
Sensitivity-LoRA : Low-Load Sensitivity-Based Fine-Tuning for Large
Language Models

Anonymous ACL submission

Abstract001

Large Language Models (LLMs) have trans-002
formed both everyday life and scientific re-003
search. However, adapting LLMs from004
general-purpose models to specialized tasks005
remains challenging, particularly in resource-006
constrained environments. Low-Rank Adap-007
tation (LoRA), a prominent method within008
Parameter-Efficient Fine-Tuning (PEFT), has009
emerged as a promising approach to LLMs010
by approximating model weight updates us-011
ing low-rank decomposition. However, LoRA012
is limited by its uniform rank r allocation to013
each incremental matrix, and existing rank al-014
location techniques aimed at addressing this015
issue remain computationally inefficient, com-016
plex, and unstable, hindering practical appli-017
cations. To address these limitations, we pro-018
pose Sensitivity-LoRA, an efficient fine-tuning019
method that dynamically allocates ranks to020
weight matrices based on both their global and021
local sensitivities. It leverages the second-order022
derivatives (Hessian Matrix) of the loss func-023
tion to effectively capture weight sensitivity,024
enabling optimal rank allocation with minimal025
computational overhead. Our experimental re-026
sults have demonstrated robust effectiveness,027
efficiency and stability of Sensitivity-LoRA028
across diverse tasks and benchmarks.029

1 Introduction030

Large language models (LLMs) have become trans-031

formative tools across a wide spectrum of tasks and032

applications (Ding et al., 2022; Qin et al., 2023;033

Zhu et al., 2023b,a; Li et al., 2023; Zhang et al.,034

2023a; Huang et al., 2023; Wang et al., 2023). De-035

spite these advancements, fine-tuning remains a036

critical technique for effectively adapting LLMs037

from general-purpose models to specialized appli-038

cations, especially in resource-constrained environ-039

ments. However, full-parameter fine-tuning can040

be prohibitively resource-intensive, requiring sig-041

nificant computational power and GPU capacity.042

To address this limitation, the research community 043

introduced parameter-efficient fine-tuning (PEFT) 044

(Houlsby et al., 2019a; Lester et al., 2021; Li and 045

Liang, 2021; Zaken et al., 2022; Hu et al., 2022a), 046

which aims to balance accuracy and efficiency by 047

selectively updating a subset of model parameters. 048

LoRA (Hu et al., 2022b), a prominent PEFT 049

method, approximates model weight updates us- 050

ing low-rank decomposition, leveraging the low 051

intrinsic dimension of over-parameterized models 052

(Li et al., 2018; Aghajanyan et al., 2020). During 053

training, the update of the weight matrix (∆W ) 054

can be approximated as the product of two smaller 055

matrices B and A, expressed as: 056

∆W ≈ B ·A (1) 057

where ∆W ∈ Rd1×d2 , A ∈ Rr×d2 and B ∈ 058

Rd1×r with r ≪ {d1, d2}. Thus, it approximates 059

the update of the weight matrix with fewer pa- 060

rameters. However, the full potential of LoRA 061

remains constrained by its inherent design limita- 062

tions. Specifically, it assumes a uniform rank r for 063

each incremental matrix, not accounting for the 064

varying significance of weight matrices across dif- 065

ferent modules and layers (Hu et al., 2023; Zhang 066

et al., 2023b). 067

To address this limitation, dynamic rank alloca- 068

tion has emerged as a key solution by allocating 069

the rank r to each different module or layer ac- 070

cording to its specific requirements. Existing meth- 071

ods achieve this through three main approaches: 072

singular value decomposition (SVD), single-rank 073

decomposition (SRD), and rank sampling. SVD- 074

based methods (Zhang et al., 2023c; Hu et al., 2023; 075

Zhang et al., 2023b) decompose matrix BA into 076

an SVD form and selectively truncate the singular 077

values in order to allocate the matrix rank. How- 078

ever, this process is computationally expensive and 079

requires additional memory to store singular val- 080

ues and vectors. SRD-based methods (Mao et al., 081

1



Pretrained
Weight

（Frozen）

（Trainable）
A

（Trainable）
B

+
dim out

dim

Global
Metric

Local
Metric

r

Rank Allocation

Global Metric

Local Metric

Weight Sensitivity
via Hessian Matrix

hw
ij =

@2Ew

@wi@wj
, hii =

@2Ew

@w2
i

Hw =

2
6664

hw
11 hw

12 · · · hw
1n

hw
21 hw

22 · · · hw
2n

...
...

. . .
...

hw
n1 hw

n2 · · · hw
nn

3
7775

Let {�w
i } = sort({hw

ii}, desc)

Sw
global = tr(Hw) =

X

i

hw
ii

Sw
Topk =

1

k

kX

i=1

�w
i

Sw
E↵ectiveRank = min

(
k |

Pk
j=1 �

w
jPm

j=1 �
w
j

� ↵

)

S
(w)
local = �1 · Sw

Topk + �2 · Sw
E↵ectiveRank (1)

s.t. �1 + �2 = 1

rw =
✓w

P
w
✓w

· rtotal (2)

✓w = �1 · Sw
global + �2 · S

(w)
local (3)

s.t. �1 + �2 = 1

rw =
✓w

P
w
✓w

· rtotal (4)

1

hw
ij =

@2Ew

@wi@wj
, hii =

@2Ew

@w2
i

Hw =

2
6664

hw
11 hw

12 · · · hw
1n

hw
21 hw

22 · · · hw
2n

...
...

. . .
...

hw
n1 hw

n2 · · · hw
nn

3
7775

Let {�w
i } = sort({hw

ii}, desc)

Sw
global = tr(Hw) =

X

i

hw
ii

Sw
Topk =

1

k

kX

i=1

�w
i

Sw
E↵ectiveRank = min

(
k |

Pk
j=1 �

w
jPm

j=1 �
w
j

� ↵

)

S
(w)
local = �1 · S

(w)
Topk + �2 · S

(w)
E↵ectiveRank

s.t. �1 + �2 = 1

rw =
✓w

P
w
✓w

· rtotal (1)

✓w = �1 · Sw
global + �2 · S

(w)
local (2)

s.t. �1 + �2 = 1

rw =
✓w

P
w
✓w

· rtotal (3)

1

Hessian Matrix of 
Weight Matrix 

hw
ij =

@2Ew

@wi@wj
, hii =

@2Ew

@w2
i

Hw =

2
6664

hw
11 hw

12 · · · hw
1n

hw
21 hw

22 · · · hw
2n

...
...

. . .
...

hw
n1 hw

n2 · · · hw
nn

3
7775

Let {�w
i } = sort({hw

ii}, desc)

Sw
global = tr(Hw) =

X

i

hw
ii

Sw
Topk =

1

k

kX

i=1

�w
i

Sw
E↵ectiveRank = min

(
k |

Pk
j=1 �

w
jPm

j=1 �
w
j

� ↵

)

S
(w)
local = �1 · S

(w)
Topk + �2 · S

(w)
E↵ectiveRank

s.t. �1 + �2 = 1

rw =
✓w

P
w
✓w

· rtotal (1)

✓w = �1 · Sw
global + �2 · S

(w)
local (2)

s.t. �1 + �2 = 1

rw =
✓w

P
w
✓w

· rtotal (3)

1

hw
ij =

@2Ew

@wi@wj
, hii =

@2Ew

@w2
i

Hw =

2
6664

hw
11 hw

12 · · · hw
1n

hw
21 hw

22 · · · hw
2n

...
...

. . .
...

hw
n1 hw

n2 · · · hw
nn

3
7775

Let {�w
i } = sort({hw

ii}, desc)

Sw
global = tr(Hw) =

X

i

hw
ii

Sw
Topk =

1

k

kX

i=1

�w
i

Sw
E↵ectiveRank = min

(
k |

Pk
j=1 �

w
jPm

j=1 �
w
j

� ↵

)

S
(w)
local = �1 · S

(w)
Topk + �2 · S

(w)
E↵ectiveRank

s.t. �1 + �2 = 1

rw =
✓w

P
w
✓w

· rtotal (1)

✓w = �1 · Sw
global + �2 · S

(w)
local (2)

s.t. �1 + �2 = 1

rw =
✓w

P
w
✓w

· rtotal (3)

1

hw
ij =

@2Ew

@wi@wj
, hii =

@2Ew

@w2
i

Hw =

2
6664

hw
11 hw

12 · · · hw
1n

hw
21 hw

22 · · · hw
2n

...
...

. . .
...

hw
n1 hw

n2 · · · hw
nn

3
7775

Let {�w
i } = sort({hw

ii}, desc)

Sw
global = tr(Hw) =

X

i

hw
ii

Sw
Topk =

1

k

kX

i=1

�w
i

Sw
E↵ectiveRank = min

(
k |

Pk
j=1 �

w
jPm

j=1 �
w
j

� ↵

)

S
(w)
local = �1 · S

(w)
Topk + �2 · S

(w)
E↵ectiveRank

s.t. �1 + �2 = 1

rw =
✓w

P
w
✓w

· rtotal (1)

✓w = �1 · Sw
global + �2 · S

(w)
local (2)

s.t. �1 + �2 = 1

rw =
✓w

P
w
✓w

· rtotal (3)

1

Rank Allocation

hw
ij =

@2Ew

@wi@wj
, hii =

@2Ew

@w2
i

Hw =

2
6664

hw
11 hw

12 · · · hw
1n

hw
21 hw

22 · · · hw
2n

...
...

. . .
...

hw
n1 hw

n2 · · · hw
nn

3
7775

Let {�w
i } = sort({hw

ii}, desc)

Sw
global = tr(Hw) =

X

i

hw
ii

Sw
Topk =

1

k

kX

i=1

�w
i

Sw
E↵ectiveRank = min

(
k |

Pk
j=1 �

w
jPm

j=1 �
w
j

� ↵

)

S
(w)
local = �1 · Sw

Topk + �2 · Sw
E↵ectiveRank (1)

s.t. �1 + �2 = 1

rw =
✓w

P
w
✓w

· rtotal (2)

✓w = �1 · Sw
global + �2 · S

(w)
local (3)

s.t. �1 + �2 = 1

rw =
✓w

P
w
✓w

· rtotal (4)

1

hw
ij =

@2Ew

@wi@wj
, hii =

@2Ew

@w2
i

Hw =

2
6664

hw
11 hw

12 · · · hw
1n

hw
21 hw

22 · · · hw
2n

...
...

. . .
...

hw
n1 hw

n2 · · · hw
nn

3
7775

Let {�w
i } = sort({hw

ii}, desc)

Sw
global = tr(Hw) =

X

i

hw
ii

Sw
Topk =

1

k

kX

i=1

�w
i

Sw
E↵ectiveRank = min

(
k |

Pk
j=1 �

w
jPm

j=1 �
w
j

� ↵

)

S
(w)
local = �1 · Sw

Topk + �2 · Sw
E↵ectiveRank (1)

s.t. �1 + �2 = 1

rw =
✓w

P
w
✓w

· rtotal (2)

✓w = �1 · Sw
global + �2 · S

(w)
local (3)

s.t. �1 + �2 = 1

rw =
✓w

P
w
✓w

· rtotal (4)

1

hw
ij =

@2Ew

@wi@wj
, hii =

@2Ew

@w2
i

Hw =

2
6664

hw
11 hw

12 · · · hw
1n

hw
21 hw

22 · · · hw
2n

...
...

. . .
...

hw
n1 hw

n2 · · · hw
nn

3
7775

Let {�w
i } = sort({hw

ii}, desc)

Sw
global = tr(Hw) =

X

i

hw
ii

Sw
Topk =

1

k

kX

i=1

�w
i

Sw
E↵ectiveRank = min

(
k |

Pk
j=1 �

w
jPm

j=1 �
w
j

� ↵

)

S
(w)
local = �1 · Sw

Topk + �2 · Sw
E↵ectiveRank (1)

s.t. �1 + �2 = 1

rw =
✓w

P
w
✓w

· rtotal (2)

✓w = �1 · Sw
global + �2 · S

(w)
local (3)

s.t. �1 + �2 = 1

rw =
✓w

P
w
✓w

· rtotal (4)

1

Figure 1: Pipeline of the Sensitivity-LoRA Method: Step 1 - Sensitivity detection via Hessian-based metrics,
including global and local sensitivity measures. (hw

ij =
∂2Ew

∂wi∂wj
, hii =

∂2Ew

∂w2
i

, where Ew denotes the change in loss
function regarding weight matrix w; tr(Hw) denotes the trace of Hw.) Step 2 - Dynamic rank allocation based on
global and local sensitivity. (rw denotes the allocated rank of weight matrix w, rtotal denotes the total rank of all
weight matrices in the model.)

2024; Zhang et al., 2024; Liu et al., 2024) decom-082

pose matrix BA into single-rank components and083

allocate the ranks by selecting the proper compo-084

nents. However, optimizing single-rank compo-085

nents and the pruning process can increase compu-086

tational complexity, potentially offsetting efficiency087

gains. Rank sampling-based methods (Valipour088

et al., 2022) allocate ranks directly by random sam-089

pling. However, the randomness introduced by090

sampling could increase training instability.091

In order to design a dynamic rank allocation092

method that introduces extremely low overhead093

and ensures stability, we propose Sensitivity-LoRA,094

which can rapidly allocate rank to the weight matrix095

based on the sensitivity of the parameters, without096

incurring a significant computational load. Specifi-097

cally, we utilize the second derivatives of the loss098

function with respect to the parameters (Hessian099

matrix) to ascertain the sensitivity of each parame-100

ter within the weight matrix. To comprehensively101

evaluate the sensitivity of the parameter matrix,102

we employ metrics such as the trace of the Hes-103

sian matrix, Topk and Effective Rank to measure104

its global and local sensitivities respectively. By105

integrating various metrics, we determine the rank106

allocation weights corresponding to the weight ma-107

trices to achieve rank allocation. The efficiency,108

stability, and generality of our approach have been109

validated through extensive experiments on various110

tasks, such as sentiment analysis, natural language 111

inference, question answering, and text generation. 112

In summary, the main contributions of our paper 113

are listed as follows: 114

• We design a dynamic rank allocation method 115

that introduces minimal overhead and ensures 116

stability. 117

• We introduce the second derivatives of the loss 118

function with respect to the weight matrix to 119

measure their sensitivity. 120

• We achieve rank allocation by taking into ac- 121

count both the global and local sensitivity of 122

the weight matrix. 123

• Extensive experiments demonstrate the ef- 124

fectiveness, stability, and efficiency of our 125

method. 126

2 Related Work 127

Existing PEFT approaches can be classified into 128

four main types in terms of memory efficiency, stor- 129

age efficiency, and inference overhead, as follows: 130

2.1 Additive PEFT 131

Additive PEFT introduces lightweight modules into 132

the model architecture, such as adapters and soft 133

prompts, while keeping the pre-trained backbone 134

2



frozen. Adapters add small networks with down-135

projection and up-projection matrices, enabling136

task-specific learning with minimal parameter up-137

dates (Houlsby et al., 2019a; Lester et al., 2021).138

Soft prompts prepend learnable embeddings to the139

input sequence, allowing fine-tuning by modifying140

input activations only (Li and Liang, 2021; Zaken141

et al., 2022). These methods typically require up-142

dating less than 1% of the total parameters, signif-143

icantly reducing computation and memory costs,144

making them ideal for resource-constrained envi-145

ronments (Hu et al., 2022a).146

2.2 Selective PEFT147

Selective PEFT fine-tunes a subset of the exist-148

ing parameters in a pre-trained model, rather than149

adding new modules. It employs binary masks to150

identify and update only the most important pa-151

rameters while keeping the majority frozen. Tech-152

niques like Diff pruning and FishMask leverage153

Fisher information or parameter sensitivity anal-154

ysis to select critical parameters for fine-tuning155

(Zaken et al., 2022; Li and Liang, 2021). This ap-156

proach avoids increasing model complexity and is157

particularly suited for scenarios where only a small158

fraction of the model contributes significantly to159

performance.160

2.3 Reparameterized PEFT161

Reparameterized PEFT utilizes low-rank parame-162

terization techniques to represent model weights163

in a reduced form during training. LoRA (Low-164

Rank Adaptation) is a prominent example, introduc-165

ing low-rank matrices to fine-tune specific weights166

while maintaining high inference efficiency (Hu167

et al., 2022a). Other methods, such as Compacter,168

use the Kronecker product for parameter reparame-169

terization, further reducing memory requirements170

and computational costs (Houlsby et al., 2019a).171

Reparameterized PEFT is highly effective for large-172

scale models where resource constraints are criti-173

cal.174

2.4 Hybrid PEFT175

Hybrid PEFT combines the strengths of Additive,176

Selective, and Reparameterized PEFT methods into177

a unified framework. For example, UniPELT in-178

tegrates LoRA, adapters, and soft prompts, allow-179

ing dynamic selection of the most suitable module180

for specific tasks through gating mechanisms (Za-181

ken et al., 2022). This hybrid approach enhances182

adaptability and task performance by leveraging183

the complementary advantages of different PEFT 184

strategies (Li and Liang, 2021; Hu et al., 2022a). 185

3 Methodology 186

In this section, we firstly introduce the concept of 187

weight sensitivity with a formal definition of global 188

and local sensitivity metrics of weight matrices. 189

Next, we propose effective allocation strategies to 190

optimize the dynamic rank allocation process based 191

on these sensitivity metrics. The pipeline of our 192

method is presented in Figure 1. 193

3.1 Weight Sensitivity 194

Consider a neural network whose dynamics is 195

driven by a collection of parameters w and a loss 196

function E, which guides its learning dynamics. 197

When a small perturbation δw is introduced to the 198

parameters, the resulting change in the loss func- 199

tion can be expressed using a Taylor series expan- 200

sion up to the second-order term, with higher-order 201

terms captured by O(∥δw∥3) as follows: 202

E(w + δw) = E(w) + gT δw +
1

2
δwTHδw 203

+O(∥δw∥3) (2) 204

where g denotes the gradient vector of the loss func- 205

tion E with respect to the parameters w, indicating 206

the rate of change of the loss function in the direc- 207

tion of each parameter. H represents the Hessian 208

matrix of the loss function E, which is a matrix of 209

second-order partial derivatives and contains infor- 210

mation about the curvature of the loss function at 211

the current parameter point. 212

The change in the loss function ∆E can be rep- 213

resented by the following expression: 214

∆E = g⊤δw +
1

2
δw⊤Hδw +O(∥δw∥3) (3) 215

By expanding the components of ∆E, we have: 216

∆E =
∑

i

giδwi +
1

2

∑

i,j

hijδwiδwj 217

+O(∥δw∥3) (4) 218

where gi and hij are the gradient and Hessian ele- 219

ments, respectively. 220

For a well-trained neural network, when the pa- 221

rameter w is located at a local minimum of the loss 222

function, the gradient g becomes zero. Then, the 223

above equation can be simplified to 224

∆E =
1

2

∑

i,j

hijδwiδwj +O(∥δw∥3) (5) 225

3



Additionally, several studies have demonstrated226

that the Hessian matrix H tends to be diagonally227

dominant, suggesting that the interactions between228

different parameters can be largely disregarded (Le-229

Cun et al., 1989; Dong et al., 2020; Frantar et al.,230

2022). Then, the above equation can be simplified231

to232

∆E ≈ 1

2

∑

i

hiiδ
2
wi

+O(∥δw∥3) (6)233

Given that the perturbation in the weights (δw) is234

sufficiently small, the higher-order term becomes235

negligible compared to the quadratic term, and236

therefore can be disregarded. Consequently, the237

above formula can be further simplified to238

∆E ≈ 1

2

∑

i

hiiδ
2
wi

(7)239

Consequently, the diagonal elements of the Hes-240

sian matrix serve as a reliable indicator of weight241

sensitivity.242

3.2 Rank Allocation Metric243

3.2.1 Global Metric244

The global sensitivity measurement aims to eval-245

uate the overall impact of an entire parameter (or246

weight) matrix on model output. It quantifies how247

variations in this weight matrix affect the loss func-248

tion. To capture this dynamics, the Hessian matrix,249

which consists of the second-order partial deriva-250

tives of the loss function with respect to the weight251

matrix, is used. Given that the Hessian matrix tends252

to be diagonal-dominant at the minimum, its trace253

can serve as an effective global sensitivity indicator.254

Formally, the global sensitivity Sw
global of weight255

matrix w can be defined as:256

Sw
global = tr(Hw) =

∑

i

hwii (8)257

where hwii is the i-th diagonal element of the Hes-258

sian matrix Hw, and tr(Hw) denotes the trace of259

Hw. Since the diagonal elements reflect the impact260

of individual parameter changes on the loss func-261

tion, a larger trace value indicates that the model is262

more sensitive to its changes. This suggests more263

parameters make significant contributions to the264

changes in the loss function, emphasizing their role265

in model performance.266

3.2.2 Local Metric267

While certain weight matrices might have low over-268

all sensitivities, specific weight elements within269

these matrices can still have high sensitivity, signif- 270

icantly impacting model performance. As such, it 271

is essential to account for local sensitivity to cap- 272

ture finer-grained variations in parameter influence 273

on the loss function. To address this, we introduce 274

two metrics: Topk and Efficient Rank. 275

The Topk metric approximates local sensitivity 276

of a weight matrix by averaging its largest k di- 277

agonal elements of Hessian matrix, based on the 278

assumption that most of the matrix’s energy or sen- 279

sitivity is concentrated in these large values. By fo- 280

cusing on Top k diagonal elements, the Topk metric 281

can guide us to prioritize these critical weights dur- 282

ing weight pruning or optimization processes. It re- 283

duces computational complexity while preserving 284

the most impactful weights for model performance. 285

The computation formula for the Topk metric of 286

weight matrix w is as follows: 287

Sw
Topk =

1

k

k∑

i=1

λw
i (9) 288

where λw
i represents the diagonal elements of Hes- 289

sian matrix Hw sorted in descending order, and k 290

denotes the number of diagonal elements selected. 291

The Effective Rank metric determines the min- 292

imum rank that captures most of the energy of a 293

weight matrix based on the cumulative contribution 294

of the diagonal elements of its Hessian matrix. By 295

establishing a threshold for the cumulative contri- 296

bution rate (such as 0.9 or 0.95), the Effective Rank 297

metric identifies the minimum number of eigen- 298

values needed to achieve this threshold, thereby 299

appropriately ranking the weight matrix. The key 300

benefit of this metric is ensuring the stability of the 301

rank allocation process. The formula for Effective 302

Rank of weight matrix w is as follows: 303

Sw
EffectiveRank = min

{
k |

∑k
j=1 λ

w
j∑m

j=1 λ
w
j

≥ α

}
(10) 304

where λw
j is the j-th diagonal element of Hw in 305

non-increasing order, m is the total number of di- 306

agonal elements, and k is the minimum number 307

of diagonal elements required for the cumulative 308

contribution rate to reach the threshold α. 309

To ensure the effectiveness and stability, we in- 310

tegrate Topk and Efficitive Rank metrics together to 311

define the local sensitivity metric Sw
local of weight 312

matrix w as follows: 313

β1 =
σST

(µST )2
β2 =

σSE

(µSE )2
(11) 314

4



315
Sw
local = β1 · Sw

Topk + β2 · Sw
EffectiveRank (12)316

where σST and σSE represent the standard devia-317

tions of the Topk and Efficitive Rank metrics for318

all weights, while µST and µSE denote the cor-319

responding mean values. We utilize the standard320

deviation of metrics to design allocation weights.321

The larger the standard deviation of a metric, the322

more widely its values are distributed, which imply323

a greater amount of information contained within324

that metric. The squared average values represent325

the normalization of the metric scale and the stan-326

dard deviation. The effectiveness of this design is327

demonstrated through experiments.328

3.3 Rank Allocation Strategy329

Taking into account both global and local metrics,330

we define a refined rank allocation strategy to de-331

termine the rank allocation weights θw of weight332

matrix w by integrating global and local sensitivi-333

ties:334

γ1 =
σSg

(µSg)
2 γ2 =

σSl

(µSl)2
(13)335

336
θw = γ1 · Sw

global + γ2 · Sw
local (14)337

where σSg and σSl represent the standard devia-338

tions of the global and local metrics for all weights,339

while µSg and µSl denote the corresponding mean340

values. The reason for this design is mentioned341

in the preceding text. Hence, we can derive the342

formula for rank allocation as follows:343

rw =
θw∑

w
θw

· rtotal (15)344

where rw denotes the rank allocated to weight ma-345

trix w, and rtotal represents the total rank of all346

weight matrices in the model.347

4 Experiments348

4.1 Experimental Setup349

Models and Benchmarks. We evaluate the perfor-350

mance of our method across diverse NLG (Natu-351

ral Language Generation) and NLU (Natural Lan-352

guage Understanding) tasks. For the NLU tasks,353

we select RoBERTa-base (Liu, 2019) as the base354

model and evaluate its performance on various355

subtasks of the GLUE (General Language Un-356

derstanding Evaluation) benchmark (Wang, 2018):357

MNLI (Williams et al., 2017), SST-2 (Socher et al.,358

2013), MRPC (Dolan and Brockett, 2005), CoLA359

(Warstadt, 2019), QNLI (Rajpurkar et al., 2018),360

QQP 1, RTE (Wang, 2018) and STS-B (Cer et al., 361

2017). For the NLG tasks, we conduct experiments 362

using two large language models, Qwen2.5-7B 363

(Yang et al., 2024) and LLaMA3.1-8B (Grattafiori 364

et al., 2024), and evaluate their performance on 365

two representative NLG datasets: Magpie-Pro (Xu 366

et al., 2024) and OpenPlatypus (Lee et al., 2023). 367

We also visualize the global and local rank alloca- 368

tion results for each layer of GPT-2 Large (Radford 369

et al., 2019) and RoBERTa-base (Liu, 2019). 370

Evaluation Metrics. We report a comprehen- 371

sive set of standard evaluation metrics. For NLG 372

tasks, we utilize BLEU (Papineni et al., 2002) and 373

ROUGE (Lin, 2004) to assess the quality of gener- 374

ated text. For NLU tasks, we employ the Matthew’s 375

correlation coefficient for the CoLA task, the Com- 376

bined Score for STS-B, and accuracy for the re- 377

maining NLU tasks. 378

Baselines. We adopt several representative meth- 379

ods, including HAdapter (Houlsby et al., 2019b), 380

PAdapter (Pfeiffer et al., 2020), LoRA (Hu et al., 381

2022b) with uniform rank allocation, AdaLoRA 382

(Zhang et al., 2023c) and DyLoRA (Valipour et al., 383

2022), as our baselines. More details can be found 384

in the Appendix A.1. 385

In addition, more implementation details can be 386

found in the Appendix A.2. 387

4.2 Main Results 388

We evaluate the effectiveness of Sensitivity-LoRA 389

on NLU tasks by finetuning the RoBERTa-base 390

model across the tasks in the GLUE benchmark. 391

As shown in Table 1, Sensitivity-LoRA demon- 392

strates outstanding performance in a variety of nat- 393

ural language understanding tasks. Specifically, 394

our method achieves the highest average score of 395

85.94, outperforming all baselines. Sensitivity- 396

LoRA leverages the second order derivatives of 397

the loss function to extract weight wise importance 398

metrics, incorporating both local and global sen- 399

sitivity. Based on these metrics, it dynamically 400

determines the optimal rank allocation, thereby 401

achieving exceptional performance. 402

To further assess the effectiveness of our method 403

on NLG tasks, we compare Sensitivity-LoRA 404

against baselines on two diverse datasets: Magpie- 405

Pro and OpenPlatypus, utilizing Qwen2.5-7B and 406

LLaMA3.1-8B. As shown in Table 2, our method 407

consistently outperforms all baselines on evalua- 408

tion metrics, including BLEU-4, ROUGE-1, and 409

1https://quoradata.quora.com/First-Quora-Dataset-
Release-Question-Pairs

5



Method MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

HAdapter 86.76 94.03 87.01 57.84 93.19 90.42 78.75 90.91 84.86
PAdapter 86.95 94.11 86.54 57.95 93.37 90.55 79.42 90.97 84.98

LoRA 87.26 93.46 87.08 58.83 92.95 90.50 79.39 91.03 85.06
AdaLoRA 87.32 93.57 87.28 59.00 93.08 90.62 79.56 91.21 85.20
DyLoRA 87.24 93.65 87.28 58.98 93.00 90.57 79.59 91.17 85.19

Sensitivity-LoRA (ours) 87.58 94.59 87.73 60.20 93.62 90.74 81.81 91.27 85.94

Table 1: Performance comparison between baseline methods and the proposed approach on the GLUE benchmark
using the RoBERTa-base model. Higher values indicate better performance across all tasks. Bolded values denote
the best performance in each task.

Figure 2: Comparison of the evaluation results for
RoBERTa-base finetuned on several datasets from the
GLUE benchmark, using both PRA and SRA rank allo-
cation methods.

ROUGE-L. On Qwen2.5-7B, our method achieves410

the highest average score of 37.98, significantly out-411

performing others. On LLaMA3.1-8B, it further412

demonstrates its advantage by attaining an aver-413

age score of 49.57, surpassing AdaLoRA (48.80),414

LoRA (48.37), and other adapter based methods.415

Notably, our method achieves substantial gains in416

BLEU-4 (71.25) and ROUGE-1 (57.35) on the417

Magpie-Pro dataset and leads across all three met-418

rics on OpenPlatypus. These results highlight the419

superior generalization and effectiveness of our420

sensitivity aware finetuning strategy across various421

models and generation scenarios.422

4.3 Ablation Study423

In this section, we present a detailed set of abla-424

tion studies to thoroughly evaluate the effectiveness425

of each component of our method. The evalua-426

tion results are summarized in Table 3, where we427

finetune the RoBERTa-base model on the GLUE428

benchmark using three different strategies: the pro-429

posed global metric Sg, the local metric Sl, and430

their combination. Our findings indicate that both431

Sg-LoRA and Sl-LoRA significantly outperform432

the vanilla LoRA baseline, which employs a uni-433

form rank allocation strategy. This clearly demon- 434

strates that incorporating either global or local sen- 435

sitivity information can lead to more informed and 436

effective rank assignments. Furthermore, our full 437

method, which integrates both global and local met- 438

rics, achieves the highest average score of 85.94. 439

This result underscores the complementary nature 440

of the two types of sensitivity and highlights the 441

benefits of combining both perspectives to guide 442

finetuning. Overall, these results validate the ef- 443

fectiveness of our sensitivity aware rank alloca- 444

tion mechanism and provide strong evidence for 445

the advantages of leveraging both global and local 446

sensitivity information in optimizing model perfor- 447

mance. 448

4.4 Comparison of Rank Allocation Methods 449

In this section, we compare two rank allocation 450

methods for model weights, based on global and 451

local sensitivity metrics. The Progressive Rank Al- 452

location (PRA) method first sorts the metrics in 453

descending order, subsequently allocating ranks 454

progressively within a specified range. Weights 455

with higher sensitivity are allocated higher ranks. 456

For example, assume there are 6 weights sorted 457

by sensitivity. The average number of r allocated 458

to each matrix is 5, and there are 3 categories in 459

total. The allocation of r for the weights is 6, 6, 460

5, 5, 4, and 4, respectively. The Scaled Rank Al- 461

location (SRA) method (mentioned in Section 3.3) 462

allocates ranks according to the proportion of each 463

weight’s metric relative to the model’s total met- 464

rics. To visually compare the effectiveness of these 465

two allocation methods, we apply both strategies 466

to the sensitivity metrics and subsequently com- 467

bine them using the corresponding rank allocation 468

strategy. We then finetune RoBERTa-base on some 469

datasets from the GLUE benchmark. As illustrated 470

in Figure 2, SRA consistently outperforms PRA 471

on various datasets, demonstrating its robustness 472

and superior adaptability. This consistent improve- 473

6



Model Method Magpie-Pro OpenPlatypus Avg.
BLEU-4 ROUGE-1 ROUGE-L BLEU-4 ROUGE-1 ROUGE-L

Qwen2.5-7B

HAdapter 54.71 49.11 32.42 19.39 43.95 22.51 37.01
PAdapter 54.83 49.15 32.24 19.42 44.03 22.54 37.04

LoRA 55.03 48.82 32.42 19.72 43.83 22.53 37.06
AdaLoRA 55.66 49.13 32.75 19.87 44.24 22.67 37.39
DyLoRA 55.59 49.21 32.82 19.86 44.18 22.59 37.37

Sensitivity-LoRA (ours) 56.31 50.04 33.57 20.13 44.77 23.07 37.98

LLaMA3.1-8B

HAdapter 69.28 56.23 41.08 34.73 52.31 35.61 48.20
PAdapter 69.30 55.05 41.97 34.66 51.47 36.01 48.07

LoRA 69.67 55.89 41.78 34.64 52.35 35.92 48.37
AdaLoRA 70.40 56.31 42.17 34.86 52.90 36.15 48.80
DyLoRA 70.36 56.26 42.16 34.89 52.80 36.20 48.78

Sensitivity-LoRA (ours) 71.25 57.35 43.02 35.30 53.79 36.69 49.57

Table 2: Evaluation results on NLG tasks using Qwen2.5-7B and LLaMA3.1-8B as backbone models. We compare
Sensitivity-LoRA with other PEFT baselines on two representative datasets, Magpie-Pro and OpenPlatypus. Metrics
reported include BLEU-4, ROUGE-1, and ROUGE-L.

Method MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

LoRA 87.26 93.46 87.08 58.83 92.95 90.50 79.39 91.03 85.06
Sg-LoRA 87.45 94.08 87.51 59.60 93.35 90.68 80.19 91.24 85.51
Sl-LoRA 87.41 94.05 87.49 59.60 93.33 90.64 80.19 91.27 85.50
Ours 87.58 94.59 87.73 60.20 93.62 90.74 81.81 91.27 85.94

Table 3: Ablation study on the GLUE benchmark using the RoBERTa-base model. We compare the performance of
different rank allocation strategies: the uniform baseline (LoRA), global sensitivity based allocation (Sg-LoRA),
local sensitivity based allocation (Sl-LoRA), and the proposed combined method (Ours).

ment across datasets suggests that the SRA enables474

more effective allocation decisions, leading to bet-475

ter overall results. Consequently, we adapt the SRA476

method for rank allocation in this paper.477

4.5 Rank Allocation Under Different Metrics478

In Figure 3, we present the global and local rank479

allocation results for GPT-2 Large and RoBERTa-480

base, utilizing the SRA rank assignment method481

detailed in Section 3.3. As illustrated, the global482

sensitivity metric, Hessian Trace, allocates a larger483

rank budget to the intermediate and deeper layers484

of the models, with relatively less emphasis on485

the initial layers. In contrast, the local sensitivity486

metric, Topk, primarily focuses on the middle lay-487

ers, assigning more ranks to these regions. The488

Efficient Rank approach, however, assigns higher489

ranks to the initial layers and exhibits a decreasing490

trend in rank allocation for subsequent layers. Each491

of these three sensitivity metrics highlights differ-492

ent aspects of the models, demonstrating that rely-493

ing on a single source of information for decision-494

making is insufficient. This highlights the necessity495

of Sensitivity-LoRA, which integrates these diverse496

information sources to achieve dynamic rank allo-497

cation.498

4.6 Overhead Analysis 499

Cost of Obtaining the Hessian Matrix. Comput- 500

ing the Hessian matrix is a complex process, es- 501

pecially for large models. Some methods propose 502

processing the weight matrix by rows, allowing the 503

Hessian matrix to be approximated through opera- 504

tions on activation values (Frantar et al., 2022; Li 505

et al., 2025). Additionally, Cholesky decomposi- 506

tion is employed to enhance computational stability. 507

In essence, we only need to perform forward in- 508

ference on the model using a calibration set, and 509

the intermediate results can be used to approxi- 510

mate the Hessian matrix. This significantly reduces 511

the computational cost of the Hessian matrix. For 512

example, when using the PIQA (Bisk et al., 2020) 513

dataset as the calibration set for LLaMA3.1-8B, the 514

computation, including both metric calculation and 515

rank allocation, can be completed in just 25.78 sec- 516

onds. When using only a portion of the dataset, the 517

computation can be finished in under 10 seconds 518

without introducing significant errors. In contrast, 519

other methods, such as AdaLoRA, which deter- 520

mine rank allocation during training, can signifi- 521

cantly increase training time, ranging from min- 522

utes to hours. Compared to these methods, our 523

approach introduces negligible additional computa- 524

7



Figure 3: The rank allocation for each layer of GPT-2 Large and RoBERTa-base under different rank allocation
metrics. Different colors represent different allocation metrics, and the height of each bar in the histogram
corresponds to the rank allocated to that layer by the respective metric.

Figure 4: Comparison of per-step fine-tuning latency
(ms) between AdaLoRA and our HyperAdaLoRA
across varying batch sizes

tional overhead. Additionally, when we calibrate525

using different calibration sets, such as PIQA (Bisk526

et al., 2020) and WikiText2 (Merity et al., 2016),527

we obtain nearly identical results for the Hessian528

matrix, which further validates the stability of our529

method.530

Memory Analysis. Our method allocates the531

rank before training, whereas other approaches,532

such as AdaLoRA, require continuous rank real-533

location during training. Specifically, our method534

has almost exactly the same memory footprint as535

the conventional LoRA method during training,536

without introducing any additional overhead. This537

design not only avoids the extra burden associated538

with dynamic rank reallocation but also ensures the539

efficiency and stability of the training process.540

Latency Analysis. To assess the training effi-541

ciency of our method, we measure its per-step la-542

tency and compare it with that of AdaLoRA across543

various batch sizes, as shown in Figure 4. Our ap-544

proach consistently exhibits lower latency under all545

configurations, with the performance gap widening546

as the batch size increases. This trend indicates su-547

perior scalability of our method. The improvement548

is attributed to our sensitivity-aware rank assign- 549

ment strategy, which eliminates the runtime over- 550

head associated with AdaLoRA’s dynamic schedul- 551

ing. These results confirm that our method enables 552

more efficient adaptation while significantly reduc- 553

ing computational costs. 554

4.7 Additional Results 555

We conduct experiments to validate the effective- 556

ness of the design of the allocation parameters 557

(β1, β2, γ1, γ2). The results demonstrate that com- 558

bining standard deviation with scale normalization 559

can achieve more effective rank allocation (Ap- 560

pendix B.1). Additionally, we investigate the im- 561

pact of hyperparameters k and α on the perfor- 562

mance of our method. The experiments show that 563

our approach maintains robust performance across 564

various hyperparameter configurations (Appendix 565

B.2). Furthermore, we test our method on spe- 566

cific text examples and obtain favorable results 567

(Appendix C). 568

5 Conclusion 569

In this work, we introduce Sensitivity-LoRA, a 570

method that efficiently allocates ranks to weight 571

matrices based on their sensitivity, without a sig- 572

nificant computational burden. Sensitivity-LoRA 573

first performs sensitivity utilization by analyzing 574

both global and local sensitivities. It utilizes the 575

second-order derivatives (Hessian matrix) of the 576

loss function to accurately capture parameter sen- 577

sitivity. Next, it optimizes rank allocation by ag- 578

gregating global and local sensitivities, ensuring a 579

comprehensive and fair evaluation metric. Exten- 580

sive experiments consistently demonstrate the effi- 581

ciency, effectiveness and stability of our method. 582

8



6 Limitations583

In this paper, we conduct extensive experiments584

on large language models to validate the effective-585

ness of our proposed finetuning method. While our586

findings demonstrate the potential of the method587

in enhancing model performance, there are still ar-588

eas that warrant further exploration. Specifically,589

we do not yet extend our evaluation to large vi-590

sion models and multimodal large language mod-591

els, which could provide additional insights into592

the generalizability and scalability of our approach.593

Addressing these domains will be a key focus in594

future work. Additionally, although our method595

shows promising results in the tested datasets, its596

robustness under low-resource and domain-specific597

datasets, such as those involving medical or scien-598

tific data, remains to be thoroughly assessed. Ex-599

ploring these datasets could reveal further nuances600

in the method’s adaptability and potential for spe-601

cialized applications.602

References603

Armen Aghajanyan, Luke Zettlemoyer, and Sonal604
Gupta. 2020. Intrinsic dimensionality explains the605
effectiveness of language model fine-tuning. arXiv606
preprint arXiv:2012.13255.607

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,608
et al. 2020. Piqa: Reasoning about physical com-609
monsense in natural language. In Proceedings of the610
AAAI conference on artificial intelligence, volume 34,611
pages 7432–7439.612

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-613
Gazpio, and Lucia Specia. 2017. Semeval-2017614
task 1: Semantic textual similarity-multilingual and615
cross-lingual focused evaluation. arXiv preprint616
arXiv:1708.00055.617

G. Ding et al. 2022. Efficient fine-tuning for resource-618
constrained systems. Proceedings of the Machine619
Learning Conference.620

Bill Dolan and Chris Brockett. 2005. Automati-621
cally constructing a corpus of sentential paraphrases.622
In Third international workshop on paraphrasing623
(IWP2005).624

Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gho-625
lami, Michael W Mahoney, and Kurt Keutzer. 2020.626
Hawq-v2: Hessian aware trace-weighted quantiza-627
tion of neural networks. Advances in neural informa-628
tion processing systems, 33:18518–18529.629

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and630
Dan Alistarh. 2022. Gptq: Accurate post-training631
quantization for generative pre-trained transformers.632
arXiv preprint arXiv:2210.17323.633

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 634
Abhinav Pandey, Abhishek Kadian, Ahmad Al- 635
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, 636
Alex Vaughan, et al. 2024. The llama 3 herd of mod- 637
els. arXiv preprint arXiv:2407.21783. 638

N. Houlsby, A. Giurgiu, S. Jastrzebski, et al. 2019a. 639
Parameter-efficient transfer learning for nlp. Proceed- 640
ings of the 2019 Conference on Empirical Methods in 641
Natural Language Processing (EMNLP), 2019:279– 642
285. 643

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 644
Bruna Morrone, Quentin De Laroussilhe, Andrea 645
Gesmundo, Mona Attariyan, and Sylvain Gelly. 646
2019b. Parameter-efficient transfer learning for nlp. 647
In International conference on machine learning, 648
pages 2790–2799. PMLR. 649

E. J. Hu, Y. Shen, P. Wallis, et al. 2022a. Lora: Low- 650
rank adaptation of large language models. Inter- 651
national Conference on Learning Representations 652
(ICLR). 653

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 654
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 655
Weizhu Chen. 2022b. LoRA: Low-rank adaptation of 656
large language models. In International Conference 657
on Learning Representations. 658

Yahao Hu, Yifei Xie, Tianfeng Wang, Man Chen, and 659
Zhisong Pan. 2023. Structure-aware low-rank adapta- 660
tion for parameter-efficient fine-tuning. Mathematics, 661
11(20):4317. 662

E. Huang et al. 2023. Evaluating large language models 663
in complex scenarios. Journal of Computational 664
Linguistics. 665

Yann LeCun, John Denker, and Sara Solla. 1989. Opti- 666
mal brain damage. Advances in neural information 667
processing systems, 2. 668

Ariel N Lee, Cole J Hunter, and Nataniel Ruiz. 2023. 669
Platypus: Quick, cheap, and powerful refinement of 670
llms. arXiv preprint arXiv:2308.07317. 671

B. Lester, R. Al-Rfou, and N. Constant. 2021. The 672
power of scale for parameter-efficient prompt tuning. 673
Proceedings of the 2021 Conference on Empirical 674
Methods in Natural Language Processing (EMNLP), 675
2021:3045–3061. 676

C. Li et al. 2023. Fine-tuning techniques for efficient 677
model adaptation. AI Research Journal. 678

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Ja- 679
son Yosinski. 2018. Measuring the intrinsic di- 680
mension of objective landscapes. arXiv preprint 681
arXiv:1804.08838. 682

X. Li and P. Liang. 2021. Prefix-tuning: Optimizing 683
continuous prompts for generation tasks. Proceed- 684
ings of the 59th Annual Meeting of the Association for 685
Computational Linguistics (ACL), 2021:4582–4597. 686

9

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9


Yuhang Li, Ruokai Yin, Donghyun Lee, Shiting Xiao,687
and Priyadarshini Panda. 2025. Gptqv2: Efficient688
finetuning-free quantization for asymmetric calibra-689
tion. arXiv preprint arXiv:2504.02692.690

Chin-Yew Lin. 2004. Rouge: A package for automatic691
evaluation of summaries. In Text summarization692
branches out, pages 74–81.693

Yinhan Liu. 2019. Roberta: A robustly opti-694
mized bert pretraining approach. arXiv preprint695
arXiv:1907.11692, 364.696

Zequan Liu, Jiawen Lyn, Wei Zhu, Xing Tian, and697
Yvette Graham. 2024. Alora: Allocating low-rank698
adaptation for fine-tuning large language models.699
arXiv preprint arXiv:2403.16187.700

Yulong Mao, Kaiyu Huang, Changhao Guan, Ganglin701
Bao, Fengran Mo, and Jinan Xu. 2024. Dora: En-702
hancing parameter-efficient fine-tuning with dynamic703
rank distribution. arXiv preprint arXiv:2405.17357.704

Stephen Merity, Caiming Xiong, James Bradbury, and705
Richard Socher. 2016. Pointer sentinel mixture mod-706
els. Preprint, arXiv:1609.07843.707

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-708
Jing Zhu. 2002. Bleu: a method for automatic evalu-709
ation of machine translation. In Proceedings of the710
40th annual meeting of the Association for Computa-711
tional Linguistics, pages 311–318.712

Adam Paszke, Sam Gross, Francisco Massa, Adam713
Lerer, James Bradbury, Gregory Chanan, Trevor714
Killeen, Zeming Lin, Natalia Gimelshein, Luca715
Antiga, et al. 2019. Pytorch: An imperative style,716
high-performance deep learning library. Advances in717
neural information processing systems, 32.718

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,719
Kyunghyun Cho, and Iryna Gurevych. 2020.720
Adapterfusion: Non-destructive task composition for721
transfer learning. arXiv preprint arXiv:2005.00247.722

A. Qin et al. 2023. Advances in state-of-the-art natural723
language processing. Journal of NLP Research.724

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,725
Dario Amodei, Ilya Sutskever, et al. 2019. Language726
models are unsupervised multitask learners. OpenAI727
blog, 1(8):9.728

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.729
Know what you don’t know: Unanswerable questions730
for squad. arXiv preprint arXiv:1806.03822.731

Richard Socher, Alex Perelygin, Jean Wu, Jason732
Chuang, Christopher D Manning, Andrew Y Ng, and733
Christopher Potts. 2013. Recursive deep models for734
semantic compositionality over a sentiment treebank.735
In Proceedings of the 2013 conference on empiri-736
cal methods in natural language processing, pages737
1631–1642.738

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan 739
Kobyzev, and Ali Ghodsi. 2022. Dylora: Parameter 740
efficient tuning of pre-trained models using dynamic 741
search-free low-rank adaptation. arXiv preprint 742
arXiv:2210.07558. 743

Alex Wang. 2018. Glue: A multi-task benchmark and 744
analysis platform for natural language understanding. 745
arXiv preprint arXiv:1804.07461. 746

F. Wang et al. 2023. Practical applications of llms in 747
specialized domains. Specialized AI Applications. 748

A Warstadt. 2019. Neural network acceptability judg- 749
ments. arXiv preprint arXiv:1805.12471. 750

Adina Williams, Nikita Nangia, and Samuel R Bow- 751
man. 2017. A broad-coverage challenge corpus for 752
sentence understanding through inference. arXiv 753
preprint arXiv:1704.05426. 754

Thomas Wolf. 2020. Transformers: State-of-the- 755
art natural language processing. arXiv preprint 756
arXiv:1910.03771. 757

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yun- 758
tian Deng, Radha Poovendran, Yejin Choi, and 759
Bill Yuchen Lin. 2024. Magpie: Alignment data 760
synthesis from scratch by prompting aligned llms 761
with nothing. arXiv preprint arXiv:2406.08464. 762

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 763
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 764
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech- 765
nical report. arXiv preprint arXiv:2412.15115. 766

E. Zaken, Y. Goldberg, and S. Ravfogel. 2022. Bitfit: 767
Simple parameter-efficient fine-tuning for transform- 768
ers. Transactions of the Association for Computa- 769
tional Linguistics (TACL), 10:1–16. 770

D. Zhang et al. 2023a. Parameter-efficient fine-tuning 771
methods for llms. Journal of Machine Learning Re- 772
search. 773

Feiyu Zhang, Liangzhi Li, Junhao Chen, Zhouqiang 774
Jiang, Bowen Wang, and Yiming Qian. 2023b. In- 775
crelora: Incremental parameter allocation method 776
for parameter-efficient fine-tuning. arXiv preprint 777
arXiv:2308.12043. 778

Qingru Zhang, Minshuo Chen, Alexander Bukharin, 779
Nikos Karampatziakis, Pengcheng He, Yu Cheng, 780
Weizhu Chen, and Tuo Zhao. 2023c. Adalora: Adap- 781
tive budget allocation for parameter-efficient fine- 782
tuning. arXiv preprint arXiv:2303.10512. 783

Ruiyi Zhang, Rushi Qiang, Sai Ashish Somayajula, and 784
Pengtao Xie. 2024. Autolora: Automatically tuning 785
matrix ranks in low-rank adaptation based on meta 786
learning. arXiv preprint arXiv:2403.09113. 787

B. Zhu et al. 2023a. Expanding frontiers in large lan- 788
guage models. AI Frontier Research. 789

B. Zhu et al. 2023b. Large language models: Progress 790
and applications. Advances in NLP. 791

10

https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843


A Experimental Setup792

A.1 Baselines793

We adopt several representative methods, includ-794

ing HAdapter (Houlsby et al., 2019b), PAdapter795

(Pfeiffer et al., 2020), LoRA (Hu et al., 2022b)796

with uniform rank allocation, AdaLoRA (Zhang797

et al., 2023c) and DyLoRA (Valipour et al., 2022),798

as our baselines. HAdapter (Houlsby et al., 2019b)799

and PAdapter (Pfeiffer et al., 2020) are parameter-800

efficient fine-tuning methods based on adapters.801

They achieve rapid adaptation to specific tasks802

by inserting lightweight adapter modules into pre-803

trained models, eliminating the need to fine-tune804

the entire model. LoRA (Hu et al., 2022b) ap-805

proximates parameter updates by adding low-rank806

decomposition matrices to the weight matrices of807

pre-trained models, thereby reducing the number808

of parameters required for fine-tuning. AdaLoRA809

(Zhang et al., 2023c) dynamically adjusts the rank810

of low-rank matrices in different model layers to811

match their varying contributions to model per-812

formance. DyLoRA (Valipour et al., 2022) is a813

dynamic low-rank adaptation technique that sorts814

the representations learned by adapter modules at815

different ranks during training and trains LoRA816

blocks to cover a range of ranks rather than a single817

rank.818

A.2 Implementation Details819

Our code is implemented using the PyTorch820

(Paszke et al., 2019) framework and Transform-821

ers (Wolf, 2020) libraries, with all experiments822

conducted on four NVIDIA A100 GPUs. When823

we calibrate using different calibration sets, such824

as PIQA (Bisk et al., 2020) and WikiText2 (Mer-825

ity et al., 2016), we obtain nearly identical results826

for the Hessian matrix, which further validates the827

stability of our method. The details of the approxi-828

mate Hessian matrix computation can be found in829

Section 4.6. We designate the local metric STopk830

with k set to half of the total number of diagonal831

elements, and set the parameter α in the Efficient832

Rank metric to 0.85. The values of some param-833

eters (β1, β2, γ1, γ2) follow the settings described834

in Section 3, and the effectiveness of this design is835

demonstrated in Section 4. We set the average rank836

of each matrix to 4 for NLU and 8 for NLG. The837

comparison methods are required to use a similar838

number of finetuning parameters. The training is839

performed using the Adam optimizer with a learn-840

ing rate of 5 × 10−4, a batch size of 32 for 10841

epochs. 842

B Parameter Analysis 843

B.1 Effectiveness of Allocation Parameter 844

We conduct validation experiments on the allo- 845

cation parameters (β1, β2, γ1, γ2) to assess the 846

effectiveness of the proposed weighted formula 847

(which is consistently applied to the local sensitiv- 848

ity weight β1, β2 and the global local fusion weight 849

γ1, γ2, as mentioned in Section 3). Specifically, we 850

compare our design with a method that does not 851

consider the standard deviation of the metrics and 852

instead assigns equal weights to each metric (using 853

β1 = 0.5
µST

, β2 = 0.5
µSE

, γ1 = 0.5
µSg

, γ2 = 0.5
µSl

). As 854

shown in Table 4, our parameter strategy achieves 855

superior performance across all tasks, with an aver- 856

age score of 85.94 compared to the other of 85.65. 857

The performance improvements are particularly 858

significant in the RTE, CoLA and SST-2 tasks, in- 859

dicating that our approach has better adaptability 860

to different tasks. These results demonstrate that 861

combining the standard deviation with scale nor- 862

malization can achieve more expressive and stable 863

sensitivity modeling, thereby enabling more effec- 864

tive rank allocation and overall finetuning perfor- 865

mance. 866

B.2 Hyperparameter Analysis 867

In this study, we delve into the influence of the 868

hyperparameters k and α on the performance of 869

our method. These hyperparameters are crucial 870

for the computation of the Topk and Effective 871

Rank metrics, respectively. As illustrated in Ta- 872

ble 5, we examine two representative configura- 873

tions: k = N
3 , α = 0.80 and k = N

2 , α = 0.85, 874

where N denotes the total number of diagonal ele- 875

ments in the Hessian matrix. Under both settings, 876

our method demonstrates remarkable consistency, 877

achieving average scores of 85.93 and 85.94, re- 878

spectively. These strong results highlight the ro- 879

bustness of our sensitivity based rank allocation 880

framework to reasonable variations in the metric 881

configuration. Moreover, they underscore the ef- 882

fectiveness of integrating the Topk and Effective 883

Rank metrics, which successfully capture salient 884

parameter sensitivities across different thresholds. 885

C Case Study 886

Figure 5 presents the performance of the GPT-2 887

Large and RoBERTa-base models fine-tuned using 888

11



Method MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

0.5/µ 87.49 94.32 87.61 59.90 93.47 90.69 80.50 91.18 85.65
Ours 87.58 94.59 87.73 60.20 93.62 90.74 81.81 91.27 85.94

Table 4: Performance comparison of our allocation weight parameter strategy and equal allocation weight parameter.
We compare our proposed formulation β1, β2, γ1, γ2 (σ/µ2) with a baseline β1, β2, γ1, γ2 (0.5/µ). Results are
reported on the GLUE benchmark using RoBERTa-base.

k α MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

N/3 0.80 87.55 94.52 87.72 60.21 93.62 90.70 81.82 91.34 85.93
N/2 0.85 87.58 94.59 87.73 60.20 93.62 90.74 81.81 91.27 85.94

Table 5: Performance comparison of the RoBERTa-base under different hyperparameters (k and α). The k denotes
the number of top Hessian diagonal elements used in Sw

Topk, and α is the cumulative contribution threshold used in
Sw
EffectiveRank.

Figure 5: The Case Study of the GPT-2 Large and
RoBERTa-base models. The blue boxes represent the
input test data, the green boxes indicate the reference
text or ground truth output, and the red boxes highlight
the model’s actual output.

the dynamic rank allocation method (Sensitivity-889

LoRA) on the E2E and SST-2 datasets. For the E2E890

dataset, the GPT-2 Large model generates fluent891

and grammatically correct natural language text892

that closely aligns with the reference while retain-893

ing the input information. This indicates that the894

model effectively processes structured inputs and895

excels at generating accurate and coherent natu-896

ral language descriptions. For the SST-2 dataset,897

the RoBERTa-base model achieves strong perfor-898

mance in sentiment classification tasks, accurately899

classifying input text as "Positive." These results900

demonstrate the effectiveness of the Sensitivity- 901

LoRA method in enhancing model performance on 902

both text generation and classification tasks. 903

12


	Introduction
	Related Work
	Additive PEFT
	Selective PEFT
	Reparameterized PEFT
	Hybrid PEFT

	Methodology
	Weight Sensitivity
	Rank Allocation Metric
	 Global Metric
	Local Metric

	Rank Allocation Strategy

	Experiments
	Experimental Setup
	Main Results
	Ablation Study
	Comparison of Rank Allocation Methods
	Rank Allocation Under Different Metrics
	Overhead Analysis
	Additional Results

	Conclusion
	Limitations
	Experimental Setup
	Baselines
	Implementation Details

	Parameter Analysis
	Effectiveness of Allocation Parameter
	Hyperparameter Analysis

	Case Study

