingerden, Zach Furman, and Daniel Murfet. Differentiation
 686 and specialization of attention heads via the refined local learning coefficient, 2024b. URL
 687 <https://arxiv.org/abs/2410.02984>.

688 George Wang, Jesse Hoogland, Stan van Wingerden, Zach Furman, and Daniel Murfet. Differentiation
 689 and specialization of attention heads via the refined local learning coefficient. In *The Thirteenth
 690 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=SUc1UOWndp>.

702 Sumio Watanabe. *Algebraic Geometry and Statistical Learning Theory*. 2009. URL <https://api.semanticscholar.org/CorpusID:220969981>.
 703
 704

705 Sumio Watanabe. A widely applicable bayesian information criterion, 2012. URL <https://arxiv.org/abs/1208.6338>.
 706
 707

708 Sumio Watanabe. Recent advances in algebraic geometry and bayesian statistics, 2022. URL <https://arxiv.org/abs/2211.10049>.
 709
 710

711 Sumio Watanabe. Review and prospect of algebraic research in equivalent framework between
 712 statistical mechanics and machine learning theory, 2024. URL <https://arxiv.org/abs/2406.10234>.
 713
 714

715 Susan Wei, Daniel Murfet, Mingming Gong, Hui Li, Jesse Gell-Redman, and Thomas Quella. Deep
 716 learning is singular, and that's good. *IEEE Transactions on Neural Networks and Learning Systems*,
 717 34(12):10473–10486, December 2023. ISSN 2162-2388. doi: 10.1109/tnnls.2022.3167409. URL
 718 <http://dx.doi.org/10.1109/TNNLS.2022.3167409>.
 719
 720

721 Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient langevin dynamics.
 722 In *Proceedings of the 28th International Conference on International Conference on Machine
 723 Learning*, ICML'11, pp. 681–688, Madison, WI, USA, 2011. Omnipress. ISBN 9781450306195.
 724
 725

726 Hermann Weyl. On the volume of tubes. *American Journal of Mathematics*, 61(2):461–472, 1939.
 727 ISSN 00029327, 10806377. URL <http://www.jstor.org/stable/2371513>.
 728
 729

730 Zeke Xie, Issei Sato, and Masashi Sugiyama. A diffusion theory for deep learning dynamics:
 731 Stochastic gradient descent exponentially favors flat minima, 2021. URL <https://arxiv.org/abs/2002.03495>.
 732
 733

734 Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Hoi, and Weinan E. Towards theoretically
 735 understanding why sgd generalizes better than adam in deep learning, 2021. URL <https://arxiv.org/abs/2010.05627>.
 736
 737

738 Umut Şimşekli, Ozan Sener, George Deligiannidis, and Murat A Erdogdu. Hausdorff dimension,
 739 heavy tails, and generalization in neural networks*. *Journal of Statistical Mechanics: Theory and
 740 Experiment*, 2021(12):124014, December 2021. ISSN 1742-5468. doi: 10.1088/1742-5468/ac3ae7.
 741 URL <http://dx.doi.org/10.1088/1742-5468/ac3ae7>.
 742
 743

735 A SINGULAR LEARNING THEORY BASICS

736 Here we give an informal introduction to singular learning theory. For more in-depth but still
 737 accessible introduction, we recommend the *Distilling Singular Learning Theory* series of blog posts
 738 (Carroll, 2023), along with the the seminal work by Watanabe (Watanabe, 2009). For us, it's mostly
 739 important to understand the problems that singular learning theory solves. To do this, we first must
 740 consider a classical idea in machine learning, the *Bayesian Information Criterion*. The BIC is used to
 741 determine which model from a set of different models is likely to generalize the best. Let a_w be a
 742 model with d free parameters w in the collection of models, trained over m datapoints and denote the
 743 minimum loss achievable by a_w as $L_n(a_w^0)$. The BIC says that we should select the model from our
 744 collection of models which minimizes the following:
 745

$$746 \quad 747 \quad \text{BIC} := nL_n(a_w^0) + \frac{d}{2} \log n \quad (18)$$

748 This more-or-less says that we should choose the simplest model that fits our data.
 749

750 The caveat about the BIC however is it makes the assumption that the models we care about are
 751 “regular statistical models”. There are two key things that are required for a statistical model to be
 752 regular. First, the model must be *identifiable*, which effectively means that any set of parameters for
 753 a are unique in that if $a_{w_1}(x) = a_{w_2}(x)$ then $w_1 = w_2$. Second, the Fisher Information matrix near
 754 the true parameters a_w^0 must be positive definite. This condition is easiest to understand if we assume
 755 the loss is the KL-divergence (or log loss), as it corresponds to saying that the Hessian of the loss
 $H(L_n(a_w^0))$ is non-degenerate, having only non-zero eigenvalues.

This fact is key for how one derives the BIC. While the formal derivation of the BIC is straightforward, it is time consuming and there's a much simpler way to intuitively see why it matters. First, the non-degeneracy of $H(L_n(a_w^0))$ means the geometry of the loss surface is a paraboloid about a_w^0 . We want to then measure how many configurations of a have a loss less than ϵ , so we want to measure the volume of a paraboloid of height ϵ in our parameter space. The nice thing about a paraboloid is that its volume is half of that of the cylinder that encloses it. This can be computed straightforwardly from the d -dimensional volume of tubes formula(Weyl, 1939):

$$\frac{V_d(2\epsilon)^{\frac{d}{2}}}{\sqrt{\det(H(L_m(a_w^0)))}} \quad (19)$$

Here V_d is the volume of the d -sphere. This formula is effectively where the $\frac{d}{2}$ comes from in the BIC. Now, one might notice that if we are considering potentially degenerate local minima, this formula cannot be applied since the degeneracy of the Hessian means the determinant is 0. In this case, the BIC is not well defined either. Models with degenerate minima are called singular models. In some sense, most model classes are singular. Neural networks for instance are highly singular and generally admit many equivalent parametrizations for computing the same function. Singular learning theory attempts to handle this problem by finding a method for computing the volume of degenerate local minima.

This is done by considering the *singular integral*(Watanabe, 2009):

$$V(\epsilon) = \int_{\{w \in W | L(w) < \epsilon\}} \rho(w) dw \quad (20)$$

where $\rho(w)$ is a prior distribution over the parameter space so $\rho(w)dw$ behaves as a measure, and L is the population loss. Unlike the quadratic minima case, there is no straightforward volume formula one can use here. However, as is shown in (Watanabe, 2009), as $\epsilon \rightarrow 0$ asymptotically this integral is:

$$V(\epsilon) = c_1 \epsilon^\lambda (-\log \epsilon)^{m-1} + o(\epsilon^\lambda (-\log \epsilon)^{m-1}) \quad (21)$$

where λ is *learning coefficient* and m the *multiplicity*. One can define this integral at level sets which are non-true parameters by shifting the value in the integrand like $\{w \in W | 0 < L(w) - \delta < \epsilon\}$.

In short, one can show that the volume about a local minima scales with the height ϵ according to the learning coefficient λ so the volume of the degenerate minima scales $\propto \epsilon^\lambda$ as $\epsilon \rightarrow 0$ (Watanabe, 2009). This can be used to derive the *Widely Applicable Bayesian Information Criterion* (Watanabe, 2012) which is given by:

$$\text{WBIC} := nL_n(a_w^0) + \lambda \log n \quad (22)$$

The natural interpretation of λ is as the “effective dimension” of a model. We note here as well that it is relatively common to treat the multiplicity as taking the value $m = 1$ to simplify working with singular models as the relative contributions for most applications are negligible in their effects.

A.1 THE LOCAL LEARNING COEFFICIENT

In the above, we discussed the global learning coefficient of (Watanabe, 2009). A local version of this was defined in (Lau et al., 2024). This is given straightforwardly by simply restricting from the singular integral over the whole set of ϵ -true parameters to some local neighborhood of some parameter of interest w^* . One normally considers a ball of some radius r about said parameter $B_r(w^*)$ and then defines the local singular integral as

$$V_{w^*}(\epsilon) = \int_{\{w \in B_r(w^*) | L(w) < \epsilon\}} d\mu(w) \quad (23)$$

where $d\mu(w)$ is the standard Lebesgue measure. The *local learning coefficient* and *local multiplicity* are of the same form as the global case:

$$V_{w^*}(\epsilon) \approx \epsilon^{\lambda(w^*)} (-\log \epsilon)^{m(w^*)-1} \quad (24)$$

810 When looking at the local learning coefficient, one must make a choice of scale r . However, we note
 811 that increasing r cannot increase the value of $\lambda(w^*)$. This comes from a fundamental property of the
 812 learning coefficient which says that the learning coefficient in an area is the smallest of all possible
 813 local learning coefficients as $r \rightarrow 0$. The reasoning for this is non-trivial, and the interested reader is
 814 referred to (Watanabe, 2009) for details.

815 We now briefly explain how the local learning coefficient is computed in practice. Suppose that we
 816 define some distribution over $B_r(w^*)$. The local learning coefficient estimator of (Lau et al., 2024) is
 817 given as

$$818 \quad \hat{\lambda}(w^*) = \frac{n}{\log n} [\mathbb{E}_{w|B_r(w^*)}(L_n(w)) - L_n(w^*)] \quad (25)$$

820 This accords with our intuition that if w^* is simple/flat then perturbing the value of w^* should not
 821 change the loss. For in-depth experimental results for the accuracy of this estimator we refer readers
 822 to (Lau et al., 2024) and (Wang et al., 2024b).

824 A.1.1 DEPENDENCE OF THE LLC ON r

825 While this question is addressed more formally in appendix B of (Lau et al., 2024), we address this
 826 point here informally. Under the standard assumptions of Singular Learning Theory (Watanabe,
 827 2009), the local learning coefficient on a ball of radius r around a true parameter w^* converges to
 828 some fixed "pointwise" learning coefficient. This is because as r becomes small, the behaviour of the
 829 loss $L(w)$ for some $w \in B_r(w^*)$ is dominated by the leading order of the singular expansion about
 830 w^* . Shrinking r cannot change the monomial exponents obtained after resolution of singularities;
 831 those exponents are geometric invariants of the germ of L at the point.

833 B FOKKER-PLANCK EQUATIONS AND FRACTAL DIMENSIONS

834 B.1 THE MASS DIMENSION

835 In section 3.2.1 we claim that the local learning coefficient is effectively a mass dimension. To see
 836 this, let's start by considering a large collection of (non-interacting) particles diffusing through an
 837 arbitrary fractal media. An important thing to note here is that diffusion on fractal media is actually a
 838 special case of the more general "diffusion on porous media" where the volume of the pores scales
 839 like a fractal dimension. Keeping notational consistency, we are interested in the valid states in some
 840 ball $B(w^*)$. To measure this, we need something called the "characteristic linear dimension" which
 841 we can scale asymptotically. In porous media, this is something like the "pore diameter" (since
 842 particles can occupy any point in a pore). For consistency again, we denote this value as ϵ .

843 The mass dimension is then the fractal dimension that determines the relative volume of the pores to
 844 the total volume as we restrict the diameter of the pores by taking $\epsilon \rightarrow 0$. One way to see what this is
 845 doing is to consider the mass dimension of an empty sphere (that is, the whole thing is a pore and
 846 nothing is there to impede a particle). As we take ϵ to 0, we end up with every possible point being a
 847 pore, so the relative volume is 1.

848 So we can imagine that for some ball centered about a reference point $B(w^*)$, and we care about
 849 the volume of states a particle could exist in within this ball, usually denoted as $M(\epsilon)$. The relative
 850 volume is given identically to the learning coefficient case like

$$851 \quad \frac{M(\epsilon)}{M(B(w^*))} \quad (26)$$

852 We get the fractal dimension which determines the relative volume $d_f(w^*)$ as:

$$853 \quad M(\epsilon) \propto \epsilon^{d_f(w^*)} \quad (27)$$

854 as $\epsilon \rightarrow 0$ asymptotically. One can see that this coincides with the definition of the local learning
 855 coefficient (Kinsner, 2005), (Bouchaud & Georges, 1990)). From a fractal geometric viewpoint, the
 856 normal mass dimension is computed as a "Minkowski sausage" which can be thought of as similar
 857 to how the volume of a "sausage casing" wrapping a pore scales as you decrease the radius. The learning
 858 coefficient is similar, except it uses a different "gauge function" since our pores are not tubes, but are
 859 instead like basins, so we look at how the volume of water in the basin changes as we decrease the

height of the water. This fractal dimension has been used to model the diffusion of water through ground soil of different types (Tyler & Wheatcraft, 1990). They find diffusion is much slower and has a larger fractal dimension through clay-like media where there are very few channels to move through, where more sand-like media has faster diffusion and a lower fractal dimension. This is conceptually the same as the results given here.

B.2 THE SPECTRAL DIMENSION

The spectral dimension is easiest to understand if you think “how fast does diffusion manage to explore new places?” rather than “what is the geometric dimension of the space?”. In the main text we introduce the spectral dimension as the scaling exponent of the “volume of visited/occupied states”. That is, $V_s(t)$ simply denotes the volume of states which have been visited by the process at time t . The spectral dimension is then:

$$V_s(t) \sim t^{\frac{d_s}{2}} \quad (28)$$

Intuitively d_s says how fast diffusion fills out the medium you are diffusing on, and in that sense it is the “dimension that diffusion sees”.

In this work, the medium is (a region of) parameter space, and the diffusive process is the long-run stochastic motion of SGD (modeled via the Fokker–Planck equation). The spectral dimension then measures how quickly SGD can spread over the set of weight configurations that are dynamically accessible from some initial condition. To see this a bit more formally we will discuss the spectral dimension of normal Brownian motion.

B.2.1 SPECTRAL VS. GEOMETRIC DIMENSION

On a flat surface like \mathbb{R}^d , a random walk driven by Brownian motion has a displacement $R(t) \propto t^{\frac{1}{2}}$ so the region which gets explored after time t can be seen straightforwardly to have a volume which simply scales with the displacement, since the diffusion is uniform in d dimensions. That is we have:

$$V_s(t) \propto R(t)^d \quad (29)$$

so

$$V_s(t) \propto t^{\frac{d}{2}} \quad (30)$$

One can see though that by introducing obstructions into this free space changes the diffusion rate. Moving through a medium with many obstructions changes the geometry that diffusion experiences, which can be very different from the naive ambient dimension. Narrow channels, dead ends, bottlenecks, and local degeneracies all slow down or redirect the random walk. The process might live in a very high-dimensional ambient space, but only a much smaller effective set of directions is actually accessible on the timescales we care about. In such cases one typically has that $d_s \neq d$. In our setting, the ambient dimension is the number of parameters, while the local “mass dimension” of low-loss regions is given by the local learning coefficient $\lambda(w)$. Consider this in the same context as the Brownian motion example. Since the learning coefficient captures the volume of low loss states, a diffusive process on those states can only ever access at most that many states, bounding the spectral dimension. So the spectral dimension literally captures the number of states SGD can actually visit over some time frame.

B.2.2 WHY SGD HAS A SPECTRAL DIMENSION

For simplicity we are going to imagine a very localized picture of SGD here. Suppose we initialize in some area \mathcal{W} which has learning coefficient λ which approximates the volume of low loss points in \mathcal{W} . The spectral dimension d_s of this area tells us how efficiently the SGD-induced diffusion spreads into that volume over time. The walk dimension $d_w = \frac{2\lambda}{d_s}$ ties the two together and governs the displacement scaling.

From the perspective of diffusion theory, d_s is therefore the right quantity to describe the effective dimensionality of SGD dynamics.. It is “spectral” because, in principle, it could be read off from the spectrum of the Fokker–Planck operator governing SGD; in practice, we estimate it through the observed power-law scaling of displacement, which is equivalent information in the regime we study.

918 B.3 IMPACT OF EARLY SUPER-DIFFUSIVE DYNAMICS ON DIFFUSION EXPONENTS
919

920 Given the displacement equation

921
$$R(t) \sim t^{\frac{1}{d_{\text{walk}}(t)}} \quad (31)$$

922 we can give a rather straightforward way to incorporate the super-diffusive component. If a given
923 trajectory goes from super-diffusive to sub-diffusive, there exists a crossover time t_c where the
924 dynamics change. Given this, let $r(t)$ be the super-diffusive component such that for $t > t_c$ we have
925 $r(t) = r(t_c)$. Letting $I_{t_c}(t) = 1$ for $t \geq t_c$ we can then write the displacement as

926
$$R(t) \sim I_{t_c}(t)(t - t_c)^{\frac{1}{d_{\text{walk}}(t)}} + r(t) \quad (32)$$

927 A similar trick works for the volume. This means that one can account for the early super-diffusive
928 behaviour without directly impacting the exponents if one accounts for the crossover time. In general,
929 we find experimentally in many cases that the initial super-diffusive regime is short enough that the
930 dynamics are still well approximated by the entirely sub-diffusive equations.931 C TOWARDS PRACTICAL APPLICATIONS
932933 While the results here are largely theoretical, we believe they provide important avenues and insights
934 for practical applications. We discuss some of these below.935 C.1 TRANSFER LEARNING AND ROBUSTNESS
936937 C.1.1 PARAMETER CHOICE FOR TRANSFER LEARNING
938939 In transfer learning, you start from a pretrained minimum and fine-tune with SGD on a new task. The
940 value of λ at initialization tells you how wide that basin is. If one maintains a record of the weight
941 displacement from pretraining, one can estimate how the effect the new data distribution has on d_s
942 during the initial steps. These tell you how “wide” and “connected” the accessible region is, which
943 can inform how aggressively to tune the learning rate and batch size. For example if the spectral
944 dimension is low, but the loss is high, you are likely stuck in a wide flat basin, so one might increase
945 the learning rate or decrease the batch size.946 C.1.2 ROBUST MODEL SELECTION
947948 Our theory indicates that model parameters with a low λ but a high relative spectral dimension d_s
949 represent models which had more movement within the same large basin. Selecting for such models
950 might result in more robust generalizing models as the minima they exist in are “flat”951 C.2 LEARNING RATE SCHEDULERS AND OPTIMIZERS
952953 C.2.1 DESIGNING LEARNING RATE SCHEDULERS
954955 Warmup and decay can be viewed as shaping d_s over time. This suggests the potential for structural
956 schedule design: e.g. maintain higher d_s early (more exploration), then lower d_s later (stronger
957 localization).958 C.2.2 EVALUATING OPTIMIZERS
959960 Another application is evaluating optimizers for particular structural properties. That is, one can look
961 at how the spectral dimension or the learning coefficient change over time and compare these with
962 SGD to better understand how the optimizer impacts generalization behaviour.963 C.3 APPROXIMATE BAYESIAN INFERENCE
964965 One can potentially apply the theory here to calibrating uncertainty in SGD. In practice, “Bayesian”
966 approximations often assume Langevin dynamics with quadratic minima. Our theory gives a way to
967 correct for degeneracy and accessibility so that posterior variances and predictive intervals reflect the
968 actual dynamics of SGD, not an idealized model.

972 **D PROOFS**
 973

974 **D.1 LLC DETERMINES PORE SCALE DYNAMICS NEAR DEGENERATE POINTS**
 975

976 The proof of this relies on results from the theory of first passage times, homogenization, and
 977 porous diffusion, namely the estimation of mean first passage times of porous media. However, the
 978 components needed are straightforward to state. First we need the following definition(Baxter, 1985):

979 **Definition D.1.** Let $K \subset \mathbb{R}^d$. The Newtonian capacity $\text{Cap}(K)$ is defined as
 980

$$981 \inf\left\{\int_{\mathbb{R}^d} |\nabla u|^2 dx : u \in C_c^\infty, u \geq 1 \text{ on } K\right\} \quad (33)$$

983 Intuitively: if K is “big” or “accessible,” you can spread charge thinly and keep fields weak which
 984 makes them low energy, large capacity; if it’s tiny or shielded, fields must be intense \rightarrow high energy,
 985 small capacity. Next we give a known result of first passage times in porous media(Redner, 2001).

987 **Theorem D.1.** Let $\Omega \subset \mathbb{R}^d$ be a porous domain and let dX_t be a brownian process on Ω and let Γ
 988 be the set of all absorbing walls in Ω . If we consider then Γ_δ to be the subset of absorbing walls with
 989 area less than δ then the mean first passage time of a Brownian particle through Ω is (asymptotically)
 990 proportional to

$$991 \bar{T} \propto \frac{|\Omega|}{D\text{Cap}(\Gamma_\delta)} \quad (34)$$

993 as $\delta \rightarrow 0$ where D is the diffusion coefficient of the Brownian process.

994 Intuitively this says that for isotropic noise the time spent in some domain is proportional to how big
 995 the domain is and how large the escape walls are. We can use this to get the mean first passage time
 996 for SGD around degenerate saddle points under some simplifying assumptions.

997 **Theorem D.2.** Let $w^* \in W$ be a point such that the Hessian of the loss $H(w^*)$ is positive semidefinite.
 998 Let $\mathcal{W} = B(r, w^*)$ be a small area about w^* with local learning coefficient $\lambda(w^*)$ with $\mathcal{W}_\varepsilon = \{w \in$
 999 $\mathcal{W} | \mathcal{L}(w) < \varepsilon\}$. assume we have small isotropic noise D and that there is a reflective boundary at
 1000 height ε along the wall, and some escape set (absorbing boundary) $\Gamma(\mathcal{W})$ then the time it takes to
 1001 traverse distance with error tolerance ε is inversely proportional to the LLC.

1003 *Proof.* First note that in the above picture, we effectively have Brownian motion along a submanifold
 1004 $\mathcal{W}_\varepsilon = \{w \in \mathcal{W} | \mathcal{L}(w) < \varepsilon\}$, which we can treat as diffusion through a porous media where the pores
 1005 have height ε . Then from theorem D.1 we know that asymptotically as $\delta \rightarrow 0$ we should have

$$1007 \bar{T}(\mathcal{W}_\varepsilon) \propto \frac{|\mathcal{W}_\varepsilon|}{D\text{Cap}(\Gamma_\delta(\mathcal{W}_\varepsilon))} \quad (35)$$

1009 and since we can take $|\mathcal{W}_\varepsilon| = V(\varepsilon)$. This gives the desired result. \square
 1010

1011 While the above result requires isotropic noise and zero gradient, analogous results likely hold
 1012 under weak anisotropy and weak gradients by considering potential driven Brownian motion on a
 1013 submanifold which is tilted to behave like a porous media.

1015 **D.2 DIFFUSION COEFFICIENT HAS A SCALAR APPROXIMATION**
 1016

1017 First we would like to prove that the diffusion coefficient is well-approximated by a constant. To
 1018 do this we prove a handful of results. In the following let $\gamma \ll 1$ be a small learning rate and let n
 1019 denote the batch size. Letting \mathcal{D}_t^α be the Caputo fractional derivative, take

$$1020 \mathcal{D}_t^\alpha w_t = -\gamma \nabla \mathcal{L}_n(w_{t-1}) + \Sigma_{w_{t-1}} \quad (36)$$

1022 to be the overdamped Langevin equation with

$$1023 \Sigma_{w_{t-1}} = \sqrt{2D(w_{t-1})} dW_t \quad (37)$$

1025 where dW_t is a d -dimensional Wiener process. Let T be the time to equilibration for an instance of the
 1026 system. Then as $t \rightarrow T$, assume for almost all eigenvalues e_i of the Hessian $H(w_{t-1})$ of $\mathcal{L}_n(w_{t-1})$

1026 we have $e_i \ll 1$ are ≈ 0 (which has been shown in (Sagun et al., 2016)). Furthermore, we start with
 1027 the assumption that the full diffusion tensor is proportional to the Hessian so $D(w_{t-1}) \propto H(w_{t-1})$
 1028 which has been shown previously (both experimentally and rigorously under particular assumptions,
 1029 see (Xie et al., 2021) and (Smith & Le, 2018)). We start with the following:

1030 **Lemma D.1** (Effective Diffusion Tensor is Low Rank). *As $t \rightarrow T$, assuming \mathcal{L} is in C^2 , the diffusion
 1031 tensor is well-approximated by an effective diffusion tensor $D_{\text{eff}}(w)$ with rank $d_{\text{eff}} \ll d$ with $w \in \mathbb{R}^d$.*
 1032

1033 *Proof.* Since $D(w_{t-1}) \propto H(w_{t-1})$ and we know that almost all eigenvalues are ≈ 0 , the result
 1034 follows almost immediately from the Eckart–Young–Mirsky theorem. That is, approximating via the
 1035 truncated eigendecomposition

$$1036 \quad D_k = \sum_i^k e_i q_i q_i^T \quad (38)$$

1039 and considering the ordering $|e_1| \geq |e_2| \geq \dots |e_n|$ we get the approximation error

$$1040 \quad \|D - D_k\| = \sum_{i>k} e_i^2 \quad (39)$$

1043 and if $e_i \approx 0$ for all $i > k$, then $\sum_{i>k} e_i^2 \approx 0$. \square

1044 **Lemma D.2.** *As $t \rightarrow T$, taking $D(w_t) \approx \frac{\gamma}{n} H(w_t)$ (Xie et al., 2021) for batch size n and learning
 1045 rate γ . For any ϵ there exists some choice of γ and n such that there is a scalar value a with*

$$1047 \quad \|D(w_t) - aI\| < \epsilon \quad (40)$$

1049 *Proof.* Since $D(w_t)$ is symmetric, it can be rewritten as $Q\Lambda Q^T = D(w_t)$ where $\Lambda = \text{diag}(e_1, \dots, e_n)$.
 1050 We can then take

$$1051 \quad D(w_t) - aI = Q(\Lambda - aI)Q^T \quad (41)$$

1052 and by the unitary invariance of the Frobenius norm we get:

$$1053 \quad \|D(w_t) - aI\| = \|(\Lambda - aI)\| \quad (42)$$

1055 which is

$$1056 \quad \sum_i^d (e_i - a)^2 \quad (43)$$

1058 Then since for almost all i , $e_i = 0$ we have

$$1060 \quad = ca^2 + \sum_j (e_j - a)^2 \quad (44)$$

1063 where the sum is over all non-zero eigenvalues and c is the number of 0 eigenvalues. Let $a^* = \text{argmin}_{a \in \mathbb{R}} ca^2 + \sum_j (e_j - a)^2$. Notice that since e_j is an eigenvalue of $\frac{\gamma}{n} H(w_t)$ we can rewrite it
 1064 $e_j = \frac{\gamma}{n} e'_j$ where e'_j is the corresponding eigenvalue in the unscaled Hessian.

1066 Letting e'_1 be the largest unscaled eigenvalue, notice that as $\gamma \rightarrow 0$ and/or $n \rightarrow \infty$ that the value for
 1067 e_1 dominates the sum, and all the other e_j go to 0, so the sum is then

$$1068 \quad \approx (d-1)a^2 + (e_1 - a)^2 \quad (45)$$

1070 so setting $a = e_1$ we get

$$1071 \quad \|(\Lambda - aI)\| \approx (d-1)e_1^2 \quad (46)$$

$$1072 \quad = (d-1)\left(\frac{\gamma}{n} e'_1\right)^2 \quad (47)$$

1074 and since the learning rate and the batch size can be made arbitrarily small/large, our result follows. \square

1076 We now prove the general form of the scalar diffusion coefficient at some effective scale. This is a
 1077 well-known result within the diffusion literature (Bouchaud & Georges, 1990) but we include it here
 1078 for completeness. We prove it for the homogeneous case. The inhomogeneous case follows from
 1079 application of this to a restricted sub-domain.

1080
1081 **Lemma D.3.** Let ξ be some choice of length scale and d_{walk} be the walk dimension. The diffusion
1082 coefficient can be approximated by a scalar as $D_\xi = \xi^{2-d_{\text{walk}}}$.

1083 *Proof.* The effective diffusivity is defined as $D_\xi = \frac{\text{length}^2}{\text{length traversal time}}$. Since $R(t) \sim t^{\frac{1}{d_{\text{walk}}}}$ we get that
1084 $R(t)^{d_{\text{walk}}} \sim t$ so setting $R(t) = \xi$ and rewriting $t(\xi)$ as the time t such that $R(t) = \xi$, we get $t \sim \xi^{d_{\text{walk}}}$
1085 we can write

$$1087 \quad D_\xi = \frac{\xi^2}{\xi^{d_{\text{walk}}}} \quad (48)$$

$$1088 \quad = \xi^{2-d_{\text{walk}}} \quad (49)$$

1089 as desired. \square

1092 D.3 STEADY STATES

1094 Here we will give proofs of the results given in section 3.

1095 **Lemma.** Consider a subset of the parameter space $\mathcal{W} \subset W$ such that the effective diffusion
1096 coefficient D_ξ is (approximately) constant on \mathcal{W} . Suppose then that there exists steady state solutions
1097 on this subset w^* so $\frac{\partial p(w^*, t)}{\partial t} = 0$. The steady-state distribution is then given by $p_s(w) \propto e^{\frac{-\gamma \mathcal{L}_m[w]}{D_\xi}}$.

1099 *Proof.* First, by definition of the steady state we have $\mathcal{D}_t^\alpha p(w, t) = 0$ which reduces the fractional
1100 FPE to effectively the normal FPE, so we must solve the following PDE:
1101

$$1102 \quad 0 = \nabla \cdot (D(w, t) \nabla p(w, t) - \gamma p(w, t) \nabla \mathcal{L}_m[w]) \quad (50)$$

1103 Now under the assumption that for all $w_1, w_2 \in \mathcal{W}$ that $D(w_1) \approx D(w_2)$, then the long-term
1104 behavior of the diffusion coefficient at length scale ξ can be approximated by the effective diffusion
1105 coefficient given in definition 3.1, giving

$$1107 \quad 0 = \nabla \cdot (D_\xi \nabla p(w, t) - \gamma p(w, t) \nabla \mathcal{L}_m[w]) \quad (51)$$

1108 One can also see that the values of D_ξ and $\mathcal{L}_m[w]$ are not dependent on p (that is, the change in
1109 the probability of w does not change the loss or geometric properties determining diffusion at w)
1110 meaning that the SGD-FFPE reduces to a linear partial differential at steady state solutions. The
1111 solution is then readily obtained by solving the normal Fokker-Planck equation, which is simply the
1112 Boltzmann distribution for the system giving $p_s(w) \propto e^{\frac{-\gamma \mathcal{L}_m[w]}{D_\xi}}$ as desired. \square

1113 **Corollary.** Letting $\gamma = 1$ for simplicity, if \mathcal{L} is the log-loss, then

$$1115 \quad p_s(w)^{mD_\xi} \propto p(X_m|w) \quad (52)$$

1116 so

$$1118 \quad p(w|X_m) = \frac{\rho(w)p_s(w)^{mD_\xi}}{Z_{mD_\xi}} \quad (53)$$

1120 where Z^{mD_ξ} is the partition function. and ρ is the prior.

1122 *Proof.* First, note that the empirical negative log loss is

$$1124 \quad \mathcal{L}_m[w] = -\frac{1}{m} \sum_{i=1}^m p(y_i|x_i, w) \quad (54)$$

1126 This is a dimensionless quantity, however, we can consider the coarse-graining of the parameter space
1127 by some scale ξ so that $w \mapsto B(w, \xi)$. By taking the appropriate choice of measurement scale ξ
1128 (given some general regularity assumptions about the structure of the loss surface implicit in singular
1129 learning theory) we have that if $w_1, w_2 \in B(w, \xi)$ then $\mathcal{L}_m[w_1] \approx \mathcal{L}_m[w_2]$. Now consider that:

$$1131 \quad e^{-m\mathcal{L}_m[w]} = \prod_{i=1}^m p(y_i|x_i, w) \quad (55)$$

$$1133 \quad = p(X_m|w) \quad (56)$$

1134
 1135 Now given the result of lemma 3.3 one gets $p_s(w) = \frac{e^{-\frac{\mathcal{L}_m[w]}{D\xi}}}{Z_s}$ for partition function Z_s . We then get
 1136 that

$$(e^{-\frac{\mathcal{L}_m[w]}{D\xi}})^{mD\xi} = e^{-m\mathcal{L}_m[w]} \quad (57)$$

$$= p(X_m|w) \quad (58)$$

1140 Letting $Z_{mD\xi}$ be the appropriate partition function, the result then follows from application of Bayes'
 1141 theorem. \square

1142 **Lemma.** Suppose the loss function \mathcal{L} is non-convex and non-constant on W . Then with spectral
 1143 dimension d_s as $t \rightarrow \infty$ with fractal dimension $\lambda(w(t))$ on $\mathcal{W} \subset W$, the inequality $d_s \leq \lambda(w(t))$
 1144 holds (in the small learning rate regime).

1145 *Proof.* Consider two points w_1, w_2 be two points visited in the long timescale regime at times t_1, t_2
 1146 separated by distance R . If we suppose that there exists a linear path connecting w_1 to w_2 along the
 1147 manifold and we remove all other paths linking the two points we have diffusion on a linear structure.
 1148 Now using the definition of the walk dimension, following the arc A of this restricted structure
 1149 gives $R_A(t) \propto t^{\frac{1}{d_{\text{walk}}}}$ but since this restricted structure has only a single path, it has walk dimension
 1150 $d_{\text{walk}} = 2$. Now, suppose that this is true for any pair of points. Notice that this implies that all
 1151 points are connected by a linear path at arbitrary distances along the loss manifold meaning the loss
 1152 surface would have $d_{\text{walk}} = 2$. Furthermore this would imply that the loss does not change for any
 1153 choice of parameter, violating the fact that it is non-constant so we must have $d_{\text{walk}} > 2$. Now since
 1154 $d_w = \frac{2\lambda(w)}{d_s}$ we have $d_s = \frac{2\lambda(w)}{d_{\text{walk}}}$ and clearly if $d_{\text{walk}} > 2$ then $\frac{2\lambda(w)}{d_{\text{walk}}} \leq \lambda(w)$ so $d_s \leq \lambda(w)$ \square

1155
 1156 **Corollary.** For time t as $t \rightarrow \infty$, we have $d_s \leq \bar{\lambda}(w(t))$ where

$$\bar{\lambda}(w(t)) = \lim_{\tau \rightarrow \infty} \frac{1}{\tau} \int_0^\tau \lambda(w(t)) dt \quad (59)$$

1157
 1158 *Proof.* Let τ_0 be the time such that for all $\tau > \tau_0$, the inequality of lemma 3.4 holds. Consider then a
 1159 time $T \gg \tau_0$ and consider the integral

$$\int_0^T \lambda(w(t)) dt = \int_0^{\tau_0} \lambda(w(t)) dt + \int_{\tau_0}^T \lambda(w(t)) dt \quad (60)$$

1160 and since τ_0 is finite we can take the first portion of this integral to be a constant (since we know that
 1161 the LLC is bounded above by $\frac{d}{2}$ where d is the number of free parameters):

$$\int_0^{\tau_0} \lambda(w(t)) dt = C \quad (61)$$

1162 By the result of lemma 3.4 we have that for all times greater than τ_0 , we must have

$$\int_{\tau_0}^T \lambda(w(t)) dt \geq \int_{\tau_0}^T d_s dt \quad (62)$$

1163 and since d_s is constant

$$\int_{\tau_0}^T \lambda(w(t)) dt \geq (T - \tau_0)d_s \quad (63)$$

1164 which means that by adding C to both sides and dividing by T we get

$$\frac{1}{T} \int_0^T \lambda(w(t)) dt \geq \frac{(T - \tau_0)d_s}{T} + \frac{C}{T} \quad (64)$$

1165 From this we get

$$\frac{1}{T} \int_0^T \lambda(w(t)) dt \geq d_s + \frac{(C - \tau_0)d_s}{T} \quad (65)$$

1166 where the term $\frac{(C - \tau_0)d_s}{T}$ vanishes as $T \rightarrow \infty$ since C must be finite. \square

1188 D.4 EXTENDED RESULTS
11891190 Below we give an extra result which explains a domain where the theory can fail, as well as a
1191 discussion about complexities regarding how the diffusion process relaxes towards stationary states.
11921193 In the following result, consider the large-batch small learning rate regime. What happens if instead
1194 of the long runtime being sub-diffusive it has a small linear component?
11951196 **Proposition D.1.** *Suppose that $R(t) \sim t^{\frac{1}{d_{\text{walk}}}} + ct$ for small constant* and has no stationary distribution.
11971198 *Proof.* The proof is straightforward. Let τ_2 be the crossover time where for all $t > \tau_2$, $ct > t^{\frac{1}{d_{\text{walk}}}}$
1199 so on long timescales the small linear term dominates the sub-diffusive term, so $R(t)$ for $t > \tau_2$
1200 can be effectively approximated as $R(t) \sim ct + R(\tau_2) + o(t^{\frac{1}{d_{\text{walk}}}})$ and as $t \rightarrow \infty$ the constant term
1201 ct dominates. However, a stationary distribution must be independent of time. This cannot be the
1202 case however as at any point in time the diffusive process has non-trivial movement away from
1203 initialization so the distribution $p(w, t)$ spreads continuously over all timescales. \square
12041205 The thing that causes the problem with linear diffusion is if the space is unbounded. If one bounds
1206 the space with a reflective boundary one can recover a stationary state but the dynamics become
1207 more complicated. One way to approach studying this system would be to assume that the process
1208 eventually reaches a global minima and that such minima form a connected submanifold. One could
1209 then consider certain directions on the manifold to be confining, and others to be free. Processes on
1210 this submanifold can be studied using tools like Morse-Bott theory.
12111212 E HOMOGENIZATION
12131214 Ultimately the theory presented here relies on the process of homogenization, which is a well-known
1215 technique in the study of diffusion. We will give a basic informal overview here, but a full treatment
1216 can be found in (Cioranescu & Donato, 1999). We will then discuss how the method used for
1217 estimating the local learning coefficient in (Lau et al., 2024) is related to homogenization.
12181219 Homogenization is a process used to understand diffusive processes where the underlying governing
1220 structure can have small but rapid variations on small scales. These fluctuations might matter for a
1221 diffusing particle on short length/time scales but they should effectively average out at some larger
1222 scale. A bit more formally, if we imagine something like a chemical concentration $c^\epsilon(x, t)$ which is
1223 diffusing according to the PDE
1224

1225
$$\frac{\partial c^\epsilon}{\partial t} = \nabla \cdot (\mathcal{D}(\frac{x}{\epsilon}) \nabla c^\epsilon) \quad (67)$$

1226 where the diffusion \mathcal{D} coefficient varies rapidly when $\epsilon \ll 1$. However, if \mathcal{D} is bounded, then
1227 homogenization theory tells us that there is some other function c^0 given by $\epsilon \rightarrow 0$ such that there is
1228 some effective PDE:
1229

1230
$$\frac{\partial c^0}{\partial t} = \nabla \cdot (\hat{\mathcal{D}}(\frac{x}{\epsilon}) \nabla c^0) \quad (68)$$

1231 where $\hat{\mathcal{D}}$ is an effective diffusion coefficient which only varies over a much larger scale. This is
1232 effectively taking the PDE and averaging out the fluctuations over a particular scale to get something
1233 that is easier to model. When performing a homogenization one normally picks a scale that they
1234 are “averaging over”. This scale can be picked somewhat arbitrarily but making the scale too large
1235 or too small can negatively impact how accurately one captures the dynamics of the system. If one
1236 takes the scale too small, homogenization is not effective. If one takes the scale too large, you start to
1237 ignore how the distribution of fluctuations can change in different areas of the media, leading to an
1238 inaccurate theory.
12391240 There is a sense in which the local learning coefficient estimation introduced in (Lau et al., 2024)
1241 is related to homogenization. For a particular value w^* in the parameter space (which is assumed
1242 to be a local minima) and a ball $B_\delta(w^*)$ of radius δ about w^* , they define the learning coefficient
1243 estimator as

1244
$$\hat{\lambda}(w^*, \delta) = m\beta[\mathbb{E}_{B_\delta(w^*)}[L_m(w) - L_m(w^*)]] \quad (69)$$

1242 where $w \in B_\delta(w^*)$ and $\beta = \frac{1}{\log m}$. The choice of δ is effectively the scale over which one is
 1243 homogenizing, and the estimate of the LLC is akin to the average fluctuation over that area. This is
 1244 also why when trying to accurately estimate the LLC it is recommended to not make δ too large.
 1245

1248 F ROLE OF THE FRACTIONAL DERIVATIVE

1251 F.1 THE FRACTIONAL DERIVATIVE

1254 The *Caputo fractional derivative*

$$1257 \mathcal{D}_t^\alpha f(t) = \frac{1}{\Gamma(1-\alpha)} \int_0^t \frac{f'(t)}{(t-\tau)^\alpha} d\tau \quad (70)$$

1260 is essentially like a derivative with memory of past derivatives, weighted by a power law decay in
 1261 time controlled by α . To see this, one can consider two extreme cases. First, taking $\alpha \rightarrow 0$ you get
 1262 the total net change of $f(t) - f(0)$. Taking $\alpha \rightarrow 1$ you recover something more akin to the “slope”
 1263 between the time t and the start time. α effectively controls how quickly you ignore the past.
 1264

1265 If we want to see how it induces power law subdiffusion consider the linear function $f(t) = at + b$.
 1266 Assuming $0 < \alpha < 1$, we find

$$1269 \mathcal{D}_t^\alpha f(t) = \frac{a}{\Gamma(2-\alpha)} t^{1-\alpha} \quad (71)$$

1273 So notice that as $\alpha \rightarrow 0$ the process becomes more linear, so α controls how “sublinear” the process
 1274 is.

1278 F.2 FRACTAL DIMENSION AND FRACTIONAL DERIVATIVE

1280 The relationship between the fractal dimension and the fractional derivative operator has been a
 1281 subject of investigation for nearly 3 decades, starting with (TATOM, 1995). The authors used
 1282 numerical simulations to study the relationship between the fractional derivative and the fractal
 1283 dimensions of particular curves, finding a linear relationship between the order of the fractional
 1284 operator and the fractal derivative. Since then, extensive theoretical results have been proven for
 1285 different types of special functions (see (Liang & Su, 2024) for an overview). It was proven in
 1286 (Songping, 2004) that there is a linear relationship between the Minkowski–Bouligand dimension of
 1287 the Weierstrass function and the Minkowski–Bouligand dimension of its corresponding fractional
 1288 calculus. We hypothesize that the fractional derivative in the FFPE for SGD accounts for the change
 1289 in $\lambda(w)$ as one moves through the parameter space. More concretely:

1290 **Hypothesis F.1** (Shared Slopes). *Let $\alpha(t)$ be the fractional derivative exponent at time t . The value
 1291 of $\alpha(t) \propto \frac{d\lambda(w_t)}{dt}$.*

1293 Since $\alpha(t)$ is effectively a local property of a point that is related to the derivative about the point,
 1294 this should be unsurprising as the learning coefficient directly describes degenerate directions of the
 1295 space.

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

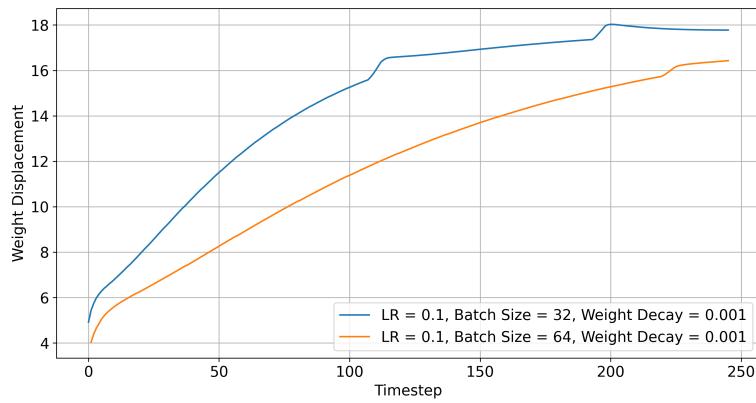
1340

1341

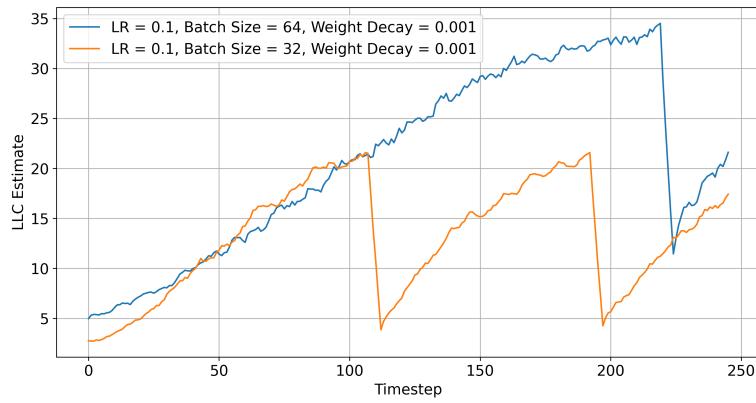
1342

1343

As mentioned in section 3 we see more complex dynamics when we operate in the grokking regime. Experimentally we see (figure 5b) that the appropriate choice of hyperparameters result in sudden large jumps in weight space (and the LLC) when the batch size is sufficiently small. The general sub-diffusive behaviour of these systems is captured by the fractional derivative in time D_t^α . However, the large jumps indicate the need for a fractional derivative in space to fully account for grokking behavior. This could be done by introducing a fractional Laplacian operator to equation 3.1.1 however we don't explore this analytically here. We do note however that the introduction of the space fractional derivative is effectively the same as a Levy noise Langevin equation.



(a) Jump in Weights with SGD Optimizer



(b) Drop in LLC

Figure 5: The corresponding changes in weight vs. the LLC.



Figure 6: Train/test accuracy over time. Notice that sudden jumps in the accuracy correspond to sudden jumps in the weights and the LLC.

We believe that this is evidence that the concept of stage boundaries and developmental stages introduced in (Wang et al., 2024a) is seemingly a very natural way to discuss stages of learning. They suggest delineating phases of learning by critical points in the (noise mitigated) LLC evolution curve. Our experiments indicate that the rate of change of the local learning coefficient should roughly capture the impact of the time and space fractional derivatives. Discontinuities (or very sharp changes) seemingly account for the action of the spatial fractional derivative, while more stable changes seemingly relate to actions of the time fractional derivative.

G EXPERIMENT DETAILS

For all experiments, we use the following configuration for the learning coefficient estimation:

Table 3: Hyperparameters for LLC Estimation

Hyperparameter	Value
optimizer_lr	1e-5
optimizer_localization	100.0
sampling_method	SGLD
num_chains	1
num_draws	400
num_burnin_steps	0
num_steps_bw_draws	1

G.1 MNIST

To investigate our theory using the MNIST dataset, we take a subset of 10000 images, and create a 50/50 train-test split. We then conduct two different sets of experiments. The first set of experiments are ran on 50 identical models with different random initializations, each trained for 100 epochs with batch size 256 and a learning rate of 0.001. For the other set of experiments we run against a set of 18 different architectures which vary in depth and layer widths, training these for 250 epochs but with the other parameters fixed (a table of architectures is provided in appendix J). We found for our purposes that it is sufficient to use a basic set of hyperparameters for the estimator (appendix J). We compute the LLC every 100 steps, as well as log the displacement of the network from its initial position. We then take the final LLC to be the average over the last 10 estimates. We also performed extensive ablation experiments over optimizers and parameters on MNIST, whose details can be found in appendix H.

1404
1405 G.2 TINY IMAGENET1406
1407 Tiny ImageNet (Le & Yang, 2015) is a subset of 200 classes of the full ImageNet dataset, which have
1408 been down-sampled to 64×64 pixels. In our experiments we rescale the images back to 224×224
1409 as well as apply the standard Imagenet normalization. We conduct experiments on the following
1410 models pretrained on ImageNet:1411
1412
1413
1414

- *ResNet18* (He et al., 2015)
- *ResNet34* (He et al., 2015)
- *VGG11* (Simonyan & Zisserman, 2015)

1415
1416 To conduct our experiments we finetune the above mentioned models after replacing the original
1417 output layer with an output layer with 200 neurons. In order to train this network we follow general
1418 fine-tuning practices. That is, we freeze the original weights, and fit the new classification head using
1419 the Adam optimizer for a maximum 20 epochs with a learning rate of 0.001 and a weight decay of
1420 0.0001, with a batch size of 128. If the loss does not decrease more than 0.0001 over 3 epochs, we
1421 stop training, switching to SGD with 0 weight decay and a learning rate of 0.00001 for 2000 steps
1422 with batch size 128. We note here that our vision experiments are conducted slightly differently than
1423 the language model or MNIST experiments. This was done to test the theory on the “fine-tuning”
1424 stage of model development.1425
1426 G.3 TINYSTORIES1427
1428 The TinyStories dataset (Eldan & Li, 2023) was selected as it allows us to explicitly test our theory
1429 on late stage training without training models from scratch, but where there are multiple reasonably
1430 sized pretrained models which we can compute the LLC for multiple times throughout training. In
1431 particular we run experiments on the following models from HuggingFace trained on TinyStories:1432
1433
1434

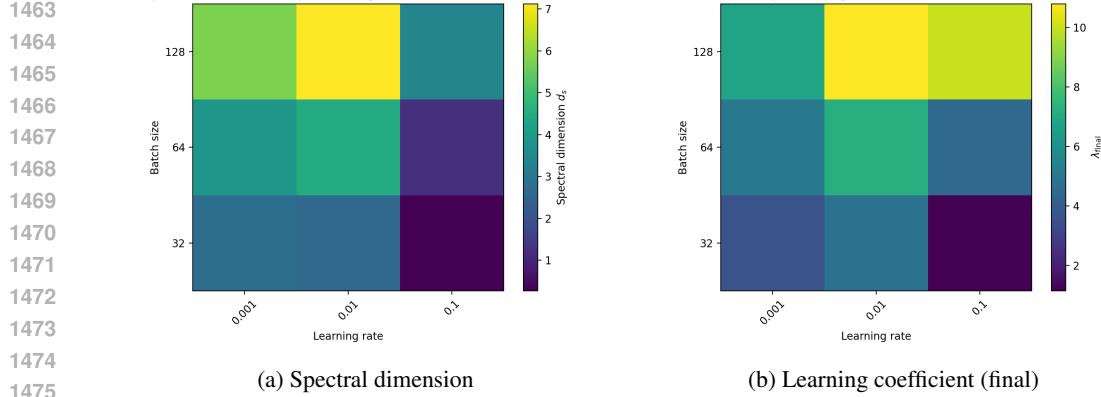
- *roneneldan/TinyStories-1M* (hug, b)
- *nickypro/tinnyllama-15M* (hug, a)
- *roneneldan/TinyStories-33M* (hug, c)

1435
1436 Each of these models are trained for 1000 steps with a batch size of 16, with a learning rate of
1437 0.00001, with the LLC computed every 100 steps.1438
1439 G.4 POSTERIOR CONCENTRATION1440
1441 To test the posterior concentration predictions we use a simple toy model and dataset where one can
1442 reasonably approximate the Bayesian posterior. We use the moons dataset (Pedregosa et al., 2011)
1443 with 512 samples, a noise ratio of 0.2, and a batch size of 128. Using this we train a 2 hidden layer
1444 ReLU network where each hidden layer has 64 neurons. Each model is trained using SGD with
1445 a learning rate of 0.01 for a total of 200 epochs. We do this for 500 random initializations of the
1446 network on the same dataset. At the end of training for each model, we compute the LLC, discarding
1447 any non-converged training runs. Since our theory is largely about the local posterior, we take the
1448 solutions found by SGD and use these to seed SGLD. In particular, since the Bayesian posterior will
1449 concentrate around the model with the lowest loss and lowest learning coefficient, we use the SGD
1450 samples which have the lowest loss and the lowest LLC. For each run of SGLD we take draw 1000
1451 samples with 200 burn in steps, and 10 steps per sample with a learning rate of 0.00001.1452
1453 H MNIST ABLATIONS1454
1455 Ablations were ran across optimization various hyperparameters for a fully connected network
1456 trained on MNIST to better understand the effects hyperparameter choices have on the diffusion
1457 characteristics. Experiments are ran for both SGD and Adam to test if the theory is effective for
1458 adaptive optimizers. We highlight some of these experiments here.

Optimizer	d_s (mean)	d_s (std)	λ_{final} (mean)	λ_{final} (std)	Test Acc (mean)
adam	0.4061	0.9068	3.0957	5.7533	90.4297
sgd	7.8165	10.2494	12.5270	11.8393	94.0592

1461

1462



1473

1474

1475
1476 Figure 7: Learning coefficient and spectral dimension for vanilla SGD with varying batch size and
1477 learning rate.

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

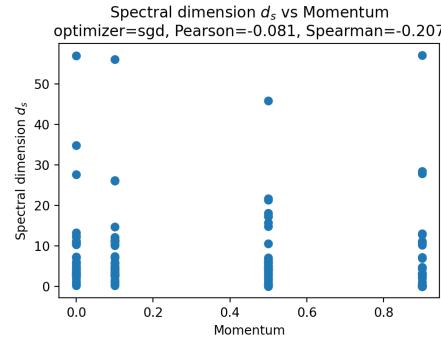
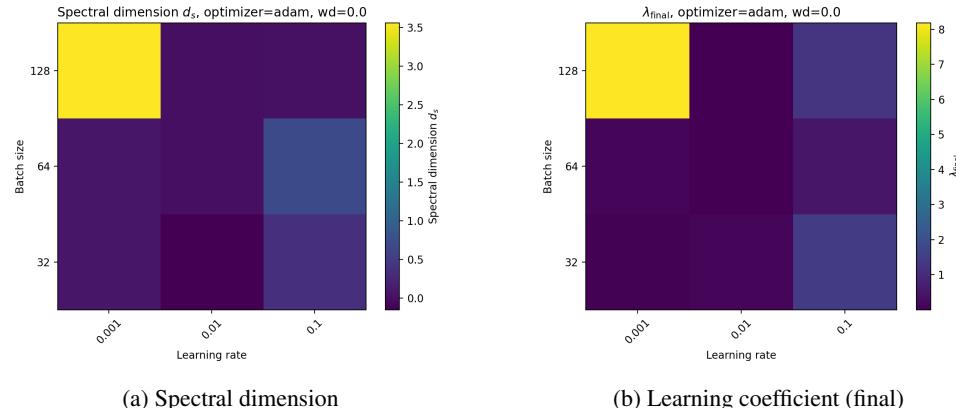
1507

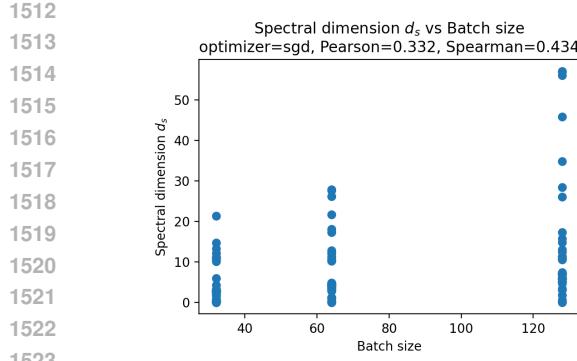
1508

1509

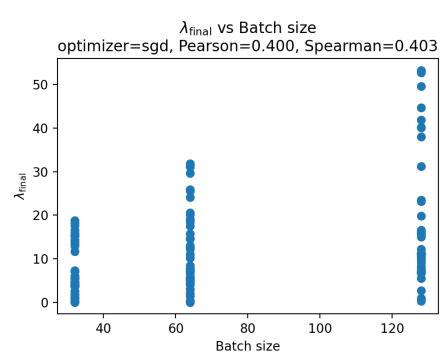
1510

1511

1492
1493 Figure 7: Learning coefficient and spectral dimension for vanilla SGD with varying batch size and
1494 learning rate.1492
1493 Figure 8: Correlation between momentum and spectral dimension.1508
1509 Figure 9: Learning coefficient and spectral dimension for Adam with varying batch size and learning
1510 rate.

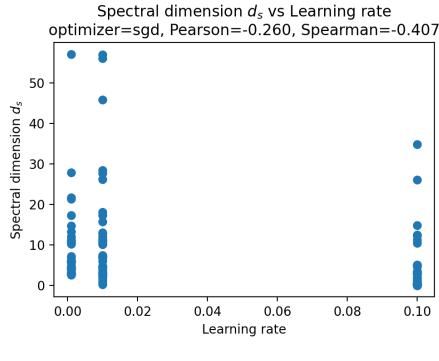


(a) Spectral dimension

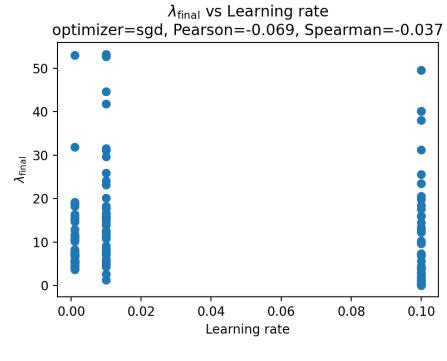


(b) Learning coefficient (final)

Figure 10: Correlation of Learning coefficient and spectral dimension for with batch size for SGD



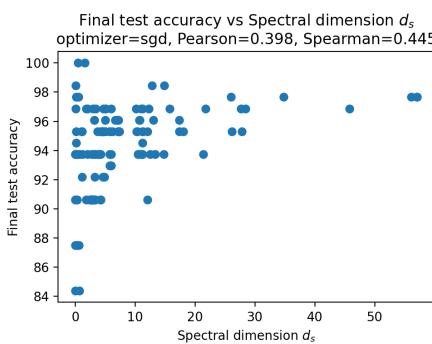
(a) Spectral dimension



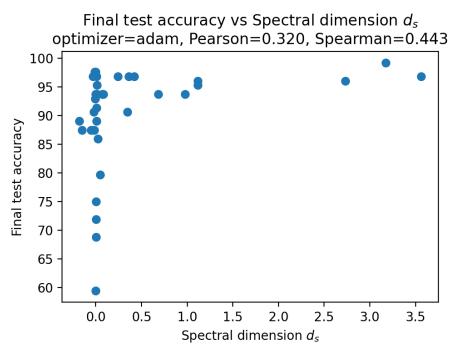
(b) Learning coefficient (final)

Figure 11: Correlation of Learning coefficient and spectral dimension with learning rate for SGD

We note that interestingly when using Adam, the spectral dimension seems to have a stronger correlation with performance than the learning coefficient as can be seen in figures 12 and 13. Another interesting phenomena that supports our theory is that there is relatively little correlation between λ and the learning rate, but there is relatively substantial correlation between the spectral dimension d_s and the learning rate (figure 11) which aligns well with the theory. We note that the correlation between λ and the batch size reflects the sensitivity of the empirical LLC estimator of (Lau et al., 2024) to the batch size.

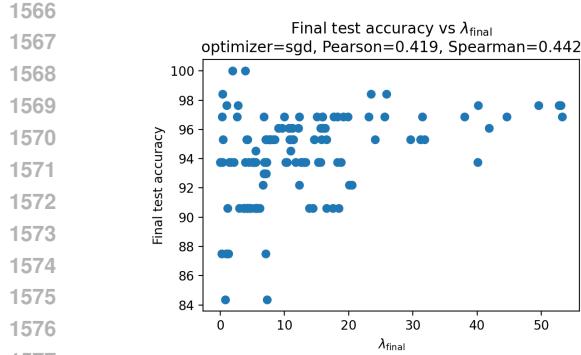


(a) SGD test accuracy

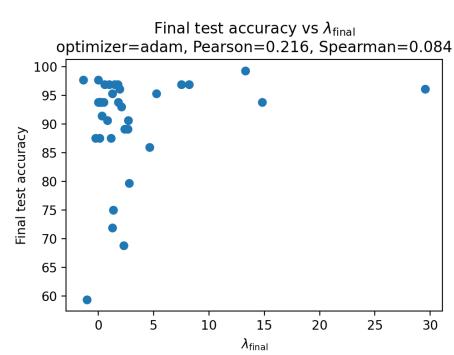


(b) Adam test accuracy

Figure 12: Correlation of spectral dimension with test accuracy for Adam and SGD.

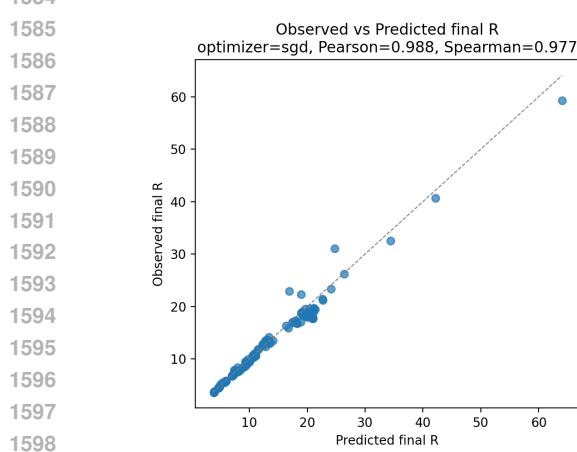


(a) SGD test accuracy

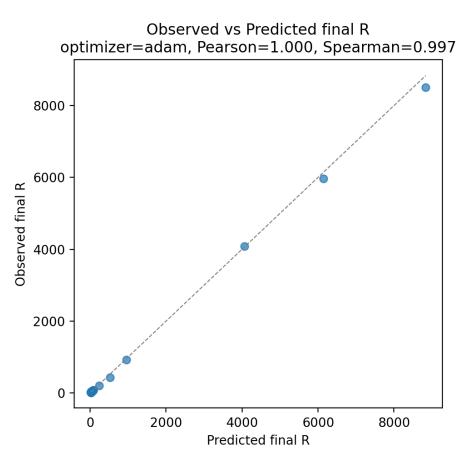


(b) Adam test accuracy

Figure 13: Correlation of the final learning coefficient with test accuracy for Adam and SGD.



(a) Predicted vs. true displacement for SGD



(b) Predicted vs. true displacement for Adam

Figure 14: Predicted vs. true displacements.

1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

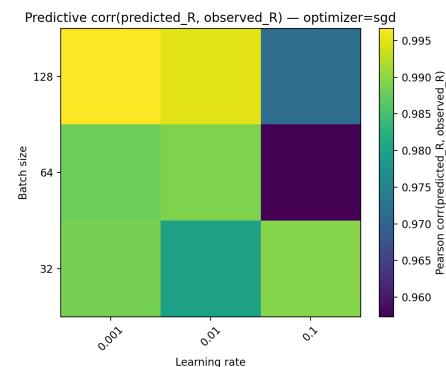
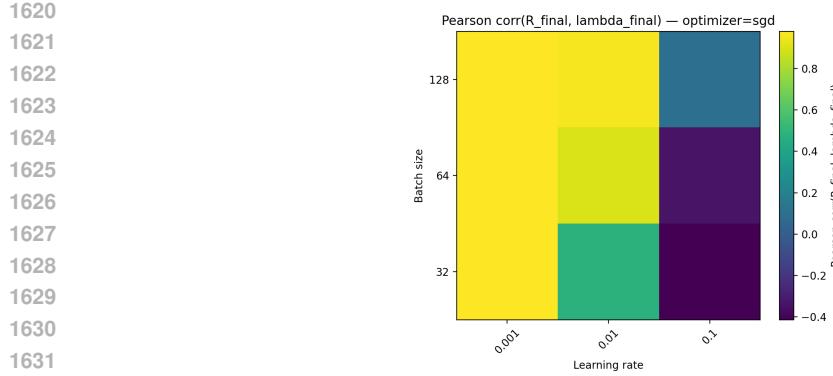
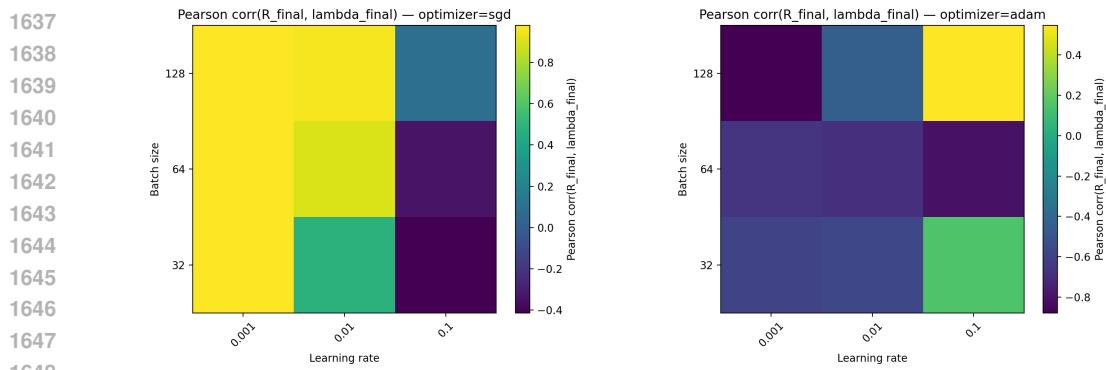


Figure 15: The correlation between the predicted displacement and the true displacement.



1633 Figure 16: The correlation between the final displacement and the final λ vs. batch size and learning
1634 rate.



1649 (a) The correlation between the final displacement and (b) The correlation between the final displacement and
1650 the final λ vs. batch size and learning rate for SGD. the final λ vs. batch size and learning rate for adam.

1651 Figure 17: Correlations between the displacement and learning coefficient.
1652

1653 H.0.1 SLT AND ADAM

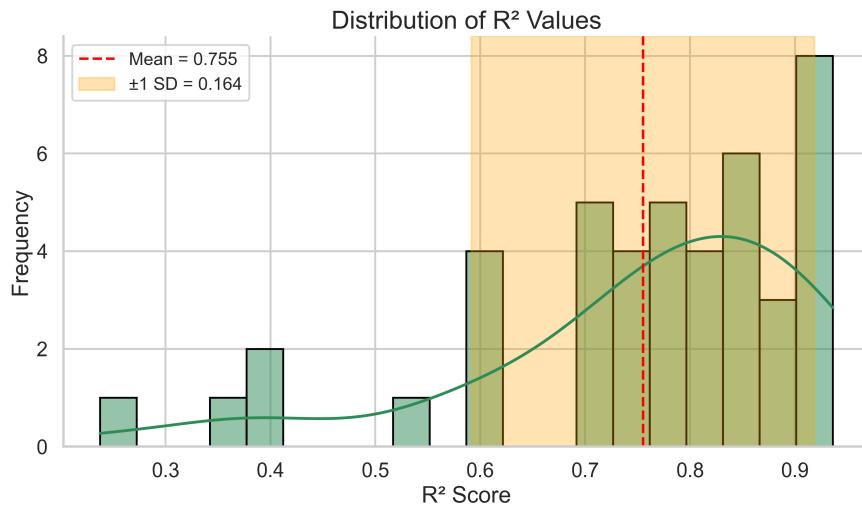
1656 Note that in figure 17 it seems that while the learning coefficient correlates very strongly with SGD,
1657 Adam does not. We suggest that this is because the LLC measures a quantity associated with the
1658 same Riemannian metric over the data as is used by SGD while adam effectively changes the metric
1659 structure via preconditioning. It is well known that variable-metric methods, including adaptive
1660 optimizers like Adam, can be interpreted as performing gradient descent in a Riemannian metric
1661 defined by a positive-definite preconditioner matrix. In the case of Adam, this preconditioner is the
1662 diagonal matrix built from the running average of squared gradients. Recent work has made this
1663 connection explicit, showing that Adam can be viewed as an approximate natural-gradient method
1664 using a diagonal empirical Fisher information matrix as a data-dependent metric, so the singularity
1665 structure of the Adam metric is likely different.

1666 I ADDITIONAL EXPERIMENTS AND RESULTS

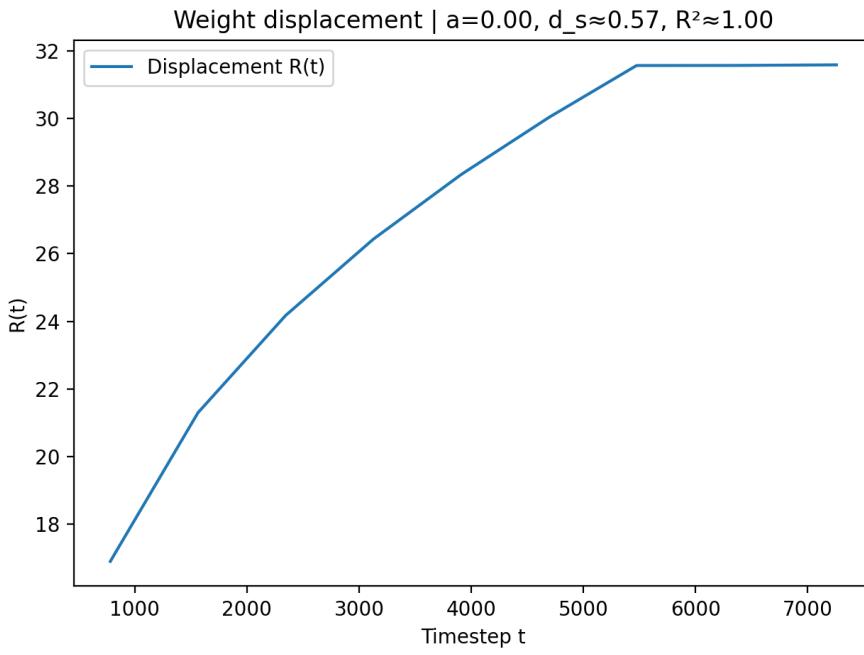
1668 I.1 DIFFUSION PREDICTION ACCURACY

1670 If the weight diffusion is indeed fractal, we should expect that using the spectral dimension as
1671 estimated by equation 17 we should be able to accurately predict the movement of the weights. While
1672 this is seen in the runs presented in table 1 they are not presented in the main body for MNIST due to
1673 the volume of models trained. We can see the histogram of the R^2 scores in figure 18. An important
thing to note here is that these estimations don't explicitly account for the early super-diffusive

1674 behaviour seen during initial training, so large periods of super diffusion should decrease the accuracy.
 1675 However, in other settings where we can account for early super-diffusion behaviours, the predictions
 1676 become nearly exact. An instance of this is in the case of the Tiny ImageNet models where we can
 1677 explicitly factor out the adaptive training component and simply fit to the SGD component at the end
 1678 of training (as our theory explicitly cares about late training stages of SGD). This shift in dynamics
 1679 can be seen in figure 19. However, in instances where we can start with SGD, if the model is already
 1680 near equilibrium, we can see the sub-diffusive behaviour very early with vanilla SGD. An example of
 1681 this can be seen in figure 20.



1701 Figure 18: The distribution of the R^2 scores for identical MNIST models.
 1702
 1703
 1704



1727 Figure 19: Displacement of the ResNet18 model on Tiny ImageNet. A sharp transition from Adam to
 1728 SGD can be seen near step 5000, at which point the dynamics become distinctly subdiffusive.

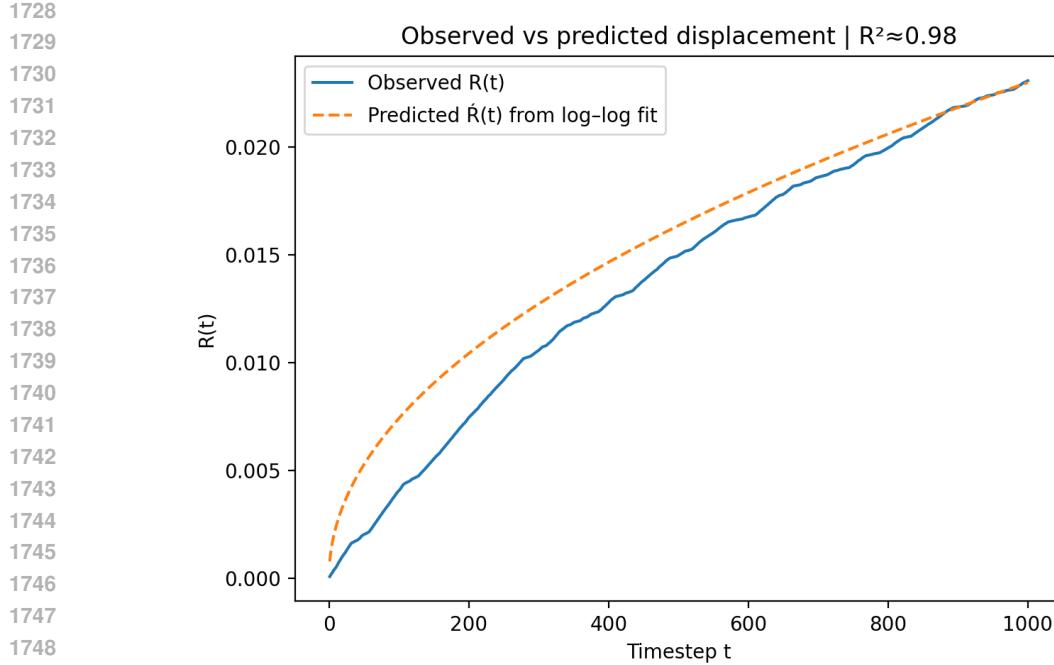


Figure 20: Displacement of the TinyStories-33m model along with the displacement predicted by the theory.

I.1.1 TINYSTORIES USING ADAM

Model name	λ	d_s	α	r^2
TinyStories-1M	32.05	36.6	0.57	0.99
TinyLlama-15M	77.02	48.06	0.31	0.97
TinyStories-33M	40	31.95	0.39	0.98

Table 4: Results for language models trained using the Adam optimizer.

Note that while the theory does seem to hold for Adam in some cases, it is less consistent, reflecting the more complex way in which Adam interacts with the geometry.

I.2 AVERAGE SPECTRAL DIMENSION

We also check the result of corollary 3.3. This can be seen in figure 21

I.3 CIFAR EXPERIMENTS

We ran additional experiments using various convolutional architectures on CIFAR10 to explore how the super-diffusive component impacts the theoretical results. We find that while these models display stronger super-diffusive behaviours (increasing in intensity with model size) the super-diffusive behaviour attenuates quickly enough that the theoretical results still hold, even when the super-diffusive behaviour is not factored out. Note as well that the runtimes were not as long, so one might expect the super-diffusive component to have a larger impact. In the following we restrict ourselves to a subset of 10000 samples from the CIFAR10 dataset where all models are initialized using Xavier initialization, with 0 bias and ReLU activations.

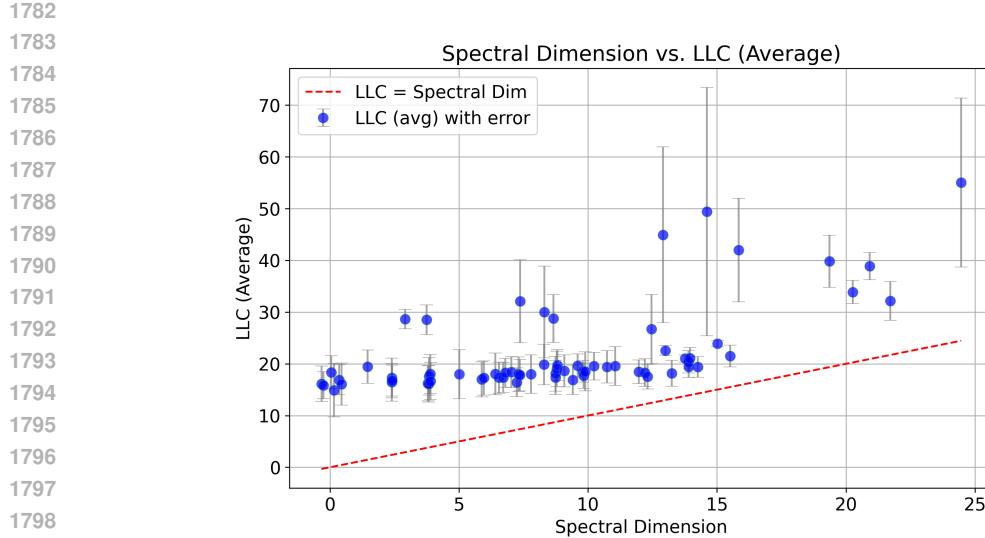


Figure 21: The average LLC vs. the spectral dimension. These results align with corollary 3.3.

Table 5: Spectral Dimension vs. LLC across runs for convolutional architectures

Num Params	Spect. Dim	LLC	Channels	Batch	Epochs	LR
1184	0.085	2.585 ± 0.779	32	64	50	0.001
19936	3.374	5.929 ± 0.963	32, 64	64	50	0.001
94304	4.887	11.829 ± 1.960	32, 64, 128	64	50	0.001
372928	7.483	16.176 ± 2.175	64, 128, 256	64	50	0.001

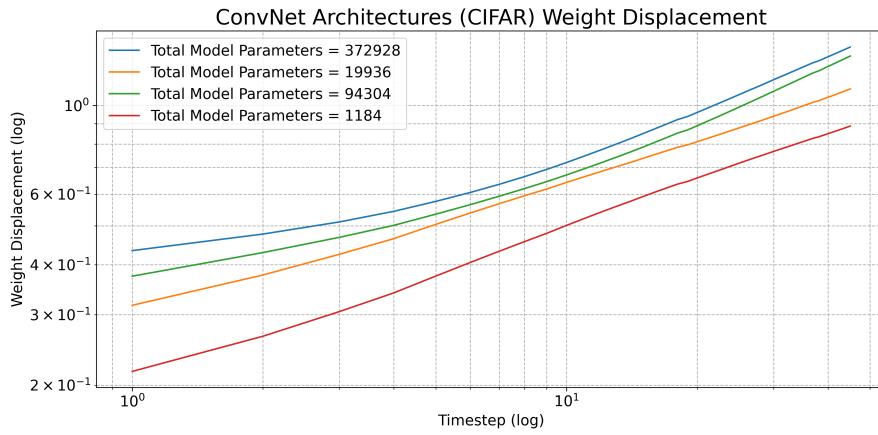


Figure 22: Weight displacement over time across a subset of the CIFAR10 dataset for Convolutional Architectures.

We also investigated the weight displacement for residual architectures. These can be seen in table 6 where the first number is the number of channels in between residual blocks.

Table 6: Spectral Dimension vs. LLC across runs for residual architectures

Num Params	Spect. Dim	LLC (final)	Channels	Batch	Epochs	LR
1216	0.085	2.585 ± 0.779	32	64	50	0.001
208448	3.481	14.729 ± 4.394	16, 32, 64	64	50	0.001
167424	4.534	10.408 ± 2.127	32, 64	64	50	0.001
831616	5.795	24.756 ± 7.614	32, 64, 128	64	50	0.001
872640	9.652	37.731 ± 8.332	16, 32, 64, 128	64	50	0.001

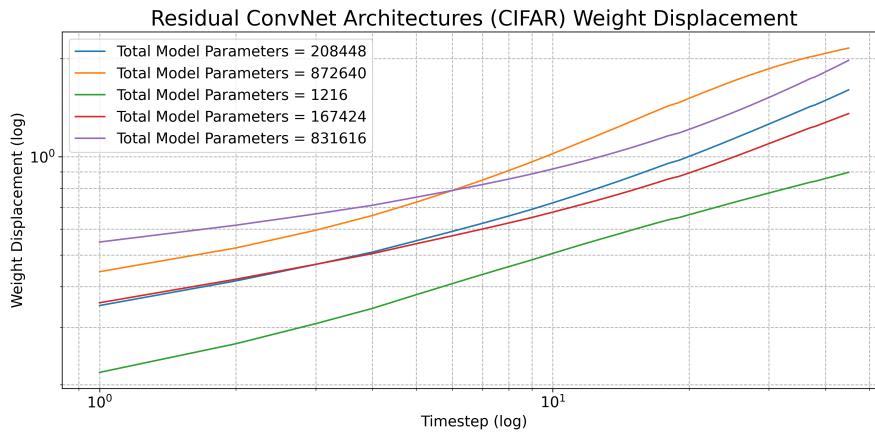


Figure 23: Weight displacement over time across a subset of the CIFAR10 dataset for residual architectures.

If we look at both figures 23 and 22 we can see that larger models exhibit more super-diffusive behavior.

1890 **J MNIST TABLES**
18911892 Table 7: Spectral Dimension vs. LLC with hyperparameters for varying model architectures.
1893

1894	1895	Num Params	Spect. Dim	LLC (Final)	Layers
1896		242304	2.910	30.514	784, 256, 128, 64
1897		125568	3.749	31.424	784, 128, 64, 128, 64
1898		117376	7.373	40.128	784, 128, 64, 32, 64, 32, 64
1899		244384	8.310	38.866	784, 256, 128, 64, 32, 16
1900		127296	8.661	33.361	784, 128, 64, 128, 64, 32
1901		126112	12.458	33.385	784, 128, 64, 128, 64, 16
1902		121472	12.909	61.920	784, 128, 64, 32, 64, 32, 64
1903		118016	12.996	23.551	784, 128, 64, 128
1904		109184	13.763	20.324	784, 128, 64 1
1905		125568	14.603	73.419	784, 128, 64, 32, 64, 32, 64, 32, 64
1906		234752	15.021	23.299	784, 256, 128
1907		143680	15.838	51.999	784, 128, 64, 128, 64, 128, 64, 32
1908		141952	19.357	44.844	784, 128, 64, 128, 64, 128, 64
1909		134400	20.268	36.134	784, 128, 64, 128, 64, 128
1910		143872	20.925	41.541	784, 128, 64, 128, 64, 256
1911		244032	21.719	35.879	784, 256, 128, 64, 32
1912		158336	24.465	71.359	784, 128, 64, 128, 64, 128, 64, 64

1913 In table 8 we can see instances where the spectral dimension is negative. This is related to the
 1914 model having a negative LLC (which occurs generally when there are no near-stable solutions).
 1915 When negative LLCs occur, it is almost always near initialization where the model also displays
 1916 super-diffusive displacement (as it is likely moving strongly along a steep gradient). The negative
 1917 spectral dimension is a remnant of how the spectral dimension is computed in our case. One can
 1918 reasonably remove occurrences of a negative LLC and perform the estimation which would capture
 1919 the behavior of the model on the fractal landscape it traverses away from initialization (which is
 1920 shown to be theoretically valid in appendix B.3). For transparency we do not do this as it illustrates
 1921 that SGD has complex multifaceted dynamics.

1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Table 8: Spectral Dimension vs. LLC across runs with different initializations.

1944	Num Params	Spect. Dim	LLC	Channels/Layers	Batch	Epochs	LR
1945	110912	-0.327	19.553	784, 128, 64, 32	256	100	0.001
1946	110912	-0.252	18.440	784, 128, 64, 32	256	100	0.001
1947	110912	0.048	21.552	784, 128, 64, 32	256	100	0.001
1948	110912	0.163	20.071	784, 128, 64, 32	256	100	0.001
1949	110912	0.356	19.785	784, 128, 64, 32	256	100	0.001
1950	110912	0.455	20.136	784, 128, 64, 32	256	100	0.001
1951	110912	1.462	22.654	784, 128, 64, 32	256	100	0.001
1952	110912	2.396	21.117	784, 128, 64, 32	256	100	0.001
1953	110912	2.401	20.125	784, 128, 64, 32	256	100	0.001
1954	110912	2.407	19.733	784, 128, 64, 32	256	100	0.001
1955	110912	3.790	19.628	784, 128, 64, 32	256	100	0.001
1956	110912	3.824	19.682	784, 128, 64, 32	256	100	0.001
1957	110912	3.839	21.184	784, 128, 64, 32	256	100	0.001
1958	110912	3.882	21.821	784, 128, 64, 32	256	100	0.001
1959	110912	3.899	20.301	784, 128, 64, 32	256	100	0.001
1960	110912	5.013	22.756	784, 128, 64, 32	256	100	0.001
1961	110912	5.881	20.381	784, 128, 64, 32	256	100	0.001
1962	110912	5.968	20.591	784, 128, 64, 32	256	100	0.001
1963	110912	6.410	22.074	784, 128, 64, 32	256	100	0.001
1964	110912	6.556	20.343	784, 128, 64, 32	256	100	0.001
1965	110912	6.713	20.250	784, 128, 64, 32	256	100	0.001
1966	110912	6.801	21.056	784, 128, 64, 32	256	100	0.001
1967	110912	7.036	21.386	784, 128, 64, 32	256	100	0.001
1968	110912	7.240	19.237	784, 128, 64, 32	256	100	0.001
1969	110912	7.311	21.323	784, 128, 64, 32	256	100	0.001
1970	110912	7.360	20.886	784, 128, 64, 32	256	100	0.001
1971	110912	7.794	21.724	784, 128, 64, 32	256	100	0.001
1972	110912	8.293	23.803	784, 128, 64, 32	256	100	0.001
1973	110912	8.739	20.638	784, 128, 64, 32	256	100	0.001
1974	110912	8.749	21.454	784, 128, 64, 32	256	100	0.001
1975	110912	8.796	22.440	784, 128, 64, 32	256	100	0.001
1976	110912	8.812	22.730	784, 128, 64, 32	256	100	0.001
1977	110912	9.081	21.760	784, 128, 64, 32	256	100	0.001
1978	110912	9.408	19.758	784, 128, 64, 32	256	100	0.001
1979	110912	9.605	21.916	784, 128, 64, 32	256	100	0.001
1980	110912	9.795	20.633	784, 128, 64, 32	256	100	0.001
1981	110912	9.838	20.142	784, 128, 64, 32	256	100	0.001
1982	110912	9.898	22.295	784, 128, 64, 32	256	100	0.001
1983	110912	10.230	22.213	784, 128, 64, 32	256	100	0.001
1984	110912	10.742	22.556	784, 128, 64, 32	256	100	0.001
1985	110912	11.060	23.296	784, 128, 64, 32	256	100	0.001
1986	110912	11.966	20.767	784, 128, 64, 32	256	100	0.001
1987	110912	12.204	20.973	784, 128, 64, 32	256	100	0.001
1988	110912	12.308	19.877	784, 128, 64, 32	256	100	0.001
1989	110912	13.253	20.701	784, 128, 64, 32	256	100	0.001
1990	110912	13.889	22.577	784, 128, 64, 32	256	100	0.001
1991	110912	13.907	21.487	784, 128, 64, 32	256	100	0.001
1992	110912	13.952	23.129	784, 128, 64, 32	256	100	0.001
1993	110912	14.258	21.386	784, 128, 64, 32	256	100	0.001
1994	110912	15.516	23.590	784, 128, 64, 32	256	100	0.001

1998
1999

K COMPUTE RESOURCES

2000
2001
2002
2003

All experiments were run on a single Nvidia RTX A4000 GPU, a single Intel Xeon W-2223 CPU, and 32GB of physical RAM. The individual runs vary greatly in compute times, ranging from ≈ 5 minutes to ≈ 1 hour, with the total compute time at ≈ 30 hours.

2004
2005

L LLM USAGE DISCLOSURE

2006
2007

LLMs were used in this work primarily to locate results (formulas, etc) in papers and textbooks.

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051