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ABSTRACT

Implicit Neural Representations have emerged as an interesting alternative to tra-
ditional array representations. The challenge of performing downstream tasks
directly on implicit representations has been addressed by several methods. Over-
coming this challenge would open the door to the application of implicit repre-
sentations to a wide range of fields. Then again, self-supervised representation
learning methods, such as the several contrastive learning frameworks which have
been proven powerful representation learning methods. So far, the use of self-
supervised learning for implicit representations has remained unexplored, mostly
because of the difficulty of producing valid augmented views of implicit repre-
sentations to be used for learning contrasts. In this work, we adapt the popular
SimCLR algorithm to implicit representations that consist of multiplicative filters
networks and SIRENs. While methods to obtain augmentations in SIREN have
been studied in the literature, we provide methods for augmenting MFNs effec-
tively. We show how MFNs lend themselves well to geometric augmentations. To
the best of our knowledge, our work is the first to demonstrate that self-supervised
learning on implicit representations of images is feasible and results in good down-
stream task performances.

1 INTRODUCTION

Implicit Neural Representations (INRs) are functional representations of discretely sampled contin-
uous signals. Namely, INRs are the parameters of neural network fields

fθ : Rd −→ Rc, (1)

where the input dimension d is the signal domain dimension and c is the number of signal channels.
For an RGB image, for instance, d = 2, c = 3, and its implicit representation are the parameters
of a function fθ fitted to map coordinates of a 2D grid to the corresponding RGB values of the
image. Particularly, to obtain the INR of a discrete signal {Ii}Ni=1 at N discrete locations, we fit the
parameters θ of fθ to minimize the reconstruction loss

L(θ, {Ii}Ni=1) =

N∑
i=1

|fθ(xi)− Ii|22, (2)

where xi are the coordinate locations on the domain of the signal. Unlike discrete representations,
which rely on fixed-size arrays to contain data, implicit representations are a much more natural
choice for continuous signals, offering a new paradigm for representing complex, high-dimensional
data in a compact, efficient manner (Park et al., 2019; Mildenhall et al., 2021; Tancik et al., 2020; Xie
et al., 2022; Yin et al., 2022; Pumarola et al., 2021; Li et al., 2022). However, one of the challenges
that has gained substantial attention lies in performing downstream tasks directly on these implicit
representations.

1.1 CONTRASTIVE LEARNING

Prior to the exploration of implicit neural representations, the domain of self-supervised represen-
tation learning has shown impressive results in enabling features extraction without explicit super-
vision, i.e., from unlabelled data. Originally, this overcame the problem of the high cost of data
annotation in supervised learning (Le-Khac et al., 2020). One of the most successful among the
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Figure 1: We train an encoder with SimCLR on implicit neural representations (INR). To obtain the
pairs at the core of the method we augment the weights of the INR. These are standard augmenta-
tions such as random drop-out and Gaussian noise, and geometric augmentations such as rotations,
translations, and scaling. The latter are constructed to obtain the desired transformation on the re-
constructed image, while changing only the weights of the INR. Here we show the edge feature
matrix of a multiplicative filter network (MFN), which also shows the connectivity of the compu-
tation graph of the neural field. This is what is ultimately used in the encoder architecture (Zhang
et al., 2023). Each square block corresponds to a hidden layer in the network, the horizontal line at
the top is the weights of filters, while the diagonal block shows the element-wise products used in
an MFN between filters and hidden layers.

self-supervised learning frameworks is contrastive learning (Jaiswal et al., 2020). Despite its re-
markable success in different domains and with downstream tasks, the use of self-supervised learn-
ing, and in particular contrastive learning, with implicit representations has remained unexplored.
The main reason is that the operations required to perform contrastive learning on array representa-
tions of images are not straightforward to translate to their implicit representations. To the best of
our knowledge, this work is the first that demonstrates the applicability of contrastive learning tech-
niques to implicit neural representations, with the exception of Navon et al. (2023) which suggested
this direction in a simplified setting with a dataset of sinusoids. We think that this is an important
step forward in the representation learning domain for the following reasons:

• Neural fields are resolution independent. The same architecture can be trained to recon-
struct images of different resolutions and shapes. One key challenge of self-supervised
methods is learning representations that generalize well across datasets of different shapes
and image sizes.

• Some modalities, such as scenes, shapes, and audio do not have array representations that
can be easily adapted to work with existing self-supervised methods.

1.2 CONTRIBUTION

In this work, we focus on the widely acclaimed SimCLR algorithm (Chen et al., 2020). SimCLR is
a contrastive learning framework for learning visual representations. At its core, it learns by maxi-
mizing the alignment of the representations of augmented views of the same image. The structure
of SimCLR is described in Section 3. We summarize as follows the contributions of our work:

• We show how contrastive learning can be applied to implicit neural representations with
different architectures.

• We characterize the permutation symmetries of multiplicative filter networks and provide
further evidence for the importance of processing weights with functions that are invariant
with respect to the permutation symmetries of the INRs.
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2 DATASETS OF IMPLICIT NEURAL REPRESENTATIONS

A dataset of implicit representation is simply a set {θj} of neural field parameters, each one re-
constructing an image in a dataset of images. To build a dataset of implicit neural representations
several design choices have to be made, such as the network architecture and the reconstruction ac-
curacy to name a few. Therefore, we experimented with a combination of those as reported in table
1. A crucial feature of our datasets is the number of implicit representations that have been obtained
per image. For a given signal and a given neural field architecture, there exist multiple functionally
equivalent implicit neural representations. This is due to the existence of multiple local minima of
the optimization problem of eq. equation 2. As described in the following sections, the proposed
method is aligned with the implicit working hypotheses of recent works (Navon et al., 2023; Zhang
et al., 2023), namely that permutation symmetries of the neural fields parameterizations account for
most of them. Our experiments provide further evidence for the validity of this hypothesis.

2.1 NEURAL FIELD ARCHITECTURES

For our expermients we use datasets of implicit representations constructed using SIRENs (Sitzmann
et al., 2020) and Multiplicative Filters Networks (Fathony et al., 2020). Despite SIRENs being the
most popular INR architecture in the literature, in section 3.2 we explain how multiplicative filters
networks are more amenable to augmentations. We therefore present them as good candidate for
contrastive learning.

SIREN (sinusoidal representation networks) Neural Fields (Sitzmann et al., 2020) are a specialized
form of multilayer perceptron that have proven to be particularly adept at representing complex
functions, including natural images and signals. They are distinguished by their sinusoidal activation
functions. SIRENs utilize periodic activation functions to improve the network’s capacity to capture
variations in data, especially when dealing with wave-based signals and images. The structure of a
SIREN network is formalized as:

h(1) = x

h(i) = sin
(
Ω0W

(i−1)h(i−1) + b(i−1)
)
, i = 1, . . . , k − 1

fθ(x) =W (k)h(k) + b(k),

(3)

where W (i−1) ∈ Rdi×di−1 and b(i−1) ∈ Rdi denote the weight matrix and bias vector for the i-th
layer, respectively, and Ωo is a scalar. Here, the sin function is utilized as the activation function at
each layer. Their capacity to represent and reconstruct data patterns is attributed to the sinusoidal
activations, enabling the network to capture a wide range of frequencies and amplitudes effectively.
This feature makes SIREN particularly beneficial for tasks involving the modeling of natural signals
and images.

Multiplicative Filters Networks (MFNs) (Fathony et al., 2020) are neural fields architectures that
unlike feedforward neural networks do not rely on compositional depth for reconstruction power.
Instead, MFNs apply nonlinear filters to the input and iteratively multiply together linear functions
of those filters. Explicitly, an MFN is defined by the recursion

z(1) = g
(
x;ψ(1)

)
z(i+1) =

(
W (i)z(i) + b(i)

)
⊙ g

(
x;ψ(i+1)

)
, i = 1, . . . , k − 2

fθ(x) =W (k−1)z(k−1) + b(k−1),

(4)

where ⊙ represents element-wise multiplication, W (i) ∈ Rdi+1×di , b(i) ∈ Rdi+1 and g : Rd → Rdi

are the nonlinear filters parameterized byψi that are applied to the input directly. Among the possible
choices of the filters, throughout the paper, we use a linear layer composed with a sine function,
g
(
x;ψ(i+1)

)
= sinωx+ ϕ where ωi ∈ Rd×d1 and ϕi ∈ Rd1 . In their paper, Fathony et al. (2020)

prove that such a multiplicative filter network is ultimately just a linear function of an exponential
(in k) number of Fourier basis functions.
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2.2 PERMUTATIONS SYMMETRIES

It has been well known (Hecht-Nielsen, 1990) that the parameter space of neural networks is
characterized by a combinatorial number of permutation symmetries. In particular, consider any
layer of a MLP W (i+1)σ(W (i)z(i) + b(i)) and permute the weight matrices and the bias vector as
W (i), b(i) 7→ PTW (i), PT b(i), and W (i+1) 7→W (i+1)P . The result is a different implicit represen-
tation that nonetheless represents the exact same function. In the literature, permutation symmetries
of neural networks have been studied, mostly to investigate the loss landscape of neural networks
(Chen et al., 1993; Ainsworth et al., 2022; Simsek et al., 2021; Entezari et al., 2021).

Similarly to MLPs, we can characterize the permutation symmetries of MFNs. It is easy to see from
eq. 4 that for a MFN parameterized by W (i), b(i), ω(i), and ϕ(i), any set of k − 1 permutations
(P1, . . . , Pk−1) acting of the weight space as:

W (i) 7→ Pi+1W
(i)PT

i ; b(i) 7→ Pi+1b
(i) 1 ≤ i ≤ k − 2

ω(i) 7→ Piω
(i) ; ϕ(i) 7→ Piϕ

(i) 1 ≤ i ≤ k − 1

W (k−1) 7→W (k−1)PT
k−1 ; b(k−1) 7→ b(k−1)

(5)

defines a symmetry.

In light of recent findings in the literature, and the results of the experiments presented in this paper,
we make the educated hypothesis that permutation symmetries are responsible for a good amount
of the impracticability of downstream tasks. This stems from the observation that, once permutation
symmetries become irrelevant due to the permutation invariance of the encoder, the latter can easily
align (high top-k validation accuracy) vector representations of differently-initialized INRs. It is es-
sential to note that this hypothesis is speculative and not a formal statement, serving as a foundation
for further investigation and discussions rather than a conclusive assertion. It is informed by current
insights and aims to stimulate further research and exploration into this intricate area.

3 METHOD

In this section, we outline the details of the method. We start with a brief description of the SimCLR
framework. It should be noted that the overview we provide is a concise summary and not exhaus-
tive. For a comprehensive understanding and detailed insights into the SimCLR algorithm, readers
are encouraged to refer to the original paper (Chen et al., 2020).

3.1 SIMCLR

SimCLR (Contrastive Learning of Visual Representations) is a self-supervised learning algorithm
introduced for the efficient learning of visual representations. It operates by maximizing the simi-
larity between augmented views of the same data instance while minimizing the similarity between
augmented views of different instances. In particular, the SimCLR architecture consists of an en-
coder f(·) and a small MLP projector head g(·). SimCLR starts by randomly sampling a minibatch
of N examples and generating two distinct augmented views (positive pairs) x̃i and x̃j for every
example. All the augmented views in the minibatch are passed through the encoder and the projec-
tor to get zi and zj . The objective of SimCLR is defined by the contrastive loss function, typically
the Noise Contrastive Estimation (NCE) loss or the Normalized Temperature-Scaled Cross Entropy
Loss (NT-Xent). It is formulated, for a positive pair of examples (i, j) as:

ℓ(i, j) = − log

(
exp(sim(zi, zj)/τ)∑2N

k=1 Ii ̸=k exp(sim(zi, zk)/τ)

)
, (6)

where
sim(zi, zj) =

zi · zj
∥zi∥∥zj∥

is the cosine similarity between vectors zi and zj , Ii ̸=k ∈ {0, 1} is the indicator function, and τ is
a temperature parameter that scales the similarities. Intuitively, the contrastive learning task aims to
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identify x̃j in {x̃k}k ̸=i for a given x̃i. Once the contrastive objective has been optimized, the head
projector g(·) is thrown away and the encoder f(·) is used to get the representations to be used for
downstream tasks.

3.2 DATA AUGMENTATIONS

As seen, SimCLR and other contrastive self-supervised learning methods such as MoCo (Momen-
tum Contrast for Unsupervised Visual Representation Learning) (He et al., 2020), and BYOL (Boot-
strap Your Own Latent) (Grill et al., 2020), relies on augmentations to systematically define the
contrastive prediction task. For discrete pixel representations of images, common augmentations
can be broadly categorized into two types based on the nature of the transformation applied to the
image. The first category encompasses spatial or geometric transformations, which involve altering
the structural form of the data. Examples of these transformations include cropping and resizing
often accompanied by horizontal flipping, and rotation, as noted by (Gidaris et al., 2018), and cutout
(DeVries & Taylor, 2017). The second category is characterized by appearance transformations
that primarily focus on altering the visual aesthetics of the image without changing its structural
integrity. Such augmentations include color distortions like color dropping, and adjustments to
brightness, contrast, saturation, and hue, as explored by Howard (2013) and (Szegedy et al., 2015).
Additionally, other transformations like Gaussian blur and Sobel filtering fall under this category of
augmentations.

Particularly when employed for the type of tasks considered in this work, namely classification,
augmentations are transformations of datapoints that preserve their object identity. It is not straight-
forward to perform any systematic transformation on implicit neural representations in such a way
that the object identity of the image they represent is preserved. In other words, it is easy to destroy
any semantic information contained in a neural field by acting on its parameters. Here we show how
augmentations can be performed on implicit representations to enable contrastive learning. We di-
vide the augmentations into three categories: standard, geometric, and random seed augmentations.

Standard augmentations With standard augmentations we refer to those transformations per-
formed on the datapoints that are commonly used in machine learning to randomly alter the dataset
and add some regularization effect to the training. As in Navon et al. (2023), in this work, we use
Gaussian noise and random drop-out.

Geometric augmentations With geometric augmentations we refer to the action of certain groups
of transformations on the functions that the implicit representations define (Navon et al., 2023).
Formally, let G be a group of transformations such as the group of rotations or the translation group,
and let fθ : R2 → R3 be a neural field representing an image, as standard practice, we define the
group action of g ∈ G on the set of functions as

Lgfθ(x) = [f ◦ g−1](x) = f(g−1x) (7)

Operationally, this means that the value of the g-transformed function Lgfθ(x) at the point x, is the
value of the original function f at the point g−1x, which is the unique point mapped to x by g. For
example. At this point, to define the augmentation tg : θ 7→ t(θ), we need to find a transformation
of the weights θ such that

ftg(θ)(x) = Lgfθ(x) = [f ◦ g−1](x) = f(g−1x) ∀x ∈ R2. (8)

For transformations such as rotations and scaling, their group action on R2 is simply a matrix mul-
tiplication, i.e., for every g, g−1x = Rgx for some R ∈ R2×2. It is straightforward to note that,
for MLP, the action of tg on θ simply consists of multiplying from the right by Rg the first weight
matrix. In the case of MFNs, it consists of multiplying from the right by Rg for every filter matrix.
For translations, tg does not affect weight matrices but acts on the biases of the first layer in the case
of MLPs as tg(b(1)) = b(1) −W (1)t, and all the biases in the filter layers in the case of MFNs as
tg(ϕ

(i)) = ϕ(i) − ω(i)t, i− 1, . . . , k − 1.

At this point, it is worth noting that for different architectures, a different proportion of parameters
is affected by augmentations. In general, for contrastive learning to extract the relevant features
from a dataset of INRs, the more these are affected by augmentations, the better. For MFNs, the
proportion of weights affected by geometric augmentations is considerably higher than MLPs. For
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example, geometric augmentations on MLPs, alter is 3
d×(n−1)+3 , whereas in an MFN with n layers

and hidden dimension d the proportion of weights altered by geometric augmentations is 1
(d+1)+ 1

n

.
For example, for an MFN with 4 layers and hidden dimension 4, this proportion is about 0.19, which
is considerably higher than the proportion of 0.09 with a 2 hidden layer MLP with hidden dimension
32.

Random seed augmentations Fitting a single image from different initializations results in differ-
ent INRs. Our datasets are therefore made of multiple INRs for every image, obtained from different
initializations. During training, two positive pairs are always obtained augmenting different INRs
obtained starting from different initializations.

3.2.1 ALIASING

It can happen that two completely different INRs are indistinguishable when sampled at discrete
locations, because of aliasing. A basic result in signal processing is given by the Nyquist-Shannon
sampling theorem. This states that to sample a finite band signal without loss of information, it
must be sampled with a frequency at least double the frequency of the spectral component of the
information signal at a higher frequency (also called Nyquist frequency). It is easy to compute the
highest frequency of an MFN: it is the sum of the maximum frequencies of filters, which ultimately
are the absolute values of entries of the filter matrices. We therefore propose to add the following
regularizer to the reconstruction loss equation 2:

R(θ) =

k−1∑
i=1

|ωi|0, (9)

where| · |0 is the L0 norm.

As reported in Fathony et al. (2020) initializations are crucial to get good reconstruction accuracy.
Empirically, we find that initializations are also key to avoiding aliasing. Our regularizer obviates
the need to find a trade-off between good reconstruction and aliasing, by allowing us to initialize the
MFN with higher frequencies around the Nyquist, and keeping them below while fitting. Figure 2
shows the effects of the proposed regularization.

(a) (b) (c)

(d) (e) (f)

Figure 2: Aliasing in multiplicative filters networks. (a) An MFN trained without anti-aliasing
regularization sampled on the training grid. (b) The same MFN sampled on a finer grid. (c) An
MFN trained with anti-aliasing regularization. (d) The frequency spectrum of the original image.
(e) The frequency spectrum computed with a higher spacial resolution. Outside the box frequencies
shold be zero. (f) The frequency spectrum of an MFN trained with anti-aliasing reqularization.
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3.3 ENCODER NETWORK ARCHITECTURE

Our encoder network is based on the work of Zhang et al. (2023). In this work, the authors propose to
use the computational graph of neural networks and encode INRs with graph networks or transform-
ers that respect the permutation symmetries present in the parameter space. Under the computational
graph paradigm, the biases of each layer correspond to node features, while the weights of each layer
correspond to edge features. For a standard fully-connected MLP, the edge features matrix is orga-
nized as a block-superdiagonal matrix, i.e. a block matrix with blocks populated 1 above and to the
right of the main diagonal (see Figure 1). The authors extend recent graph network and transformer
architectures, namely PNA (Corso et al., 2020), and Relational Transformer (Diao & Loynd, 2023)
to better accommodate edge features since the bulk of the information in the computational graph is
in the edge features.

4 EXPERIMENTS

We evaluate our method on CIFAR10 and MNIST. We compare it to a supervised learning method
that uses the same architecture that we use as the encoder in SimCLR. Our code and datasets will be
made publicly available upon acceptance.

4.1 DATASET

SIREN MFN
Parameter MNIST CIFAR10 Parameter MNIST CIFAR10

layers 3 filters 3
hidden dim 32 hidden dim 16
omega 0 30 input scale 3.03 3.46
learn rate 5× 10−4 learn rate 10−2

Table 1: Hyperparameters used in the datasets of Implicit Neural Representations.

We train our model using four INR datasets. Of these, two of them are obtained by fitting on MNIST,
while the other two by fitting on CIFAR10. For both datasets, 30 INRs are trained per image and
used for random seed augmentations. For details on the hyperparameters used to obtain the datasets,
see Table 1.

4.2 EXPERIMENTAL SETUP

We use the Relational Transformer architecture from Zhang et al. (2023) without probe features for
both contrastive learning and supervised learning experiments. Essentially, probe features are the
activations of every layer, including the output layer, obtained using learnable inputs. We chose
not to use those in our experiments, to show that our method lears in weight space and does not
require querying the neural field to perform well. The architecture is the same for all experiments.
The optimizer is Adam (Kingma & Ba, 2014) with different learning rates for each experiment. We
noticed that the learning rate had a great impact on the ability of the model to fit the data.

When performing augmentations for contrastive learning we first load a batch of two random seeds
of INRs fit to the same images. Then, we apply random augmentations from the set described in the
previous section to each INR.

4.3 RESULTS

We first looked at the embeddings obtained using the learned encoders and compared them to the
weights of the INRs using t-SNE Van der Maaten & Hinton (2008). The contrastive method success-
fully results in structured embeddings in MNIST, as seen in Figure 3. We found the model struggling
with CIFAR10 for both SIREN and MFN, because of the increased complexity of the data.
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SIREN MFN
Dataset MNIST CIFAR10 MNIST CIFAR10

Supervised 95.16 59.28 54.71 40.21
Contrastive 53.01 36.01 42.97 30.71

Table 2: Accuracy (%) for all INRs used, with both the supervised method and a linear probe on the
features obtained using the frozen encoder. We used the best accuracy across different runs for all
models.

Figure 3: Embeddings of the datasets using t-SNE. On the left, we used the weights of the INRs
without any processing, no structure is present and they are distributed seemingly at random. Follow
the MFN CIFAR10 and SIREN CIFAR10 (in this order). This dataset is harder to fit, however, some
structure emerges. Finally, MFN MNIST and SIREN MNIST. Different colors represent different
class labels.

We then measured the accuracy of the supervised method on the validation set. For the contrastive
methods, we fit a linear probe on the embeddings predicted using the frozen encoder on the train-
ing set. The contrastive method surprisingly performs more closely to the supervised one on the
MFN, compared to SIREN. This suggests that performing contrastive learning is more beneficial
for certain architectures of neural fields. Further work is needed to investigate what architectures
self-supervised learning performs better.

5 RELATED WORK

Implicit Neural Representations The design of deep learning architectures to process the param-
eters of neural networks is a relatively new research direction. Here we provide an overview of the
most relevant pioneering studies in this field.

The works of Eilertsen et al. (2020) and Unterthiner et al. (2020) are centered around predicting at-
tributes of trained neural networks (NNs) by examining their weights. Eilertsen et al. (2020) focuses
on estimating the hyperparameters employed during the network’s training phase, while Unterthiner
et al. (2020) is dedicated to assessing the network’s capacity for generalization. Both investiga-
tions involve the application of standard NNs to the flattened weights or their statistics. Xu et al.
(2022) introduced a concept wherein NNs are processed through the application of another NN to a
combination of their high-order spatial derivatives, a technique particularly suited for implicit neu-
ral representations (INRs) where derivative information is pertinent. However, the adaptability of
these networks to broader tasks remains ambiguous, and the necessity for high-order derivatives
can impose a significant computational load. Dupont et al. (2022) proposed a novel approach to
perform deep learning tasks like generative modeling, on a collection of INRs. They advocated
for the meta-learning of small vectors, referred to as modulations, which are integrated into a neural
network, with parameters shared across all training instances, to achieve meaningful data representa-
tions. In our work, we opted not to use conditioned neural fields nor the meta-learning initialization
technique such as the one proposed by Tancik et al. (2021). This is to test how our method per-
forms with out-of-the-shelf implicit representations that can be obtained easily, without the need of
the shared-across-networks parameters nor the meta-learned initialization that might not work as a
good initialization for different datasets. Finally, relevant works for our method are certainly that
of Zhang et al. (2023), from which we adapted the proposed transformer-like architecture to work
with multiplicative filters networks, and that of Navon et al. (2023); Zhou et al. (2023), which first
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demonstrated the importance of augmentations and permutation invariant architectures for process-
ing weights of neural fields.

Contrastive Learning The field of Self-Supervised Learning (SSL) is rapidly advancing, focusing
on utilizing unlabeled visual data. Contemporary strategies primarily depend on comparing embed-
dings derived from transformed input images. This approach is rooted in the concept of aligning
image representations subjected to minor alterations, a notion introduced by Becker and Hinton
(Becker & Hinton, 1992). In this context, SSL techniques fall into two primary classifications:
contrastive learning and non-contrastive learning. This study narrows its exploration to contrastive
learning methods such as MoCo (He et al., 2020) and BYOL Grill et al. (2020) and in particular
to SimCLR Chen et al. (2020). Relevant to our study is the work of Schürholt et al. (2021) where
they propose to perform self-supervised learning on the weights of neural networks to predict model
characteristics. They differ from us as they do consider INRs and do not use an encoder that is invari-
ant to permutations. Therefore propose to use permutations as augmentations. Finally, Navon et al.
(2023) tested their permutation invariant architecture in a simplified contrastive learning setting.

6 CONCLUSION

In conclusion, this research has demonstrated the applicability and extensive potential of self-
supervised learning to implicit neural representations. Our findings spotlight SSL as an interest-
ing research direction in the field of implicit representations, showcasing its ability to effectively
learn useful representations from unlabeled datasets of INRs. In that regard, one key finding is the
importance of the random seed augmentations, as described in section 3.2.

We propose MFNs as a candidate INR architecture for the larger proportion of parameters that are
affected by geometric augmentations, such as rotations, scaling, and translations. We also provide
a method to regularize MFNs and avoid aliasing. Other than obtaining good reconstructions, this
method also results in a constrained implicit representation space. We find that fitting regularized
INRs results in better downstream performances.

Last, our experiments provide further evidence for the hypothesis that permutation symmetries rep-
resent the most significant challenge in processing the weights of neural networks. This stems from
the observation that very expressive architectures fail to align, in terms of top-1 and top-5 valida-
tion accuracy, positive pairs obtained with random seed augmentations. Conversely, permutation
invariant architectures rapidly achieve good alignment.
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