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Abstract001

As large language models (LLMs) are pro-002
gressively deployed in various real-world ap-003
plications, personalization of LLMs has be-004
come increasingly important. While various005
approaches to LLM personalization such as006
prompt-based and training-based methods have007
been actively explored, the development of008
effective decoding-time algorithms remains009
largely overlooked, despite their demonstrated010
potential. In this paper, we propose COPE011
(Contrasting Personal Preference), a novel012
decoding-time approach applied after perform-013
ing parameter-efficient fine-tuning (PEFT) on014
user-specific data. Our core idea is to lever-015
age reward-guided decoding specifically for016
personalization by maximizing each user’s im-017
plicit reward signal. We evaluate COPE across018
five open-ended personalized text generation019
tasks. Our empirical results demonstrate that020
COPE achieves strong performance, improv-021
ing personalization by an average of 10.57% in022
ROUGE-L,without relying on external reward023
models or additional training procedures.024

1 Introduction025

Personalization of large language models (LLMs)026

(Achiam et al., 2023; Team et al., 2023; Anthropic,027

2024; Touvron et al., 2023) — the process of align-028

ing model outputs with individual user preferences029

— has received growing attention as LLMs are in-030

creasingly deployed in real-world applications such031

as writing assistants (Mysore et al., 2024), content032

recommendation (Zhang et al., 2024), and review033

generation (Peng et al., 2024). Prompt-based per-034

sonalization (Santurkar et al., 2023; Hwang et al.,035

2023), which augments a user query by retrieving036

prior interactions or constructing a summarized037

user profile, is arguably considered as one of the038

most straightforward approaches. However, its ef-039

fectiveness is often limited by the absence of direct040

learning from user data. In contrast, training-based041

personalization (Zhao et al., 2024; Kim and Yang,042
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Figure 1: Implicit reward maximization via con-
trastive preference. Under an implicit reward model
that leverages the interaction between a personalized
and a non-personalized generic model, generated texts
better align with user preferences.

2025) more effectively captures user preferences 043

by updating model parameters, but it introduces 044

challenges such as catastrophic forgetting and in- 045

creased computational costs. To mitigate these lim- 046

itations, recent work such as One PEFT per User 047

(Tan et al., 2024) has demonstrated that lightweight 048

parameter-efficient fine-tuning (PEFT) offers an 049

effective solution for personalizing LLMs. Unlike 050

prior works mentioned above, we turn to a new 051

perspective to effectively personalize LLMs. 052

In this work, we introduce COPE (Contrasting 053

Personal preference), a new paradigm for LLM 054

personalization that operates at the decoding stage, 055

applied after PEFT on user-specific data. At a high 056

level, COPE is a form of reward-guided decod- 057

ing (Deng and Raffel, 2023; Khanov et al., 2024; 058

Lightman et al., 2024), an approach that effectively 059

steers LLM outputs toward desired properties (e.g., 060
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Figure 2: Illustration of COPE (Contrasting Prefernece for Personalized LLM Decoding). The training pipeline
(left) builds an expert user model via Direct Preference Optimization (DPO) with synthetic negatives. The reward-
guided decoding method (right) contrasts this user model with a base model at the token level, maximizing implicit
user reward during both training and decoding for improved personalization.

improved reasoning) by maximizing a reward func-061

tion, adapted specifically for personalizing LLMs062

across varying contexts and user goals.063

Unlike conventional reward-guided decoding064

methods, COPE does not require an external re-065

ward model to estimate rewards. Instead, it lever-066

ages the implicit user reward signal, which can be067

efficiently approximated using the likelihoods from068

both the PEFT-tuned model and the original base069

model. Building on our key insight which connects070

this implicit reward to the objective of contrastive071

decoding (Li et al., 2023), the proposed COPE can072

be implemented easily (see overview in Figure 2).073

In addition, we further enhance PEFT for LLM074

personalization by encouraging the model to better075

capture the implicit user reward. The core idea076

is to contrast implicit rewards between a positive077

response (provided by the user) and a negative re-078

sponse (unlikely to be from the user, e.g., from079

other users), using Direct Preference Optimization080

(DPO) (Rafailov et al., 2023). To avoid the practi-081

cal and privacy challenges of relying on data from082

other users, we synthesize negative responses by083

generating outputs with low implicit rewards via084

Best-of-N sampling (Gui et al., 2024). This train-085

ing method not only improves the effectiveness086

of PEFT, but also enhances the performance of087

our proposed reward-guided decoding by enabling088

more accurate modeling of the implicit user reward.089

An overview of full pipeline is shown in Figure 2.090

We demonstrate the effectiveness of COPE with091

the experiments in five different personalized open-092

ended text generation tasks from Language Model 093

Personalization (LaMP) (Salemi et al., 2024) and 094

LongLaMP (Kumar et al., 2024) benchmarks. 095

Specifically, COPE achieves an average relative 096

improvement of 10.57% in ROUGE-L across all 097

tasks, compared to the task-finetuned model. No- 098

tably, COPE also outperforms a simply personal- 099

ized model that lacks the contrastive mechanism, 100

with an average ROUGE-L gain of 5.67% across 101

tasks. Furthermore, the effectiveness of COPE is 102

well-generalized across different scales and types 103

of state-of-the-art LLMs. Our robust experimental 104

results show that the implicit reward maximization 105

of COPE further enhances alignment with individ- 106

ual user preferences. Together, these findings high- 107

light COPE as a promising approach for scalable 108

and effective LLM personalization. 109

2 Related Works 110

LLM personalization. Given the diversity of 111

user goals and preferences, various approaches to 112

personalization of LLM have been explored. One 113

common strategy is prompt-based personalization, 114

wherein techniques such as retrieval-augmented 115

generation (RAG) (Lewis et al., 2021) and prompt- 116

augmented generation (PAG) (Richardson et al., 117

2023) dynamically inject user-specific context into 118

each prompt at inference. However, these meth- 119

ods lack parametric memory and rely entirely on 120

prompt construction, making them vulnerable to 121

context length limitations and insufficient ground- 122

ing. On the other hand, training-based personaliza- 123
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tion methods, which fine-tune the model on user-124

specific data, have demonstrated superior perfor-125

mance in capturing user preferences compared to126

prompting-based approaches (Zhao et al., 2024;127

Zhuang et al., 2024). Nevertheless, even these128

methods face several limitations. Firstly, these129

methods are computationally intensive, as they in-130

volve modifying model parameters. In fact, in the131

worst case, frequent retraining may be necessary132

to reflect evolving user preferences (Madotto et al.,133

2021). Moreover, these methods are susceptible134

to catastrophic forgetting—a phenomenon where135

adapting to new user data can lead the model to136

forget previously learned preferences or general137

knowledge (McCloskey and Cohen, 1989; de Mas-138

son d’Autume et al., 2019).139

A recent and practical method to address140

these limitations is the utilization of lightweight141

parameter-efficient fine-tuning (PEFT), which of-142

fers an effective and scalable approach to personal-143

izing LLMs (Zhang et al., 2024, 2025). Mean-144

while, personalization at the decoding stage re-145

mains largely unexplored in existing methods. Mo-146

tivated by this gap, we aim to address the afore-147

mentioned limitations through a decoding-based148

approach to personalization.149

LLM decoding. Various decoding strategies150

have been explored and applied in LLMs to boost151

their performance. For instance, contrastive de-152

coding has demonstrated strong effectiveness not153

only in open-ended text generation (Li et al., 2023),154

but also in reasoning (O’Brien and Lewis, 2023),155

retrieval-augmented generation (RAG) (Shi et al.,156

2023), and even multi-modal generation (Leng157

et al., 2023). On the other hand, reward-guided158

decoding has emerged as another promising ap-159

proach, aiming to improve alignment and reason-160

ing capabilities directly at the decoding stage, with-161

out additional model training. To further explain,162

reward-guided decoding guides the generation pro-163

cess using reward signals, offering a lightweight164

yet effective alternative for steering outputs toward165

desired behaviors (Deng and Raffel, 2023; Light-166

man et al., 2024). In fact, adaptive reward shap-167

ing, as proposed by Khanov et al. (2024), has also168

been shown to improve sample efficiency during169

decoding. Despite the growing interest in both170

decoding strategies and personalization, there is171

no prior work that effectively leverages decoding172

methods for personalization due to the challenge173

of modeling separate rewards for each user. In this174

aspect, we propose the first guided decoding ap- 175

proach for personalization that does not require any 176

external reward models. Specifically, our method 177

can be easily implemented using contrastive decod- 178

ing, thereby enabling more practical and scalable 179

deployment in real-world settings. 180

Preference learning. Preference learning is an 181

approach that ensures alignment with human or 182

task-specific preferences by leveraging relative 183

feedback between outputs, rather than relying on 184

absolute labels. One traditional approach to pref- 185

erence learning is Reinforcement Learning from 186

Human Feedback (RLHF) (Ouyang et al., 2022), 187

which involves fitting a reward model based on 188

human-labeled comparisons and optimizing model 189

policies through reinforcement learning. However, 190

RLHF often requires complex and costly training 191

procedures. To address this limitation, recent meth- 192

ods such as Direct Preference Optimization (DPO) 193

(Rafailov et al., 2023) simplify the process by di- 194

rectly fine-tuning models through binary classifica- 195

tion between preferred and dispreferred outputs. 196

Building on these advances, we propose a per- 197

sonalized fine-tuning method that integrates pref- 198

erence learning by treating user profile responses 199

as positive examples and non personalized outputs 200

as negative examples. This training formulation 201

supports contrastive decoding, due to the fact that 202

maximization of implicit user reward is plausible 203

both in the training and decoding section. In other 204

words, this conceptual alignment between prefer- 205

ence learning and contrastive decoding ensures con- 206

sistency between training and inference, enabling 207

more effective personalization without external re- 208

ward models or additional training procedures. 209

3 COPE: Contrasting Preference for 210

Personalized LLM Decoding 211

In this section, we present our new decoding frame- 212

work for LLM personalization by Contrasting 213

Personal preference (COPE). Our key idea is in- 214

corporating implicit reward signals for user pref- 215

erence to guide both training and inference. We 216

first present our problem setup in Section 3.1. Next, 217

we present the proposed decoding scheme, COPE, 218

in Section 3.2. Lastly, in Section 3.3, we present 219

our training scheme to further improve PEFT for 220

the personalization, by explicitly maximizing user 221

reward based on the synthetic negative response. 222
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3.1 Preliminary223

Let us first assume that we have the historical in-224

teraction data Huser = {(xi, yi)}Ni=1 for a target225

user. Then, for a given input query x, the goal of226

LLM personalization is to generate a personalized227

output y from LLM π that aligns with the user’s228

preferences and behaviors exhibited in Huser. A229

representative approach for LLM personalization230

is to adapt a generic pre-trained LLM πbase using231

parameter-efficient fine-tuning (PEFT) techniques,232

such as LoRA (Hu et al., 2021).233

Formally, let ∆user denote the user-specific234

PEFT module.1 The personalized model is then235

defined as πuser = πbase +∆user, such that only236

∆user is optimized using the user’s data Huser.237

For example, Tan et al. (2024) optimizes ∆user238

on Huser via conventional supervised fine-tuning239

(SFT) that minimizes cross-entropy between the240

output of πuser(xi) and ground-truth label yi. Af-241

ter optimizing ∆user, πuser is expected to generate242

the responses that align with the user’s preferences.243

3.2 Optimizing personal preference via244

contrastive decoding with PEFT245

Assume that we have access to a generic base246

model πbase and a personalized model πuser. Then,247

to generate response y that better align with user’s248

preferences for a given test query x, COPE adopts249

a reward-guided decoding strategy that contrasts250

the token-level likelihoods under these two models.251

Let y<t = (y1, . . . , yt−1) denote the partial out-252

put sequence at decoding step t. Then, follow-253

ing Li et al. (2023), we first define a plausibility-254

constrained candidate set of next tokens as:255

Vt
head =

{
yt ∈ V

∣∣πuser(yt | y<t) ≥ τt}, (1)256

where τt := τ · maxw∈V πuser(w | y<t) is an257

adaptive threshold determined by a hyperparam-258

eter τ ∈ [0, 1] and V denotes the vocabulary for259

πuser. For each candidate token yt ∈ Vt
head, we260

compute an implicit user reward by contrasting its261

likelihoods under the personalized and base mod-262

els:263

ruser(yt) = log
πuser(yt | y<t)

πbase(yt | y<t)α
, (2)264

where α ≥ 0 is a contrastive weight hyperparam-265

eter. This reward encourages the selection of to-266

kens that are strongly preferred by the personalized267

1In this work, we only consider LoRA.

model while being penalized under the base model, 268

yields the outputs that are both user-aligned and 269

distinctive. Finally, the next token y∗t is selected 270

which maximizes the implicit user reward: 271

y∗t = arg max
yt∈Vt

head

ruser(yt). (3) 272

Rationale behind implicit user reward. Here, 273

we present the theoretical intuition behind our pro- 274

posed implicit user reward ruser (Eq. 2). To this 275

end, we revisit the concept of implicit reward in- 276

troduced in DPO (Rafailov et al., 2023), which has 277

been widely adopted in the LLM alignment litera- 278

ture (Chen et al., 2025; Kim et al., 2025; Cui et al., 279

2025). Specifically, Rafailov et al. (2023) show that 280

the reward function r, which captures human pref- 281

erences, can be approximated under RLHF frame- 282

work (Ouyang et al., 2022) as the log-likelihood 283

ratio between the optimal (aligned) LLM policy πr 284

and a reference policy πref: 285

r(y) ≈ β · log πr(y)

πref(y)
, (4) 286

where β is a hyperparameter controlling the 287

strength of KL regularization in RLHF.2 This 288

derivation of implicit reward enables reward model- 289

ing without an explicit reward model using only the 290

relative likelihoods under two LLM policies, and 291

yields much efficient preference learning algorithm, 292

called DPO (see details in Appendix F). 293

In our setting, however, the personalized model 294

πuser is not trained with explicit KL regularization, 295

as in standard RLHF. Nevertheless, we argue that 296

the PEFT used for training πuser implicitly imposes 297

a similar constraint. For example, in LoRA (Hu 298

et al., 2021), only the newly introduced low-rank 299

matrices are updated, while the original model pa- 300

rameters remain fixed. This architectural constraint 301

implicitly regularizes the updated model, prevent- 302

ing it from deviating significantly from the base 303

model. As a result, the personalized model πuser 304

trained via PEFT remains close to the base model 305

πbase, and the log-likelihood ratio between them 306

can serve as a valid proxy for an implicit reward 307

signal—namely, ruser. 308

Interestingly, we note that this formulation, 309

based on the ratio of log-likelihoods between two 310

models, also appears in contrastive decoding (Li 311

et al., 2023). In this sense, our insight reveals 312

2While y is generated for input x, we omit this in Eq. 4 for
the simplicity.
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a novel connection between two popular decod-313

ing paradigms, contrastive decoding and reward-314

guided decoding. Following Li et al. (2023), we315

additionally introduce a hyperparameter α to con-316

trol the strength of contrastive adjustment during317

decoding and further enhance personalization.318

3.3 Aligning PEFT to user preference via319

DPO with synthetic negative response320

While COPE effectively maximizes the implicit321

user reward during decoding with the personal-322

ized model πuser, its performance can be further323

improved by explicitly aligning πuser with the324

user’s preferences during training. One natural ap-325

proach is to apply preference learning algorithms326

such as RLHF or DPO. However, a key practical327

challenge is a lack of negative examples ((i.e., re-328

sponses unlikely to come from the user) in the329

user dataset Huser. To address this, we propose a330

simple yet effective approach that synthesizes neg-331

ative examples leveraging the implicit user reward332

ruser. Specifically, for each train query xi ∈ Huser,333

we sample K candidate responses {ỹi,1, . . . , ỹi,K}334

from the generic base model πbase. Among these,335

we select the response with the lowest implicit user336

reward, i.e., the one most unlikely from the user:337

ỹi,∗ = arg min
y∈{ỹi,1,...,ỹi,K}

∑
t

ruser(yt), (5)338

where the contrastive weight α is set to 1.339

Then, we construct a preference dataset Dpref :=340

{(xi, yipos, yineg)}Ni=1 where (xi, yipos) from Hu,341

i.e., yipos = yi, and yineg = ỹi,∗.342

Using this preference dataset Dpref, we further343

fine-tune πuser with the following DPO loss:344

Ldpo = E
(x,ypos,yneg)∈Dpref

[
− log σ

(
β · rdpo

)]
, (6)345

where rdpo = ruser(y
pos) − ruser(y

neg), and σ(·)346

denotes the sigmoid function. Optimizing this loss347

encourages the personalized model πuser to assign348

higher reward to user-aligned responses compared349

to generic ones. This better modeling of implicit350

user reward further improves the effectiveness of351

reward-guided decoding through COPE.352

4 Experiments353

In this section, we design our experiments to inves-354

tigate the following questions:355

◦ Does COPE yield better personalization than356

existing baselines? (Table 1)357

◦ Is COPE applicable to models of varying archi- 358

tectures and parameter scales? (Table 2) 359

◦ How different components in COPE contribute 360

to personalization performance? (Table 3) 361

◦ How sensitive is the performance of COPE to 362

different configuration settings? (Figure 3) 363

4.1 Setups 364

Datasets and metrics. We evaluate the effec- 365

tiveness of COPE primarily on personalized text 366

generation tasks from the Large Language Model 367

Personalization (LaMP) (Salemi et al., 2024) and 368

LongLaMP (Kumar et al., 2024) benchmarks. 369

Specifically, we focus on the following five tasks: 370

news headline generation (LaMP 4), scholarly 371

title generation (LaMP 5), abstract generation 372

(LongLaMP 2), review writing (LongLaMP 3), 373

and topic writing (LongLaMP 4). Throughout our 374

framework, we follow the setup of an earlier work 375

(Tan et al., 2024): we use 100 users with the longest 376

activity histories as the test set, and the remaining 377

users to train the task-adapted base model. 378

For evaluation, we mainly report ROUGE-1 and 379

ROUGE-L scores across all tasks, which serve as 380

standard metrics to measure the content relevance 381

and structural similarity between the generated and 382

ground-truth texts. 383

Baselines. We compare COPE against several 384

baselines to generate personalized responses from 385

LLMs as follows: (1) Base – generation us- 386

ing a vanilla model without any supervised fine- 387

tuning; (2) RAG (Lewis et al., 2021) – a retrieval- 388

augmented generation method that directly injects 389

user-related histories into the prompt without addi- 390

tional training; (3) PAG (Richardson et al., 2023) – 391

a prompt-augmented generation approach that ad- 392

ditionally incorporates user profiles to the prompt; 393

(4) TAM (Tan et al., 2024) – generation with a 394

task-adapted model trained on data from users ex- 395

cluding the test user, allowing familiarity with the 396

task but lacking personalization; (5) OPPU (Tan 397

et al., 2024) – generation with a personalized model 398

equipped with user-specific adapters trained via 399

simple supervised fine-tuning on user data. 400

Implementation details. Under the methods in- 401

cluding training step (TAM, OPPU, COPE), all 402

models are trained using AdamW (Loshchilov and 403

Hutter, 2019) with a weight decay of 0.01. Linear 404

learning rate decay was used with a warm-up ratio 405

of 0.1. The batch size for the initial training of the 406
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Table 1: Main Results. ROUGE-1 and ROUGE-L scores are reported for five tasks: Abstract Generation, Review
Writing, and Topic Writing from LongLaMP; News Headline and Scholarly Title from LaMP. All experiments are
conducted using Mistral-7B-Instruct-v0.3.

Methods
Abstract Generation Review Writing Topic Writing News Headline Scholarly Title

ROUGE-1 ROUGE-L ROUGE-1 ROUGE-L ROUGE-1 ROUGE-L ROUGE-1 ROUGE-L ROUGE-1 ROUGE-L

Base 0.341 0.186 0.287 0.126 0.246 0.105 0.119 0.105 0.409 0.324
RAG 0.347 0.205 0.272 0.128 0.243 0.115 0.141 0.124 0.425 0.347
PAG 0.344 0.186 0.256 0.125 0.262 0.107 0.118 0.102 0.372 0.289
TAM 0.357 0.204 0.289 0.122 0.253 0.107 0.200 0.179 0.514 0.456
OPPU 0.378 0.218 0.319 0.134 0.278 0.112 0.203 0.182 0.510 0.454

CoPE (Ours) 0.392 0.239 0.335 0.146 0.281 0.120 0.205 0.184 0.519 0.461

task-adapted model is set to 8, while subsequent407

training stages use 4 to better capture the style of408

each user. Supervised training is conducted for 2409

epochs with a learning rate of 1e-4 for LongLamP410

and 1e-5 for Lamp. Subsequently, DPO training411

uses a 5e-6 learning rate for 1 epoch on LongLaMP412

and 2 epochs on LaMP. Also, we note that OPPU413

is continuously applied after TAM, following Tan414

et al. (2024). Similar to this, the proposed DPO415

step (Eq. 6) is applied after OPPU (see Figure 1).416

All of the experiments are conducted using417

Mistral-7B-Instruct-v0.3,3 except for those418

reported in Table 2. Greedy decoding is used to419

eliminate randomness, except for negative sample420

generation. In this case, we use vLLM (Kwon et al.,421

2023) with a temperature of 1.0 for faster decoding,422

generate K = 3 candidates using the task-adapted423

model, and select the final negative using the re-424

ward function (Eq. 5). For DPO training (Rafailov425

et al., 2023), we set coefficient for KL regular-426

ization β = 3.0 for LaMP tasks and β = 0.05427

for LongLaMP tasks. At this point, we treat the428

task-adapted model as the base model πbase and429

the DPO-trained model as the user model πuser in430

Eq. 2. To implement the proposed reward-guided431

decoding (Eq. 3), we adopt the contrastive decod-432

ing (Li et al., 2023), with a plausibility threshold433

of τ = 0.1 for both LaMP and LongLaMP tasks.434

The contrastive weight α is set to 0.3 for LaMP435

and 0.1 for LongLaMP tasks. We apply a repetition436

penalty of 1.0 for LaMP and 7.0 for LongLaMP,437

after observing that these values offered acceptable438

control over repetition in preliminary experiments.439

4.2 Main results440

Table 1 summarizes the experimental results on441

five personalized open-ended text generation tasks.442

3https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3

First, it is observed that the effectiveness of 443

prompting-based methods is indeed limited. In par- 444

ticular, RAG and PAG exhibit limited improvement 445

compared to training-based approaches, and even 446

they are sometimes worse than Base method, which 447

does not apply any personalization technique. This 448

observation validates the necessity for developing 449

a training-based method like the proposed frame- 450

work. Next, the experimental results in Table 1 also 451

demonstrate that COPE consistently outperforms 452

all baseline methods across all tasks and metrics. 453

For instance, COPE achieves an average relative 454

improvement of 10.57% in ROUGE-L compared 455

to the task-adapted model, TAM. Notably, COPE 456

even outperforms a personalized model OPPU that 457

relies solely on explicit user-specific fine-tuning, 458

with average relative improvement of 5.67% in 459

ROUGE-L. These results highlight the effective- 460

ness of our framework, which maximizes implicit 461

reward signals to better align with user preferences. 462

We further observe a task-specific trend across 463

benchmarks. While RAG shows some effective- 464

ness in LaMP tasks, its performance declines in 465

the LongLaMP setting. For instance, RAG scores 466

5.23% lower than Base in review writing (ROUGE- 467

1) and 1.22% lower in topic writing (ROUGE- 468

1). This highlights the increased difficulty of 469

LongLaMP tasks, where simple retrieval of user 470

history is no longer sufficient. In contrast, COPE 471

remains effective even in this more demanding set- 472

ting. In fact, COPE demonstrates a significantly 473

higher relative improvement in the more challeng- 474

ing LongLaMP setting—achieving a 16.33% gain 475

in ROUGE-L over the task-adapted model, com- 476

pared to just 3.89% in LaMP. This suggests that 477

LongLaMP tasks may offer greater room for per- 478

sonalization gains when properly modeled. We also 479

note that the tasks in LongLaMP tend to involve 480

more subjective or user-specific expression, mak- 481
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Table 2: Compatibility of COPE. ROUGE-L scores on
the Abstract Generation task across different LLMs.

Methods LLaMA 3.1-8B Gemma 3-4B Qwen 2.5-1.5B

Base 0.172 0.135 0.130
RAG 0.183 0.170 0.128
PAG 0.183 0.169 0.130
TAM 0.198 0.181 0.150
OPPU 0.202 0.194 0.163

COPE (Ours) 0.261 0.237 0.233

ing them especially well-suited for personalized482

generation when guided by an effective framework483

like COPE.484

4.3 Additional analyses485

Here, we provide additional analyses of COPE486

with the experiments on abstract generation from487

LongLaMP and news headline generation from488

LaMP. More analyses are in Appendix E.489

Generalization to various LLMs. In this sec-490

tion, we explore the applicability of COPE to491

various LLMs and sizes. Results are presented492

in Table 2. The experimental results validate493

that COPE generalizes well across a diverse494

range of LLMs, including LLaMA-3.1-8B-Instruct495

(Grattafiori et al., 2024), Gemma-3-4B-it (Team496

et al., 2025), and Qwen2.5-1.5B-Instruct (Qwen497

et al., 2025). Compared to TAM, COPE signifi-498

cantly improves ROUGE-L by 31.8% on LLaMA-499

3.1-8B , 30.9% on Gemma-3-4B-it, and 55.3%500

on Qwen2.5-1.5B. Similarly, compared to OPPU,501

COPE achieves a relative improvement of 29.2%502

on LLaMA-3.1-8B, 22.2% on Gemma-3-4B-it, and503

42.9% on Qwen2.5-1.5B. These consistent im-504

provements suggest that COPE does not simply505

rely on a specific environment setting. Instead, our506

framework is generalizable and flexible with re-507

spect to model architecture and parameter scale.508

This makes COPE a broadly applicable framework509

for deployment across diverse LLMs .510

Ablation study. We now proceed to validate the511

individual components of COPE. To assess the512

contribution of each component to the overall per-513

formance of COPE, we perform a detailed abla-514

tion study. For this analysis, we primarily con-515

ducted experiments on abstract generation and516

news headline tasks, serving as representative tasks517

for LongLaMP and LaMP, respectively. The results518

are presented in Table 3. Here, it is observed that519

adding each component progressively improves the520

performance. Comparing with the OPPU baseline,521

Table 3: Ablation study. The effects of contrastive de-
coding (CD) and direct preference optimization (DPO).

CD DPO
Abstract Generation News Headline

ROUGE-1 ROUGE-L ROUGE-1 ROUGE-L

OPPU ✗ ✗ 0.378 0.218 0.203 0.181
✓ ✗ 0.385 0.232 0.204 0.183
✗ ✓ 0.386 0.230 0.203 0.182

COPE (Ours) ✓ ✓ 0.392 0.239 0.205 0.184

applying only contrastive decoding increases the 522

scores in both tasks, as it encourages the model to 523

generate outputs that are more distinguishable from 524

less preferred candidates. Meanwhile, in the train- 525

ing side, introducing only preference-aligned train- 526

ing also improves the performance of the model, as 527

it guides the model to internalize user preferences 528

by learning to favor higher-quality responses over 529

inferior ones during fine-tuning. 530

Finally, when combining these components to 531

formulate an implicit reward maximization objec- 532

tive both during training and decoding, we observe 533

the highest performance. These results indicate 534

that each component independently contributes to 535

performance improvements, and their integration 536

yields the most substantial gains across tasks. This 537

is because both components work synergistically to 538

align model outputs with implicit user preferences: 539

training encourages the model to internalize pref- 540

erence signals through comparisons between bet- 541

ter and worse responses, while decoding promotes 542

outputs that more closely reflect these learned pref- 543

erences at inference time. Together, they implicitly 544

guide the model to maximize a user-aligned reward 545

signal, even in the absence of explicit supervision 546

from external model. 547

Sensitivity of COPE. Figure 3 presents a sensi- 548

tivity analysis of key components in the proposed 549

framework. In this section, we conduct experi- 550

ments on the news headline generation task, chosen 551

for its shorter runtime, to explore the behavior of 552

COPE under different settings. 553

We begin by examining the choice of base model 554

for contrastive decoding (i.e., πbase to calculate 555

likelihood for the denominator in Eq. 2). We first 556

note that TAM is originally used as the base model 557

in COPE, as it yields better understanding of the 558

target task. To investigate this, we performed ex- 559

periments by varying the base models from TAM 560

to init (i.e., initial mistral model) and OPPU (i.e., 561

after adaption to user and before DPO). The results 562

are presented in Figure 3(a), and one can verify 563

that the current design choice is the best and using 564
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Figure 3: Different hyperparameters. (a) Performance variation by base model choice. (b) Effect of contrastive
strength α. (c) Effect of KL regularization β in DPO. ROUGE-1 and ROUGE-L scores are reported.

News Headline

Query Generate a headline for the following article: When we first saw Michael H. Rohde's
photography series \"Below The Floor\" on Design-Milk.com, we were floored. (Pun intended

User Answer Michael H. Rohde, German Photographer, Shoots Breathtaking Series 'Below The Floor' (PHOTOS)

TAM Craft Of The Day: Create A Floating Photo Gallery With This DIY

OPPU 'Below The Floor' Photography Series Reveals The Hidden Beauty In The Places We Walk On

CoPe (ours) 'Below The Floor' Photography Series By Michael H. Rohde Is A Whole New Perspective On The
World (PHOTOS)

Figure 4: A qualitative example of COPE on the News Headline task (LaMP 4). the output of COPE contains
more words that align with the user gold response compared to TAM and OPPU. Words overlapping with the User
Answer are highlighted. Additional qualitative examples from other tasks are provided in Appendix G.

init is the worst. The findings suggest that using565

either OPPU or TAM as the base model yields the566

best performance. We hypothesize that these mod-567

els help isolate and downweigh non-personalized568

features, allowing user-specific characteristics to569

be more prominently reflected.570

Next, we analyze the sensitivity of COPE to571

two key hyperparameters: the contrastive strength572

(α) and the KL regularization coefficient (β) in573

preference-aligned training. These two hyperpa-574

rameters are crucial in the decoding and training575

components of our framework, respectively. Fig-576

ure 3(b) shows the effect of varying the contrastive577

strength α under fixed β = 3.0. We observe that578

COPE performs reliably across a range of α values,579

with a slight peak around α = 0.3. While stronger580

contrastive signals may lead to marginal decreases581

in output quality, the overall performance remains582

stable, demonstrating the robustness of COPE to583

decoding-time variations.584

Figure 3(c) illustrates the impact of varying the585

KL regularization coefficient β during training.586

As β increases from 0.1 to 0.3, both ROUGE-1587

and ROUGE-L scores improve, after which perfor-588

mance growth starts to hinder. This suggests that 589

COPE benefits from moderate regularization while 590

remaining resilient to further increases. These re- 591

sults indicate that COPE performs consistently well 592

across a range of configurations, underscoring its 593

robustness and reliability without signs of overfit- 594

ting to specific hyperparameter values. 595

5 Conclusion 596

In this work, we propose COPE, the first decoding- 597

based framework for personalizing LLMs. Specifi- 598

cally, COPE is a reward-guided decoding approach 599

that maximizes implicit rewards of each user, 600

thereby enhancing personalization without requir- 601

ing external reward models. Our comprehensive 602

experiments show that COPE consistently outper- 603

forms various baselines across multiple tasks and 604

also is well-generalized to various types and scales 605

of LLMs. Consequently, these results demonstrate 606

that it is not only effective but also a practical frame- 607

work for decoding-time personalization. 608
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Limitations609

While the proposed COPE shows consistent im-610

provements in personalized generation, it applies611

a fixed set of hyperparameters (e.g., learning rate,612

batch size, LoRA rank) across all users, regardless613

of the size or characteristics of each user’s dataset.614

This uniform setting may not be optimal, especially615

when user data varies widely in volume or domain.616

Future work should investigate adaptive strategies617

that dynamically adjust hyperparameters based on618

user-specific data profiles. In addition, we only619

consider LoRA as PEFT for the experiments, but620

different PEFT approaches (Li and Liang, 2021;621

Liu et al., 2022) are also considerable. Neverthe-622

less, we expect that COPE is also easily deployed623

for these approaches, as our method does not explic-624

itly depend on them and PEFT methods commonly625

assume architectural constraint similar to LoRA.626

Ethics Statement627

Our work investigates LLM adaptation to specific628

user, using PEFT methods such as LoRA. To ensure629

user privacy, our approach does not store or expose630

raw user data, and only updates a small number631

of task- and user-specific parameters. In addition,632

all negative samples used for preference optimiza-633

tion are synthetically generated from a base model,634

rather than extracted from real user outputs. While635

we do not explicitly evaluate membership inference636

risks, the structure of our approach, especially the637

use of PEFT and synthetic negatives, may offer im-638

proved privacy protection compared to full-model639

fine-tuning. All datasets and models used in this640

study are publicly available and used in accordance641

with their intended purposes. We also used an AI642

assistant (ChatGPT) to refine the writing during643

manuscript preparation.644
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A Datasets901

For the experiments, we focus mainly on the text902

generation tasks provided in the LaMP (Salemi903

et al., 2024) and LongLaMP (Kumar et al., 2024)904

benchmarks. Following these benchmarks, we use905

ROUGE-1 and ROUGE-L as metrics for evaluation.906

Detailed descriptions of each task are as follows.907

LaMP 4: News Headline. This task evaluates908

the ability of a model to generate headlines for909

news articles, conditioned on an author profile con-910

taining historical article-title pairs, thereby cap-911

turing distinctive stylistic patterns in journalistic912

writing.913

LaMP 5: Scholarly Title. This task assesses the914

capacity of a model to generate appropriate titles915

for scholarly article abstracts conditioned on an au-916

thor profile of historical article-title pairs, reflecting917

distinct academic writing style.918

LongLaMP 2: Abstract Generation. This task919

focuses on evaluating the proficiency of a model in920

generating scientific abstracts given paper titles and921

keywords by leveraging an author profile of previ-922

ous publications to emulate characteristic academic923

writing style and domain-specific terminology924

LongLaMP 3: Review Writing. This task tests925

the ability of a model to generate comprehensive926

product reviews based on product specifications927

and user experiences, conditioned on a user profile928

of review history to reflect distinctive evaluative929

style and subjective perspective.930

LongLaMP 4: Topic Writing. This task evalu-931

ates the capability of a model to generate Reddit932

post content based on post summaries while main-933

taining the unique writing style of individual users,934

requiring the generation of content from a given935

summary conditioned on a user profile containing936

their previous posts.937

B Baselines Details938

Detailed explanations for each baseline are pro-939

vided below. Black boxes indicate vanilla mod-940

els and prompt-base baselines (i.e., training-free),941

while white boxes represent training-base ones.942

■ Base model refers to the generation with the943

original, unmodified LLM without any task-944

specific fine-tuning or additional conditioning.945

It represents the vanilla, pre-trained model as946

released.947

■ RAG: Retrieval-Augmented Generation 948

(Lewis et al., 2021) is a method that retrieves 949

user-related history records and directly incor- 950

porates them into the prompt. Following the 951

setup in LaMP (Salemi et al., 2024), we re- 952

trieve the top-k history records for each user. 953

In our experiments, we set k = 3, meaning the 954

three most relevant records are selected using 955

BM25 (Robertson and Walker, 1994)—a stan- 956

dard keyword-based retrieval method. We im- 957

plement BM25 using the rank_bm25 library 958

with BM25Okapi. 959

■ PAG: Profile-Augmented Generation 960

(Richardson et al., 2023) is a technique for 961

personalizing LLM outputs by conditioning 962

on structured user profiles. Following the 963

prior work (Tan et al., 2024), we generate user 964

profiles using the vicuna-7B model (Chiang 965

et al., 2023), based on the past responses 966

of a typical user. Each profile captures key 967

stylistic characteristics, such as tone, lexical 968

choices, and recurring templates. The model 969

then uses these profiles as a guide to generate 970

output that aligns closely with the user style. 971

❑ TAM: Task Adapted Model (Tan et al., 2024) 972

is trained on data from users other than the 973

selected 100 test users. The objective of this 974

model is to adapt the base model to the task 975

in a general manner via LoRA (Low-Rank 976

Adaptation) (Hu et al., 2021), enabling it to 977

understand the task setup without being ex- 978

posed to the specific styles of the target users. 979

❑ OPPU: One PEFT Per User Model (Tan 980

et al., 2024) is a baseline that fine-tunes the 981

LoRA adapter from the TAM model on indi- 982

vidual users. Specifically, the historical data 983

of each user is used to fine-tune the LoRA 984

adapter from the TAM model, resulting in 100 985

separate personalized adapters. Intuitively, 986

each LoRA adapter is specialized to learn the 987

unique style of a specific user. 988

C Prompts 989

Below are prompts used in our experiments. Note 990

that the text in {BRACES} is a placeholder for user- 991

and query-specific input. 992

News Headline 993

You are a news headline generator. 994

Generate a headline for the following article. 995
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Table 4: Dataset statistics. Base LLM training corresponds to TAM, and Personal PEFT training to OPPU.

Task Base LLM Training (TAM) Personal PEFT Training (OPPU)
#Train Lin Lout #Profile Lin Lout

Abstract Generation 31,808 70.4 ± 13.3 233.1 ± 117.5 1,296.7 ± 446.4 604.4 ± 142.7 210.5 ± 92.8
Review Writing 19,649 185.1 ± 109.0 407.2 ± 299.5 759.3 ± 324.2 1,143.0 ± 343.3 511.8 ± 294.2
Topic Writing 21,119 56.6 ± 54.8 358.3 ± 316.9 260.6 ± 314.0 759.8 ± 321.8 358.3 ± 255.4
News Headline Generation 7,275 53.6 ± 19.0 15.5 ± 6.0 270.1 ± 182.1 92.2 ± 11.3 18.6 ± 5.2
Scholarly Title Generation 16,076 230.6 ± 97.9 17.9 ± 6.1 444.0 ± 121.6 266.4 ± 85.9 16.4 ± 5.8

article: {ARTICLE}996

headline:997

Scholarly Title998

You are a scholarly title generator.999

Generate a title for the following abstract of a paper.1000

abstract: {ABSTRACT}1001

title:1002

Abstract Generation1003

You are an abstract writer.1004

Generate the review text written by a reviewer who1005

has a given an overall rating of "{RATING}" for a1006

product with description "{PRODUCT}". The sum-1007

mary of the review text is "{SUMMARY}".1008

Review:1009

Review Writing1010

You are a review writer.1011

Generate an abstract for the title “{TITLE}”.1012

Abstract:1013

Topic Writing1014

You are a creative content generator for Reddit1015

posts.1016

Generate the content for a reddit post.1017

post: {POST}1018

content:1019

D Chat Templates1020

In this section, we provide the chat templates we1021

applied for experiments. We also include the chat1022

templates of other LLMs used to test the general-1023

ization of COPE.1024

Mistral-7B-Instruct-v0.31025
1026

MISTRAL_CHAT_TEMPLATE = """1027
{% if messages[0]['role'] == 'system' %}1028
{% set loop_messages = messages[1:] %}1029
{% set system_message = messages[0]['content'].1030

strip() + '\n' %}1031
{% else %}1032
{% set loop_messages = messages %}1033
{% set system_message = '' %}1034
{% endif %}1035
{% for message in loop_messages %}1036

{% if loop.index0 == 0 %}1037

{% set content = system_message + message 1038
['content'] %} 1039

{% else %} 1040
{% set content = message['content'] %} 1041

{% endif %} 1042
{% if message['role'] == 'user' %} 1043

{{ '[INST] ' + content.strip() + ' [/INST 1044
]' }} 1045

{% elif message['role'] == 'assistant' %} 1046
{{ ' ' + content.strip() + ' ' + 1047

eos_token }} 1048
{% endif %} 1049

{% endfor %} 1050
""" 10511052

LLaMA-3.1-8B-Instruct 1053

1054
LLAMA_CHAT_TEMPLATE = """ 1055
{{- bos_token }} 1056
{%- if messages[0]['role'] == 'system' %} 1057

{%- set system_message = messages[0][' 1058
content'].strip() %} 1059

{%- set loop_messages = messages[1:] %} 1060
{{- '<|start_header_id|>system<| 1061

end_header_id|>\\n\\n' + system_message 1062
+ '<|eot_id|>' }} 1063

{%- else %} 1064
{%- set loop_messages = messages %} 1065

{%- endif %} 1066
{%- for message in loop_messages %} 1067

{%- if message['role'] == 'user' %} 1068
{{- '<|start_header_id|>user<| 1069

end_header_id|>\\n\\n' + message[' 1070
content'].strip() + '<|eot_id|>' }} 1071

{%- elif message['role'] == 'assistant' %} 1072
{{- '<|start_header_id|>assistant<| 1073

end_header_id|>\\n\\n' + message[' 1074
content'].strip() + '<|eot_id|>' }} 1075

{%- endif %} 1076
{%- endfor %} 1077
{%- if add_generation_prompt %} 1078

{{- '<|start_header_id|>assistant<| 1079
end_header_id|>\\n\\n' }} 1080

{%- endif %}""" 10811082

GEMMA-3-4B-it 1083

1084
GEMMA_CHAT_TEMPLATE = """ 1085
"{% set bos_token = '<bos>' %} 1086
{% set eos_token = '<eos>' %} 1087

1088
{{ bos_token }} 1089
{% if messages[0]['role'] == 'system' %} 1090
{{ 'System: ' + messages[0]['content'].strip() 1091

+ '\n' }} 1092
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{% set loop_messages = messages[1:] %}1093
{% else %}1094
{% set loop_messages = messages %}1095

{% endif %}1096
1097

{% for message in loop_messages %}1098
{% if message['role'] == 'user' %}1099
{{ 'User: ' + message['content'].strip() + '\1100

n' }}1101
{% elif message['role'] == 'assistant' %}1102
{{ 'Assistant: ' + message['content'].strip()1103

+ eos_token + '\n' }}1104
{% endif %}1105

{% endfor %}1106
{{ 'Assistant:' }}"1107
"""11081109

Qwen2.5-1.5B-Instruct1110

1111
QWEN_CHAT_TEMPLATE = ''' {%- if messages[0]['1112

role'] == 'system' %}1113
{{- '<|im_start|>system\\n' + messages[0]['1114

content'].strip() + '<|im_end|>\\n' }}1115
{%- set loop_messages = messages[1:] %}1116

{%- else %}1117
{%- set loop_messages = messages %}1118

{%- endif %}1119
{%- for message in loop_messages %}1120

{%- if message['role'] == 'user' %}1121
{{- '<|im_start|>user\\n' + message['1122

content'].strip() + '<|im_end|>\\n'1123
}}1124

{%- elif message['role'] == 'assistant' %}1125
{{- '<|im_start|>assistant\\n' + message1126

['content'].strip() + '<|im_end|>\\n1127
' }}1128

{%- endif %}1129
{%- endfor %}1130
{%- if add_generation_prompt %}1131

{{- '<|im_start|>assistant\\n' }}1132
{%- endif %}1133
'''11341135

E More Quantitative Results1136

In this section, we provide more quantative results.1137

First, in Table 5, we present the results under vari-1138

ous LLMs on Abstract Generation using Rouge-1,1139

instead of Rouge-L in Table 2. One can verify that1140

COPE significantly improve Rouge-1 as well. Next,1141

in Tables 7 and 6, we present the results on News1142

Headline Generation using Rouge-L and Rouge-1,1143

respectively. Here, it is observed that the proposed1144

COPE is continuously effective to improve the per-1145

formance.1146

Table 5: Compatibility of COPE. ROUGE-1 scores on
the Abstract Generation task across different LLMs.

Methods LLaMA 3.1-8B Gemma 3-4B Qwen 2.5-1.5B

Base 0.340 0.270 0.278
RAG 0.330 0.295 0.240
PAG 0.333 0.292 0.241
TAM 0.355 0.326 0.298
OPPU 0.363 0.347 0.304

COPE (Ours) 0.417 0.393 0.384

Table 6: Compatibility of COPE. ROUGE-1 scores
on the News Headline Generation task across different
LLMs.

Methods LLaMA 3.1-8B Gemma 3-4B Qwen 2.5-1.5B

Base 0.127 0.070 0.117
RAG 0.146 0.098 0.136
PAG 0.129 0.099 0.128
TAM 0.188 0.161 0.142
OPPU 0.191 0.164 0.143

COPE (Ours) 0.211 0.168 0.147

Table 7: Compatibility of COPE. ROUGE-L scores
on the News Headline Generation task across different
LLMs.

Methods LLaMA 3.1-8B Gemma 3-4B Qwen 2.5-1.5B

Base 0.110 0.063 0.104
RAG 0.129 0.089 0.121
PAG 0.112 0.089 0.114
TAM 0.169 0.144 0.127
OPPU 0.171 0.147 0.127

COPE (Ours) 0.190 0.151 0.131

F Background for RLHF and DPO 1147

Let us denote LLM as πθ, which generates an out- 1148

put sequence (e.g., response) y for a given input 1149

sequence (e.g., prompt) x, i.e., y ∼ πθ(·|x). Then, 1150

the goal of LLM alignment is to make πθ provide 1151

human-aligned responses to various input prompts. 1152

To this end, let assume that the preference dataset 1153

D = {(x, yl, yw)} is available which consists of 1154

the triplets of input prompt x, preferred response 1155

yw, and dispreferred response yl. Here, the pref- 1156

erence labels were annotated by a ground truth 1157

annotator, that is usually a human expert. 1158

Reward modeling and RL fine-tuning. Since 1159

a pairwise preference between yw and yl is hard 1160

to model directly, one of the common practices is 1161

introducing reward function r(x, y) and modeling 1162

the preference based on this using the Bradley- 1163

Terry model (Bradley and Terry, 1952): 1164

p(yw ≻ yl | x) =
exp (r(x, yw))

exp (r(x, yw)) + exp (r(x, yl))
. 1165
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From this, one can introduce a parametrized reward1166

model rϕ(x, y) by estimating its parameters with1167

the maximum-likelihood objective:1168

Lr = E
(x,yw,yl)∼D

[− log σ (rϕ(x, yw)− rϕ(x, yl))] ,1169

where σ is a sigmoid function. After this reward1170

modeling procedure, one could improve the align-1171

ment of LLM πθ by optimizing it to maximize the1172

reward from rϕ. Here, KL-distance from the refer-1173

ence model πref is incorporated as a regularization1174

to prevent the reward over-optimization of πθ, with1175

a hyper-parameter β > 0 (Ouyang et al., 2022):41176

LRLHF =− Ey∼πθ, x∼ρ [rϕ(x, y)]1177

+ βDKL (πθ(y|x)∥πref(y|x)) .1178

Direct preference optimization. Rafailov et al.1179

(2023) propose an alternative approach to align1180

LLM πθ with the preference dataset D, which is1181

called Direct Preference Optimization (DPO). DPO1182

integrates a two-step alignment procedure with re-1183

ward modeling and RL fine-tuning into a single1184

unified fine-tuning procedure. Specifically, the op-1185

timal reward function is derived from the RLHF1186

objective (Eq. ??), with the target LLM πθ and the1187

reference model πref, which is often called implicit1188

reward:1189

r(x, y) = β log
πθ(y | x)
πref(y | x)

+ β logZ(x),1190

where Z(x) =
∑

y πref(y | x) exp
(

1
β r(x, y)

)
.1191

Then, the preference between two responses could1192

be measured using this reward derivation, and πθ is1193

optimized to maximize this preference of yw over1194

yl using the preference dataset D.1195

pθ(yw ≻ yl | x) = σ

(
β log

πθ(yw | x)
πref(yw | x)

1196

− β log
πθ(yl | x)
πref(yl | x)

)
,1197

1198
LDPO = E(x,yw,yl)∼D [− log pθ(yw ≻ yl|x)] .1199

G More Qualitative Examples1200

In this section, we present the additional qualitative1201

examples similar to Figure 4. Figures 5, 6, 7, and1202

8 clearly show the advantages of COPE, compared1203

to the baseline methods.1204

4πref is usually initialized with supervised fine-tuned (SFT)
LLM. Also, πθ is initialized with πref.
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Scholarly Title

Query Generate a title for the following abstract of a paper: Despite advances in multicore
smartphone technologies, battery consumption still remains one of customer's least
satisfying features. This is because existing energy saving techniques do not consider the
electrochemical characteristics of batteries, which causes battery consumption to vary
unpredictably, both within and across applications. Additionally, these techniques provide
application specific fixed performance degradation in order to reduce energy consumption.
Having a performance penalty, even when a battery is fully charged, adds to customer
dissatisfaction. We propose a control-based approach for runtime power management of
multicore smartphones, which scales the frequency of processing cores in response to the
battery consumption, taking into account the electrochemical characteristics of a battery.
The objective is to enable graceful performance modulation, which adapts with application
and battery availability in a predictable manner, improving quality-of-user-experience. Our
control approach is practically demonstrated on embedded Linux running on Cortex A15-based
smartphone development platform from nvidia. A thorough validation with mobile and Java
workloads demonstrate 2.9\u00d7 improvement in battery availability compared to state-of-
the-art approaches.

User Answer Graceful Performance Adaption through Hardware-Software Interaction for Autonomous Battery
Management of Multicore Smartphones

TAM Predictable Quality-of-User-Experience Management for Multicore Smartphones.

OPPU Predictable performance management for multicore smartphones

CoPe (ours) Predictable Performance Management for Battery-Powered Multicore Smartphones

Figure 5: Qualitative example for Scholarly Title Generation

Abstract Generation

Query Generate an abstract for the title \"A resolved CFD-DEM coupling model for modeling two-
phase fluids interaction with irregularly shaped particles\" using the following items: 1. 
Resolved coupling model\n2. Multi-sphere clumps\n3. Benchmark cases\n4. Dambreak wave 
impact\n5. Coastal engineering

User Answer \u2022A resolved coupling model to directly simulate interaction between two-phase fluids 
and irregularly shaped particles.\u2022The irregularly shaped particles are modeled by 
multi-sphere clumps in DEM.\u2022A number of benchmark cases are conducted and compared 
with experimental works.\u2022A case study of dambreak wave impact on a rock pile 
demonstrates the model's potential to coastal engineering.

TAM \u2022Resolved coupling model is developed to simulate two-phase fluid interactions with
multi-sphere clumps.\u2022The model can be applied in a wide range of particle sizes and
concentrations.\u2022Benchmark cases show good agreement between simulation results and
experimental data.\u2022Dambreak wave impacts on single sphere, cluster of spheres and
cylinder are investigated.\u2022Applications include coastal engineering, sediment
transport and environmental studies.

OPPU \u2022Resolved coupling model is developed to simulate two-phase fluid interactions with
irregularly shaped particles.\u2022Multi-sphere clumps are used as a surrogate of real
particles in simulations.\u2022Benchmark cases show that the proposed method can capture
the particle motion and sediment transport accurately.\u2022Dambreak wave impacts on multi-
particle bed, and dune formation process are investigated by the present model.\u2022The
results provide useful insights into coastal engineering problems involving complex
geometries.

CoPe (ours) \u2022A resolved coupling model is proposed to simulate two-phase fluid interactions with
irregularly shaped particles.\u2022The multi-sphere clumps method is used to represent the
irregularly shaped particles.\u2022Benchmark cases are conducted to verify the accuracy of
the proposed model.\u2022Dambreak wave impact on a rigid cylinder and a rough surface is
simulated by the proposed model.\u2022The results show that the proposed model can be
applied in coastal engineering.

Figure 6: Qualitative example for Abstract Generation
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Review Writing

Query Generate the review text written by a reviewer who has a given an overall rating of \"4.0\" 
for a product with description \"In the taut thriller, when Nancy (Blake Lively) is surfing 
on a secluded beach, she finds herself on the feeding ground of a great white shark. Though 
she is stranded only 200 yards from shore, survival proves to be the ultimate test of 
wills, requiring all of Nancys ingenuity, resourcefulness, and fortitude.\". The summary of 
the review text is \"I found myself holding my breath in certain spots and actually willing 
her to survive. That is the sign of a good movie.\".

User Answer Im gonna get off this rock. Im gonna fight. Nancy (Lively) has just lost her mom and 
travels to her favorite place in the world in order to hopefully reconnect with her one 
last time. What begins as a relaxing beach getaway takes a terrifying turn when she swims 
right into the feeding ground of a Great White Shark. Now, with a severely bitten leg and a 
tiny rock just above the water line Nancy must survive long enough for someone to find her, 
but she isn't the only one fighting for survival. This is a very tense movie that is scary 
in the fact that this is something that could actually happen. Looking back on the movie I 
realized there wasn't a whole lot of dialog but I didn't notice it when I was watching. You 
really feel for her and live and die with every scene. I found myself holding my breath in 
certain spots and actually willing her to survive. That is the sign of a good movie. The 
movie defiantly has the feel of Open Water and if you like movies like that you will enjoy 
this as well. Overall, the way the movie makes you feel makes this more of an experience 
than a movie. I liked this a lot more than I expected to. I give this a B+.

TAM I'm not sure what it says about me that this film had me so engrossed. It was like watching 
a train wreck unfold before your eyes. A young woman goes out into the ocean alone while 
her boyfriend surfs. She gets attacked by a shark and then spends hours trying to get back 
to land. There isn't much dialogue or action but there were moments where I literally held 
my breath as she tried to swim away from the shark. This is one of those films you watch 
because you know something bad is going to happen and you want to see how it plays out. I 
don't think I would have watched it if I didn't already own it. But once I started I 
couldn't stop until the end. Blake Lively does a very good job playing someone who is 
terrified yet determined to live through this experience. If you enjoy suspenseful movies, 
give this one a try

OPPU "Ive been bitten before but never like this. After being attacked by a Great White Shark 
while swimming alone at sea Nancy (Lively) struggles to stay alive until help arrives. This 
was not what I expected. Going into it I thought that there would be lots of blood and gore 
and a lot of suspense. While there were some tense moments the movie was more about how one 
woman copes with the situation rather then just trying to get away. There really wasn't 
much gore or anything like that so if you are looking for a horror type movie this may 
disappoint you. On the other hand though this was very intense and kept me interested 
throughout. I did find myself holding my breath in certain spots and actually willing her 
to survive. That is the sign of a good movie. Overall, a very interesting take on a shark 
attack story. I give this a B+."

CoPe (ours) "Ive been bitten by a shark! Nancy (Lively) is out surfing alone when she is attacked by a 
shark. She manages to get back to shore but not before being injured. When she realizes 
that help is not coming she must find a way to stay alive until someone comes along. This 
is a very tense movie. It is hard to make a movie about one person trying to survive 
against something else without it getting boring or repetitive. This one does a pretty good 
job of keeping you interested and involved in what is happening. There are some parts that 
drag a little but for the most part this is a really good movie. Blake Lively does a great 
job in this and makes you feel everything she is feeling. Overall, a very tense and 
exciting movie that keeps you guessing and wondering if she will make it. I give this a B+.

Figure 7: Qualitative example for Review Writing
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Topic Writing

Query Generate the content for a reddit post Indoor cat doesn't like car ride or outdoors, tries 
to kill me, cat poo in car preferable.

User Answer You got off lucky. When I was in college, one of my roommates had a cat that would spend 
all day on the windowsill, staring out the window (it was an indoor cat). I decided one day 
it would be nice to drive the cat to the park to let it experience the outdoors for its 
first time. In the car, it tried to shred my shoulder, and then camped out under the brake 
pedal, almost causing me to wreck. At the park, it just cowered and wouldn't move. On the 
ride home, it decided the best place to be was on top of my head, using its claws for 
purchase.

TAM I have an indoor/outdoor cat that is about 10 years old now and she has always been very 
skittish around people (she was found as a stray when she was younger). She will not let 
anyone pick her up unless they know how to handle her properly. If you try to grab her by 
the scruff of the neck she will bite your hand off. So we just pet her on the head and rub 
her belly until she calms down enough to be picked up. We also keep her nails trimmed so 
she can't do any real damage if she does decide to attack. \n The problem is that my wife 
wants to take our cat with us when we go camping this weekend but I am worried because she 
hates being in cars and hates going outside. When we first got her she would hide under the 
bed whenever someone came over and wouldn't come out until everyone left. Now she comes out 
from time to time but still only likes to stay inside. \n My question is what should I do? 
Should I put her in a carrier and hope for the best? Or should I leave her at home? Also, 
if it helps, she has never had diarrhea before and she is litter trained.

OPPU I have an indoor/outdoor cat that hates being outside and hates riding in cars. He is also 
very smart (and has been known to open doors). One day we were going on vacation and he was 
not allowed to come with us because of his issues. We put him in a carrier and took it into 
our bedroom so he wouldn't be able to see us leave. When we got back from vacation, he had 
somehow gotten into the house while we were gone, found the carrier, opened it up, climbed 
inside, and then proceeded to shit all over himself and the box. Then he waited until we 
came home, walked around the corner when we entered the room, and jumped at my face as hard 
as he could. It knocked me off balance and I fell onto the bed. The little bastard ran away 
before I could get my hands on him.

CoPe (ours) I was driving my mom's car with her cat in it. The cat had been an indoor cat all of its 
life and didn't like being in the car. It kept trying to get out through the window (it 
wasn't rolled down). So I put on some gloves and held onto him so he couldn't escape. He 
then proceeded to try to claw my eyes out. \n 2) I was driving home from work one day when 
I saw a cat sitting in the middle of the road. I stopped and got out to move it off the 
road. As soon as I touched it, it started spraying pee everywhere. I quickly dropped it 
back into the street and drove away.

Figure 8: Qualitative example for Topic Writing
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