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Abstract. Despite the growing importance of dental CBCT scans for
diagnosis and treatment planning, generating anatomically realistic scans
with fine-grained control remains a challenge in medical image synthe-
sis. In this work, we propose a novel conditional diffusion framework
for 3D dental volume generation, guided by tooth-level binary attributes
that allow precise control over tooth presence and configuration. Our
approach integrates wavelet-based denoising diffusion, FiLM condition-
ing, and masked loss functions to focus learning on relevant anatomical
structures. We evaluate the model across diverse tasks, such as tooth
addition, removal, and full dentition synthesis, using both paired and
distributional similarity metrics. Results show strong fidelity and gener-
alization with low FID scores, robust inpainting performance, and SSIM
values above 0.91 even on unseen scans. By enabling realistic, local-
ized modification of dentition without rescanning, this work opens op-
portunities for surgical planning, patient communication, and targeted
data augmentation in dental Al workflows. The codes are available at:
https://github.com/djafarl/tooth-diffusion.

Keywords: CBCT Scan Synthesis - Tooth Inpainting - 3D Generative
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1 Introduction

Cone-beam computed tomography (CBCT) has become indispensable in dental
and maxillofacial imaging, offering high-resolution 3D representations of denti-
tion. However, it remains challenged by inherent limitations such as noise, metal
artifacts, and a restricted field of view [1,2]. Deep learning methods have demon-
strated strong potential in segmentation and reconstruction tasks, yet they often
struggle with the anatomical variability of teeth, the presence of missing teeth,
and the limited capacity to control or correct for structural artifacts.

Teeth segmentation from CBCT has achieved high accuracy using convo-
lutional neural networks (CNNs), U-Net variants, and attention-based architec-
tures [3,4,5]. However, these methods are primarily deterministic and do not sup-
port conditional generation for treatment planning, such as simulating missing
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teeth, implants, bridges, or fillings. Generative models based on generative adver-
sarial networks (GANs) and denoising diffusion probabilistic models (DDPMs)
have been explored for image enhancement tasks in CBCT-to-CT and MRI-to-
CBCT synthesis [6,7,8], yet prior work on generating synthetic dentition condi-
tioned on user-specified tooth-level attributes remains scarce. To the best of our
knowledge, no prior approach enables fine-grained control over individual tooth
presence or absence in 3D CBCT, which is a key novelty of this study.

DDPMs have emerged as a robust framework for image synthesis due to their
stability and ability to model complex distributions [9]. Recent medical imag-
ing adaptations include CBCT-to-CT translation [7], limited-angle CBCT recon-
struction [10], and medical image denoising [11]. However, these approaches have
not been extended to the generation of anatomically accurate, condition-driven
dental CBCTs. Such generative capabilities are clinically valuable for simulating
anatomical variations, including missing or restored teeth, essential for planning
personalized treatments such as implants or orthodontic interventions. More-
over, this can enhance data augmentation, address missing data scenarios, and
support the training of robust models in low-resource or imbalanced datasets.

In this work, we propose a novel method to generate synthetic CBCT volumes
of dentition with explicit, user-defined tooth configurations. We train a wavelet-
based latent diffusion model conditioned on tooth presence, encoded via Feature-
wise Linear Modulation (FiLM) embeddings [12]. By employing a masked L2
loss focused on tooth regions during training, and simulating tooth removal or
addition through augmentation, the model achieves precise localization and re-
construction of dental structures. Beyond improving generative controllability,
the ability to insert or remove specific teeth enables realistic pre/post-treatment
simulations, supporting surgical planning, patient communication, and multidis-
ciplinary case discussion, while also providing a targeted source of variation for
augmenting datasets in tasks such as segmentation and detection.

The contributions of this paper are as follows. (1) We introduce an efficient
generative framework for guided CBCT dentition synthesis, enabling explicit
control over tooth presence at inference time. (2) We incorporate FiLM condi-
tioning and a masked L2 loss to emphasize anatomically realistic reconstruction
in tooth regions while suppressing background influence. (3) By simulating tooth
removal and addition, we train the model to operate in two distinct modes, com-
pletion and removal, enabling scan-aware generation for clinically relevant edit-
ing (e.g., implant planning) or robust model training via data augmentation. (4)
We conduct comprehensive quantitative and qualitative evaluations, including
fairness across tooth positions and fidelity of reconstructed teeth, demonstrating
the high realism, variability, and flexibility of the proposed model.

2 Related Work

Deep learning has improved automatic tooth segmentation, with convolutional
models achieving average Dice scores above 0.9 across maxillary and mandibu-
lar scans [13]. A meta-analysis of 29 studies confirms these high accuracies and
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robustness across datasets [3]. However, segmentation remains inherently lim-
ited; it does not support image generation or editing, and performance is often
degraded by metal artifacts, scanner variability, and background dominance [14].

Despite growing interest in synthetic medical imaging using deep learning
models, generative models have been sparsely applied to dental data. Pano-
GAN [15] uses a Wasserstein GAN [16] to synthesize 2D panoramic radiographs
for augmentation, but it cannot capture full 3D anatomical structure. GANs
also suffer from well-documented drawbacks such as mode collapse and difficulty
preserving structural consistency, especially in volumetric settings.

DDPMs have emerged as a powerful alternative with greater stability and
diversity in image synthesis [9]. They have been applied to CBCT denoising and
CT translation, improving quality and downstream tasks like segmentation or
dosimetry [7,8]. Recent variants, including DiffDenoise [11] and cycle-consistent
diffusion models [10], further enhance reconstruction from sparse or artifact-
prone scans. Yet, these methods treat the image volume holistically, lacking
mechanisms for localized anatomical control such as tooth editing or generation.

Conditional diffusion frameworks have enabled controllable image synthesis
in other domains via latent diffusion modeling (LDM) [17], cross-modal con-
ditioning, and feature-wise transformations like FiLM. While such mechanisms
support attribute-driven generation, no existing work addresses conditional 3D
CBCT synthesis with anatomically precise, tooth-level guidance.

3 Methods

3.1 Guided Wavelet Diffusion Model

We employ a wavelet denoising diffusion model (WDM) [18] tailored for 3D
CBCT volume synthesis. As illustrated in Fig. 1, the proposed framework follows
a conditional generation paradigm, where the model is guided by binary attribute
vectors representing tooth presence and a 3D CBCT scan to be edited. This
conditional design enables the generation and editing of 3D scans with precise
control over dental configurations.

To alleviate the high computational demands and accelerate training and
inference, we replace standard Gaussian noise perturbation in pixel space with
a wavelet-domain formulation. Specifically, we apply a 3D Haar wavelet trans-
form to decompose the signal into multi-scale frequency components, and inject
Gaussian noise into these components. The diffusion model then learns to itera-
tively denoise in the wavelet domain, operating on representations with half the
original spatial resolution. This latent formulation significantly reduces memory
and compute requirements while preserving semantic fidelity (e.g., global volume
structure) and enhancing detail reconstruction (e.g., tooth boundaries).

3.2 Condition Embedding

Each scan is associated with a binary vector of length 32, indicating the pres-
ence or absence of individual teeth. This vector is passed through a linear layer
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Fig.1: Overview of the proposed framework. A guided diffusion model is used
for 3D CBCT scan generation with editable tooth configurations.

to produce a learned conditioning embedding with the same dimensionality as
the time embedding, which is obtained using a two-layer multilayer perceptron.
These embeddings are combined within each residual block via FiLM [12], im-
plemented as a SiLU activation followed by a linear projection, and integrated
into the U-Net architecture. FiLM enables the network to modulate interme-
diate feature activations by applying learned, condition-dependent scaling and
shifting, thereby allowing dynamic control based on the desired tooth configu-
ration. During training, the model is conditioned on a real scan and optimized
to reconstruct a version consistent with the specified tooth attributes.

3.3 Tooth Augmentation

In addition to standard training, where conditions are derived from reconstruct-
ing the input scan to match its original dental configuration, we introduce aug-
mentation strategies to promote robustness. Specifically, we simulate two com-
plementary scenarios by modifying the conditioning and target images: tooth
addition and tooth removal. In the addition scenario, up to 50% of the teeth
are randomly masked in the conditioning image, while the target remains the
original, unaltered scan. The conditioning vector guides the model to plausibly
reconstruct the missing structures, and the loss is computed against the original
label to penalize inaccurate synthesis. In the removal scenario, up to 50% of
teeth are removed from the target image, while the conditioning image retains
the full dental configuration. The model learns to suppress specified regions,
with supervision still applied relative to the original, unaltered label. These aug-
mentations simulate clinically relevant use cases, such as handling missing or
implanted teeth in surgical planning or restorative workflows.
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To ensure that missing teeth appear realistic in the simulated training data,
we avoid naive zeroing or masking of the region. Instead, we employ an image-
based inpainting strategy to fill the masked tooth cavity with anatomically plau-
sible content. Specifically, we first dilate the tooth mask to accommodate bound-
ary uncertainty and define a broader region for removal. This expanded mask is
used to set the corresponding region in the CBCT scan to missing values. Next,
we apply the Manhattan (city-block) distance transform to the binary mask,
indicating missing regions as zeros. The resulting distance map identifies the
nearest valid voxels, whose intensity values are then propagated to fill the cav-
ity. This approach allows the reconstructed region to reflect plausible anatomical
structure, such as gradients between air and jawbone intensities near the crown
and root, rather than introducing artificial holes to which the model could over-
fit. Finally, we apply Gaussian smoothing to the inpainted region to eliminate
abrupt transitions and promote spatial coherence.

To further increase the effective training sample size, we apply a simple yet
effective data augmentation by horizontally flipping the scans and their corre-
sponding label maps (left-to-right). Given the approximate bilateral symmetry of
human dentition, we adjust the tooth label values post-flip to preserve anatom-
ical correctness. For the upper jaw (labels 1 to 16), each label is reassigned as
17—t, and for the lower jaw (labels 17 to 32), as 49—t, where t is the original tooth
label. This transformation ensures consistency in left—right orientation and tooth
identity, thereby augmenting the dataset without introducing semantic noise.

3.4 Loss Function

Given the high background-to-signal ratio in CBCT scans, we introduce a masked
L2 loss to concentrate learning on tooth-bearing regions. During training, a soft
spatial mask M is derived from the ground truth tooth segmentation by applying
a Gaussian blur around tooth boundaries. This mask emphasizes regions near
the teeth while down-weighting the less informative background. The masked L2
reconstruction loss is defined as:

EMasked = ||M © (‘T - j)”%a (1)

where z is the ground truth scan, # is the generated output, M is the soft
mask, and @ denotes element-wise multiplication. This loss penalizes discrepan-
cies, specifically in regions affected by tooth additions or removals, encouraging
anatomically faithful reconstructions. The masked loss is then combined with
the primary WDM reconstruction loss after the denoising process to yield the
total training objective:

['Total = £WDM +A EMaskeda (2)

where A is a weighting factor, empirically set to 10 in our experiments.
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4 Experiments and Results

4.1 Data

We utilize a curated dataset of CBCT scans with ground truth dental segmenta-
tion® for our study, originally introduced in [19,20,21|. From the initial set of 150
CBCT volumes, we exclude 50 scans from a different cohort acquired at higher
resolution (0.2 mm? voxel size) for subsequent analysis. Additionally, we dis-
card two scans with missing segmentation maps and two segmentation volumes
without corresponding scans. The resulting 98 volumes are manually relabeled
according to the Universal Numbering System (tooth numbers 1-32), excluding
supernumerary teeth present in two of the scans. For missing teeth annotations,
we provide manual annotations where applicable. Notably, the dataset includes
patients with multiple CBCT acquisitions at different treatment stages, enabling
analysis of longitudinal consistency and anatomical changes.

All CBCT scans are spatially standardized to a fixed volume size of 256 x
256 x 256 voxels by cropping or padding based on the tooth annotations. This
ensures full dentition coverage while preserving the original voxel resolution of
0.4 mm?, and reduces memory usage by excluding excessive background regions.
Intensity values are normalized to the [—1,1] range for stable training. For each
scan, binary labels are generated for individual teeth and are used both as su-
pervision during training and for computing the masked reconstruction loss.

4.2 Experimental Setup

To scale training across multiple GPUs, we adapted the diffusion model using
Distributed Data Parallel framework along with a Distributed Sampler for ef-
ficient data loading. The model was trained for 100,000 iterations with 1,000
diffusion time steps using a linear noise schedule. Optimization was performed
using Adam optimizer with an initial learning rate of 1 x 107°, scaled linearly
with the number of GPUs. A batch size of 1 per GPU was used to accommodate
the memory constraints of volumetric data. During evaluation, we test the model
on real CBCT scans, both with and without artificially removed/added teeth,
and compare reconstructions against the corresponding ground truth volumes.

Out of the 98 available scans, we reserve 8 unique patient scans for testing,
selected to represent edge cases such as complete dentition, partial dentition with
only a few remaining teeth, or the presence of artifacts like brackets, braces, and
mini-screws. The remaining 90 scans are used for training/validation. Although
the dataset appears limited in size, each scan encompasses 32 distinct tooth
states, creating a combinatorial space of present/missing patterns. Combined
with data augmentation during training, this allows diverse testing scenarios in
generative settings, where variability rather than sample count is critical.

We evaluate model performance using standard quality metrics for visual
fidelity, including the Structural Similarity Index Measure (SSIM) for paired
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Fig. 2: Similarities between the original and reconstructed tooth when individ-
ually removed and regenerated by the model. Lower similarity is observed for
wisdom teeth, likely due to their anatomical variability and data scarcity.

comparisons and the Fréchet Inception Distance (FID) for distributional com-
parison, both computed in 3D between real and generated volumes. In addition,
we assess fairness in generation using per-tooth similarity analysis to identify
potential bias in reconstruction fidelity, particularly in scans with a full dental
set used for simulated tooth removal and addition scenarios.

4.3 Results

Reconstruction Synthesis. We first assess the model’s ability to reconstruct
full CBCT scans from conditioning vectors reflecting the original dentition.
Quantitative evaluation is conducted using FID between training-validation and
training-test splits, providing insight into both overfitting and generalization.
The FID score on the test set is notably low (40.27), indicating high-quality
image generation relative to the real training samples. It also suggests that the
model does not overfit or memorize the training distribution. The relatively
higher FID scores for the validation set (88.81) may be attributed to the smaller
number of samples (2 vs. 8) used during validation.

Tooth Addition Synthesis. To evaluate single-tooth completion, we simulate
missing teeth by masking individual teeth in test scans with complete dentition.
The model is then tasked with reconstructing the missing tooth based on the
remaining context. We compute the SSIM and PSNR between the reconstructed
and ground-truth teeth on a per-tooth basis. The average SSIM scores per tooth
are visualized in Fig. 2, highlighting variation across tooth positions. As can
be seen, the tooth addition results demonstrate fairly accurate synthesis across
most teeth, except for the molars and wisdom teeth (i.e., tooth IDs 1, 16, 17,
and 32), which are typically scarce in the training datasets and exhibit greater
anatomical variability in size, shape, and orientation.
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Table 1: Comparison of FID scores between test-time generated scans with re-
moved teeth and training scans exhibiting matching tooth absence.

Missing Teeth [1, 16] [1, 16, 17, 32] [16, 17, 18, 19]
FID Score  75.20 74.36 80.03

(a) Real Scan 1 (b) Synthetic Scan 1  (c) Real Scan 2 (d) Synthetic Scan 2

Fig. 3: Qualitative comparison between generated CBCT scans and their corre-
sponding real scans with complete dentition.

Tooth Remowal Synthesis. We assess the model’s capacity to synthesize re-
alistic scans with specific teeth removed. For this, we define common patterns
of tooth absence and apply them to scans with full dentition in the test set.
The model generates corresponding scans with these teeth removed. We then
compare the generated scans to real samples from the matching tooth-absence
groups using FID. Table 1 reports the FID scores for different target tooth-
absence patterns. As shown in the table, the results yield low FID scores across
different missing-tooth groups compared to the corresponding generated sam-
ples, demonstrating the model’s ability to successfully inpaint missing teeth.

Full Dental Synthesis. As a final experiment, we evaluate the model’s per-
formance on generating a complete dentition in scans with no teeth present.
This assesses the model’s ability to synthesize anatomically plausible full den-
tal structures from the conditioning vector. Fig. 3 presents qualitative results
comparing the generated samples to real scans with complete dentition. The vi-
sual comparison demonstrates a strong alignment between the real and synthetic
inpainted regions. Quantitative evaluation supports this observation, with an av-
erage SSIM of 0.9123 and an average PSNR of 18.35 computed over the inpainted
areas, despite the model not having seen the test samples during training.

5 Conclusion

We proposed a guided diffusion framework for controllable synthesis of 3D CBCT
dental scans, enabling realistic generation, addition, and removal of teeth based
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on per-tooth attributes. Our approach integrated a wavelet-based denoising dif-
fusion backbone with FiLM conditioning and masked reconstruction loss along-
side tooth augmentations to guide the generative process toward anatomically
plausible outputs. Experimental results demonstrated high visual fidelity and
generalization performance, with low FID scores in reconstruction and inpaint-
ing tasks, and consistent SSIM values across most teeth. The model successfully
handles complex cases, such as missing dentition or the presence of artifacts,
and shows potential for clinically oriented simulation tasks such as visualizing
treatment outcomes or testing AI models under diverse dentition patterns.

While we focused on per-tooth conditioning, broader clinical factors such as
implants, crowns, and bridges remain challenging and represent promising direc-
tions for future work. Moreover, although our dataset was limited in size, each
scan enabled extensive variability via combinatorial tooth presence patterns,
supporting robust generative evaluation. Scaling to larger public datasets, such
as ToothFairy?, and assessing impact on downstream segmentation or detec-
tion tasks will be important future steps toward clinical deployment. This study
highlights the feasibility of fine-grained, tooth-level controllable generation and
provides a tool for simulation, targeted data augmentation, and the development
of more customizable and interpretable generative models in dental imaging.
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