
Differentiable Community Detection with Graph Neural
Networks and Stochastic Block Models

William Arliss
william.f.arliss@leidos.com

Leidos
Arlington, Virginia, USA

Graham Mueller
william.g.mueller@leidos.com

Leidos
Arlington, Virginia, USA

ABSTRACT
We propose a set of loss functions adapted from Stochastic Block
Model (SBM) likelihood functions to train Graph Neural Networks
(GNNs) for the task of unsupervised community detection. Iden-
tifying latent community structures is a prominent challenge for
many graph applications. SBMs are classical models that describe
the generating process of random graphs and are commonly used
to infer community structure. The likelihood functions associated
with SBMs are well-defined, differentiable, and measure the qual-
ity of inferred community partitions; this makes them particularly
useful for unsupervised learning with GNNs. Our proposed loss
functions are independent of any specific GNN architecture and
demonstrate competitive or improved community detection perfor-
mance against several alternatives. Evaluation is carried out with
multiple architectures, offering a thorough empirical analysis of
the state of community detection with GNNs.

CCS CONCEPTS
• Computing methodologies → Neural networks; Cluster
analysis; • Mathematics of computing→ Random graphs.

KEYWORDS
Stochastic Block Models, Graph Neural Networks, Unsupervised
Learning, Community Detection

ACM Reference Format:
William Arliss and Graham Mueller. 2025. Differentiable Community De-
tection with Graph Neural Networks and Stochastic Block Models. In Pro-
ceedings of Machine Learning on Graphs in the Era of Generative Artificial
Intelligence at KDD (MLoG-GenAI ’25). ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Graphs provide a rich source of relational information on which to
perform a variety of machine learning tasks. Unsupervised commu-
nity detection (also known as node clustering) refers to the problem
of partitioning graph nodes into groups based on attributes and
structural information. Methods for analyzing community structure
are essential to applications in cybersecurity, social sciences, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MLoG-GenAI ’25, August, 2025, Toronto, ON
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

e-commerce. For example, many Recommender Systems predict
which product to recommend to a customer based on the inferred
category (community) the product or customer belongs to.

A common tool for identifying and analyzing communities is
the Stochastic Block Model (SBM) [26]. SBMs are statistical models
of community structure in networks, parameterized by a node
partition and a community structure matrix. Variations of the SBM
have been proposed to address alternative assumptions about the
generating processes of graphs [2, 9, 16, 20, 21, 27].

The progress of Graph Neural Networks (GNNs) in represen-
tation learning on graphs has motivated their use for community
detection as well. Several GNN-based frameworks have been pro-
posed [4, 29, 32, 39, 41] and demonstrate impressive performance
for both semi-supervised and unsupervised community detection.
Most unsupervised methods involve estimating the partition matrix
through modularity maximization, link prediction, or solving the
minimum-cut problem; typically a combination of custom GNN
architectures and training routines are used.

Significant work has also been done to integrate the strong the-
oretical foundations of SBMs with the expressive power of GNNs
[6, 10, 11, 24, 31]. Usually, these approaches incorporate GNNs as a
component in a mixture model or as a Bayesian prior.

A natural synthesis of the two approaches is to incorporate an
SBM likelihood function as a loss function for training a GNN [5].
Adapting the likelihood functions for different types of SBMs offers
a set of configurable, fully differentiable objectives which can be
used for unsupervised training of an arbitrary neural network.

This paper has two main contributions: (i) A set loss functions
derived from SBM likelihood functions and (ii) an extensive com-
parison of unsupervised loss functions for the task of community
detection. The loss functions are motivated by maximum likelihood
estimation and the Graph Matching problem [33]. We compare the
performance of GNN models trained with the SBM loss functions
to several state-of-the-art alternatives on synthetic and real-world
graphs.

The proposed loss functions are fully differentiable and do not
require custom architectures or training routines. So for a fair em-
pirical analysis, the same GNN architecture and training loop are
used for each loss function. Consequently, comparison approaches
that do not use stand-alone loss functions are not considered.

2 RELATEDWORK
2.1 Stochastic Block Models
Stochastic Block Models, introduced in [26], are a family of genera-
tive models which assume that the existence of any edge in a graph
is dependent only on the partition (community membership) of
the two component nodes. SBMs are identified by a node partition

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

MLoG-GenAI ’25, August, 2025, Toronto, ON William Arliss and Graham Mueller

and a structure matrix, which defines the expectation of an edge
between each partition.

Several variants of the SBM have been proposed to address dif-
ferent challenges: the Degree-Corrected SBM [16] mitigates the
problem of skewed degree distributions by directly modeling de-
gree heterogeneity; the Mixed Membership SBM [2] and the closely
related Overlapping SBM [20] allow nodes to be members of more
than one community, leading to more flexible interpretations of
community structure; the Contextual SBM [9] incorporates node
attributes, which are assumed to be generated conditionally on
node communities; the Microcannonical SBM [27] enforces strict
structural constraints in the model directly, rather than in expecta-
tion only. An in-depth review of these (and other) variants is given
in [21].

The task of inference with SBMs typically involves identifying
the process that generates a given graph and estimating the relevant
parameters [21]. Inferring the partition of a graph from an SBM
is sufficient for the task of community detection. A full survey of
statistical community detection techniques related to SBM inference
is given in [1].

The success of Graph Neural Networks in representation learn-
ing on graphs (see [13, 18, 34, 36]) has motivated several deep
learning frameworks for SBMs. GNNs are used to parameterize
Contextual SBMs in [6, 11, 31], where node features are assumed
to be a function of community membership. Conversely, [10] uses
a single-layer perceptron to model community membership as a
function of node features. In [24] the authors design a variational
auto-encoder GNN to parameterize an Overlapping SBM.

The SBM likelihood function is used as part of a composite loss
function in [5]. In this work, the authors propose to combine an
approximate SBM log-likelihood, a custom link prediction loss, an
entropy term, and a task-specific loss in order to optimize a custom
neural network framework. The framework is evaluated on the
tasks of community detection, graph alignment, and anomalous
correlation detection.

2.2 Deep Community Detection
Deep community detection refers to unsupervised or semi-supervised
community detection performed with deep neural networks. Much
work has been done (orthogonally to the SBM class) on GNN-based
community detection.

In [39], a framework consisting of multiple GNN layers is pro-
posed, where one module generates node embeddings and the other
pools node features according to (predicted) community structure.
A link prediction objective is used to guide the pooling function. In
[4], the authors apply a GNN to the minimum-cut problem, which
seeks to partition the set of nodes into disjoint (i.e., minimally con-
nected) subsets by maximizing the average ratio of edges within
communities to edges between communities. They do this by di-
rectly minimizing the negative of the minimum-cut metric plus a
custom orthogonality constraint.

Both of the above approaches depend on custom architectures for
task-specific problems. The focus of this paper, though, is on stand-
alone objective functions that do not require custom architectures.
One such general approach is taken in [29], where the authors pro-
pose using GNN embeddings to parameterize a Bernoulli-Poisson

model [37, 42] of a graph. A likelihood-based loss function is derived
from this model and edge sampling is used to address imbalance.

In [32] it is proposed to directly optimize modularity, a metric
that measures the quality of community partitions. To train a GNN,
the authors minimize the negative of estimated modularity plus a
novel regularization term. The authors suggest that the orthogo-
nality constraint from [4] tends to trap the optimization routine in
local minima and instead devise their own “collapse regularization”
meant to penalize trivial partitions. As a generalization of modular-
ity optimization, [41] propose using the negative of the trace of the
Markov Stability matrix [7, 8, 19] to train a GNN. Markov Stability
is a dynamic quality metric that measures the probability that a
random walk starting in one community will end in another after
a certain number of time steps.

3 METHODS
3.1 Preliminary
Let G = (V, E) be a directed simple graph with 𝑛 = |V| nodes
and 𝑚 = |E | edges. Furthermore, let D = V × V be the set of
all possible node dyads (excluding self-loops) so that E ⊆ D. The
𝑛 × 𝑛 adjacency matrix A represents the edge structure of G and
the 𝑛-vector dmeasures the node degrees such that d𝑢 =

∑𝑛
𝑣=1 A𝑢𝑣 .

Community memberships are represented in the 𝑘-partition matrix
Z ∈ {0, 1}𝑛×𝑘 , where Z𝑢𝑖 = 1 if node 𝑢 ∈ V is a member of
community 𝑖 and 0 otherwise.

3.2 Likelihood Functions
We now consider the likelihood functions of several Stochastic
Block Model variants induced by different assumptions of the un-
derlying generative process of G. All models have parameters Z
and 𝚯, where 𝚯 is a 𝑘 × 𝑘 structure matrix (also known as the
block matrix). The block matrix is defined such that 𝚯𝑖 𝑗 is the ex-
pected number of edges from a node in community 𝑖 to a node in
community 𝑗 .

3.2.1 Poisson. One common form of the SBM assumes that ele-
ments ofA are Poisson distributed, conditional upon the community
membership of the incident nodes [16, 21]. This gives the formal
assumption A𝑢𝑣 |Z ∼ Pois(Z′𝑢𝚯Z𝑣). Here, 𝚯𝑖 𝑗 is interpreted as the
average number of edges between nodes in communities 𝑖 and 𝑗 .
The likelihood of this model is

LP (Z,𝚯;A) =
∏
𝑢≠𝑣

(Z′𝑢𝚯Z𝑣)A𝑢𝑣

A𝑢𝑣 !
exp(−Z′𝑢𝚯Z𝑣) (1)

which is similar to the formulation in [16] except that self-loops
are not considered here.

Recall that G is defined in this paper as a simple graph, which
implies that A𝑢𝑣 ∈ {0, 1}. Our analysis is thus restricted to the
simple graph case, meaning that equation 1 is in fact a partial
likelihood. The partial log-likelihood of this model is defined over
the {0, 1} sub-region of the standard Poisson support as

ℓP (Z,𝚯;A) =
∑︁
𝑢≠𝑣

[
A𝑢𝑣 ln(Z′𝑢𝚯Z𝑣) − Z′𝑢𝚯Z𝑣

]
. (2)

Note that the factorial term has been dropped because it is always
equal to 0.

Differentiable Community Detection with Graph Neural Networks and Stochastic Block Models MLoG-GenAI ’25, August, 2025, Toronto, ON

The maximum likelihood estimate (MLE) for 𝚯, derived in [16],
is the ratio of the number of edges between two communities to
the product of their community sizes. That is,

�̂�𝑖 𝑗 =

[
�̂�(G,Z)

]
𝑖 𝑗

=
M𝑖 𝑗

n𝑖n𝑗
(3)

M =
∑︁

𝑢,𝑣∈E
Z𝑢Z′𝑣 (4)

n =

𝑛∑︁
𝑢=1

Z𝑢 . (5)

Here,M is a 𝑘 ×𝑘 matrix such thatM𝑖 𝑗 is the number of edges from
nodes in community 𝑖 to nodes in community 𝑗 and

∑𝑘
𝑖=1

∑𝑘
𝑗=1M𝑖 𝑗 =

𝑚. Also, n is a 𝑘-vector representing the number of nodes in each
community and

∑𝑘
𝑖=1 n𝑖 = 𝑛.

3.2.2 Bernoulli. In focusing on simple graphs, it is useful to con-
sider a model that fully aligns with the restriction on the adjacency
matrix. An intuitive choice is to assume that elements in A are
conditionally Bernoulli distributed [21]. Thus, the distribution as-
sumption is modified to A𝑢𝑣 |Z ∼ Bern(Z′

𝑢𝚯Z𝑣). This new model
interprets 𝚯𝑖 𝑗 as the probability of an edge between nodes in com-
munities 𝑖 and 𝑗 . The log-likelihood of this model is

ℓB (Z,𝚯;A) =
∑︁
𝑢≠𝑣

[
A𝑢𝑣 ln(Z′𝑢𝚯Z𝑣)

+ (1−A𝑢𝑣) ln(1−Z′𝑢𝚯Z𝑣)
]
.

(6)

The advantage of this model over the partial Poisson model is that it
is defined over the full range of support of the assumed distribution,
not just a sub-region. The MLE of 𝚯 is the same as that of the
Poisson model (equation 3).

3.2.3 Degree Correction. Another variety of the SBM, introduced
in [16], seeks to incorporate degree heterogeneity into the model.
The standard SBM assumes that each node has the same expected
degree. This assumption can lead to a sub-optimal solutions on
real-world networks, where degree distributions are observed to
be highly skewed.

To address this, the 𝑛-vector 𝝓 is introduced, allowing hetero-
geneous degree expectations. The expected value of edge (𝑢, 𝑣) is
now 𝝓𝑢𝝓𝑣Z′𝑢𝚯Z𝑣 instead of Z′𝑢𝚯Z𝑣 . The partial log-likelihood for
the degree-corrected Poisson model is

ℓP-DC (Z,𝚯, 𝝓;A) =
∑︁
𝑢≠𝑣

[
A𝑢𝑣 ln(𝝓𝑢𝝓𝑣Z′𝑢𝚯Z𝑣)

− 𝝓𝑢𝝓𝑣Z′𝑢𝚯Z𝑣

] (7)

and the log-likelihood for the degree-corrected Bernoulli model,
referred to as ℓB-DC, is derived by the same substitution.

The MLE for 𝝓, given in [16], is the ratio of a node’s degree to
the sum of degrees in that node’s community. So the scaled degree
correction of node 𝑢 is

�̂�𝑢 =
[
�̂� (G,Z)

]
𝑢
= (Z′𝑢n)

d𝑢
Z′𝑢𝜹

(8)

𝜹 =

𝑛∑︁
𝑢=1

Z𝑢d𝑢 . (9)

Here, 𝜹 is a 𝑘-vector representing the sum of degrees in each com-
munity and

∑𝑘
𝑖=1 𝜹𝑖 =

∑𝑛
𝑢=1 d𝑢 . Furthermore, Z′

𝑢𝜹 is the sum of
degrees in the community that node 𝑢 belongs to and Z′

𝑢n is the
size of that community.

In the Bernoulli model, the unconstrained MLE is the same as
that of the Poisson model (equation 8). However, the constraint
that 0 < 𝝓𝑢𝝓𝑣Z′

𝑢𝚯Z𝑣 < 1 for all (𝑢, 𝑣) must be observed. If 𝝓𝑢𝝓𝑣
scales the quantity to a value greater than 1, then the log-likelihood
will be undefined. Therefore, it is necessary in ℓB-DC to impose the
boundary 𝝓𝑢 ≤ 1 for all 𝑢. We achieve this in practice by simply
clamping the values to 1.

3.2.4 Overlap. The Overlapping SBM [20] assumes that a node can
belong to more than one community. In this setting, the community
of a given node varies depending on the edge it is observed in. To
understand this model, first let Z∗ ∈ {0, 1}𝑛×𝑛×𝑘 be the expanded
membership matrix, where Z∗

𝑢,𝑣,𝑖
= 1 implies that node 𝑢 is a

member of the community 𝑖 when it transmits an edge to node 𝑣 .
The expected value of edge (𝑢, 𝑣) is therefore Z∗′𝑢𝑣𝚯Z∗𝑣𝑢 .

To reduce the dimensionality for the overlapping model, let
P ∈ [0, 1]𝑛×𝑘 be the collapsed membership matrix. This matrix is
a summary of overlapping community memberships, defined as
the degree-normalized sum over the second axis of the expanded
membership matrix: P𝑢 = d-1𝑢

∑𝑛
𝑣=1 Z

∗
𝑢𝑣 . In the overlapping setting,

P𝑢 is interpreted as the frequency of node 𝑢’s membership in each
of the 𝑘 communities. Here, the expected value of edge (𝑢, 𝑣) is
P′𝑢𝚯P𝑣 . In the non-overlapping setting, the collapsed membership
matrix P is equivalent to the partition matrix Z. In both cases,∑𝑘
𝑖=1 P𝑢𝑖 = 1. The collapsed membership matrix will be relevant to

neural network optimization.

3.3 Graph Neural Networks
With estimates of 𝚯 and 𝝓 in place, we now turn to estimating
the partition matrix. To begin, note that none of the log-likelihood
functions described above are differentiable with respect to Z, as it
is a collection of discrete vectors. Because of this, gradient-based
optimization methods are unavailable andMonte Carlo methods are
typically used to find the likelihood-maximizing partition [1, 21].
To support the gradient-based optimization routine necessary to
train a Graph Neural Network, some modifications must be made.

3.3.1 Parameter Specification. Neural networks are generally opti-
mized with some variation of the gradient descent algorithm. For
gradient descent to work in the SBM setting, an estimate of Z that
is differentiable with respect to the neural network parameters is
required.

We consider the collapsed membership matrix P, which is a
generalization of Z, making it useful for both the standard and
overlapping settings. The choice of P is convenient, as an estimate
can be obtained by differentiable functions such as Softmax applied
to GNN embeddings. Therefore, the SBM parameters of interest
take the following forms:

P̂ = Softmax(GNN(G,X;W)) (10)

�̂� = �̂�(G, P̂) (11)

�̂� = �̂� (G, P̂) (12)

MLoG-GenAI ’25, August, 2025, Toronto, ON William Arliss and Graham Mueller

where GNN is any standard graph neural network with parameters
W. Here, P̂ is considered a relaxation of the partition matrix Z to a
soft partition.

It should be noted that the output dimension of the GNN is the
assumed number of communities 𝑘 in the graph of interest. In prac-
tice, the exact number of communities need not be known a priori.
Instead, the output dimension can be set to a reasonable overesti-
mate and the model will learn the optimal number of communities
(see Appendix D). Thus, 𝑘 can be inferred as the number of unique
elements in K = {argmax P̂𝑢 : 𝑢 ∈ V}. This is convenient for
real-world graphs where the true number of communities may be
unknown.

3.3.2 Loss Functions. The loss function associated with the Poisson
model is the negative of the log-likelihood function in equation 2,
with Z replaced by P̂ (equation 10) and 𝚯 replaced by �̂� (equation
11). That is,

𝐽P (W) = −
∑︁
𝑢≠𝑣

[
A𝑢𝑣 ln(P̂′𝑢�̂�P̂𝑣) − P̂′𝑢�̂�P̂𝑣

]
. (13)

For brevity, the scalar 𝜋𝑢𝑣 = P̂′𝑢�̂�P̂𝑣 is used for the remainder of
this section. The loss function associated with the Bernoulli model
is derived in the same way from equation 6, resulting in

𝐽B (W) = −
∑︁
𝑢≠𝑣

[A𝑢𝑣 ln(𝜋𝑢𝑣) + (1−A𝑢𝑣) ln(1−𝜋𝑢𝑣)] . (14)

Both losses are expressed as functions of the GNN parameters,W.
Recall that A𝑢𝑣 is equal to 1 if (𝑢, 𝑣) ∈ E and 0 if (𝑢, 𝑣) ∉ E.

Therefore, the loss function can be broken out into a summation
over the positive edge set E and the negative edge set N = D \
E. Doing so highlights the difference in cardinality of both sets.
Often, real-world graphs can be highly sparse, meaning that |N | ≫
|E|. Such imbalance can be problematic for optimizing a GNN.
A common approach to address this is to under-sample [14] the
majority class (usually the negative edge set) [13, 29, 38]. With this
sampling approach, the loss functions are rewritten

𝐽P (W) = −
∑︁

𝑢,𝑣∈E
[ln(𝜋𝑢𝑣) − 𝜋𝑢𝑣] +

∑︁
𝑢,𝑣∉E

𝜋𝑢𝑣 (15)

≈ −
∑︁

𝑢,𝑣∼𝑃E
[ln(𝜋𝑢𝑣) − 𝜋𝑢𝑣] + 𝜂-1

∑︁
𝑢,𝑣∼𝑃N

𝜋𝑢𝑣 (16)

𝐽B (W) = −
∑︁

𝑢,𝑣∈E
ln(𝜋𝑢𝑣) −

∑︁
𝑢,𝑣∉E

ln(1−𝜋𝑢𝑣) (17)

≈ −
∑︁

𝑢,𝑣∼𝑃E
ln(𝜋𝑢𝑣) − 𝜂-1

∑︁
𝑢,𝑣∼𝑃N

ln(1−𝜋𝑢𝑣). (18)

The summations over 𝑃E and 𝑃N represent uniform samples from
E and N with 𝜂 as a scaling constant. For our experiments, all𝑚
positive edges are drawn deterministically and 𝜂𝑚 samples from
the negative set are drawn randomly at each training step.

The degree-corrected versions of both models are achieved by
including �̂� (equation 12) in each loss function. Thus, the degree-
corrected (DC) loss functions 𝐽P-DC and 𝐽B-DC are derived by sub-
stituting �̃�𝑢𝑣 = �̂�𝑢 �̂�𝑣 P̂′𝑢�̂�P̂𝑣 for 𝜋𝑢𝑣 in the above equations.

3.3.3 Graph Matching. Another objective function is motivated
by the Graph Matching problem [33, 35]. Graph Matching refers to
the (approximate or exact) alignment of nodes across two graphs of

possibly different sizes. Node alignment is usually defined by some
real-world mechanism.

Let the block graphG
𝚯
= (V

𝚯
, E

𝚯
) be definedwith its (weighted)

adjacency structure given by 𝚯. Each of its 𝑘 nodes is a subset
of nodes from V; that is, node 𝑖 ∈ V

𝚯
corresponds to the set

{𝑢 ∈ V : Z𝑢𝑖 = 1}. Thus, Z is considered a mapping matrix
which transforms the block matrix to the expectation of A; that
is, Z𝚯Z′ ↦→ E(A). Finding the optimal mapping matrix Z̃ is the
optimization problem

argmin
Z̃∈Z

∥A−Z̃𝚯Z̃′∥𝐹 = argmin
Z̃∈Z

−tr(A′Z̃𝚯Z̃′) (19)

where Z = {Z̃ ∈ {0, 1}𝑛×𝑘 :
∑𝑘
𝑖=1 Z̃𝑢𝑖 = 1 for all 𝑢 ∈ V} and tr(·)

is the matrix trace.
Because 𝚯 is an unknown parameter in the SBM formulation,

we use its MLE �̂�(G, Z̃) from equation 3. Thus, we are seeking to
find the (inverse) mapping of G to its estimated stochastic block
representation G

�̂�
by minimizing the quantity −tr(A′Z̃�̂�Z̃′). A

proof of this statement is provided in Appendix B.
The optimization problem above is addressed with GNNs by sub-

stituting Z̃ with the predicted membership matrix P̂ from equation
10 and using the block matrix estimate �̂� from equation 11. The
loss function in this setting is

𝐽Match (W) = −tr(A′P̂�̂�P̂′) (20)

and is again expressed as a function of the GNN parameters, W.
Note that A can be represented as a compressed sparse matrix,
making the product A′P̂ relatively efficient to compute. Another
gain in computational efficiency comes from the relation

tr(A′P̂�̂�P̂′) = ∑𝑛
𝑢=1

∑𝑘
𝑖=1 (A′P̂)𝑢𝑖 (�̂�P̂′)𝑖𝑢 . (21)

The use of sparse matrix multiplication results in a significant
speedup compared to the edge sampling loss functions, as will be
shown empirically in Section 4.

3.3.4 Regularization. The final component of the SBM loss frame-
work is a regularization term. This regularization is meant to en-
courage the model to distribute the predicted partition across a
sufficient number of communities and to ensure that the predicted
partition is assortative [21] (i.e., edges occur mostly between nodes
of the same community).

We propose a term that helps minimize the distance of the struc-
ture matrix diagonal from unity. The regularized form of an arbi-
trary loss function 𝐽· is

𝐽 ∗· (W) =𝑚-1 𝐽· (W) + 𝛼 ∥1𝑘−𝜽𝑑 ∥𝐹 (22)

where 𝜽𝑑 is the diagonal of �̂�, 1𝑘 is a 𝑘-vector of ones, and ∥·∥𝐹 is
the Frobenius norm. The hyper-parameter 𝛼 controls the strength
of the regularization.

This is analogous to the “collapse regularization” term introduced
in [32] (see Appendix C.3). Both functions help to avoid trivial
solutions to the optimization problem which arise when all nodes
are assigned to one partition. Also, both are conveniently bounded
in the interval [0,

√
𝑘].

Differentiable Community Detection with Graph Neural Networks and Stochastic Block Models MLoG-GenAI ’25, August, 2025, Toronto, ON

Figure 1: Accuracy (NMI) vs. training time (seconds-per-epoch) for each loss function on synthetic data. The left
panel shows the loss functions that exploit matrix sparsity; the right panel shows loss functions that use edge
sampling. The Bernoulli and Poisson SBM loss functions (and their degree-corrected variants) are all labeled “SBM”
in the right panel. Results are marked by × for non-overlapping datasets and by + for overlapping datasets.

SBM-4 SBM-8 SBM-16 SBM-32 Avg.

NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1

𝐽MCP 99.2 99.2 99.3 99.0 98.6 95.8 94.5 78.8 97.9 93.2
𝐽CDMG 98.0 97.7 97.4 94.5 93.9 81.0 89.3 63.2 94.7 84.1
𝐽DMoN 89.3 87.6 98.7 98.1 99.7 99.3 94.5 78.1 95.5 90.8
𝐽LP 93.0 93.1 95.6 91.6 91.4 76.0 87.9 61.6 92.0 80.5

𝐽NOCD 97.5 97.9 99.2 98.7 98.9 96.4 92.3 71.5 97.0 91.1

𝐽B 99.3 99.5 99.3 98.5 98.7 95.2 94.1 75.1 97.9 92.1
𝐽P 98.3 98.3 99.8 99.7 99.2 97.0 93.7 74.8 97.7 92.4

𝐽B-DC 97.2 97.0 98.8 97.9 98.4 95.5 93.7 74.6 97.0 91.3
𝐽P-DC 98.5 98.6 99.4 99.2 99.7 99.1 94.3 75.9 98.0 93.2
𝐽Match 98.4 98.5 98.1 96.8 99.4 98.8 94.7 76.9 97.7 92.7

Table 1: Community detection performance on synthetic data with
non-overlapping communities using GCN. Results are averaged over
ten trials. The best scores (NMI and PF1) for each dataset are in bold.

4 EXPERIMENTS
The proposed loss functions are evaluated based on the performance
of the neural networks they are optimized with respect to. Com-
munity detection performance is measured by Normalized Mutual
Information (NMI) and Pairwise-F1 (PF1) scores; where relevant,
the overlapping variants [23] are used. Evaluation is carried out on
a variety of synthetic and real-world datasets.

For baseline comparison, the loss functions used in several pop-
ular alternatives are also evaluated: Neural Overlapping Commu-
nity Detection 𝐽NOCD [29], Deep Modularity Network 𝐽DMoN [32],
Minimum-Cut Pooling 𝐽MCP [4], Markov Stability 𝐽CDMG [41], and
link prediction 𝐽LP [13]. These loss functions are described in greater
detail in Appendix C. To ensure a fair comparison, a standard Graph

OSBM-4 OSBM-8 OSBM-16 OSBM-32 Avg.

NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1

𝐽MCP 38.7 86.3 45.8 83.4 57.8 78.8 69.7 72.2 53.0 80.2
𝐽CDMG 27.2 69.5 26.2 57.1 28.3 57.1 23.5 55.3 26.3 59.7
𝐽DMoN 19.0 53.5 37.1 75.8 74.6 90.6 61.9 70.8 48.1 72.7
𝐽LP 34.7 57.6 29.3 68.2 23.7 62.2 26.2 52.7 28.5 60.2

𝐽NOCD 38.3 57.6 55.0 77.3 68.8 76.3 63.2 66.3 56.3 69.4

𝐽B 56.8 84.8 56.5 85.2 73.3 82.8 70.5 73.7 64.3 81.6
𝐽P 46.8 90.7 51.8 89.7 71.9 81.2 61.6 65.8 58.0 81.8

𝐽B-DC 50.8 93.4 58.9 84.8 73.8 77.5 67.2 69.4 62.7 81.3
𝐽P-DC 37.9 97.2 56.7 82.5 68.7 76.5 65.4 70.0 57.1 81.6
𝐽Match 36.0 85.0 54.2 75.4 72.2 86.4 69.3 73.4 57.9 80.0

Table 2: Community detection performance on synthetic data with
overlapping communities using GCN. Results are averaged over ten
trials. The best scores (overlapping NMI and PF1) for each dataset
are in bold.

Neural Network architecture is used for all experiments regardless
of what was used in the original papers.

The architecture of choice is a two-layer Graph Convolutional
Network (GCN) [18] with feature dropout and batch normaliza-
tion. Additionally, we test the architecture described in [32], which
we refer to as SkipGCN. We also provide aggregated results from
several other architectures in Appendix E.

Implementation details are provided in Appendix A. The model
configuration and hyperparameters were determined based on pre-
liminary experimentation and are kept the same for all loss func-
tions considered. An examination of (SBM-specific) hyperparameter
sensitivity is provided in Appendix D.

MLoG-GenAI ’25, August, 2025, Toronto, ON William Arliss and Graham Mueller

Figure 2: Accuracy (NMI) vs. training time (seconds-per-epoch) for each loss function on real-world data. The left
panel shows the loss functions that exploit matrix sparsity; the right panel shows loss functions that use edge
sampling. The Bernoulli and Poisson SBM loss functions (and their degree-corrected variants) are all labeled “SBM”
in the right panel. Results are marked by × for non-overlapping datasets and by + for overlapping datasets.

Cora Citeseer Pubmed Wiki ACB-Comp ACB-Photo Avg.

NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1

𝐽MCP 34.2 22.6 19.4 16.4 13.0 19.5 33.1 26.7 43.4 45.8 57.1 52.6 33.4 30.6
𝐽CDMG 37.0 29.3 11.8 14.9 7.9 25.9 32.9 34.1 36.7 43.6 53.8 51.2 30.0 33.2
𝐽DMoN 42.3 25.9 23.9 19.1 17.4 20.4 40.8 36.0 45.9 34.6 57.0 47.1 37.9 30.5
𝐽LP 13.7 16.8 14.4 16.0 7.7 12.0 28.4 23.0 30.4 26.4 36.4 28.8 21.8 20.5

𝐽NOCD 27.3 19.8 18.6 19.8 12.7 19.1 40.6 34.6 46.6 41.7 61.1 56.9 34.5 32.0

𝐽B 29.9 27.9 24.8 31.6 12.4 33.1 36.5 35.8 42.8 52.2 64.2 60.8 35.1 40.2
𝐽P 28.2 25.8 22.8 30.0 13.5 36.6 36.2 36.5 40.2 51.3 64.7 63.6 34.3 40.6

𝐽B-DC 29.5 26.7 22.9 28.5 13.3 29.0 38.9 38.4 42.8 47.9 62.3 60.2 34.9 38.5
𝐽P-DC 41.3 37.4 27.9 28.2 10.8 28.3 33.6 31.1 45.8 32.6 60.1 53.4 36.6 35.2
𝐽Match 39.7 30.3 25.0 20.2 14.2 20.5 40.8 36.3 44.1 37.8 60.7 53.5 37.4 33.1

Table 3: Community detection performance on real-world data with non-overlapping communities using
GCN. Results are averaged over ten trials. The best scores (NMI and PF1) for each dataset are in bold.

Nodes are split into a training, validation, and testing sets. Node
embeddings are produced on the full training graph, then loss is
computed with respect to subgraphs induced by the training node
set. Early stopping and threshold identification are performed with
respect to the validation nodes. The reported metrics are computed
on the testing set and are averaged over ten trials.

4.1 Data
For experiments on synthetic data, graphs are generated according
to the degree-corrected Poisson SBM (equation 1). The generated
graphs are all assortative — that is, 𝚯𝑖𝑖 > 𝚯𝑖 𝑗 for all 𝑖 ≠ 𝑗 – with
density between 0.01 and 0.06. Furthermore, degree distributions

are sampled from a scale free distribution, where Pr(d𝑢) ∝ d−𝛾𝑢 and
𝛾 = 2.5. Each graph has 2,000 nodes and 4, 8, 16, or 32 communities.
The number of nodes in each community is normally distributed.
For the overlapping setting, the partition and block matrices are
randomly augmented.

To generate node features, length-100 vectors of means and vari-
ances are drawn from a multivariate normal distribution (squared
for variances) for each community. Each node is given a feature vec-
tor sampled from a multivariate normal parameterized by the mean
and variance of its assigned community. For overlapping communi-
ties, a node’s feature vector is the average of the vectors sampled

Differentiable Community Detection with Graph Neural Networks and Stochastic Block Models MLoG-GenAI ’25, August, 2025, Toronto, ON

MAG-Chem MAG-CS MAG-Eng MAG-Med Avg.

NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1

𝐽MCP 25.6 28.9 28.5 27.6 19.7 29.9 25.5 23.3 24.8 27.4
𝐽CDMG 0.6 34.6 2.2 28.7 0.6 48.5 0.6 23.4 1.0 33.8
𝐽DMoN 25.9 28.4 29.8 29.5 22.4 26.8 26.0 23.6 26.0 27.1
𝐽LP 0.0 9.7 0.2 10.6 0.0 10.0 0.3 17.1 0.1 11.8

𝐽NOCD 24.5 27.6 28.9 29.1 15.1 29.7 32.0 24.0 25.1 27.6

𝐽B 19.7 30.9 29.7 34.8 29.4 47.1 24.9 28.9 25.9 35.4
𝐽P 18.5 28.2 30.3 36.5 28.3 47.9 24.0 26.9 25.3 34.9

𝐽B-DC 26.4 32.8 35.7 44.2 25.7 48.3 26.9 30.1 28.7 38.9
𝐽P-DC 30.8 39.4 40.5 44.9 22.1 36.1 24.2 27.8 29.4 37.0
𝐽Match 25.0 32.9 38.9 42.1 28.0 37.4 22.3 25.3 28.6 34.4

Table 4: Community detection performance on real-world data with
overlapping communities using GCN. Results are averaged over ten
trials. The best scores (overlapping NMI and PF1) for each dataset
are in bold.

for each of its communities. This method of attribute generation is
similar to that described in [32].

For experiments on real-world data, ten common benchmark
graphs are considered. Cora [22], Citeseer [12], and Pubmed [28]
are all citation networks, where nodes are publications and edges
indicate citations. Node attributes are vector representations of
text associated with each publication and community partitions
are the category of the publication. AmazonCoBuy (as presented in
[30]) is a dataset of co-purchase graphs, where nodes are products
and edges indicate products that are purchased together. Nodes are
attributed by vector representations of user reviews and community
partitions are the category of the products. The dataset is split into
two graphs: computer products (ACB-Comp) and photo products
(ACB-Photo). These graphs are accessed through DGL1.

The Microsoft Academic Graph (as presented in [29]) is a dataset
of co-authorship graphs, where nodes are authors and edges indi-
cate co-authored publications. Node attributes are vectors of key-
words associated with each author. Research areas form the overlap-
ping community partition, as authors can research in multiple areas.
The dataset is split into four graphs: chemistry (MAG-Chem), com-
puter science (MAG-CS), engineering (MAG-Eng), and medicine
(MAG-Med). These graphs are accessed through the GitHub reposi-
tory2 associated with [29].

Summary tables for the synthetic and real-world datasets are
given in Appendix E.

4.2 Synthetic Results
We first evaluate community detection performance of each loss
function on synthetic graphs without community overlap. Com-
munity predictions are the row-wise argmax of the model output
and scoring is done with standard NMI and PF1. Results are shown
in table 1. The top half of the table are comparison loss functions
and the bottom half are our proposed SBM loss functions. The
Bernoulli loss function performs best in terms of both NMI and PF1
on average. The MCP loss is also competitive.

1https://www.dgl.ai/dgl_docs/api/python/dgl.data.html
2https://github.com/shchur/overlapping-community-detection

For overlapping community detection, a threshold is applied to
model outputs and the arguments exceeding that threshold are the
predicted overlapping communities for each node. The threshold
for each model is chosen to be accuracy maximizing. For evaluation,
overlapping NMI and PF1 are used. Results are shown in table 2.
The SBM loss functions generally outperform most comparison
losses, with the DMoN loss function being competitive. On average,
the Bernoulli variants perform best in overlapping NMI and PF1.

Figure 1 shows accuracy (measured as NMI) plotted against train-
ing time (measured in seconds-per-epoch) for each loss function.
The left-hand panel shows the loss functions that exploit matrix
sparsity: 𝐽Match, 𝐽CDMG, 𝐽MCP, and 𝐽DMoN. The right-hand panel
shows the loss functions that employ (negative) edge sampling: 𝐽B,
𝐽P, 𝐽LP, and 𝐽NOCD. The Bernoulli and Poisson SBM loss functions
(and their degree-corrected variants) have all been labeled “SBM”
for simplicity in the right-hand panel. Note how the loss functions
that exploit matrix sparsity are significantly faster than those that
use edge sampling. The DMoN loss function is the fastest and our
Graph Matching loss function is competitive in terms of both speed
and accuracy.

4.3 Real-World Results
The community detection performance of each loss function is
evaluated on real-world data in the same way as done on synthetic
data. We first consider graphs without community overlap. Results
are shown in table 3. The SBM loss functions outperform many of
the comparison losses in terms of PF1 and NMI. The DMoN loss
does best in average NMI and the Poisson loss does best in average
PF1. The NOCD loss is also competitive.

Overlapping community detection performance is evaluated in
the same way as the synthetic datasets. Results are shown in table 4.
The SBM loss functions again outperform most comparison losses,
with the degree-corrected variants doing best on average in terms
of overlapping NMI and PF1.

Figure 2 again shows accuracy plotted against training time for
each loss function. Notice how the gain in speed of the sparse matrix
losses over the edge sampling losses is not as pronounced as in the
synthetic datasets. This is likely due to the much higher dimension
of node features in the real-world graphs.

To provide a better comparison with the DMoN approach from
[32], we substitute SkipGCN layers for the standard GCN layers in
our implementation. This introduces an additional weight matrix
for nodes’ own features instead of the self-loop augmentation on
the adjacency matrix. Additionally, the SELU activation function
is used instead of ReLU. While the other implementation details
(e.g., hidden dimension, weight decay, etc.) are not identical, the
component GNN layer is the same as that described in [32]. It should
be noted that in [32], the authors compare their approach to several
other approaches that are not GNN based, require custom training
routines, or depend on very specific architectures (e.g., [4, 39]).
They show that their DMoN approach is superior on a number of
real-world graphs, including Cora, Citeseer, and Pubmed.

Table 5 shows the results of this comparison with the SkipGCN
layer on non-overlapping graphs. The SBM loss functions gener-
ally outperform or are competitive with the DMoN loss function.

https://www.dgl.ai/dgl_docs/api/python/dgl.data.html
https://github.com/shchur/overlapping-community-detection

MLoG-GenAI ’25, August, 2025, Toronto, ON William Arliss and Graham Mueller

Cora Citeseer Pubmed Wiki ACB-Comp ACB-Photo Avg.

NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1

𝐽MCP 32.0 18.2 18.2 12.8 19.1 26.1 38.6 37.8 44.2 49.1 58.9 56.9 35.1 33.5
𝐽CDMG 38.7 29.5 12.7 13.2 6.1 15.6 26.2 29.4 27.8 36.2 44.5 46.5 26.0 28.4
𝐽DMoN 37.1 21.3 21.3 15.7 16.9 15.4 33.7 24.9 31.8 27.2 49.9 39.1 31.8 23.9
𝐽LP 13.2 11.2 6.9 8.4 5.0 9.4 21.8 16.2 23.1 16.2 25.4 19.8 15.9 13.5

𝐽NOCD 14.6 11.4 7.2 9.6 6.0 12.9 38.6 34.9 47.4 45.2 63.2 62.9 29.5 29.5

𝐽B 39.0 33.6 24.2 27.7 17.8 30.7 27.8 28.8 38.0 43.1 56.0 53.0 33.8 36.1
𝐽P 34.5 27.3 26.3 30.2 14.8 25.8 27.2 26.3 38.8 43.1 54.3 52.2 32.6 34.1

𝐽B-DC 36.6 31.2 24.6 25.4 13.6 25.5 25.3 27.1 33.8 38.9 53.6 51.2 31.2 33.2
𝐽P-DC 43.3 36.0 26.5 23.6 18.1 30.5 21.0 24.6 47.8 53.5 52.5 48.6 34.9 36.1
𝐽Match 41.7 29.0 25.8 23.7 14.2 18.0 29.8 23.2 39.5 33.7 54.9 49.7 34.3 29.5

Table 5:Community detection performance on real-world datanon-overlapping communities using SkipGCN,
as in [32]. Results are averaged over ten trials. The best scores (NMI and PF1) for each dataset are in bold.

Interestingly, the MCP and NOCD loss functions also perform well
in this setting.

To further emphasize that this analysis is independent of specific
GNN architectures, we provide aggregated results of additional
experiments done with the following architectures in Appendix E:
GraphSAGE [18], Graph Attention Network (GAT) [34], and Graph
Isomorphism Network (GIN) [36].

4.4 Discussion
Figures 1 and 2 show how each of the loss functions compare to
one-another in terms of both speed and accuracy. In general, the
loss functions that exploit matrix sparsity are faster and just as
accurate as those that use edge sampling. The difference in speed
is less pronounced on the real-world graphs, which are larger and
more sparse.

It should be noted that most losses are computed more quickly on
non-overlapping datasets. This is simply because the (real-world)
overlapping datasets under consideration happen to contain more
nodes and edges than the non-overlapping datasets (see table 7
in Appendix E). In fact, every instance where “Seconds/Epoch” is
greater than 0.25 corresponds to the MAG-Med dataset (with the
exception of one occurrence of MAG-Chem), which is the graph
with the greatest number of nodes and edges.

Another general trend is that the overlapping datasets usually
produce lower accuracy scores than the non-overlapping ones. This
limitation is not only observed for the SBM-based loss functions,
but for the comparison losses as well. Further effort to adapt Over-
lapping SBMs to GNN loss functions is a direction for future work.

A key limitation of the proposed framework is that it is only de-
signed for simple graphs. For multi-graphs or graphs with weighted
edges, the Bernoulli and partial Poisson loss functions will not be
applicable. The Poisson variant can easily be extended to support
multi-graphs (see Appendix C.6), which allows the structure matrix
to take values greater than 1. However, such a structure matrix does
not conform with the regularization term in equation 22, which
penalizes matrices with diagonals that are far from unity.

5 CONCLUSION
In this paper, a collection of loss functions are derived from Sto-
chastic Block Model likelihood functions. These loss functions are
configurable, fully differentiable, and theoretically grounded. They
show strong performance in unsupervised training of Graph Neural
Networks for community detection. An additional loss function is
adapted from the Graph Matching problem and shows significant
speed improvements. The proposed framework is subjected to ex-
tensive evaluation and shows competitive or improved performance
against state-of-the-art loss functions.

ACKNOWLEDGMENTS
This research was conducted under the Graph Artificial Intelligence
initiative of the Leidos Office of Technology. Export approval num-
ber: 25-LEIDOS-0428-29484. This document does not contain export-
controlled information as defined under the U.S. International Traffic
in Arms Regulations or the U.S. Export Administration Regulations.

REFERENCES
[1] Emmanuel Abbe. 2018. Community Detection and Stochastic Block Models:

Recent Developments. Journal of Machine Learning Research 18, 177 (2018), 1–86.
http://jmlr.org/papers/v18/16-480.html

[2] Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing. 2008.
MixedMembership Stochastic Blockmodels. Journal of Machine Learning Research
9, 65 (2008), 1981–2014. http://jmlr.org/papers/v9/airoldi08a.html

[3] Karol A. Bacik, Michael T. Schaub, Mariano Beguerisse-Díaz, Yazan N. Billeh, and
Mauricio Barahona. 2016. Flow-Based Network Analysis of the Caenorhabditis
elegans Connectome. PLOS Computational Biology 12, 8 (3 2016), e1005055.
https://doi.org/10.1371/journal.pcbi.1005055

[4] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. 2020. Spectral
clustering with graph neural networks for graph pooling. In Proceedings of the
37th International Conference on Machine Learning (ICML’20). JMLR.org, Article
82, 10 pages.

[5] Zheng Chen, Xinli Yu, Yuan Ling, and Xiaohua Hu. 2020. Neural Stochastic Block
Model & Scalable Community-Based Graph Learning. arXiv:2005.07855 [cs.SI]
https://arxiv.org/abs/2005.07855

[6] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2021. Adaptive Universal
Generalized PageRank Graph Neural Network. arXiv:2006.07988 [cs.LG] https:
//arxiv.org/abs/2006.07988

[7] Jean-Charles Delvenne, Michael T. Schaub, Sophia N. Yaliraki, and Mauricio
Barahona. 2013. The Stability of a Graph Partition: A Dynamics-Based Framework
for Community Detection. Springer New York, 221–242. https://doi.org/10.1007/
978-1-4614-6729-8_11

http://jmlr.org/papers/v18/16-480.html
http://jmlr.org/papers/v9/airoldi08a.html
https://doi.org/10.1371/journal.pcbi.1005055
https://arxiv.org/abs/2005.07855
https://arxiv.org/abs/2005.07855
https://arxiv.org/abs/2006.07988
https://arxiv.org/abs/2006.07988
https://arxiv.org/abs/2006.07988
https://doi.org/10.1007/978-1-4614-6729-8_11
https://doi.org/10.1007/978-1-4614-6729-8_11

Differentiable Community Detection with Graph Neural Networks and Stochastic Block Models MLoG-GenAI ’25, August, 2025, Toronto, ON

[8] J. C. Delvenne, S. N. Yaliraki, and M. Barahona. 2009. Stability of graph
communities across time scales. arXiv:0812.1811 [physics.soc-ph] https:
//arxiv.org/abs/0812.1811

[9] Yash Deshpande, Andrea Montanari, Elchanan Mossel, and Subhabrata Sen.
2018. Contextual Stochastic Block Models. arXiv:1807.09596 [cs.SI] https:
//arxiv.org/abs/1807.09596

[10] O Duranthon and L Zdeborová. 2023. Neural-prior stochastic block model.
Machine Learning: Science and Technology 4, 3 (Aug. 2023), 035017. https://doi.
org/10.1088/2632-2153/ace60f

[11] Kimon Fountoulakis, Dake He, Silvio Lattanzi, Bryan Perozzi, Anton Tsitsulin,
and Shenghao Yang. 2022. On Classification Thresholds for Graph Attention
with Edge Features. arXiv:2210.10014 [cs.LG] https://arxiv.org/abs/2210.10014

[12] C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. 1998. CiteSeer: an automatic
citation indexing system. In Proceedings of the Third ACM Conference on Digital
Libraries (Pittsburgh, Pennsylvania, USA) (DL ’98). Association for Computing
Machinery, New York, NY, USA, 89–98. https://doi.org/10.1145/276675.276685

[13] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems (Long Beach, California, USA) (NIPS’17).
Curran Associates Inc., Red Hook, NY, USA, 1025–1035.

[14] Haibo He and Edwardo A. Garcia. 2009. Learning from Imbalanced Data. IEEE
Transactions on Knowledge and Data Engineering 21, 9 (2009), 1263–1284. https:
//doi.org/10.1109/TKDE.2008.239

[15] Hidetaka Kamigaito and Katsuhiko Hayashi. 2021. Unified Interpretation of
Softmax Cross-Entropy and Negative Sampling: With Case Study for Knowledge
Graph Embedding. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). Association for Computational
Linguistics. https://doi.org/10.18653/v1/2021.acl-long.429

[16] Brian Karrer and M. E. J. Newman. 2011. Stochastic blockmodels and community
structure in networks. Phys. Rev. E 83 (1 2011), 016107. Issue 1. https://doi.org/
10.1103/PhysRevE.83.016107

[17] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-
mization. arXiv:1412.6980 [cs.LG] https://arxiv.org/abs/1412.6980

[18] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. arXiv:1609.02907 [cs.LG]

[19] Renaud Lambiotte, Jean-Charles Delvenne, andMauricio Barahona. 2014. Random
Walks, Markov Processes and the Multiscale Modular Organization of Complex
Networks. IEEE Transactions on Network Science and Engineering 1, 2 (2014),
76–90. https://doi.org/10.1109/TNSE.2015.2391998

[20] Pierre Latouche, Etienne Birmelé, and Christophe Ambroise. 2011. Overlapping
stochastic block models with application to the French political blogosphere. The
Annals of Applied Statistics 5, 1 (March 2011). https://doi.org/10.1214/10-aoas382

[21] Clement Lee and Darren J. Wilkinson. 2019. A review of stochastic block models
and extensions for graph clustering. Applied Network Science 4, 1 (Dec. 2019).
https://doi.org/10.1007/s41109-019-0232-2

[22] Andrew McCallum, Kamal Nigam, Jason D. M. Rennie, and Kristie Seymore. 2000.
Automating the Construction of Internet Portals withMachine Learning. Informa-
tion Retrieval 3 (2000), 127–163. https://api.semanticscholar.org/CorpusID:349242

[23] Aaron F. McDaid, Derek Greene, and Neil Hurley. 2013. Normalized Mu-
tual Information to evaluate overlapping community finding algorithms.
arXiv:1110.2515 [physics.soc-ph] https://arxiv.org/abs/1110.2515

[24] Nikhil Mehta, Lawrence Carin Duke, and Piyush Rai. 2019. Stochastic Block-
models meet Graph Neural Networks. In Proceedings of the 36th International
Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 4466–
4474. https://proceedings.mlr.press/v97/mehta19a.html

[25] M. E. J. Newman and M. Girvan. 2004. Finding and evaluating community
structure in networks. Physical Review E 69, 2 (Feb. 2004). https://doi.org/10.
1103/physreve.69.026113

[26] Krzysztof Nowicki and Tom A. B. Snijders. 2001. Estimation and Prediction
for Stochastic Blockstructures. J. Amer. Statist. Assoc. 96 (2001), 1077 – 1087.
https://api.semanticscholar.org/CorpusID:9478789

[27] Tiago P. Peixoto. 2017. Nonparametric Bayesian inference of the microcanonical
stochastic block model. Physical Review E 95, 1 (Jan. 2017). https://doi.org/10.
1103/physreve.95.012317

[28] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and
Tina Eliassi-Rad. 2008. Collective Classification in Network Data. In The AI
Magazine. https://api.semanticscholar.org/CorpusID:62016134

[29] Oleksandr Shchur and Stephan Günnemann. 2019. Overlapping Community
Detection with Graph Neural Networks. Deep Learning on Graphs Workshop,
KDD abs/1909.12201 (2019). https://api.semanticscholar.org/CorpusID:88492570

[30] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of Graph Neural Network Evaluation. Relational
Representation Learning Workshop, NeurIPS 2018 (2018).

[31] Cheng Shi, Liming Pan, Hong Hu, and Ivan Dokmanić. 2024. Homophily
modulates double descent generalization in graph convolution networks.
arXiv:2212.13069 [cs.LG] https://arxiv.org/abs/2212.13069

[32] Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. 2024.
Graph clustering with graph neural networks. J. Mach. Learn. Res. 24, 1, Article
127 (3 2024), 21 pages.

[33] S. Umeyama. 1988. An eigendecomposition approach to weighted graphmatching
problems. IEEE Transactions on Pattern Analysis and Machine Intelligence 10, 5
(1988), 695–703. https://doi.org/10.1109/34.6778

[34] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. 2018. Graph Attention Networks.
arXiv:1710.10903 [stat.ML]

[35] Joshua T Vogelstein, John M Conroy, Vince Lyzinski, Louis J Podrazik, Steven G
Kratzer, Eric T Harley, Donniell E Fishkind, R Jacob Vogelstein, and Carey E
Priebe. 2015. Fast approximate quadratic programming for graph matching.
PLOS one 10, 4 (2015), e0121002.

[36] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks? arXiv:1810.00826 [cs.LG]

[37] Jaewon Yang and Jure Leskovec. 2013. Overlapping community detection at
scale: a nonnegative matrix factorization approach. In Proceedings of the Sixth
ACM International Conference on Web Search and Data Mining (Rome, Italy)
(WSDM ’13). Association for Computing Machinery, New York, NY, USA, 587–596.
https://doi.org/10.1145/2433396.2433471

[38] Zhen Yang, Ming Ding, Chang Zhou, Hongxia Yang, Jingren Zhou, and Jie Tang.
2020. Understanding Negative Sampling in Graph Representation Learning. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (Virtual Event, CA, USA) (KDD ’20). Association for
Computing Machinery, New York, NY, USA, 1666–1676. https://doi.org/10.1145/
3394486.3403218

[39] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton,
and Jure Leskovec. 2018. Hierarchical graph representation learning with differ-
entiable pooling. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems (Montréal, Canada) (NIPS’18). Curran Associates
Inc., Red Hook, NY, USA, 4805–4815.

[40] Yu and Shi. 2003. Multiclass spectral clustering. In Proceedings Ninth IEEE Inter-
national Conference on Computer Vision. 313–319 vol.1. https://doi.org/10.1109/
ICCV.2003.1238361

[41] Shunjie Yuan, Chao Wang, Qi Jiang, and Jianfeng Ma. 2022. Community Detec-
tion with Graph Neural Network using Markov Stability. In 2022 International
Conference on Artificial Intelligence in Information and Communication (ICAIIC).
437–442. https://doi.org/10.1109/ICAIIC54071.2022.9722614

[42] Mingyuan Zhou. 2015. Infinite Edge Partition Models for Overlapping Commu-
nity Detection and Link Prediction. In Proceedings of the Eighteenth International
Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning
Research, Vol. 38), Guy Lebanon and S. V. N. Vishwanathan (Eds.). PMLR, San
Diego, California, USA, 1135–1143. https://proceedings.mlr.press/v38/zhou15a.
html

A IMPLEMENTATION
The neural network used for all experiments consists of two GNN
layers with feature dropout, batch normalization, and ReLU ac-
tivation in-between. The default GNN layer is GCN [18] unless
otherwise specified. The dimension of the output layer is 25 for all
experiments and the activation is determined by the loss function.
The hidden dimension is 250 for synthetic graphs and 500 for real-
world graphs. The dropout rate is 0.5. Weight decay is applied with
a strength of 0.0001. Adam optimization [17] is used with a learning
rate of 0.0001. Training is carried out for a maximum of 500 epochs;
early stopping is evaluated every 5 epochs and is engaged after 10
evaluations with no improvement. The SBM loss functions all take
the form of equation 22 with regularization strength 𝛼 = 1.0. The
collapse regularization strength for the DMoN loss is the same. For
loss functions that support negative sampling, 3 negative edges are
drawn for every positive edges, and balanced weighting is applied.
The train-val-test split is 60-20-20.

Experiments are done in Python 3.8 with DGL3 and PyTorch4.
Synthetic experiments are conducted with a 2.4 GHz Intel Core i9

3https://www.dgl.ai/
4https://pytorch.org/

https://arxiv.org/abs/0812.1811
https://arxiv.org/abs/0812.1811
https://arxiv.org/abs/0812.1811
https://arxiv.org/abs/1807.09596
https://arxiv.org/abs/1807.09596
https://arxiv.org/abs/1807.09596
https://doi.org/10.1088/2632-2153/ace60f
https://doi.org/10.1088/2632-2153/ace60f
https://arxiv.org/abs/2210.10014
https://arxiv.org/abs/2210.10014
https://doi.org/10.1145/276675.276685
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.18653/v1/2021.acl-long.429
https://doi.org/10.1103/PhysRevE.83.016107
https://doi.org/10.1103/PhysRevE.83.016107
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1609.02907
https://doi.org/10.1109/TNSE.2015.2391998
https://doi.org/10.1214/10-aoas382
https://doi.org/10.1007/s41109-019-0232-2
https://api.semanticscholar.org/CorpusID:349242
https://arxiv.org/abs/1110.2515
https://arxiv.org/abs/1110.2515
https://proceedings.mlr.press/v97/mehta19a.html
https://doi.org/10.1103/physreve.69.026113
https://doi.org/10.1103/physreve.69.026113
https://api.semanticscholar.org/CorpusID:9478789
https://doi.org/10.1103/physreve.95.012317
https://doi.org/10.1103/physreve.95.012317
https://api.semanticscholar.org/CorpusID:62016134
https://api.semanticscholar.org/CorpusID:88492570
https://arxiv.org/abs/2212.13069
https://arxiv.org/abs/2212.13069
https://doi.org/10.1109/34.6778
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1810.00826
https://doi.org/10.1145/2433396.2433471
https://doi.org/10.1145/3394486.3403218
https://doi.org/10.1145/3394486.3403218
https://doi.org/10.1109/ICCV.2003.1238361
https://doi.org/10.1109/ICCV.2003.1238361
https://doi.org/10.1109/ICAIIC54071.2022.9722614
https://proceedings.mlr.press/v38/zhou15a.html
https://proceedings.mlr.press/v38/zhou15a.html
https://www.dgl.ai/
https://pytorch.org/

MLoG-GenAI ’25, August, 2025, Toronto, ON William Arliss and Graham Mueller

processor and 32 GB of memory. Real-world experiments are con-
ducted with a 2.5 GHz Intel(R) Xeon(R) Platinum 8259CL processor
and 15 GB of memory and a Tesla T4 GPU and Cuda version 12.4.

B GRAPH MATCHING PROOF
Let Z = {Z̃ ∈ {0, 1}𝑛×𝑘 :

∑𝑘
𝑖=1 Z̃𝑢𝑖 = 1 for all 𝑢 ∈ V}. Consider

the distance quantity

𝑞 =

A−Z̃𝚯Z̃′

2

𝐹

= ∥A∥2𝐹 +

Z̃𝚯Z̃′

2

𝐹
− 2 tr

(
A′Z̃𝚯Z̃′

)
.

Minimizing 𝑞 with respect to 𝚯 gives

𝜕𝑞

𝜕𝚯
= 2Z̃𝚯′Z̃′Z̃Z̃′ − 2A′Z̃Z̃′ set

== 0

=⇒ �̃� = (Z̃′Z̃)-1Z̃′AZ̃(Z̃′Z̃)-1 .

Now recall the MLE �̂� from equation 3:

�̂�(G, Z̃) = M ⊘ nn′

M =
∑︁

𝑢,𝑣∈E
Z̃𝑢 Z̃′𝑣 = Z̃′AZ̃

n =

𝑛∑︁
𝑢=1

Z̃𝑢

where ⊘ represents element-wise division. When Z̃ ∈ Z, note that
Z̃′Z̃ = diag(n) and (Z̃′Z̃)-1 = diag(n-1) where n-1 is the element-
wise inverse of n. Furthermore, [(Z̃′Z̃)-1 (Z̃′Z̃)-1]𝑖𝑖 = 1/(nn′)𝑖𝑖 for
all 𝑖 = 1, ..., 𝑘 . It can also be verified that

(Z̃′Z̃)-1M(Z̃′Z̃)-1 = M ⊘ nn′ .

Therefore, the distance minimizer �̃� is equivalent to the maximum
likelihood estimate �̂� in this case.

We can now substitute the MLE into 𝑞 as done in Section 3.3.3:

𝑞 = ∥A∥2𝐹 +

Z̃�̂�Z̃′

2

𝐹
− 2 tr

(
A′Z̃�̂�Z̃′

)
= ∥A∥2𝐹 +

Z̃(Z̃′Z̃)-1Z̃′AZ̃(Z̃′Z̃)-1Z̃′

2
𝐹
− 2 tr

(
A′Z̃�̂�Z̃′

)
= ∥A∥2𝐹 + tr

(
Z̃(Z̃′Z̃)-1Z̃′A′Z̃�̂�Z̃′

)
− 2 tr

(
A′Z̃�̂�Z̃′

)
= ∥A∥2𝐹 − tr

(
A′Z̃�̂�Z̃′

)
.

The final equality comes from the cyclic property of the matrix
trace:

tr
(
Z̃(Z̃′Z̃)-1Z̃′A′Z̃�̂�Z̃′

)
= tr(Z̃′Z̃(Z̃′Z̃)-1Z̃′A′Z̃�̂�)

= tr
(
A′Z̃�̂�Z̃′

)
Dropping the constant term, we have the result

argmin
Z̃∈Z

∥A−Z̃�̂�Z̃′∥2𝐹 = argmin
Z̃∈Z

−tr(A′Z̃�̂�Z̃′).

which (noting that ∥·∥2
𝐹
is a monotonic transformation of ∥·∥𝐹 in

equation 19) proves the statement in Section 3.3.3.
Substituting predicted membership P̂ for the mapping matrix Z̃

is a useful approximation of this result when training a GNN.

C ADDITIONAL OBJECTIVE FUNCTIONS
C.1 Bernoulli-Poisson
The Bernoulli-Poissonmodel, explored in [29, 37], assumesA𝑢𝑣 |Z ∼
Bern(1−𝑒−Z′

𝑢Z𝑣). In [29], the “Neural Overlapping Community De-
tection” (NOCD) model is introduced, which derives a loss function
from the Bernoulli-Poisson likelihood function. The authors pro-
pose

Ẑ = ReLU(GNN(G,X;W))

𝐽NOCD (W) = −
∑︁

𝑢,𝑣∼𝑃E
ln(1−exp(−Ẑ′𝑢 Ẑ𝑣))

+ 𝜂-1
∑︁

𝑢,𝑣∼𝑃N
Ẑ′𝑢 Ẑ𝑣 .

(23)

This is similar to the Poisson SBM (equation 16), with one difference
being that there is no block matrix. Also, a complete derivation
of the Poisson log-likelihood is used instead of a partial Poisson
log-likelihood, as in equation 2.

C.2 Link Prediction
A common objective function used for graph representation learn-
ing is cross-entropy-based link prediction loss. This model seeks
to estimate the adjacency structure of a graph and is motivated by
the assumption A𝑢𝑣 |Z ∼ Bern(𝜎 (z′𝑢z𝑣)). One popular formulation
[13, 15, 38] is

Ẑ = GNN(G,X;W)

𝐽LP (W) = −
∑︁

𝑢,𝑣∼𝑃E
ln

(
𝜎 (Ẑ′𝑢 Ẑ𝑣)

)
− 𝜂-1

∑︁
𝑢,𝑣∼𝑃N

ln
(
1−𝜎 (Ẑ′𝑢 Ẑ𝑣)

) (24)

where 𝜎 is the sigmoid function. This can be viewed as an analog
to the Bernoulli SBM (equation 18) with the key difference being
the absence of a block matrix.

C.3 Modularity
In [32], it is proposed to directly maximize a graph partition quality
metric. The approach, referred to as “Deep Modularity Network”
(DMoN), is focused on modularity [25], defined as

𝑄 =
1
2𝑚

tr
(
Z′

(
A − dd′

2𝑚

)
Z
)
. (25)

The objective is to maximize modularity, or equivalently minimize
the negative of modularity. Thus, the loss function is

Ẑ = Softmax(GNN(G,X;W))

𝐽DMoN (W) = − 1
2𝑚

tr
(
Ẑ′

(
A−dd′

2𝑚

)
Ẑ
)

+ 𝛼

(√
𝑘

𝑛

 𝑛∑︁
𝑢

Ẑ′𝑢

𝐹

−1
) (26)

where the first term minimizes negative modularity and the second
term is a “collapse regularization” meant to prevent all nodes from
being assigned to the same block (with regularization strength
given by hyperparameter 𝛼) [32].

Differentiable Community Detection with Graph Neural Networks and Stochastic Block Models MLoG-GenAI ’25, August, 2025, Toronto, ON

Figure 3: Top row: Accuracy (NMI) vs. GNN output dimension for different numbers of communities. Bottom row: Inferred
number of communities vs. GNN output dimension. Columns: Actual number of communities in the graph.

C.4 Markov Stability
Another perspective of modularity is taken in [41]. The approach,
referred to as “Community Detection based on Markov Stability
and Graph Neural Network” (CDMG), seeks to maximize a dynamic
graph partition quality metric. Markov Stability [7, 8, 19] is defined

𝑅𝑡 = tr
(
Z′ (𝚷M𝑡 − 𝝅 ′𝝅)Z

)
(27)

where 𝝅 = d′ (2𝑚)−1, 𝚷 = diag(𝝅), M = D−1A, and D = diag(d).
The matrix in this expression represents the probability that a ran-
dom walk starting in one community will end in another after a
certain number of time steps. This is also equivalent to the modu-
larity in equation 25 when 𝑡 = 1 [19].

The CDMG approach seeks to maximize Markov Stability by
minimizing its negative:

Ẑ = ReLU(GNN(G,X;W))

𝐽CDMG (W) = −tr
(
Ẑ′ (𝚷M𝑡 − 𝝅 ′𝝅)Ẑ

)
(28)

where 𝑡 is a hyperparameter that can be tuned according to the res-
olution of the graph communities. Larger values of 𝑡 detect coarser
communities [3, 7, 8, 19, 41]. We use 𝑡 = 1 for all experiments.

C.5 Minimum-Cut
An objective function motivated by the minimum-cut problem is
proposed in [4]. The minimum-cut problem is a task that seeks
to find the partition that minimizes the number of edges between
groups. This is done by maximizing the ratio of the number of edges
within a group to the number of edges between groups in the rest

of the graph. Formally,

max
1
𝑘

𝑘∑︁
𝑖=1

Z′
·𝑖
AZ·𝑖

Z′
·𝑖
DZ·𝑖

(29)

where Z·𝑖 ∈ {0, 1}𝑛 is the 𝑖th column of Z [40].
The proposed approach, known asMinCutPool [4], uses a pooling-

based architecture with the softmax function applied to outputs to
estimate community assignments. The objective function used for
training is

Ẑ = Softmax(GNN(G,X;W))

𝐽MCP (W) = − tr(Ẑ′ÃẐ)
tr(Ẑ′D̃Ẑ)

+

 Ẑ′Ẑ

Ẑ′Ẑ

𝐹

− I𝑘√
𝑘

𝐹

(30)

where I𝑘 is the 𝑘×𝑘 identity matrix, Ã = D−1/2AD1/2 is the nor-
malized adjacency matrix, and D̃ = diag(Ã1𝑛) is the normalized
degree matrix. The second term is an orthogonality penalty, meant
to encourage orthogonality between communities and uniformity
in community sizes.

C.6 Poisson
The partial Poisson loss function in section 3.3.2 can be extended
to support multi-graphs, where A𝑢𝑣 ∈ N0. To do so, the same
log-likelihood function (equation 2) is considered. Note that the
factorial term from equation 1 is dropped because its derivative is
zero with respect to the parameters. Consequently, equation 13 is
a valid loss function for both simple graphs and multi-graphs. In
order to incorporate negative sampling, equation 16 is modified to

𝐽P∗ (W) ≈ −
∑︁

𝑢,𝑣∼𝑃E
[A𝑢𝑣 ln(𝜋𝑢𝑣) − 𝜋𝑢𝑣] + 𝜂-1

∑︁
𝑢,𝑣∼𝑃N

𝜋𝑢𝑣 (31)

MLoG-GenAI ’25, August, 2025, Toronto, ON William Arliss and Graham Mueller

Figure 4: Accuracy (NMI) vs. regularization
strength. Horizontal axis is not to scale.

where 𝜂 is scaling constant meant to balance the contribution of
the positive and negative edge sets to the total loss. Note that 𝐽P∗ is
identical to 𝐽P for simple graphs.

D HYPERPARAMETER SENSITIVITY
This section provides an examination of SBM-specific hyperpa-
rameters. For these experiments, consideration is restricted to the
non-overlapping setting and synthetically generated graphs are
used.

To begin, we consider the relation of the output dimension 𝑑 of
the GNN embeddings to the number of effective clusters found in a
given graph. The top row of figure 3 displays accuracy (measured
as NMI) plotted against output dimension. The bottom row shows
the inferred number of clusters (computed as |K |) against output
dimension. Results are averaged over ten trials for graphs with
𝑘 = 4, 8, 16, 32 actual clusters. When the output dimension is smaller
than the true number of clusters, there is generally poor accuracy
and |K | = 𝑑 . When the output dimension is greater than the true
number of clusters, accuracy is much higher and |K | ≈ 𝑘 . The
variance of community detection performance (in terms of accuracy
and ability to recover the true number of clusters) tends to be greater
when the output dimension is slightly larger than 𝑘 . It is also worth
noting that 𝐽Match tends to overestimate the number of clusters.

Next, we look the impact of the regularization strength parame-
ter 𝛼 from equation 22. Figure 4 shows accuracy measured against
different values of 𝛼 averaged over ten trials. Note that the horizon-
tal axis is not to scale. There is a moderate upward trend, suggesting
that the regularization term does contribute to community detec-
tion performance.

Finally, the effect of negative sampling is studied. Figure 5 plots
accuracy measured against different numbers of negative edges
sampled per each existing edge (referred to as 𝜂). Accuracy appears
fairly consistent across different levels of negative sampling, with
a slight drop-off after 𝜂 = 3. For this experiment, the loss func-
tion is weighted such that negative and positive edges have equal
importance.

Figure 5: Accuracy (NMI) vs. number of negative
edges sampled per each existing edge.

E ADDITIONAL TABLES

Name Nodes Edges Partitions Dimension Overlap

SBM-4 2,000 202,102 4 100 No
SBM-8 2,000 150,648 8 100 No
SBM-16 2,000 96,436 16 100 No
SBM-32 2,000 56,526 32 100 No
OSBM-4 2,000 240,242 4 100 Yes
OSBM-8 2,000 196,510 8 100 Yes
OSBM-16 2,000 132,976 16 100 Yes
OSBM-32 2,000 72,422 32 100 Yes

Table 6: Synthetic graph summaries.

Name Nodes Edges Partitions Dimension Overlap

Cora 2,708 10,556 7 1,433 No
Citeseer 3,327 9,228 6 3,703 No
Pubmed 19,717 88,651 3 500 No
Wiki 11,367 431,726 10 300 No

ACB-Comp 13,752 491,722 10 767 No
ACB-Photo 7,650 238,163 8 745 No
MAG-Chem 35,409 314,716 14 4,877 Yes
MAG-CS 21,957 193,500 18 7,793 Yes
MAG-Eng 14,927 98,610 16 4,839 Yes
MAG-Med 63,282 1,620,628 17 5,538 Yes

Table 7: Real-world graph summaries.

Differentiable Community Detection with Graph Neural Networks and Stochastic Block Models MLoG-GenAI ’25, August, 2025, Toronto, ON

GCN GraphSAGE GAT GIN SkipGCN Avg.

NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1

𝐽MCP 59.2 55.6 54.1 46.5 39.7 37.2 49.3 48.9 60.5 58.0 52.6 49.3
𝐽CDMG 55.9 53.5 45.2 44.9 38.5 37.8 51.6 50.8 52.5 49.9 48.7 47.4
𝐽DMoN 60.9 54.6 54.2 48.3 41.2 37.9 57.9 51.4 56.5 49.3 54.1 48.3
𝐽LP 49.9 44.5 48.2 44.4 40.3 37.1 52.0 48.4 42.4 35.6 46.6 42.0

𝐽NOCD 59.5 55.6 38.5 36.5 36.7 35.0 57.0 53.2 56.0 53.3 49.5 46.7

𝐽B 60.2 61.0 54.5 53.8 42.7 41.7 53.6 54.8 58.6 57.8 53.9 53.8
𝐽P 59.7 61.4 53.9 54.0 42.4 41.6 53.8 54.7 58.1 57.1 53.6 53.8

𝐽B-DC 59.8 59.6 53.0 52.9 40.8 39.0 51.8 52.7 57.1 56.2 52.5 52.1
𝐽P-DC 61.2 58.4 53.8 53.4 41.9 40.4 51.3 52.1 59.0 57.7 53.4 52.4
𝐽Match 61.5 57.0 51.9 50.5 42.5 40.6 59.5 54.5 58.4 53.3 54.8 51.2

Table 8: Community detection performance for different GNN architectures. Results are averaged over ten
trials for all ten datasets with non-overlapping communities. The best scores (NMI and PF1) for each model
are in bold.

GCN GraphSAGE GAT GIN SkipGCN Avg.

NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1 NMI PF1

𝐽MCP 38.9 53.8 42.6 52.6 32.9 42.8 36.4 53.4 46.9 54.0 39.6 51.3
𝐽CDMG 13.6 46.8 17.0 54.9 18.5 49.7 18.0 57.4 10.4 40.7 15.5 49.9
𝐽DMoN 37.1 49.9 44.6 53.4 36.3 45.4 38.5 54.7 43.3 53.5 40.0 51.4
𝐽LP 14.3 36.0 20.0 49.5 16.9 50.9 20.0 48.3 13.9 31.0 17.0 43.1

𝐽NOCD 40.7 48.5 17.2 42.6 16.3 42.8 40.3 57.5 42.3 50.6 31.4 48.4

𝐽B 45.1 58.5 50.7 58.9 34.9 47.3 37.4 58.8 51.7 60.2 44.0 56.8
𝐽P 41.6 58.4 50.3 58.3 32.8 45.6 38.7 58.6 48.3 61.4 42.3 56.4

𝐽B-DC 45.7 60.1 49.5 58.8 34.2 46.8 37.3 58.1 48.4 63.1 43.0 57.4
𝐽P-DC 43.3 59.3 46.3 56.1 30.1 43.1 34.3 59.7 48.4 61.7 40.5 56.0
𝐽Match 43.3 57.2 44.1 54.4 31.3 43.2 40.7 59.4 46.9 61.3 41.2 55.1

Table 9: Community detection performance for different GNN architectures. Results are averaged over ten
trials for all eight datasets with overlapping communities. The best scores (overlapping NMI and PF1) for
each model are in bold.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Stochastic Block Models
	2.2 Deep Community Detection

	3 Methods
	3.1 Preliminary
	3.2 Likelihood Functions
	3.3 Graph Neural Networks

	4 Experiments
	4.1 Data
	4.2 Synthetic Results
	4.3 Real-World Results
	4.4 Discussion

	5 Conclusion
	Acknowledgments
	References
	A Implementation
	B Graph Matching Proof
	C Additional Objective Functions
	C.1 Bernoulli-Poisson
	C.2 Link Prediction
	C.3 Modularity
	C.4 Markov Stability
	C.5 Minimum-Cut
	C.6 Poisson

	D Hyperparameter Sensitivity
	E Additional Tables

