Sensitivity-LoRA : Low-Load Sensitivity-Based Fine-Tuning for Large
Language Models

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have trans-
formed both everyday life and scientific re-
search. However, adapting LLMs from
general-purpose models to specialized tasks
remains challenging, particularly in resource-
constrained environments. Low-Rank Adap-
tation (LoRA), a prominent method within
Parameter-Efficient Fine-Tuning (PEFT), has
emerged as a promising approach to LLMs
by approximating model weight updates us-
ing low-rank decomposition. However, LoORA
is limited by its uniform rank r allocation to
each incremental matrix, and existing rank al-
location techniques aimed at addressing this
issue remain computationally inefficient, com-
plex, and unstable, hindering practical appli-
cations. To address these limitations, we pro-
pose Sensitivity-LoRA, an efficient fine-tuning
method that dynamically allocates ranks to
weight matrices based on both their global and
local sensitivities. It leverages the second-order
derivatives (Hessian Matrix) of the loss func-
tion to effectively capture weight sensitivity,
enabling optimal rank allocation with minimal
computational overhead. Our experimental re-
sults have demonstrated robust effectiveness,
efficiency and stability of Sensitivity-LoRA
across diverse tasks and benchmarks.

1 Introduction

Large language models (LLMs) have become trans-
formative tools across a wide spectrum of tasks and
applications (Ding et al., 2022; Qin et al., 2023;
Zhu et al., 2023b,a; Li et al., 2023; Zhang et al.,
2023a; Huang et al., 2023; Wang et al., 2023). De-
spite these advancements, fine-tuning remains a
critical technique for effectively adapting LLMs
from general-purpose models to specialized appli-
cations, especially in resource-constrained environ-
ments. However, full-parameter fine-tuning can
be prohibitively resource-intensive, requiring sig-
nificant computational power and GPU capacity.

To address this limitation, the research community
introduced parameter-efficient fine-tuning (PEFT)
(Houlsby et al., 2019a; Lester et al., 2021; Li and
Liang, 2021; Zaken et al., 2022; Hu et al., 2022a),
which aims to balance accuracy and efficiency by
selectively updating a subset of model parameters.

LoRA (Hu et al., 2022b), a prominent PEFT
method, approximates model weight updates us-
ing low-rank decomposition, leveraging the low
intrinsic dimension of over-parameterized models
(Lietal., 2018; Aghajanyan et al., 2020). During
training, the update of the weight matrix (AW)
can be approximated as the product of two smaller
matrices B and A, expressed as:

AW ~B- A (1)

where AW € R%xd2 A ¢ R4 apnd B €
RUXT with r < {dy,ds}. Thus, it approximates
the update of the weight matrix with fewer pa-
rameters. However, the full potential of LoRA
remains constrained by its inherent design limita-
tions. Specifically, it assumes a uniform rank r for
each incremental matrix, not accounting for the
varying significance of weight matrices across dif-
ferent modules and layers (Hu et al., 2023; Zhang
et al., 2023b).

To address this limitation, dynamic rank alloca-
tion has emerged as a key solution by allocating
the rank r to each different module or layer ac-
cording to its specific requirements. Existing meth-
ods achieve this through three main approaches:
singular value decomposition (SVD), single-rank
decomposition (SRD), and rank sampling. SVD-
based methods (Zhang et al., 2023c; Hu et al., 2023;
Zhang et al., 2023b) decompose matrix BA into
an SVD form and selectively truncate the singular
values in order to allocate the matrix rank. How-
ever, this process is computationally expensive and
requires additional memory to store singular val-
ues and vectors. SRD-based methods (Mao et al.,

dim out

Hessian Matrix of
Weight Matrixw

+

WoeRka/lmm % A e RéxT

—_— g y

w w w
hiy hiy ht,

w w w
hy, h% hy,

Sobat = tr(H™) = S bt

dim

w

|
|
|
|
|
|
|
|
Pretrained via Hessian Matrix (Trainable) : hw 7 2 ;
Weight A L SoCIIIIIIIITII .
TGioball 1 Local | | Local Metric :
;_Me'rric : 1 Metric | 1 1
___________ , |
I) 1
(FT‘OZQ[‘I) Rank | Allocation 1 : SEﬁ'ectiveRank 7 :
|
—_—) 1 i :
1
| w
% ﬁ B . Rer | : Sl(OuC)al 7 /31 7 SlTUOpk + ﬁ? 7 S}E‘”ﬁectiveRank :
\ 7
| e -
: g Rank Allocation
I I ! L T Ttotal v = . Sw + . S(w)
| E ow 71 global 72 local
|

Figure 1: Pipeline of the Sensitivity-LoRA Method: Step 1 - Sensitivity detection via Hessian-based metrics,
2 pw 2 phw
6‘;’1}5% Jhi; = 90 5? , where E" denotes the change in loss
function regarding weight matrix w; tr(H™) denotes the trace of H™.) Step 2 - Dynamic rank allocation based on
global and local sensitivity. (7 denotes the allocated rank of weight matrix w, r¢.tq; denotes the total rank of all

including global and local sensitivity measures. (h;; =

weight matrices in the model.)

2024; Zhang et al., 2024; Liu et al., 2024) decom-
pose matrix BA into single-rank components and
allocate the ranks by selecting the proper compo-
nents. However, optimizing single-rank compo-
nents and the pruning process can increase compu-
tational complexity, potentially offsetting efficiency
gains. Rank sampling-based methods (Valipour
et al., 2022) allocate ranks directly by random sam-
pling. However, the randomness introduced by
sampling could increase training instability.

In order to design a dynamic rank allocation
method that introduces extremely low overhead
and ensures stability, we propose Sensitivity-LoRA,
which can rapidly allocate rank to the weight matrix
based on the sensitivity of the parameters, without
incurring a significant computational load. Specifi-
cally, we utilize the second derivatives of the loss
function with respect to the parameters (Hessian
matrix) to ascertain the sensitivity of each parame-
ter within the weight matrix. To comprehensively
evaluate the sensitivity of the parameter matrix,
we employ metrics such as the trace of the Hes-
sian matrix, Topk and Effective Rank to measure
its global and local sensitivities respectively. By
integrating various metrics, we determine the rank
allocation weights corresponding to the weight ma-
trices to achieve rank allocation. The efficiency,
stability, and generality of our approach have been
validated through extensive experiments on various

tasks, such as sentiment analysis, natural language
inference, question answering, and text generation.

In summary, the main contributions of our paper
are listed as follows:

* We design a dynamic rank allocation method
that introduces minimal overhead and ensures
stability.

* We introduce the second derivatives of the loss
function with respect to the weight matrix to
measure their sensitivity.

* We achieve rank allocation by taking into ac-
count both the global and local sensitivity of
the weight matrix.

* Extensive experiments demonstrate the ef-
fectiveness, stability, and efficiency of our
method.

2 Related Work

Existing PEFT approaches can be classified into
four main types in terms of memory efficiency, stor-
age efficiency, and inference overhead, as follows:

2.1 Additive PEFT

Additive PEFT introduces lightweight modules into
the model architecture, such as adapters and soft
prompts, while keeping the pre-trained backbone

frozen. Adapters add small networks with down-
projection and up-projection matrices, enabling
task-specific learning with minimal parameter up-
dates (Houlsby et al., 2019a; Lester et al., 2021).
Soft prompts prepend learnable embeddings to the
input sequence, allowing fine-tuning by modifying
input activations only (Li and Liang, 2021; Zaken
et al., 2022). These methods typically require up-
dating less than 1% of the total parameters, signif-
icantly reducing computation and memory costs,
making them ideal for resource-constrained envi-
ronments (Hu et al., 2022a).

2.2 Selective PEFT

Selective PEFT fine-tunes a subset of the exist-
ing parameters in a pre-trained model, rather than
adding new modules. It employs binary masks to
identify and update only the most important pa-
rameters while keeping the majority frozen. Tech-
niques like Diff pruning and FishMask leverage
Fisher information or parameter sensitivity anal-
ysis to select critical parameters for fine-tuning
(Zaken et al., 2022; Li and Liang, 2021). This ap-
proach avoids increasing model complexity and is
particularly suited for scenarios where only a small
fraction of the model contributes significantly to
performance.

2.3 Reparameterized PEFT

Reparameterized PEFT utilizes low-rank parame-
terization techniques to represent model weights
in a reduced form during training. LoRA (Low-
Rank Adaptation) is a prominent example, introduc-
ing low-rank matrices to fine-tune specific weights
while maintaining high inference efficiency (Hu
et al., 2022a). Other methods, such as Compacter,
use the Kronecker product for parameter reparame-
terization, further reducing memory requirements
and computational costs (Houlsby et al., 2019a).
Reparameterized PEFT is highly effective for large-
scale models where resource constraints are criti-
cal.

2.4 Hybrid PEFT

Hybrid PEFT combines the strengths of Additive,
Selective, and Reparameterized PEFT methods into
a unified framework. For example, UniPELT in-
tegrates LoRA, adapters, and soft prompts, allow-
ing dynamic selection of the most suitable module
for specific tasks through gating mechanisms (Za-
ken et al., 2022). This hybrid approach enhances
adaptability and task performance by leveraging

the complementary advantages of different PEFT
strategies (Li and Liang, 2021; Hu et al., 2022a).

3 Methodology

In this section, we firstly introduce the concept of
weight sensitivity with a formal definition of global
and local sensitivity metrics of weight matrices.
Next, we propose effective allocation strategies to
optimize the dynamic rank allocation process based
on these sensitivity metrics. The pipeline of our
method is presented in Figure 1.

3.1 Weight Sensitivity

Consider a neural network whose dynamics is
driven by a collection of parameters w and a loss
function F, which guides its learning dynamics.
When a small perturbation dw is introduced to the
parameters, the resulting change in the loss func-
tion can be expressed using a Taylor series expan-
sion up to the second-order term, with higher-order
terms captured by O(||0w||?) as follows:

1
E(w + dw) = E(w) + g7 ow + §5wTH(5w
+O0([[6wl]®))

where g denotes the gradient vector of the loss func-
tion E with respect to the parameters w, indicating
the rate of change of the loss function in the direc-
tion of each parameter. H represents the Hessian
matrix of the loss function E, which is a matrix of
second-order partial derivatives and contains infor-
mation about the curvature of the loss function at
the current parameter point.

The change in the loss function AE can be rep-
resented by the following expression:

AE = gT5w + %(5WTH(5W + O(Héw\|3) €)

By expanding the components of AF, we have:
1
AE =" gidw; + 3 > hijdwidw,
i 1,J

+O([16w]1?) 4)

where g; and h;; are the gradient and Hessian ele-
ments, respectively.

For a well-trained neural network, when the pa-
rameter w is located at a local minimum of the loss
function, the gradient g becomes zero. Then, the
above equation can be simplified to

1
AFE = 5 Zhijéwidwj + O(H(STUHS) (5)
2¥)

Additionally, several studies have demonstrated
that the Hessian matrix H tends to be diagonally
dominant, suggesting that the interactions between
different parameters can be largely disregarded (Le-
Cun et al., 1989; Dong et al., 2020; Frantar et al.,
2022). Then, the above equation can be simplified
to

~ 1 2 3
AB~ g th‘z‘% + O([[6w||”) (6)

Given that the perturbation in the weights (dw) is
sufficiently small, the higher-order term becomes
negligible compared to the quadratic term, and
therefore can be disregarded. Consequently, the
above formula can be further simplified to

1 2

Consequently, the diagonal elements of the Hes-
sian matrix serve as a reliable indicator of weight
sensitivity.

3.2 Rank Allocation Metric
3.2.1 Global Metric

The global sensitivity measurement aims to eval-
uate the overall impact of an entire parameter (or
weight) matrix on model output. It quantifies how
variations in this weight matrix affect the loss func-
tion. To capture this dynamics, the Hessian matrix,
which consists of the second-order partial deriva-
tives of the loss function with respect to the weight
matrix, is used. Given that the Hessian matrix tends
to be diagonal-dominant at the minimum, its trace
can serve as an effective global sensitivity indicator.
Formally, the global sensitivity Sg;,,,, of weight
matrix w can be defined as:

S;liobal = tI‘(Hw) = Z h‘;lz} ®)

where hj; is the i-th diagonal element of the Hes-
sian matrix H", and tr(H") denotes the trace of
H™. Since the diagonal elements reflect the impact
of individual parameter changes on the loss func-
tion, a larger trace value indicates that the model is
more sensitive to its changes. This suggests more
parameters make significant contributions to the
changes in the loss function, emphasizing their role
in model performance.

3.2.2 Local Metric

While certain weight matrices might have low over-
all sensitivities, specific weight elements within

these matrices can still have high sensitivity, signif-
icantly impacting model performance. As such, it
is essential to account for local sensitivity to cap-
ture finer-grained variations in parameter influence
on the loss function. To address this, we introduce
two metrics: Topk and Efficient Rank.

The Topk metric approximates local sensitivity
of a weight matrix by averaging its largest k£ di-
agonal elements of Hessian matrix, based on the
assumption that most of the matrix’s energy or sen-
sitivity is concentrated in these large values. By fo-
cusing on Top k diagonal elements, the Topk metric
can guide us to prioritize these critical weights dur-
ing weight pruning or optimization processes. It re-
duces computational complexity while preserving
the most impactful weights for model performance.
The computation formula for the Topk metric of
weight matrix w is as follows:

k
1
Stk =7 DA ©)
i=1

where A}’ represents the diagonal elements of Hes-
sian matrix H* sorted in descending order, and k
denotes the number of diagonal elements selected.

The Effective Rank metric determines the min-
imum rank that captures most of the energy of a
weight matrix based on the cumulative contribution
of the diagonal elements of its Hessian matrix. By
establishing a threshold for the cumulative contri-
bution rate (such as 0.9 or 0.95), the Effective Rank
metric identifies the minimum number of eigen-
values needed to achieve this threshold, thereby
appropriately ranking the weight matrix. The key
benefit of this metric is ensuring the stability of the
rank allocation process. The formula for Effective
Rank of weight matrix w is as follows:

S AY
SEffectiveRank = MiN {k ‘ W 2 06} (10)
J=17
where A7 is the j-th diagonal element of H" in
non-increasing order, m is the total number of di-
agonal elements, and k is the minimum number
of diagonal elements required for the cumulative
contribution rate to reach the threshold a.
To ensure the effectiveness and stability, we in-
tegrate Topk and Efficitive Rank metrics together to

define the local sensitivity metric S, ., of weight
matrix w as follows:
UST S
=— = 11
Py Py P

Sllgcal =p1- S%pk + B2 - Si?uﬁectiveRank (12)

where ¢°7 and o°F represent the standard devia-
tions of the Topk and Efficitive Rank metrics for
all weights, while ;57 and 7 denote the cor-
responding mean values. We utilize the standard
deviation of metrics to design allocation weights.
The larger the standard deviation of a metric, the
more widely its values are distributed, which imply
a greater amount of information contained within
that metric. The squared average values represent
the normalization of the metric scale and the stan-
dard deviation. The effectiveness of this design is
demonstrated through experiments.

3.3 Rank Allocation Strategy

Taking into account both global and local metrics,
we define a refined rank allocation strategy to de-
termine the rank allocation weights 8% of weight
matrix w by integrating global and local sensitivi-
ties:

o i 13
0" = 71 S;(Zobal T2 Sﬁ})cal (14)

where 0% and o represent the standard devia-

tions of the global and local metrics for all weights,
while ;%9 and 15! denote the corresponding mean
values. The reason for this design is mentioned
in the preceding text. Hence, we can derive the
formula for rank allocation as follows:

ew

r = W * Ttotal (15)

where " denotes the rank allocated to weight ma-
trix w, and ry; represents the total rank of all
weight matrices in the model.

4 Experiments

4.1 Experimental Setup

Models and Benchmarks. We evaluate the perfor-
mance of our method across diverse NLG (Natu-
ral Language Generation) and NLU (Natural Lan-
guage Understanding) tasks. For the NLU tasks,
we select ROBERTa-base (Liu, 2019) as the base
model and evaluate its performance on various
subtasks of the GLUE (General Language Un-
derstanding Evaluation) benchmark (Wang, 2018):
MNLI (Williams et al., 2017), SST-2 (Socher et al.,
2013), MRPC (Dolan and Brockett, 2005), CoLA
(Warstadt, 2019), QNLI (Rajpurkar et al., 2018),

QQP ', RTE (Wang, 2018) and STS-B (Cer et al.,
2017). For the NLG tasks, we conduct experiments
using two large language models, Qwen2.5-7B
(Yang et al., 2024) and LLaMA3.1-8B (Grattafiori
et al., 2024), and evaluate their performance on
two representative NLG datasets: Magpie-Pro (Xu
et al., 2024) and OpenPlatypus (Lee et al., 2023).
We also visualize the global and local rank alloca-
tion results for each layer of GPT-2 Large (Radford
et al., 2019) and RoBERTa-base (Liu, 2019).

Evaluation Metrics. We report a comprehen-
sive set of standard evaluation metrics. For NLG
tasks, we utilize BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004) to assess the quality of gener-
ated text. For NLU tasks, we employ the Matthew’s
correlation coefficient for the CoL A task, the Com-
bined Score for STS-B, and accuracy for the re-
maining NLU tasks.

Baselines. We adopt several representative meth-
ods, including HAdapter (Houlsby et al., 2019b),
PAdapter (Pfeiffer et al., 2020), LoRA (Hu et al.,
2022b) with uniform rank allocation, AdaLoRA
(Zhang et al., 2023c) and DyLoRA (Valipour et al.,
2022), as our baselines. More details can be found
in the Appendix A.1.

In addition, more implementation details can be
found in the Appendix A.2.

4.2 Main Results

We evaluate the effectiveness of Sensitivity-LoRA
on NLU tasks by finetuning the RoOBERTa-base
model across the tasks in the GLUE benchmark.
As shown in Table 1, Sensitivity-LoRA demon-
strates outstanding performance in a variety of nat-
ural language understanding tasks. Specifically,
our method achieves the highest average score of
85.94, outperforming all baselines. Sensitivity-
LoRA leverages the second order derivatives of
the loss function to extract weight wise importance
metrics, incorporating both local and global sen-
sitivity. Based on these metrics, it dynamically
determines the optimal rank allocation, thereby
achieving exceptional performance.

To further assess the effectiveness of our method
on NLG tasks, we compare Sensitivity-LoRA
against baselines on two diverse datasets: Magpie-
Pro and OpenPlatypus, utilizing Qwen2.5-7B and
LLaMA3.1-8B. As shown in Table 2, our method
consistently outperforms all baselines on evalua-
tion metrics, including BLEU-4, ROUGE-1, and

"https://quoradata.quora.com/First-Quora-Dataset-
Release-Question-Pairs

Method MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
HAdapter 86.76 94.03 87.01 57.84 93.19 9042 7875 9091 84.86
PAdapter 86.95 94.11 86.54 5795 9337 9055 7942 9097 84.98

LoRA 87.26 93.46 87.08 58.83 9295 9050 79.39 91.03 85.06
AdaLoRA 87.32 93.57 87.28 59.00 93.08 90.62 79.56 91.21 85.20
DyLoRA 87.24 93.65 87.28 5898 93.00 90.57 79.59 91.17 85.19
Sensitivity-LoRA (ours) 87.58 94.59 87.73 60.20 93.62 90.74 81.81 91.27 85.94

Table 1: Performance comparison between baseline methods and the proposed approach on the GLUE benchmark
using the RoOBERTa-base model. Higher values indicate better performance across all tasks. Bolded values denote

the best performance in each task.

[ISRA(Avg.89.61)
6 []PRA(Avg.89.28)

SST-2

MRPC

QQP QNLI

Figure 2: Comparison of the evaluation results for
RoBERTa-base finetuned on several datasets from the
GLUE benchmark, using both PRA and SRA rank allo-
cation methods.

ROUGE-L. On Qwen2.5-7B, our method achieves
the highest average score of 37.98, significantly out-
performing others. On LLaMA3.1-8B, it further
demonstrates its advantage by attaining an aver-
age score of 49.57, surpassing AdaLoRA (48.80),
LoRA (48.37), and other adapter based methods.
Notably, our method achieves substantial gains in
BLEU-4 (71.25) and ROUGE-1 (57.35) on the
Magpie-Pro dataset and leads across all three met-
rics on OpenPlatypus. These results highlight the
superior generalization and effectiveness of our
sensitivity aware finetuning strategy across various
models and generation scenarios.

4.3 Ablation Study

In this section, we present a detailed set of abla-
tion studies to thoroughly evaluate the effectiveness
of each component of our method. The evalua-
tion results are summarized in Table 3, where we
finetune the RoOBERTa-base model on the GLUE
benchmark using three different strategies: the pro-
posed global metric S, the local metric \S;, and
their combination. Our findings indicate that both
Sg-LoRA and S;-LoRA significantly outperform
the vanilla LoRA baseline, which employs a uni-

form rank allocation strategy. This clearly demon-
strates that incorporating either global or local sen-
sitivity information can lead to more informed and
effective rank assignments. Furthermore, our full
method, which integrates both global and local met-
rics, achieves the highest average score of 85.94.
This result underscores the complementary nature
of the two types of sensitivity and highlights the
benefits of combining both perspectives to guide
finetuning. Overall, these results validate the ef-
fectiveness of our sensitivity aware rank alloca-
tion mechanism and provide strong evidence for
the advantages of leveraging both global and local
sensitivity information in optimizing model perfor-
mance.

4.4 Comparison of Rank Allocation Methods

In this section, we compare two rank allocation
methods for model weights, based on global and
local sensitivity metrics. The Progressive Rank Al-
location (PRA) method first sorts the metrics in
descending order, subsequently allocating ranks
progressively within a specified range. Weights
with higher sensitivity are allocated higher ranks.
For example, assume there are 6 weights sorted
by sensitivity. The average number of r allocated
to each matrix is 5, and there are 3 categories in
total. The allocation of r for the weights is 6, 6,
5, 5, 4, and 4, respectively. The Scaled Rank Al-
location (SRA) method (mentioned in Section 3.3)
allocates ranks according to the proportion of each
weight’s metric relative to the model’s total met-
rics. To visually compare the effectiveness of these
two allocation methods, we apply both strategies
to the sensitivity metrics and subsequently com-
bine them using the corresponding rank allocation
strategy. We then finetune RoOBERTa-base on some
datasets from the GLUE benchmark. As illustrated
in Figure 2, SRA consistently outperforms PRA
on various datasets, demonstrating its robustness
and superior adaptability. This consistent improve-

Magpie-Pro

OpenPlatypus

Model Method Avg.
BLEU-4 ROUGE-1 ROUGE-L BLEU-4 ROUGE-1 ROUGE-L

HAdapter 54.71 49.11 32.42 19.39 43.95 22.51 37.01

PAdapter 54.83 49.15 32.24 19.42 44.03 22.54 37.04

Qwen2.5-7B LoRA 55.03 48.82 3242 19.72 43.83 22.53 37.06

AdaLoRA 55.66 49.13 32.75 19.87 44.24 22.67 37.39

DyLoRA 55.59 49.21 32.82 19.86 44.18 22.59 37.37

Sensitivity-LoRA (ours) 56.31 50.04 33.57 20.13 44.77 23.07 37.98

HAdapter 69.28 56.23 41.08 34.73 52.31 35.61 48.20

PAdapter 69.30 55.05 41.97 34.66 51.47 36.01 48.07

LLaMA3.1-8B LoRA 69.67 55.89 41.78 34.64 52.35 35.92 48.37

AdaLoRA 70.40 56.31 42.17 34.86 52.90 36.15 48.80

DyLoRA 70.36 56.26 42.16 34.89 52.80 36.20 48.78

Sensitivity-LoRA (ours) 71.25 57.35 43.02 35.30 53.79 36.69 49.57

Table 2: Evaluation results on NLG tasks using Qwen2.5-7B and LLaMA3.1-8B as backbone models. We compare
Sensitivity-LoRA with other PEFT baselines on two representative datasets, Magpie-Pro and OpenPlatypus. Metrics

reported include BLEU-4, ROUGE-1, and ROUGE-L.

Method MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
LoRA 87.26 93.46 87.08 58.83 9295 9050 79.39 91.03 85.06
Sg-LoRA 8745 94.08 87.51 59.60 9335 90.68 80.19 91.24 85.51
Si-LoRA 8741 94.05 87.49 59.60 9333 90.64 80.19 9127 85.50
Ours 87.58 94.59 87.73 60.20 93.62 90.74 81.81 91.27 85.94

Table 3: Ablation study on the GLUE benchmark using the RoBERTa-base model. We compare the performance of
different rank allocation strategies: the uniform baseline (LoRA), global sensitivity based allocation (S4-LoRA),
local sensitivity based allocation (.S;-LoRA), and the proposed combined method (Ours).

ment across datasets suggests that the SRA enables
more effective allocation decisions, leading to bet-
ter overall results. Consequently, we adapt the SRA
method for rank allocation in this paper.

4.5 Rank Allocation Under Different Metrics

In Figure 3, we present the global and local rank
allocation results for GPT-2 Large and RoBERTa-
base, utilizing the SRA rank assignment method
detailed in Section 3.3. As illustrated, the global
sensitivity metric, Hessian Trace, allocates a larger
rank budget to the intermediate and deeper layers
of the models, with relatively less emphasis on
the initial layers. In contrast, the local sensitivity
metric, Topk, primarily focuses on the middle lay-
ers, assigning more ranks to these regions. The
Efficient Rank approach, however, assigns higher
ranks to the initial layers and exhibits a decreasing
trend in rank allocation for subsequent layers. Each
of these three sensitivity metrics highlights differ-
ent aspects of the models, demonstrating that rely-
ing on a single source of information for decision-
making is insufficient. This highlights the necessity
of Sensitivity-LoRA, which integrates these diverse
information sources to achieve dynamic rank allo-
cation.

4.6 Overhead Analysis

Cost of Obtaining the Hessian Matrix. Comput-
ing the Hessian matrix is a complex process, es-
pecially for large models. Some methods propose
processing the weight matrix by rows, allowing the
Hessian matrix to be approximated through opera-
tions on activation values (Frantar et al., 2022; Li
et al., 2025). Additionally, Cholesky decomposi-
tion is employed to enhance computational stability.
In essence, we only need to perform forward in-
ference on the model using a calibration set, and
the intermediate results can be used to approxi-
mate the Hessian matrix. This significantly reduces
the computational cost of the Hessian matrix. For
example, when using the PIQA (Bisk et al., 2020)
dataset as the calibration set for LLaMA?3.1-8B, the
computation, including both metric calculation and
rank allocation, can be completed in just 25.78 sec-
onds. When using only a portion of the dataset, the
computation can be finished in under 10 seconds
without introducing significant errors. In contrast,
other methods, such as AdalLoRA, which deter-
mine rank allocation during training, can signifi-
cantly increase training time, ranging from min-
utes to hours. Compared to these methods, our
approach introduces negligible additional computa-

- Efficient Rank|

10 Roberta-Base - Topk
[Hessian Trace
25
20
E
5 15
10
5
0
o 10 11 12
Layer Index

[Efficient Rank
[Topk
[Hessian Trace

GPT2-Large

Rank

15 20 25 30 35
Layer Index

Figure 3: The rank allocation for each layer of GPT-2 Large and RoBERTa-base under different rank allocation

metrics.

Different colors represent different allocation metrics, and the height of each bar in the histogram

corresponds to the rank allocated to that layer by the respective metric.

Per-Step Fine-Tuning Latency Comparison

AdaLoRA
Ours

Latency (ms / step)

N
S
S

1 2 4 8 16 32 64
Batch Size

Figure 4: Comparison of per-step fine-tuning latency
(ms) between AdalLoRA and our HyperAdaLoRA
across varying batch sizes

tional overhead. Additionally, when we calibrate
using different calibration sets, such as PIQA (Bisk
et al., 2020) and WikiText2 (Merity et al., 2016),
we obtain nearly identical results for the Hessian
matrix, which further validates the stability of our
method.

Memory Analysis. Our method allocates the
rank before training, whereas other approaches,
such as AdalLoRA, require continuous rank real-
location during training. Specifically, our method
has almost exactly the same memory footprint as
the conventional LoRA method during training,
without introducing any additional overhead. This
design not only avoids the extra burden associated
with dynamic rank reallocation but also ensures the
efficiency and stability of the training process.

Latency Analysis. To assess the training effi-
ciency of our method, we measure its per-step la-
tency and compare it with that of AdaLLoRA across
various batch sizes, as shown in Figure 4. Our ap-
proach consistently exhibits lower latency under all
configurations, with the performance gap widening
as the batch size increases. This trend indicates su-
perior scalability of our method. The improvement

is attributed to our sensitivity-aware rank assign-
ment strategy, which eliminates the runtime over-
head associated with AdaLoRA’s dynamic schedul-
ing. These results confirm that our method enables
more efficient adaptation while significantly reduc-
ing computational costs.

4.7 Additional Results

We conduct experiments to validate the effective-
ness of the design of the allocation parameters
(B1, B2,71,72)- The results demonstrate that com-
bining standard deviation with scale normalization
can achieve more effective rank allocation (Ap-
pendix B.1). Additionally, we investigate the im-
pact of hyperparameters k£ and « on the perfor-
mance of our method. The experiments show that
our approach maintains robust performance across
various hyperparameter configurations (Appendix
B.2). Furthermore, we test our method on spe-
cific text examples and obtain favorable results
(Appendix C).

5 Conclusion

In this work, we introduce Sensitivity-LoRA, a
method that efficiently allocates ranks to weight
matrices based on their sensitivity, without a sig-
nificant computational burden. Sensitivity-LoRA
first performs sensitivity utilization by analyzing
both global and local sensitivities. It utilizes the
second-order derivatives (Hessian matrix) of the
loss function to accurately capture parameter sen-
sitivity. Next, it optimizes rank allocation by ag-
gregating global and local sensitivities, ensuring a
comprehensive and fair evaluation metric. Exten-
sive experiments consistently demonstrate the effi-
ciency, effectiveness and stability of our method.

6 Limitations

In this paper, we conduct extensive experiments
on large language models to validate the effective-
ness of our proposed finetuning method. While our
findings demonstrate the potential of the method
in enhancing model performance, there are still ar-
eas that warrant further exploration. Specifically,
we do not yet extend our evaluation to large vi-
sion models and multimodal large language mod-
els, which could provide additional insights into
the generalizability and scalability of our approach.
Addressing these domains will be a key focus in
future work. Additionally, although our method
shows promising results in the tested datasets, its
robustness under low-resource and domain-specific
datasets, such as those involving medical or scien-
tific data, remains to be thoroughly assessed. Ex-
ploring these datasets could reveal further nuances
in the method’s adaptability and potential for spe-
cialized applications.

References

Armen Aghajanyan, Luke Zettlemoyer, and Sonal
Gupta. 2020. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. arXiv
preprint arXiv:2012.13255.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piga: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432-7439.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055.

G. Ding et al. 2022. Efficient fine-tuning for resource-
constrained systems. Proceedings of the Machine
Learning Conference.

Bill Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Third international workshop on paraphrasing
(IWP2005).

Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gho-
lami, Michael W Mahoney, and Kurt Keutzer. 2020.
Hawq-v2: Hessian aware trace-weighted quantiza-
tion of neural networks. Advances in neural informa-
tion processing systems, 33:18518-18529.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

N. Houlsby, A. Giurgiu, S. Jastrzebski, et al. 2019a.
Parameter-efficient transfer learning for nlp. Proceed-
ings of the 2019 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2019:279—
285.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019b. Parameter-efficient transfer learning for nlp.
In International conference on machine learning,
pages 2790-2799. PMLR.

E. J. Hu, Y. Shen, P. Wallis, et al. 2022a. Lora: Low-
rank adaptation of large language models. [Inter-
national Conference on Learning Representations
(ICLR).

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022b. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Yahao Hu, Yifei Xie, Tianfeng Wang, Man Chen, and
Zhisong Pan. 2023. Structure-aware low-rank adapta-
tion for parameter-efficient fine-tuning. Mathematics,
11(20):4317.

E. Huang et al. 2023. Evaluating large language models
in complex scenarios. Journal of Computational
Linguistics.

Yann LeCun, John Denker, and Sara Solla. 1989. Opti-
mal brain damage. Advances in neural information
processing systems, 2.

Ariel N Lee, Cole J Hunter, and Nataniel Ruiz. 2023.
Platypus: Quick, cheap, and powerful refinement of
Ilms. arXiv preprint arXiv:2308.07317.

B. Lester, R. Al-Rfou, and N. Constant. 2021. The
power of scale for parameter-efficient prompt tuning.
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
2021:3045-3061.

C. Li et al. 2023. Fine-tuning techniques for efficient
model adaptation. Al Research Journal.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Ja-
son Yosinski. 2018. Measuring the intrinsic di-
mension of objective landscapes. arXiv preprint
arXiv:1804.08838.

X. Li and P. Liang. 2021. Prefix-tuning: Optimizing
continuous prompts for generation tasks. Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics (ACL), 2021:4582-4597.

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

Yuhang Li, Ruokai Yin, Donghyun Lee, Shiting Xiao,
and Priyadarshini Panda. 2025. Gptqv2: Efficient
finetuning-free quantization for asymmetric calibra-
tion. arXiv preprint arXiv:2504.02692.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Yinhan Liu. 2019. Roberta: A robustly opti-
mized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 364.

Zequan Liu, Jiawen Lyn, Wei Zhu, Xing Tian, and
Yvette Graham. 2024. Alora: Allocating low-rank
adaptation for fine-tuning large language models.
arXiv preprint arXiv:2403.16187.

Yulong Mao, Kaiyu Huang, Changhao Guan, Ganglin
Bao, Fengran Mo, and Jinan Xu. 2024. Dora: En-
hancing parameter-efficient fine-tuning with dynamic
rank distribution. arXiv preprint arXiv:2405.17357.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. Preprint, arXiv:1609.07843.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311-318.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2020.
Adapterfusion: Non-destructive task composition for
transfer learning. arXiv preprint arXiv:2005.00247.

A. Qin et al. 2023. Advances in state-of-the-art natural
language processing. Journal of NLP Research.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631-1642.

10

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan
Kobyzev, and Ali Ghodsi. 2022. Dylora: Parameter
efficient tuning of pre-trained models using dynamic
search-free low-rank adaptation. arXiv preprint
arXiv:2210.07558.

Alex Wang. 2018. Glue: A multi-task benchmark and
analysis platform for natural language understanding.
arXiv preprint arXiv:1804.07461.

F. Wang et al. 2023. Practical applications of llms in
specialized domains. Specialized Al Applications.

A Warstadt. 2019. Neural network acceptability judg-
ments. arXiv preprint arXiv:1805.12471.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Thomas Wolf. 2020. Transformers: State-of-the-
art natural language processing. arXiv preprint
arXiv:1910.03771.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yun-
tian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. 2024. Magpie: Alignment data
synthesis from scratch by prompting aligned 1lms
with nothing. arXiv preprint arXiv:2406.08464.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

E. Zaken, Y. Goldberg, and S. Ravfogel. 2022. Bitfit:
Simple parameter-efficient fine-tuning for transform-
ers. Transactions of the Association for Computa-
tional Linguistics (TACL), 10:1-16.

D. Zhang et al. 2023a. Parameter-efficient fine-tuning
methods for llms. Journal of Machine Learning Re-
search.

Feiyu Zhang, Liangzhi Li, Junhao Chen, Zhouqgiang
Jiang, Bowen Wang, and Yiming Qian. 2023b. In-
crelora: Incremental parameter allocation method
for parameter-efficient fine-tuning. arXiv preprint
arXiv:2308.12043.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Nikos Karampatziakis, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. 2023c. Adalora: Adap-
tive budget allocation for parameter-efficient fine-
tuning. arXiv preprint arXiv:2303.10512.

Ruiyi Zhang, Rushi Qiang, Sai Ashish Somayajula, and
Pengtao Xie. 2024. Autolora: Automatically tuning
matrix ranks in low-rank adaptation based on meta
learning. arXiv preprint arXiv:2403.09113.

B. Zhu et al. 2023a. Expanding frontiers in large lan-
guage models. Al Frontier Research.

B. Zhu et al. 2023b. Large language models: Progress
and applications. Advances in NLP.

https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843

A Experimental Setup

A.1 Baselines

We adopt several representative methods, includ-
ing HAdapter (Houlsby et al., 2019b), PAdapter
(Pfeiffer et al., 2020), LoRA (Hu et al., 2022b)
with uniform rank allocation, AdaLoRA (Zhang
et al., 2023c) and DyLoRA (Valipour et al., 2022),
as our baselines. HAdapter (Houlsby et al., 2019b)
and PAdapter (Pfeiffer et al., 2020) are parameter-
efficient fine-tuning methods based on adapters.
They achieve rapid adaptation to specific tasks
by inserting lightweight adapter modules into pre-
trained models, eliminating the need to fine-tune
the entire model. LoRA (Hu et al., 2022b) ap-
proximates parameter updates by adding low-rank
decomposition matrices to the weight matrices of
pre-trained models, thereby reducing the number
of parameters required for fine-tuning. AdaLoRA
(Zhang et al., 2023c) dynamically adjusts the rank
of low-rank matrices in different model layers to
match their varying contributions to model per-
formance. DyLoRA (Valipour et al., 2022) is a
dynamic low-rank adaptation technique that sorts
the representations learned by adapter modules at
different ranks during training and trains LoRA
blocks to cover a range of ranks rather than a single
rank.

A.2 Implementation Details

Our code is implemented using the PyTorch
(Paszke et al., 2019) framework and Transform-
ers (Wolf, 2020) libraries, with all experiments
conducted on four NVIDIA A100 GPUs. When
we calibrate using different calibration sets, such
as PIQA (Bisk et al., 2020) and WikiText2 (Mer-
ity et al., 2016), we obtain nearly identical results
for the Hessian matrix, which further validates the
stability of our method. The details of the approxi-
mate Hessian matrix computation can be found in
Section 4.6. We designate the local metric St
with k set to half of the total number of diagonal
elements, and set the parameter « in the Efficient
Rank metric to 0.85. The values of some param-
eters (81, 82,71, v2) follow the settings described
in Section 3, and the effectiveness of this design is
demonstrated in Section 4. We set the average rank
of each matrix to 4 for NLU and 8 for NLG. The
comparison methods are required to use a similar
number of finetuning parameters. The training is
performed using the Adam optimizer with a learn-
ing rate of 5 x 1074, a batch size of 32 for 10

11

epochs.

B Parameter Analysis

B.1 Effectiveness of Allocation Parameter

We conduct validation experiments on the allo-
cation parameters (51, B2,71,72) to assess the
effectiveness of the proposed weighted formula
(which is consistently applied to the local sensitiv-
ity weight 31, 52 and the global local fusion weight
v1, Y2, as mentioned in Section 3). Specifically, we
compare our design with a method that does not
consider the standard deviation of the metrics and
instead assigns equal weights to each metric (using
b %,52 = %,Vl = %,72 = %)- As
shown in Table 4, our parameter strategy achieves
superior performance across all tasks, with an aver-
age score of 85.94 compared to the other of 85.65.
The performance improvements are particularly
significant in the RTE, CoL A and SST-2 tasks, in-
dicating that our approach has better adaptability
to different tasks. These results demonstrate that
combining the standard deviation with scale nor-
malization can achieve more expressive and stable
sensitivity modeling, thereby enabling more effec-
tive rank allocation and overall finetuning perfor-
mance.

B.2 Hyperparameter Analysis

In this study, we delve into the influence of the
hyperparameters k and « on the performance of
our method. These hyperparameters are crucial
for the computation of the 7opk and Effective
Rank metrics, respectively. As illustrated in Ta-
ble 5, we examine two representative configura-
tions: k = %,a = 0.80 and k = %,a = (.85,
where IV denotes the total number of diagonal ele-
ments in the Hessian matrix. Under both settings,
our method demonstrates remarkable consistency,
achieving average scores of 85.93 and 85.94, re-
spectively. These strong results highlight the ro-
bustness of our sensitivity based rank allocation
framework to reasonable variations in the metric
configuration. Moreover, they underscore the ef-
fectiveness of integrating the Topk and Effective
Rank metrics, which successfully capture salient
parameter sensitivities across different thresholds.

C Case Study

Figure 5 presents the performance of the GPT-2
Large and RoBERTa-base models fine-tuned using

Method MNLI SST-2 MRPC CoLA OQNLI QQP RTE STS-B Avg.

0.5/u 87.49 9432 87.61 5990 9347 90.69 80.50 91.18 85.65
Ours 87.58 9459 87.73 60.20 93.62 90.74 81.81 91.27 8594

Table 4: Performance comparison of our allocation weight parameter strategy and equal allocation weight parameter.
We compare our proposed formulation 31, 82,71, 72 (¢/p?) with a baseline (1, B2, V1,72 (0.5/p). Results are
reported on the GLUE benchmark using RoBERTa-base.

k a | MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

N/3 0.80 | 87.55 94.52 87.72 60.21 9362 90.70 81.82 91.34 85.93
N/2 085 | 87.58 94.59 87.73 60.20 93.62 90.74 81.81 91.27 85.94

Table 5: Performance comparison of the RoOBERTa-base under different hyperparameters (k and «). The k denotes
the number of top Hessian diagonal elements used in Sf, ., and « is the cumulative contribution threshold used in

Sw
Ef fectiveRank*

GPT-2 Large (E2E) demonstrate the effectiveness of the Sensitivity-
Input: name : Blue Spice | Type : coffee shop | LoRA method in enhancing model performance on

;}‘Ostteolmer rating : 5 out of 5 | near : Crowne Plaza both text generation and classification tasks.

Reference: The coffee shop Blue Spice is based near
Crowne Plaza Hotel and has a high customer rating
of 5 out of 5.

Output: The Blue Spice is a coffee shop near the
Crowne Plaza Hotel with a customer rating of 5 out
of 5.

Roberta-base (SST-2)

Input: Director rob marshall went out gunning to
make a great one.

GT: Positive

Output: Positive.

Figure 5: The Case Study of the GPT-2 Large and
RoBERTa-base models. The blue boxes represent the
input test data, the green boxes indicate the reference
text or ground truth output, and the red boxes highlight
the model’s actual output.

the dynamic rank allocation method (Sensitivity-
LoRA) on the E2E and SST-2 datasets. For the E2E
dataset, the GPT-2 Large model generates fluent
and grammatically correct natural language text
that closely aligns with the reference while retain-
ing the input information. This indicates that the
model effectively processes structured inputs and
excels at generating accurate and coherent natu-
ral language descriptions. For the SST-2 dataset,
the RoBERTa-base model achieves strong perfor-
mance in sentiment classification tasks, accurately
classifying input text as "Positive." These results

12

	Introduction
	Related Work
	Additive PEFT
	Selective PEFT
	Reparameterized PEFT
	Hybrid PEFT

	Methodology
	Weight Sensitivity
	Rank Allocation Metric
	 Global Metric
	Local Metric

	Rank Allocation Strategy

	Experiments
	Experimental Setup
	Main Results
	Ablation Study
	Comparison of Rank Allocation Methods
	Rank Allocation Under Different Metrics
	Overhead Analysis
	Additional Results

	Conclusion
	Limitations
	Experimental Setup
	Baselines
	Implementation Details

	Parameter Analysis
	Effectiveness of Allocation Parameter
	Hyperparameter Analysis

	Case Study

