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ABSTRACT
The similarity matrix is at the core of similarity search prob-

lems. However, incomplete observations are ubiquitous in real sce-

narios making the similarity matrix less accurate. To estimate a

high-quality similarity matrix, one popular trend is to impute the

missing values into the vectors directly, which provides a simple

and highly efficient way to recover the similarity matrix. However,

these methods lack of theoretical guarantee due to ignoring the

entire similarity matrix property directly. In this paper, based on

the key insight that the similarity matrix is symmetric and enjoys

the positive semi-definiteness (PSD) property, we proposed a novel

similarity matrix calibration method, which is scalable, adaptive,

and sound. Specifically, we first show the similarity matrix provably

holds the PSD property as the constraint. Then, we proposed a par-

allel matrix calibration method to estimate the similarity matrix to

approximate the unknown fully observed ground-truth similarity

matrix. Further, we discover its factored form which bypasses the

computation of singular values and allows fast optimization by

general optimization algorithm. Stable recovery and convergence

are guaranteed. Extensive similarity matrix calibration experiments

on the real-world dataset demonstrated that the proposed method

obtains superior performance while being the fastest in comparison

to baseline methods.
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1 INTRODUCTION
Similarity search with incomplete data has attracted extensive

research attention in several research fields [4, 12, 13, 54]. However,

data missing is ubiquitous and unavoidable due to various practical

issues. In real scenarios, data missing is most likely caused by

missing values directly in the data samples with certain features

unknown, resulting in the similarity matrix being measured by the

incomplete data samples. The other scenario is that the data missing

occurs within the similarity matrix due to storage or transmission

error.

To solve the data incompleteness problem and approximate the

unknown complete data vectors, the Missing Value Imputation
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(MVI) method [14, 39, 40] is proposed to impute the missing values

directly without any data assumptions, including pair-wise deletion,

mean substitution, regression, or the expectation-maximization al-

gorithm. Besides, a series of algorithms are proposed with a detailed

exploration of particular data samples [19, 31], which explores the

internal property of various matrices and achieved the matrix com-

petition on the high-rankmatrix and low-rankmatrix. However, the

performance highly depends on the assumption of data samples and

varies significantly to the data distribution. Moreover, the require-

ment of fast response time and high throughput of online scenarios

often makes it impractical to apply the computational-aware MVI

methods. On the contrary, the Matrix Calibration (MC) method

[42, 53] imposes exact constraints on a specific matrix given based

on specific properties. A series of studies on the similarity matrix

imputation focus on the positive definiteness property [6, 37, 45],

which is proved to be effective but is not efficient.

In this paper, we proposed a fundamentally different matrix cali-

bration method and defined it as a convex optimization problem

to find the feasible solution as the estimated similarity matrix and

further apply it to solve the similarity search problem. Instead of im-

puting the missing observations directly, we started with an initial

similarity matrix calculated by incomplete data samples and then

modified the initial matrix to satisfy the certain constraint, positive

semi-definiteness (PSD) [5], which is the exact property that the

unknown ground truth similarity matrix should hold. The theo-

retical analysis showed that the well-estimated similarity matrix

is guaranteed to be closer to the unknown ground truth. The em-

pirical evaluations reported the superior performance of similarity

matrix calibration and further verified the promising potential to

solve the similarity search problem with incomplete observations.

In sum, we proposed a novel matrix calibration method and pro-

vided an efficient algorithm to tackle the similarity search problem

with incomplete observations. Our contributions can be outlined

as follows:

• Theoretical Novelty: We proposed a fundamentally dif-

ferent matrix calibration method to estimate the similarity

matrix from the incomplete data and then modify this es-

timate to satisfy the positive semi-definiteness (PSD) prop-

erty under the well-defined convex optimization problem.

The proposed method provided theoretically guaranteed im-

provement to the unknown ground truth similarity matrix

that was calculated by complete data samples.

• Methodology Soundness: We designed a convex optimiza-

tion problem to minimize the difference between the es-

timated similarity matrix and the unknown ground truth.

To achieve an efficient solution, we further simplified the

optimization problem for similarity vectors with similar con-

straints, and then proposed scalable approximate algorithm.

• Empirical Verification: We conducted a series of exper-

iments to verify the performance of the proposed method
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to estimate the similarity matrix and further tackle the in-

complete similarity search task. The evaluation involved the

effectiveness, efficiency, and sensitivity. Our main method

showed a clear improvement to estimate the similarity ma-

trix. which provided a promising practical tool in similarity

search applications.

Notation. Vectors are denoted in lowercase and matrices in

uppercase. (.)⊤ denotes transpose operation. 𝐼 denotes the identity

matrix. For a square matrix 𝑋 ∈ R𝑛×𝑛 , ∥𝑋 ∥𝐹 denotes its Frobenius

norm. Let the singular value decomposition (SVD) of matrix 𝑋 be

𝑉𝑆𝑉⊤, where 𝑉 ∈ R𝑛×𝑛 , 𝑆 = 𝑑𝑖𝑎𝑔(𝜎 (𝑋 )) = [𝜎𝑖 (𝑋 )] with 𝜎𝑖 (𝑋 )
being the 𝑖th singular value of 𝑋 and w.l.o.g., 𝜎1 (𝑋 ) ≥ 𝜎2 (𝑋 ) ≥
... ≥ 𝜎𝑛 (𝑋 ) ≥ 0.

2 BACKGROUND
2.1 Similarity Matrix
2.1.1 Similarity Matrix Calculation. Similarity matrix [41] mea-

sures the pairwise similarities between the data samples and lies

on the positive definiteness property [53]. One of the widely used

similarity metrics is Cosine Similarity [25]:

𝑠𝑖 𝑗 =
𝑥⊤
𝑖
· 𝑥 𝑗

∥𝑥𝑖 ∥ · ∥𝑥 𝑗 ∥
, (1)

where 𝑥𝑖 , 𝑥 𝑗 ∈ R𝑑 represent two data samples in 𝑑-dimensional

column vectors and | | · | | denotes the ℓ2-norm of a vector, 𝑠𝑖 𝑗 de-

notes the entry in the 𝑖-th row and 𝑗-th column of the similarity

matrix 𝑆 . In the context of similarity search applications, cosine

similarity is often used with non-negative vectors [2, 9]. In such

cases, the similarity scores range in (0, 1] that can be interpreted

as the probability [8] that the pairwise data samples are related.

Note, when either 𝑥𝑖 or 𝑥 𝑗 is a zero vector, 𝑠𝑖 𝑗 is not well-defined.

To avoid this problem, the widely used method is adding a small

value 𝜖 , i.e., 𝑥𝑖 = 𝜖𝐼 , where 𝐼 is an identity vector.

2.1.2 Similarity Matrix Property. A similarity matrix is symmet-

ric if the similarity measure is symmetric, i.e., Cosine Similarity.

Besides, the similarity matrix is PSD if and only if all the eigen-

values generated by singular value decomposition (SVD) [50] are

non-negative [28, 29]. Since the similarity matrix is symmetric and

PSD, it is also diagonalizable [26]. As a result, its eigenvalues are

orthogonal and the SVD of 𝑆 can be calculated as:

𝑆 = 𝑈Λ𝑈⊤ = 𝑈Λ
1

2Λ
1

2𝑈⊤ = (𝑈Λ
1

2 ) (𝑈Λ
1

2 )⊤ = 𝐴𝐴⊤,

where𝑈 is an orthogonal matrix with columns of𝑈 are eigenvec-

tors of 𝑆 , and the entries of a diagonal matrixΛ = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, ..., 𝜆𝑛)
are non-negative eigenvalues of 𝑆 based on PSD property. For

ease of representation, 𝐴 = 𝑈Λ
1

2 , and the corresponding 𝐴−1 =

(𝑈Λ
1

2 )−1 = Λ−
1

2𝑈 −1 = Λ−
1

2𝑈⊤ = Λ−1𝐴⊤.

2.2 Similarity Matrix Approximation
In real scenarios, data corruption is an inevitable problem en-

countered in most scientific and engineering disciplines. For ex-

ample, if the query is being sent over a network and there’s an

unexpected interruption, only a part of the data features in the

query item can be transmitted. Besides, if the user is entering a

query via a graphical interface, such as the online dialog system,

they might accidentally submit it before finishing typing. To better

process the query with incomplete observations and get a more

accurate search result, a series of algorithms have been proposed

to approximate the incomplete query with missing features, mainly

falling into two categories, Missing Value Imputation Methods and

Matrix Calibration methods. However, when a dataset contains a

small amount of missing data, that is, less than 10% or 15% of the

entire dataset, the missing data can be eliminated directly [1, 51].

Otherwise, imputing the data samples with missing observations

should be taken into serious consideration.

2.2.1 Missing Value Imputation (MVI) Methods. One of the popu-
lar methods is the Missing Value Imputation method [14, 39, 40],

which is a series of techniques based on statistical principles to

replace the missing data with some surrogate value. Mean impu-

tation [32] replaces the missing values with the mean value for

the continuous variables, and zero imputation [32] replaces the

missing values with 0 without considering the domain knowledge.

Besides, pair-wise deleting missing values [24] and list-wise delet-

ing missing values only preserve the values without considering the

data distribution causing large information loss and thus leading

to a bad performance in real scenarios. In practice, to get a higher-

quality estimated dataset, model-based imputation methods, such

as linear regression (LR) imputation [49] utilized a linear regression

model where the variables with missing data are the dependent

variables, and it is predicted using other variables. Meanwhile, the

Expectation-Maximization algorithm [43] employed an iterative

method to estimate the missing values by maximizing the likeli-

hood estimate of the observed data. Though MVI methods are easy

to implement and enjoy high efficiency, accuracy is the bottleneck

that limits their applications in practice.

2.2.2 Matrix Calibration (MC) Methods. An alternative way to es-

timate the incomplete similarity matrix is the Matrix Calibration

method, which refers to the process of adjusting a matrix-based

measurement system to improve its accuracy, which can be done

in various scientific and engineering disciplines, especially when

dealing with instruments that measure properties using matrix

representations. Instead of imputing values into row vectors or col-

umn vectors directly, the MC methods forced the similarity matrix

to satisfy a specific property. For example, thresholding methods

[10, 11] are forced to remove the noise or keep the most important

features. Matrix factorization [18, 47] techniques, i.e., singular value

decomposition (SVD) [50] can be used to approximate a similar-

ity matrix using fewer informative dimensions. Another series of

MC methods [37, 38] focused on studying the specific property,

such as symmetric property or positive semi-definiteness (PSD)

property [42, 53]. Under this assumption, these methods return an

approximation to the target matrix with minimal information loss.

However, these methods solve the incomplete problem by process-

ing the entire matrix, which causes a large computational cost and

limits the usage of the large-scale dataset. The computational and

storage costs motivate us to design a more efficient way to solve

the matrix calibration problem.
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3 PROBLEM FORMULATION
In this section, we formulate the matrix calibration problem

based on the insight that both the PSD property and symmetric

property can be adapted to solve the matrix calibration problems.

3.1 Similarity Matrix Initialization
Given a set of incomplete data samples, the initial similarity

matrix 𝑆0 is calculated by:

𝑠0𝑖 𝑗 =
𝑥 ′⊤
𝑖
· 𝑥 ′

𝑗

| |𝑥 ′
𝑖
| | · | |𝑥 ′

𝑗
| | . (2)

Here, 𝑥 ′ denotes the incomplete data samples. The approximated

cosine similarity value is calculated based on the common features

that are observed in both 𝑥𝑖 and 𝑥 𝑗 .

3.2 Similarity Matrix Calibration Problem
In the similarity matrix calibration problem, we aim to find an

estimated 𝑆 has the minimum differences to the initial similarity

matrix 𝑆0 under a specific constraint:

𝑆 = argmin

𝑆
∥𝑆 − 𝑆0∥2𝐹

𝑠 .𝑡 . 𝑆 ⪰ 0,
(3)

where 𝑆 is a real symmetric matrix 𝑆𝑖𝑖 = 1 and 0 < 𝑆𝑖 𝑗 = 𝑆 𝑗𝑖 ≤ 1

(1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛) denoting the similarity score of pairwise data

samples, and ∥ · ∥2
𝐹
denotes the squared Frobenius norm of a matrix.

Theorem 3.1. | |𝑆∗ −𝑆 | |2
𝐹
≤ ||𝑆∗ −𝑆0 | |2

𝐹
. The equality holds if and

only if 𝑆0 ∈ T , i.e., 𝑆0 = 𝑆 .

Given a dataset 𝑋 with 𝑛 samples {𝑥1, · · · , 𝑥𝑛}, and denote 𝑆∗ =
{𝑠∗
𝑖 𝑗
} as the ground truth of the similarity matrix, where 𝑠∗

𝑖 𝑗
= 𝑠∗

𝑗𝑖

(1 ≤ 𝑖, 𝑗 ≤ 𝑛) is the true similarity value between two samples 𝑥𝑖
and 𝑥 𝑗 . To simplify the discussion and without loss of generality, we

assumed the usage of cosine similarity measure as defined in Eq. (1),

while the work applies to a series of other similarity functions or

kernels as well [35, 48]. Due to the existence of missing values or

observation noises, the true matrix 𝑆∗ is unknown. As a result, we
only have an approximate similarity matrix 𝑆0 defined in Eq. (2),

that is obtained from incomplete data samples or based on domain-

specific knowledge. In this paper, we aim to estimate the initial

similarity matrix 𝑆0 to approximate the unknown ground truth 𝑆∗

under the certain PSD property [5, 44, 48].

To simplify the calculation of similarity matrix calibration, we re-

formulated the target problem in Eq.(3). Given𝑚 incomplete query

items 𝑄 = {𝑞1, ..., 𝑞𝑚} ∈ R𝑑×𝑚 in 𝑑-dimensional space and 𝑛 com-

plete search candidates 𝑃 = {𝑝1, ..., 𝑝𝑛} ∈ R𝑑×𝑛 in 𝑑-dimensional

space, we aim to estimate the similarity matrix 𝑆 ∈ R(𝑛+𝑚)×(𝑛+𝑚)
tomeasure the pairwise similarities between query items and search

candidates. Here, the initial similarity matrix 𝑆0 is calculated by

Eq.(2) and can be divided into four sub-matrices:

𝑆0 =

[
𝑆pp 𝑆0

pq

𝑆0⊤
pq

𝑆0
qq

]
∈ R(𝑛+𝑚)×(𝑛+𝑚) ,

where 𝑆pp ∈ R𝑛×𝑛 denotes the accurate similarity matrix between

𝑛 search samples, 𝑆0
pq
∈ R𝑛×𝑚 denotes the initial similarity matrix

between 𝑛 search samples and 𝑚 query samples, 𝑆0⊤
pq
∈ R𝑚×𝑛

denotes the transpose of 𝑆pq, and 𝑆
0

qq
∈ R𝑚×𝑚 denotes the initial

similarity matrix between𝑚 query samples. Therefore, the problem

in Eq.(3) can be reformulated as:

min

𝑆pq,𝑆qq
∥
[
𝑆pp 𝑆pq
𝑆⊤
pq

𝑆qq

]
−

[
𝑆pp 𝑆0

pq

𝑆0⊤
pq

𝑆0
qq

]
∥2𝐹

𝑠 .𝑡 . 𝑆 ⪰ 0,

(4)

where the 𝑆pp is a fixed accurate sub-matrix, both 𝑆0
pq

and 𝑆0
qq

are

the initial sub-matrices that should be well estimated to build up

the entire similarity matrix 𝑆 . To reduce the computational cost and

preserve the PSD property of 𝑆 , we proposed to calibrate the sub-

matrices 𝑆pq and 𝑆qq by utilizing the positive definiteness property

of the accurate 𝑆pp to modify the approximation process.

4 METHOD
In this section, we design a novel algorithm based on the well-

defined matrix calibration problem shown in Eq.(4). However, the

computational complexity highly relies on computing the SVD on

the initial similarity matrix. To tackle this problem, we present a

conjugate gradient (CG) approximate [46] algorithm that avoids

SVD computations.

4.1 Basic Similarity Vector Calibration Method
Assume there is 1 incomplete query item 𝑞, the initial similar-

ity matrix can be divided into 𝑆0 =

[
𝑆pp 𝑣0

𝑣0⊤ 1

]
∈ R(𝑛+1)×(𝑛+1) ,

where the 𝑣0 ∈ R𝑛 denotes the similarity vector between the in-

complete query and all search candidates and 1 denotes the cosine

similarity score between 𝑞 and itself. Then, the target problem

becomes to estimate the similarity vector 𝑣 to preserve the PSD

property of 𝑆 . Combining the PSD property of 𝑆pp and the property

of Schur complement [55], we further reformulate the problem as:

min

𝑣
∥
[
𝑆pp 𝑣

𝑣⊤ 1

]
−

[
𝑆pp 𝑣0

𝑣0⊤ 1

]
∥2𝐹

𝑠 .𝑡 . 𝑆pp ≻ 0, 𝑣⊤𝑆−1
pp

𝑣 ≤ 1,

(5)

where the fixed 𝑆pp is accurate calculated by 𝑛 complete search

candidate, and 𝑣 denote the similarity between the given incomplete

query item 𝑞 and the 𝑛 complete search candidates.

Theorem 4.1. Let 𝑆𝑛 ∈ R𝑛×𝑛 be a strictly positive definite matrix.

Let 𝑆𝑛+1 =

[
𝑆𝑛 𝑣

𝑣⊤ 1

]
, where 𝑣 ∈ R𝑛 . Then 𝑆𝑛+1 is positive semi-

definite if and only if 𝑣⊤𝑆−1𝑛 𝑣 ≤ 1.

Obviously, the matrix calibration problem can be transferred to

the vector calibration problem equivalently by ignoring the 𝑆pp:

min

𝑣∈R𝑛
∥𝑣 − 𝑣0∥2

𝑠 .𝑡 𝑣⊤𝑆−1
pp

𝑣 ≤ 1.
(6)

To solve this problem, we design a simple yet efficient similarity

vector calibration algorithm to recover the similarity vector.

Applying 𝐴 = 𝑈Λ
1

2 and 𝐴−1 = Λ−1𝐴⊤ in Section 2.1.2, the

objective function and constraint in Eq.(6) can be written as:
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| |𝑣 − 𝑣0 | |2 = | |𝐴𝐴−1𝑣 −𝐴𝐴−1𝑣0 | |2

= | |𝐴(𝐴−1𝑣 −𝐴−1𝑣0) | |2

= (𝐴−1𝑣 −𝐴−1𝑣0)⊤𝐴⊤𝐴(𝐴−1𝑣 −𝐴−1𝑣0)
= (𝐴−1𝑣 −𝐴−1𝑣0)⊤Λ(𝐴−1𝑣 −𝐴−1𝑣0),

𝑣⊤𝑆−1
pp

𝑣 = 𝑣⊤ (𝐴𝐴⊤)−1𝑣
= 𝑣⊤ (𝐴⊤)−1𝐴−1𝑣
= 𝑣⊤ (𝐴−1)⊤𝐴−1𝑣
= (𝐴−1𝑣)⊤ (𝐴−1𝑣).

Now we observe that the variables 𝑣 and 𝑣0 can be changed into

𝑢 = 𝐴−1𝑣 and 𝑢0 = 𝐴−1𝑣0 to obtain a more concise form of convex

optimization problem:

min

𝑣∈R𝑛
(𝐴−1𝑣 −𝐴−1𝑣0)⊤Λ(𝐴−1𝑣 −𝐴−1𝑣0)

𝑠 .𝑡 . (𝐴−1𝑣)⊤ (𝐴−1𝑣) ≤ 1.

↔ min

𝑢∈R𝑛
1

2

(𝑢 − 𝑢0)⊤Λ(𝑢 − 𝑢0)

𝑠 .𝑡 . 𝑢⊤𝑢 ≤ 1.

(7)

To solve this optimization problem, we consider two cases:

1) If 𝑢0⊤𝑢0 ≤ 1, then 𝑢∗ = 𝑢0 is the solution. The 𝑣 = 𝐴𝑢0

2) If 𝑢0⊤𝑢0 > 1, then the solution appears on the boundary.

For the second case, we define the Lagrangian function as:

𝐿 ≡ 1

2

𝑢⊤Λ𝑢 − 𝑢⊤Λ𝑢0 + 𝛾 (𝑢⊤𝑢 − 1) for 𝛾 ≥ 0 (8)

From the KKT condition [23] of convex optimization, we have:



𝜕𝐿

𝜕𝑢
= Λ𝑢 − Λ𝑢0 + 2𝛾𝑢 = 0

𝛾 (𝑢⊤𝑢 − 1) = 0

𝛾 ≥ 0

𝑢⊤𝑢 − 1 ≤ 0

⇒
{
𝑢 = (Λ + 2𝛾𝐼 )−1Λ𝑢0

𝑢⊤𝑢 = 1.
(9)

Fortunately, the estimated 𝑢 can be denoted by the function of 𝛾 ,

which means 𝑢 and 𝛾 can be calculated iteratively.

Specifically, the𝑢 is denoted by 𝛾 and can be adjusted by varying

the value of 𝛾 , that is, when the constraint is not satisfied, the

algorithm prefers to choose the smaller 𝛾 to meet the constraint

and further calculate the 𝑢. Finally, the 𝑣 is calculated by: 𝑣 = 𝐴𝑢.

We summarized the basic idea of Basic Similarity Vector Cali-

bration (BSVC) Methods in Algorithm.1. Line 1 shows the SVD on

the accurate similarity matrix 𝑆pp. Line 2 shows the calculation of

the auxiliary variable 𝐴 for ease of calculation. Line 3 shows the

initialization of similarity vector 𝑣0 and auxiliary vector 𝑢0. Lines

4-18 show the calculation of optimal 𝑢 and the corresponding 𝛾 .

Line 19 returns the estimated similarity vector 𝑣 .

Moreover, the searching time of 𝛾 is dependent on the range

(𝜆max, 𝜆min). To reduce the computation cost, we adopt a Quasi-

Newton (QN) [16]method to calculate the𝛾 . Based on the constraint,

𝑢 can be written as a function of 𝛾 :

𝑓 (𝛾) = ∥((Λ + 2𝛾𝐼 )−1Λ𝑢0)⊤ (Λ + 2𝛾𝐼 )−1Λ𝑢0)) − 1∥2 . (10)

Algorithm 1 BSVC: Basic Similarity Vector Calibration Method

Input: 𝑆pp ∈ R𝑛×𝑛 : Accurate similarity matrix of 𝑛 complete

search samples; 𝑣0 ∈ R𝑛 : Initial similarity vector between 1

incomplete query item and 𝑛 complete search samples; 𝛾 : La-

grange multiplier; 𝑡𝑜𝑙 = 10
−4
: Tolerance.

Output: 𝑣 ∈ R𝑛 : Estimated similarity vector with a unique 𝛾 .

1: SVD on 𝑆pp = 𝑈Λ𝑈⊤, where eigenvalues are sorted in a de-

scending order 𝜆max, ...𝜆min;

2: Calculate 𝐴 = 𝑈Λ
1

2 and 𝐴−1 = Λ−1𝐴⊤;
3: Initialize 𝑣0 by Eq.(2) and correlated 𝑢0 = 𝐴−1𝑣0;
4: if 𝑢⊤𝑢 <= 1 + 𝑡𝑜𝑙 then
5: 𝑣 = 𝐴𝑢0;

6: else
7: Calculate 𝛾min s.t. | |𝑢 | |2

2
=

∑𝑛
𝑖=1 (

𝜆𝑖𝑢
0

𝑖

𝜆max+2𝛾min

)2 = 1;

8: Calculate 𝛾max s.t. | |𝑢 | |2
2
=

∑𝑛
𝑖=1 (

𝜆𝑖𝑢
0

𝑖

𝜆min+2𝛾max

)2 = 1;

9: while 𝑢⊤𝑢 > 1 + 𝑡𝑜𝑙 do
10: Update 𝛾 = 0.5 ∗ (𝛾min + 𝛾max);
11: Update 𝑢 ← (Λ + 2𝛾𝐼 )−1Λ𝑢0;
12: if 𝑢⊤𝑢 > 1 then
13: Update 𝛾min ← 𝛾 ;

14: else
15: Update 𝛾max ← 𝛾 ;

16: end if
17: end while
18: end if
19: Calculate 𝑣 = 𝐴𝑢;

20: return 𝑣

More detailed, QN provided a way to approximate the optimal

solution 𝛾 to achieve the optimal value of 𝑓 (𝛾), which builds up an

approximation to the inverse Hessian matrix to achieve the optimal

solution. The algorithm is stopped when the gradient is smaller

than a certain tolerance, or a maximum number of iterations is

reached, stop the algorithm and return the approximated 𝛾 as the

result.

4.2 Approximated Basic Similarity Vector
Calibration Method

Though the BSVC method provides a set of solutions of 𝛾 and 𝑣 ,

the computational complexity of SVD on the initial similaritymatrix

𝑆pp as 𝑂 (𝑛3) is the bottleneck when the size of 𝑆pp is extremely

large. To reduce the computational cost, we propose to approximate

the SVD process and rewrite the problem in Eq.(6) as:

min

𝑣∈R𝑛
1

2

(𝑣 − 𝑣0)⊤ (𝑣 − 𝑣0)

𝑠 .𝑡 𝑣⊤𝑆−1
pp

𝑣 ≤ 1.

(11)

Similarly, we consider two cases:

1) If 𝑣0⊤𝑆−1
pp

𝑣0 ≤ 1, then 𝑣 = 𝑣0 is the solution.

2) If 𝑣0⊤𝑆−1
pp

𝑣0 > 1, then the solution appears on the boundary.

Also, for the second case, we define the Lagrangian function as:

𝐿̃ ≡ 1

2

𝑣⊤𝐼𝑣 − 𝑣⊤𝐼𝑣0 + 𝛾 (𝑣⊤𝑆−1
pp

𝑣 − 1) for 𝛾 ≥ 0.
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Similar to the solution in Eq.(9), we have:



𝜕𝐿̃

𝜕𝑣
= 𝐼𝑣 − 𝐼𝑣0 + 2𝛾𝑆−1

pp
𝑣 = 0

𝛾 (𝑣⊤𝑆−1
pp

𝑣 − 1) = 0

𝛾 ≥ 0

𝑣⊤𝑆−1
pp

𝑣 − 1 ≤ 0

⇒
{
𝑣 = (𝐼 + 2𝛾𝑆−1

pp
)−1𝑣0

𝑣⊤𝑆−1
pp

𝑣 = 1.
(12)

Rather than directly calculate the 𝑆−1
pp

, which might be computa-

tionally expensive and unstable with the extremely large size of the

similarity matrix 𝑆−1
pp

. We leverage the Conjugate Gradient (CG)

[46] algorithm to find an approximated 𝑆−1
pp

, that is, solving the

problem 𝑆pp𝑋 = 𝐼 by CG. Here, 𝐼 is the identity matrix, where the

diagonal elements are 1. However, the conventional CG method

cannot handle the matrix calculation, we can solve the linear prob-

lem 𝑆pp𝑥 = 𝑒 , where 𝑆pp is a symmetric positive definite matrix, 𝑒

represents the 𝑖-th column of identity matrix 𝐼 , and the 𝑖-th element

is 1. Then, the 𝑆−1
pp

is generated by vector calculation. Consequently,

the calculation of 𝑣 can be simplified by Taylor expression [27] to

avoid the inverse calculation.

(𝐼 + 2𝛾𝑆−1
pp
)−1 = 𝐼−1 − 𝐼−12𝛾𝑆−1

pp
𝐼−1 + 𝐼−12𝛾𝑆−1

pp
𝐼−12𝛾𝑆−1

pp
𝐼−1 − ...

≈ 𝐼 − 2𝛾𝑆−1
pp

.

Here, we retain the first two terms, the approximated update

equation is:

𝑣 ≈ (𝐼 − 2𝛾𝑆−1
pp
)𝑣0 (13)

Then, the 𝑣 and the correlated
ˆ𝛾 can be updated iteratively. Simi-

larly, 𝛾 can be solved by QN and the objective function as:

𝑓 (𝛾) = ∥((𝐼 − 2𝛾𝑆−1
pp
)𝑣0)⊤𝑆−1

pp
((𝐼 − 2𝛾𝑆−1

pp
)𝑣0)) − 1∥2 (14)

Algorithm 2 summarized the basic idea of the CQABSVC. Line 1

shows the initialization of 𝑣0 and 𝛾 . Lines 2-5 show the calculation

of 𝑆−1
pp

by CG algorithm. Lines 6-13 show the calculation of 𝑣 and 𝛾 .

Line 14 returns the 𝑣 .

4.3 Similarity Matrix Calibration Method
Due to the independence between any 𝑣𝑖 and 𝑣 𝑗 , the similarity

matrix 𝑆pq = {𝑣1, ..., 𝑣𝑚} ∈ R𝑛×𝑚 can be calibrated 𝑚 times by

BSVC when the number of query samples𝑚 > 1. Following the

BSVC method, these 𝑚 independent vectors {𝑣𝑖 }𝑚𝑖=1 can be cali-

brated by BSVC/ABSVC via Algorithm.1 /Algorithm.2 sequentially.

We summarize the similarity matrix calibration method in Algo-

rithm.3, which is the main algorithm in this paper. Line 1 shows

the initialization of similarity 𝑆0. Lines 2-5 show the calculation via

Algorithm.1/2. Line 6 returns the estimated 𝑆 .

5 ANALYSIS
5.1 Memory Requirement

Given a set of search database 𝑃 ∈ R𝑑×𝑛 with 𝑛 complete data

samples in 𝑑 dimensional space and a query database 𝑄 ∈ R𝑑×𝑚
with𝑚 incomplete data samples in 𝑑 dimensional space, we need

𝑂 (𝑑𝑛) and 𝑂 (𝑑𝑚) to store the search database and the query data-

base. Meanwhile, we need 𝑂 ((𝑛 + 𝑚)2) to store the similarity

Algorithm 2 CQABSVC: Conjugate Gradient and Qusai-Newton
based Approximate Basic Similarity Vector Calibration Method

Input: 𝑆pp ∈ R𝑛×𝑛 : Similarity matrix of 𝑛 complete search sam-

ples; 𝑣0 ∈ R𝑛 : Initial similarity vector between 1 incomplete

query item and all complete search samples; 𝛾 : Lagrange multi-

plier; 𝑡𝑜𝑙 : Tolerance for CQABSVC; 𝑡𝑜𝑙1 = 𝑡𝑜𝑙2 = 10
−4
: Toler-

ance for CG and QN; 𝐼 ∈ R𝑛×𝑛 : Identity Matrix; 𝑒 : 𝑖-th column

of 𝐼 ;

Output: 𝑣 ∈ R𝑛 : Estimated similarity vector.

1: Initialize 𝑣0 by Eq.(2) and 𝛾 = 1;

2: for 𝑖 = 1 : 𝑛 do
3: Solve 𝑆pp𝑋 (:, 𝑖) = 𝑒 via CG to get the 𝑖-th column of 𝑆−1

pp
;

4: end for
5: Get 𝑋 = 𝑆−1

pp
;

6: if 𝑣⊤𝑆−1
pp

𝑣 <= 1 + 𝑡𝑜𝑙 then
7: 𝑣 = 𝑣0

8: else
9: while 𝑣⊤𝑆−1

pp
𝑣 > 1 + 𝑡𝑜𝑙 do

10: Update
ˆ𝛾 by Quasi-Newton method;

11: Update 𝑣 ← (𝐼 − 2ˆ𝛾𝑆−1
pp
)𝑣0;

12: end while
13: end if
14: return 𝑣

Algorithm 3 Similarity Matrix Calibration Method (Main Algo-
rithm)

Input: 𝑆pp ∈ R𝑛×𝑛 : Similarity matrix of 𝑛 complete search sam-

ples; 𝑆0
pq
∈ R𝑛×𝑚 : Approximate similarity matrix between 𝑛

complete search samples and𝑚 incomplete query samples;

Output: 𝑆 ∈ R(𝑛+𝑚)×(𝑛+𝑚) : Estimated similarity matrix of 𝑛 com-

plete search samples and𝑚 incomplete query samples.

1: Initialize 𝑆0
pq

by Eq.(2);

2: for 𝑖 = 1, ...,𝑚 do
3: 𝑣 ← calibrate 𝑣0 by Algorithm.1/2;

4: Update 𝑖th similarity vector 𝑣 ;

5: end for
6: return 𝑆

matrix 𝑆 ∈ R(𝑛+𝑚)×(𝑛+𝑚) . In total, the memory requirement is

𝑂 (𝑑 (𝑛 +𝑚) + (𝑛 +𝑚)2).

5.2 Computational Complexity Analysis
For the Matrix calibration methods, DMC applied SVD on the

entire matrix with computational complexity 𝑂 ((𝑛 +𝑚)3) in each

iteration. CMC firstly divided the entire matrix into 𝑟 sub-matrices

and calibrated the sub-matrices by an iterative projection method.

Our SMC required 𝑂 ((𝑛 +𝑚)3) to decompose the initial similarity

matrix 𝑆pp, 𝑂 ((𝑛 +𝑚)2) to calculate the 𝑢, 𝑂 (log
2
(𝑛 +𝑚)) to find

the unique 𝛾 via bisection algorithm. For the QNASMC, we need

𝑂 (𝑛3) to perform SVD, 𝑂 ((𝑛 +𝑚)2) to calculate the 𝑣 , 𝑂 (𝑘𝑚𝑛) to
find the unique 𝛾 via QN algorithm. For QNASMC, we need 𝑂 (𝑛3)
to perform inverse operation on 𝑆pp,𝑂 ((𝑛 +𝑚)2) to calculate the 𝑣 ,
𝑂 (𝑘𝑚𝑛) to find the unique𝛾 via QN algorithm. The total complexity
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is 𝑂 (𝑛2 (𝑘1 + 𝑘2)), which is much smaller than the other baseline

methods.

5.3 Convergence
Theorem 5.1. When running conjugate gradient with 𝑘1 step, and

Quasi-Netwon method with 𝑘2 step, CQABSVC has

| |𝑣∗ −
(
𝐼 + 2𝛾 ′𝑆−1

pp
′
)−1

𝑣0 | | ≤ 𝑂 (𝑐𝑘1
0
) +𝑂 (𝑐𝑘2

1
)

where 0 < 𝑐0 < 1, and 0 < 𝑐1 < 1.

𝑣∗ =
(
𝐼 + 2𝛾∗𝑆−1

pp

)−1
𝑣0 by the KKT condition, where 𝛾∗ satisfy-

ing (
(
𝐼 + 2𝛾𝑆−1

pp

)−1
𝑣0)⊤𝑆−1

pp

(
𝐼 + 2𝛾𝑆−1

pp

)−1
𝑣0 = 𝐼 .

6 EXPERIMENTS
We conducted exhaustive matrix calibration experiments on

both visual datasets and textual datasets. We applied effectiveness,

efficiency, and sensitivity to evaluate the capability of similarity

matrix calibrations. All experiments are repeated 5 runs, and the

average performance is reported.

6.1 Experimental Settings
6.1.1 Datasets. We adopted the following datasets to verify the

generality of the main algorithm SMC: ImageNet [15]: an image

dataset across more than 20, 000 categories with 1, 000 diemensions.

MNIST [34]: a grayscale image dataset of handwritten digits (e.g.

0-9) with 784 dimensions. CIFAR10 [33]: an image dataset of 10

real objects with 1, 024 dimensions. SIFT [20]: an image dataset of

SIFT features with 128 dimensions. RCV1 [36]: a textual dataset of

newswire stories from Reuters with 47, 236 dimensions.

6.1.2 Baselines. We adopted the following baseline methods, in-

cluding Missing Value Imputation (MVI) methods and Matrix Cal-

ibration (MC) methods. For all methods that we compare in the

experiments, we use public codes unless they are not available.

• Missing Value Imputation Methods: Mean Imputation
(MEAN), ZERO, 𝑘NN [32]: The missing values are imputed

by the mean value, 0, or 𝑘-nearest neighbor values in search

data samples, respectively. Linear Regression (LR) [49]:
The missing values are imputed by the multivariate linear

regression between observed features and missing features.

GROUSE [7]: GROUSE imputed the missing value based on

low-rank matrix completion. KFMC [19]: KFMC imputed

and optimized the missing value in online data by high-rank

matrix completion.

• Matrix Calibration Methods: Direct Matrix Calibration
(DMC) [37]. DMC calibrated the similarity matrix by search-

ing the approximated matrix with PSD based on Dykstra’s

alternating projection method. Cyclic Matrix Calibration
(CMC) [38]. CMC proposed a cyclic projection method to

seek a similarity matrix satisfied with PSD property.

All the baselines are implemented in MATLAB. Each algorithm

is stopped when the relative difference between objective values

in consecutive iterations is smaller than the tolerance 10
−4
. We

evaluated the performance varying with the missing ratios by grid

search and adopted the hyperparameter as mentioned in the re-

spective papers. We denoted our main method in Algorithm.3 as

SMC, QNASMC, and CQASMC, where the similarity vector was

estimated by BSVC, QNBSVC, and CQABSVC.

6.2 Effectiveness Analysis
We applied relative-mean-square error (RMSE) [3] as the evalua-

tion metric to verify the effectiveness of the comparison method,

which is defined as:

RMSE =
| |𝑆 − 𝑆∗ | |2

𝐹

| |𝑆0 − 𝑆∗ | |2
𝐹

Table 1 showed the average RMSE and STD (standard deviation)

varied with various missing ratios 𝜌 = {20%, 50%, 80%} on different

datasets. Overall, all the MC methods had a performance guarantee

with RSME ≤ 1 while the MVI methods could not achieve this,

which revealed the necessity of utilizing the prior knowledge of

the similarity matrix. Take ImageNet as an example, the RMSE of

our SMC was 0.401 with a missing ratio 𝜌 = 0.8, which was much

better than all the other baseline methods. The same tendencies

could also be found on other datasets. Mathematically, the larger 𝜌

denoted the initial approximated 𝑆0 calculated by the incomplete

data samples is far away from the ground truth 𝑆∗ calculated by

complete data samples, leaving a higher probability of improving

matrix calibration results. Combining the performance on all the

datasets with various missing ratios 𝜌 , the RMSE of our proposed

methods changed steadily. Therefore, a more evident calibration

results of ∥𝑆 − 𝑆∗∥2
𝐹
was achieved through calibration for a higher

missing ratio 𝜌 . More results of RMSE are in Appendix.A.

6.3 Efficiency Analysis
Table 2 recorded the time of all the baseline methods with𝑚 =

1, 000 query items and 𝑛 = 1, 000/𝑛 = 5, 000 search candidates.

Since all the MVI methods ignored the pairwise similarities of the

datasets, though the time cost was much lower than MC methods,

the RMSE were worse than MCmethods. Here, we ignored the com-

parison between MVI methods and MC methods. Take ImageNet as

an example, DMC, CMC, and SMC took around 100 seconds, which

was possibly caused by the SVD operation. Fortunately, the time

cost of QASMC and CQASMC were reduced by using the approxi-

mated algorithm, to around 70 seconds and 30 seconds, respectively.

Meanwhile, the same tendency can be found on the other datasets.

More results of Time are in Appendix.A.

6.4 Evaluation for PSD property
To verify the assumption, that is, the positive definiteness of

similaritymatrix 𝑆pp always holds, we also analyzed the eigenvalues

of the initial accurate similarity matrix 𝑆pp that was calculated by

the search samples. For ease of representation, we showed the

maximum and minimum eigenvalues of 𝑆pp. As can be seen from

Table 3, the maximum eigenvalue varied with various data sizes. It

seemed that the similarity matrix 𝑆pp with a larger size gained a

larger eigenvalue. Meanwhile, all the minimum eigenvalues were

positive, which can be seen as a guarantee that the similarity matrix

𝑆pp was positive definite.
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Table 1: Comparison of RMSE with𝑚 = 1, 000 query items and 𝑛 = 1, 000 query items with various missing 𝜌 on different datasets.

𝑛=1,000

𝑚=1,000

Missing
Ratio 𝜌

ZERO MEAN kNN LR RF GROUSE KFMC DMC CMC SMC QASMC CQASMC

ImageNet
0.2 2027.300±371.24 1.600±0.045 1.306±0.035 134.580±14.586 1.219±0.051 1.535±0.195 0.951±0.057 0.735±0.021 0.799±0.004 0.706±0.087 0.691±0.004 0.630±0.114
0.5 3421.600±499.21 2.100±0.357 1.639±0.357 80.897±24.180 1.716±0.016 1.975±0.371 1.131±0.091 0.618±0.012 0.620±0.044 0.586±0.018 0.472±0.014 0.417±0.076
0.8 2785.200±390.21 1.171±0.127 0.875±0.020 66.013±1.184 1.046±0.067 0.999±0.025 0.549±0.063 0.451±0.042 0.427±0.032 0.401±0.010 0.398±0.043 0.432±0.077

MNIST
0.2 1972.000±193.601 1.747±0.018 1.470±0.062 128.260±19.243 1.354±0.002 1.675±0.078 1.093±0.058 0.742±0.017 0.804±0.008 0.738±0.060 0.731±0.02 0.745±0.063
0.5 3691.100±125.221 2.159±0.069 1.742±0.009 88.051±31.935 1.728±0.028 2.008±0.002 1.131±0.092 0.581±0.073 0.587±0.028 0.549±0.024 0.520±0.01 0.532±0.068
0.8 2748.009±233.681 1.220±0.039 0.936±0.058 4.596±13.007 1.093±0.037 1.048±0.024 0.579±0.045 0.441±0.048 0.416±0.005 0.421±0.010 0.465±0.004 0.486±0.014

CIFAR
0.2 3180.278±193.410 2.639±0.073 1.951±0.009 79.778±15.991 2.027±0.033 2.434±0.075 1.346±0.095 0.772±0.017 0.787±0.013 0.743±0.029 0.763±0.03 0.715±0.052
0.5 3382.103±214.877 1.828±0.063 1.408±0.056 69.523±14.488 1.460±0.086 1.720±0.079 1.014±0.054 0.590±0.043 0.591±0.069 0.590±0.064 0.595±0.09 0.465±0.047
0.8 2883.282±154.379 1.110±0.375 0.840±0.079 4.420±19.439 1.002±0.063 0.963±0.039 1.560±0.015 0.378±0.047 0.380±0.036 0.379±0.004 0.390±0.04 0.459±0.044

SIFT
0.2 1797.553±100.341 1.068±0.092 0.724±0.017 4.517±14.233 0.909±0.022 0.872±0.064 1.495±0.004 0.566±0.057 0.557±0.008 0.575±0.044 0.598±0.025 0.474±0.069
0.5 2425.479±212.097 0.957±0.016 0.724±0.081 5.971±16.069 0.835±0.021 0.806±0.026 1.489±0.093 0.486±0.051 0.460±0.096 0.432±0.080 0.447±0.022 0.547±0.086
0.8 3382.103±154.482 1.828±0.046 1.408±0.083 69.523±15.411 1.460±0.025 1.720±0.027 1.014±0.096 0.607±0.085 0.605±0.059 0.576±0.025 0.589±0.023 0.431±0.077

PROTEIN
0.2 2789.414±167.955 1.051±0.089 1.034±0.062 64.234±10.520 1.909±0.092 2.412±0.088 1.541±0.089 0.514±0.007 0.624±0.008 0.590±0.078 0.613±0.029 0.715±0.065
0.5 2579.437±191.385 1.075±0.034 0.848±0.086 63.414±31.581 0.966±0.056 0.922±0.025 1.493±0.046 0.445±0.081 0.601±0.083 0.557±0.099 0.568±0.024 0.404±0.040
0.8 3382.103±90.545 1.828±0.019 1.408±0.083 69.523±37.103 1.460±0.008 1.720±0.086 1.014±0.006 0.607±0.069 0.605±0.047 0.572±0.097 0.576±0.024 0.460±0.065

RCV1
0.2 2561.412±97.155 1.042±0.171 1.241±0.070 64.141±10.497 1.491±0.006 2.131±0.005 1.416±0.078 0.624±0.061 0.612±0.073 0.583±0.037 0.592±0.002 0.699±0.042
0.5 2835.411±129.567 1.218±0.902 0.921±0.090 101.476±12.578 1.940±0.022 2.351±0.008 1.153±0.071 0.527±0.018 0.540±0.051 0.480±0.042 0.499±0.023 0.456±0.004
0.8 2967.128±126.516 1.959±0.133 1.615±0.044 73.165±14.868 1.578±0.072 1.811±0.075 1.134±0.009 0.659±0.076 0.661±0.088 0.615±0.047 0.626±0.004 0.527±0.086

Table 2: Comparison of Time Cost (seconds) with 𝑛 = 1, 000/𝑛 = 5, 000 search candidates and𝑚 = 1, 000 query items with various
missing 𝜌 on different datasets. A smaller value denoted better performance.

𝑛=1,000

𝑚=1,000

Missing
Ratio 𝜌

DMC CMC SMC QASMC CQASMC

ImageNet
0.2 104.243 229.271 199.110 75.605 26.593

0.5 102.495 246.419 158.400 76.494 26.662

0.8 105.540 305.849 139.920 77.680 27.414

MNIST
0.2 102.018 213.748 128.548 74.756 20.042

0.5 96.366 227.495 128.651 78.369 22.054

0.8 100.333 223.190 133.114 79.714 24.442

CIFAR
0.2 77.827 182.271 204.948 88.473 27.806

0.5 77.421 230.872 136.358 83.254 26.076

0.8 78.035 222.290 133.547 81.146 25.989

SIFT
0.2 68.345 115.203 158.424 99.052 26.140

0.5 74.155 144.967 294.152 94.004 27.734

0.8 73.617 146.608 300.467 77.110 28.342

PROTEIN
0.2 40.279 114.849 175.261 74.846 27.846

0.5 37.761 107.814 200.859 79.932 26.200

0.8 44.116 122.680 156.713 82.293 26.280

RCV1
0.2 49.812 144.485 157.727 81.344 26.330

0.5 46.764 107.778 168.687 69.088 27.963

0.8 47.326 116.575 156.085 77.404 26.459

𝑛=5,000

𝑚=1,000

Missing
Ratio 𝜌

DMC CMC SMC QASMC CQASMC

ImageNet
0.2 94.328 210.688 199.870 71.849 26.853

0.5 96.158 271.144 137.401 78.580 26.456

0.8 95.490 220.163 165.499 72.797 27.370

MNIST
0.2 94.858 223.799 161.762 80.415 27.592

0.5 94.265 220.787 165.966 77.925 26.394

0.8 95.594 228.628 155.679 73.224 26.131

CIFAR
0.2 91.382 227.721 197.559 64.817 27.358

0.5 92.469 248.798 273.604 79.933 26.138

0.8 95.732 238.644 311.500 85.818 28.875

SIFT
0.2 76.234 111.764 201.908 81.888 27.605

0.5 75.511 204.754 254.438 82.472 27.517

0.8 48.926 112.838 171.038 91.427 28.149

PROTEIN
0.2 46.715 109.288 163.453 64.817 28.871

0.5 43.736 104.187 194.820 79.933 27.216

0.8 45.799 106.984 165.449 85.818 26.508

RCV1
0.2 47.084 112.832 155.052 89.754 28.282

0.5 47.333 110.628 163.994 93.327 26.318

0.8 47.016 121.145 158.010 89.542 26.364

(a) ImageNet (b) MNIST (c) CIFAR (d) SIFT (e) PROTEIN (f) RCV1

Figure 1: Comparisons of RMSE with various settings of tolerance for CG and QN on different datasets. 𝜌=0.2,𝑚 = 1, 000, and
𝑛 = 1, 000.

6.5 Evaluation for tolerance of CG and QN
To verify the overall performance of our ASMC, we conducted

the ablation study to gain a better understanding of different set-

tings of tolerance of CG and QN, shown in Fig.1-Fig.3. Overall, the

RMSE decreased with the increase of missing ratio 𝜌 . Meanwhile,

RMSE was not much changed with a fixed missing ratio 𝜌 on a spe-

cific in most cases. More detailed, when the missing ratio 𝜌 = 0.2,

the RMSE was around 0.6 on the ImageNet dataset with various

settings of tolerance. Similar tendencies can be found on the other

datasets, which was probably because the lower missing ratio has

a smaller influence on the RMSE. When 𝜌 = 0.5, the RMSE on

PROTEIN datasets was only 0.145. It was probably caused by the

data distribution.
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(a) 𝜌=0.5, ImageNet (b) 𝜌=0.5, MNIST (c) 𝜌=0.5, CIFAR (d) 𝜌=0.5, SIFT (e) 𝜌=0.5, PROTEIN (f) 𝜌=0.5, RCV1

Figure 2: Comparisons of RMSE with various settings of tolerance for CG and QN on different datasets, 𝜌=0.5,𝑚 = 1, 000, and
𝑛 = 1, 000.

(a) 𝜌=0.8, ImageNet (b) 𝜌=0.8, MNIST (c) 𝜌=0.8, CIFAR (d) 𝜌=0.8, SIFT (e) 𝜌=0.8, PROTEIN (f) 𝜌=0.8, RCV1

Figure 3: Comparisons of RMSE with various settings of tolerance for CG and QN on different datasets, 𝜌 = 0.8,𝑚 = 1, 000 and
𝑛 = 1, 000.

Table 3: Maximum Eigenvalue 𝜆max and Minimum Eigen-
value 𝜆min of Various size of 𝑆pp ∈ R𝑛×𝑛 .

Dataset Eigenvalue 𝑛 = 1, 000 𝑛 = 2, 000 𝑛 = 3, 000 𝑛 = 4, 000 𝑛 = 5, 000

𝜆max 756.5818 1.51e+03 2.27e+03 3.03e+03 3.79e+03ImageNet
𝜆min 7.55e-14 1.40e-13 1.90e-13 1.91e-13 3.79e-13

𝜆max 632.1339 2.09e+03 1.38e+03 1.85e+03 3.54e+03MNIST
𝜆min 2.83e-14 2.40e-14 4.53e-14 9.81e-14 5.55e-14

𝜆max 759.6139 1.52e+03 2.28e+03 3.04e+03 3.80e+03CIFAR
𝜆min 3.35e-14 1.10e-13 1.59e-13 1.13e-13 1.22e-13

𝜆max 757.9125 1.52e+03 2.28e+03 3.04e+03 3.79e+03SIFT
𝜆min 7.57e-14 1.52e-13 2.28e-13 1.95e-13 2.19e-13

𝜆max 763.8486 1.52e+03 2.28e+03 3.04e+03 3.79e+03PROTEIN
𝜆min 7.60e-14 1.01e-14 1.83e-13 2.72e-13 2.83e-13

𝜆max 760.9445 1.52e+03 2.27e+03 3.03e+03 3.79e+03RCV1
𝜆min 7.59e-14 1.17e-13 1.58e-13 2.75e-13 3.53e-13

7 CONCLUSION
Matrix calibration is a fundamental research problem with vari-

ous applications. However, it is often non-trivial to obtain a good

similarity matrix when the query samples are incomplete in real-

world scenarios. In this paper, we proposed a Basic Similarity Vector

Calibration (BSVC) method to solve the similarity search problem

with incomplete queries. To further reduce the computational com-

plexity, we proposed an approximated algorithm, Conjugate Gra-

dient and Quasi-Newton based Approximated BSVC(CQABSVC)

method to find the approximated solutions. Then the similarity

matrix can be calibrated by BSVC or CQASBVC methods sequen-

tially. Theoretical analysis showed the convergence guarantee of

our proposed method. Empirical analysis showed a clear improve-

ment in estimating the similarity matrix with superior performance

over baseline methods, which provided a promising practical tool

in real-world scenarios.
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A EXTENDED ALGORITHM AND
EVALUATION

A.1 RMSE Results
In this section, we showed the comparison of RMSE with 𝑛 =

2, 000, 4, 000, 5, 000 search candidates and𝑚 = 1, 000 query items

with various missing 𝜌 on different datasets.

A.2 Time Results
In this section, we showed the comparison of Time with 𝑛 =

2, 000, 4, 000 search candidates and 𝑚 = 1, 000 query items with

various missing 𝜌 on different datasets.

B PROOFS
B.1 Explanation of ASVC

This iteration method provided a way to approximate the roots

of a real-valued function. The detailed update in each iteration is:

• Evaluate the gradient 𝑔(𝛾)
• Determine the direction 𝑝𝑡 = −𝐻𝑡𝑔𝑡
• Use a line search to find 𝛼𝑡 that minimizes 𝑓 (𝛾𝑡 + 𝛼𝑡𝑝𝑡 )
• Update 𝛾𝑡+1 = 𝛾𝑡 + 𝛼𝑡𝑝𝑡
• Compute 𝛾𝑡+1 − 𝛾𝑡 and 𝑓 ′ (𝛾𝑡+1) − 𝑓 ′ (𝛾𝑡 )
• Update 𝐻𝑡+1 using the Quasi-Newton formula.

If the change in 𝛾 or the gradient is below a certain threshold, or

if a maximum number of iterations is reached, stop the algorithm

and return the approximated 𝛾∗ as the result.

B.2 Theoretical Guarantee

min

𝑆∈𝑀𝑛

| |𝑆 − 𝑆0 | |2𝐹
𝑠 .𝑡 . 𝑆 ⪰ 0

=⇒
min

𝑣∈R𝑛
| |𝑣 − 𝑣0 | |2

𝑠 .𝑡 . 𝑣𝑆−1𝑛 𝑣 ≤ 1

The proof is as follows given by [37], where 𝑆∗ denotes the
ground-truth of similarity matrix, 𝑆0 denotes the initial similarity

matrix calculated by incomplete data, and T denotes the feasible

region {𝑆 ∈ 𝑀𝑛 | 𝑆 ⪰ 0, 𝑠𝑖𝑖 = 1, 𝑠𝑖 𝑗 ∈ [−1, 1], ∀ 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛}.
Theorem B.1. | |𝑆∗ − 𝑆 | |2

𝐹
≤ ||𝑆∗ − 𝑆0 | |2

𝐹
. The equality holds if

and only if 𝑆0 ∈ T , i.e., 𝑆0 = 𝑆 .

Proof. Let𝑀𝑛 be the set of 𝑛 ×𝑛 symmetric matrices, equipped

with an inner product that induces the Frobenius norm:

⟨𝑋,𝑌 ⟩ = 𝑡𝑟𝑎𝑐𝑒 (𝑋⊤𝑌 ), for any 𝑋,𝑌 ∈ 𝑀𝑛

Considering that 𝑆∗ ∈ T , we have:
| |𝑆∗ − 𝑆 | |2𝐹
≤ ||𝑆∗ − 𝑆 | |2𝐹 − 2⟨𝑆

∗ − 𝑆, 𝑆0 − 𝑆⟩
≤ ||𝑆∗ − 𝑆 | |2𝐹 + ||𝑆

0 − 𝑆 | |2𝐹 − 2⟨𝑆
∗ − 𝑆, 𝑆0 − 𝑆⟩

= | | (𝑆∗ − 𝑆) − (𝑆0 − 𝑆) | |2𝐹
= | |𝑆∗ − 𝑆0 | |2𝐹

The first "≤" holds due to Kolmogrov’s criterion [17], which states

that the projection of 𝑆0 onto T is unique and characterized by:

𝑆 ∈ T and ⟨𝑆 − 𝑆, 𝑆0 − 𝑆⟩ ≤ 0 for all 𝑆 ∈ T
The equality holds if and only if 𝑆 = 𝑆0, i.e., 𝑆0 ∈ T . □

B.3 Positive Semi-definiteness
In the main text is a classical theorem based on Schur comple-

ment, which is proved as follows given by [21, 22, 30].

Theorem B.2. Let 𝑆𝑛 ∈ R𝑛×𝑛 be a strictly positive definite matrix.

Let 𝑆𝑛+1 =

[
𝑆𝑛 𝑣

𝑣⊤ 1

]
, where 𝑣 ∈ R𝑛 . Then 𝑆𝑛+1 is positive semi-

definite if and only if 𝑣⊤𝑆−1𝑛 𝑣 ≤ 1.

Proof. Consider a matrix 𝑆𝑛+1 ∈ R(𝑛+1)×(𝑛+1) partitioned as

𝑆𝑛+1 =
[
𝑆𝑛 𝑣

𝑣⊤ 1

]
where 𝑆𝑛 ∈ S𝑛++, 𝑣 ∈ R𝑛 . Due to det 𝑆𝑛 ≠ 0, the Schur complement

of 𝑆pp in 𝑆 is𝐷 = 1−𝑣⊤𝑆−1
pp

𝑣 . Considering theminimization problem

min 𝑢⊤𝑆pp𝑢 + 2𝛾⊤𝑣⊤𝑢 + 𝛾⊤1𝛾,

with variable 𝑢 ∈ R𝑛, 𝛾 ∈ R. The optimal solution is 𝑢∗ = −𝑆−1
pp

𝑣𝛾 ,

we plugged it back into the minimization problem, and the mini-

mization value is:

inf

𝑢

[
𝑢

𝛾

]⊤ [
𝑆pp 𝑣

𝑣⊤ 1

] [
𝑢

𝛾

]
=𝑢∗⊤𝑆pp𝑢∗ + 2𝛾⊤𝑣⊤𝑢∗ + 𝛾⊤1𝛾
=𝛾⊤𝑣⊤𝑆−1

pp
𝑆pp𝑆

−1
pp

𝑣𝛾 − 2𝛾⊤𝑣⊤𝑆−1
pp

𝑣𝛾 + 𝛾⊤1𝛾
=𝛾⊤𝑣⊤𝑆−1

pp
𝑣𝛾 − 2𝛾⊤𝑣⊤𝑆−1

pp
𝑣𝛾 + 𝛾⊤1𝛾

= − 𝛾⊤𝑣⊤𝑆−1
pp

𝑣𝛾 + 𝛾⊤1𝛾
=𝛾⊤ (1 − 𝑣⊤𝑆−1

pp
𝑣)𝛾

=𝛾⊤𝐷𝛾.

Then we obtain the equivalence of positive definiteness between

𝐷 and 𝑆𝑛+1:

𝐷 ≥ 0⇔ ∀𝛾 ∈ R, 𝛾⊤𝐷𝛾 ≥ 0

⇔ ∀𝛾 ∈ R, inf
𝑢

[
𝑢

𝛾

]⊤
𝑆

[
𝑢

𝛾

]
≥ 0

⇔ ∀𝑢 ∈ R𝑛, 𝛾 ∈ R,
[
𝑢

𝛾

]⊤
𝑆

[
𝑢

𝛾

]
≥ 0

⇔ 𝑆 ⪰ 0,

which shows 𝑆 is positive semi-definite iff 𝑣⊤𝑆−1
pp

𝑣 ≤ 1.

□

B.4 Convergence for CG-SVC
Lemma B.3. If 𝐴 is PD, then 𝜆min

√
𝑛 ≤ ||𝐴| |𝐹 ≤

√
𝑛 𝜆2

max
; and

Proof. By the property of | |𝐴| |𝐹 1
,

| |𝐴| |𝐹 ≤
√︁
𝑟 (𝐴) | |𝐴| |2 ≤

√
𝑛 𝜆2

max

Moreover, by
2
, | |𝐴| |𝐹 ≥

√︄∑︁
𝑖

𝜆2
𝑖
≥

√︃
𝑛𝜆2

min
= 𝜆min

√
𝑛.

□

1
https://courses.cs.washington.edu/courses/cse521/17wi/521-lecture-8.pdf

2
https://math.stackexchange.com/questions/620870/prove-that-the-square-sum-of-

eigenvalues-is-no-more-than-the-frobenius-norm-for
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Table 4: Comparison of RMSE with 𝑛 = 2, 000 search candidates and𝑚 = 1, 000 query items with various missing 𝜌 on different
datasets. A smaller value denoted better performance.

𝑛=2,000
𝑚=1,000

Missing
Ratio ZERO MEAN kNN LR RF GROUSE KFMC DMC CMC SMC QASMC CQASMC

0.2 4096.343 2.432 1.836 75.899 1.951 2.274 1.298 0.553 0.560 0.692 0.728 0.697

0.5 3262.025 1.470 1.135 63.336 1.338 1.284 0.775 0.391 0.364 0.344 0.359 0.468ImageNet
0.8 2753.528 1.119 0.850 65.528 1.020 0.966 0.575 0.472 0.446 0.426 0.446 0.361

0.2 1130.077 1.252 1.108 88.452 1.010 1.216 0.874 0.806 0.907 0.803 0.815 0.826

0.5 2506.342 1.911 1.556 58.068 1.596 1.805 1.116 0.712 0.712 0.686 0.685 0.630MNIST
0.8 3157.683 1.698 1.377 75.412 1.351 1.570 0.857 0.657 0.664 0.626 0.626 0.646

0.2 1951.028 1.776 1.539 108.977 1.433 1.702 1.103 0.742 0.800 0.713 0.717 0.726

0.5 3691.816 2.257 1.804 77.694 1.779 2.092 1.065 0.572 0.578 0.533 0.533 0.522CIFAR
0.8 2634.238 1.445 1.182 5.604 1.289 1.228 0.627 0.444 0.420 0.400 0.400 0.418

0.2 2219.104 2.011 1.568 87.813 1.513 1.799 1.915 0.596 0.589 0.536 0.541 0.543

0.5 2341.015 2.029 1.538 92.612 1.525 1.845 1.980 0.593 0.601 0.557 0.557 0.577SIFT
0.8 2451.514 2.419 1.518 89.890 1.472 1.784 1.893 0.582 0.614 0.578 0.568 0.583

0.2 3149.420 1.897 1.458 88.809 1.419 1.786 0.994 0.756 0.756 0.756 0.754 0.761

0.5 3436.216 1.945 1.591 80.079 1.574 1.801 0.977 0.618 0.621 0.583 0.583 0.587PROTEIN
0.8 3112.226 1.796 1.473 61.915 1.445 1.676 0.972 0.635 0.630 0.597 0.596 0.582

0.2 3700.649 2.000 1.649 88.110 1.611 1.865 1.047 0.594 0.598 0.557 0.558 0.579

0.5 3852.777 1.973 1.516 68.230 1.576 1.855 1.044 0.567 0.567 0.526 0.530 0.519RCV1
0.8 3453.511 1.897 1.419 70.314 1.451 1.789 1.031 0.564 0.565 0.532 0.540 0.534

Table 5: Comparison of RMSE with 𝑛 = 3, 000 search candidates and𝑚 = 1, 000 query items with various missing 𝜌 on different
datasets. A smaller value denoted better performance.

𝑛=3,000
𝑚=1,000

Missing
Ratio ZERO MEAN kNN LR RF GROUSE KFMC DMC CMC SMC QASMC CQASMC

0.2 1899.345 1.625 1.355 141.023 1.252 1.562 0.973 0.750 0.812 0.723 0.726 0.696

0.5 2628.687 1.274 1.012 65.396 1.166 1.117 0.652 0.463 0.431 0.417 0.416 0.498ImageNet
0.8 2415.008 1.262 0.981 64.555 1.113 1.090 0.617 0.484 0.460 0.441 0.442 0.440

0.2 1999.841 1.453 1.180 137.948 1.100 1.385 0.844 0.756 0.821 0.803 0.731 0.728

0.5 3256.074 1.994 1.642 60.128 1.642 1.867 1.033 0.624 0.628 0.686 0.588 0.563MNIST
0.8 3502.127 2.145 1.775 81.767 1.688 1.992 1.105 0.579 0.587 0.626 0.541 0.546

0.2 2010.503 1.657 1.393 130.845 1.287 1.584 0.983 0.744 0.808 0.713 0.717 0.719

0.5 2415.541 1.642 1.352 89.432 1.341 1.516 0.852 0.735 0.752 0.533 0.685 0.718CIFAR
0.8 2108.419 1.571 1.359 90.481 1.414 1.579 0.866 0.679 0.695 0.400 0.670 0.694

0.2 2990.088 1.369 1.047 2.966 1.771 2.029 1.216 0.605 0.606 0.567 0.567 0.561

0.5 2118.942 0.870 0.638 4.687 0.769 0.719 1.415 0.522 0.512 0.473 0.482 0.494SIFT
0.8 2133.338 2.361 1.983 74.815 1.936 2.209 1.217 0.599 0.607 0.563 0.563 0.598

0.2 3571.059 2.251 1.840 65.407 1.824 2.124 1.227 0.603 0.608 0.569 0.590 0.760

0.5 3114.411 2.099 1.725 77.048 1.739 1.957 1.174 0.651 0.653 0.601 0.637 0.585PROTEIN
0.8 3948.535 2.158 1.729 69.426 1.701 2.022 1.195 0.582 0.585 0.545 0.560 0.597

0.2 3701.289 2.277 1.953 85.739 1.858 2.141 1.274 0.589 0.590 0.552 0.552 0.538

0.5 3333.193 2.607 2.077 60.643 2.067 2.410 1.387 0.624 0.628 0.593 0.589 0.569RCV1
0.8 3486.254 2.282 1.891 58.856 1.847 2.123 1.209 0.600 0.602 0.566 0.562 0.563

Table 6: Comparison of RMSE with𝑚 = 4, 000 search candidates and 𝑛 = 1, 000 query items with various missing 𝜌 on different
datasets. A smaller value denoted better performance.

𝑛=4,000
𝑚=1,000

Missing
Ratio ZERO MEAN kNN LR RF GROUSE KFMC DMC CMC SMC QASMC CQASMC

0.2 2184.387 1.583 1.298 117.575 1.212 1.525 0.958 0.702 0.769 0.671 0.675 0.701

0.5 1952.847 0.786 0.614 64.675 0.687 0.662 0.353 0.584 0.575 0.546 0.548 0.467ImageNet
0.8 2953.032 1.358 1.016 69.021 1.204 1.181 0.689 0.403 0.376 0.359 0.358 0.473

0.2 3113.209 1.327 0.973 4.628 1.182 1.130 0.553 0.380 0.356 0.347 0.370 0.389

0.5 2798.770 1.178 0.911 6.196 1.068 1.024 0.502 0.349 0.342 0.344 0.350 0.413MNIST
0.8 2880.082 1.164 0.894 3.685 1.050 1.013 0.538 0.342 0.389 0.342 0.342 0.383

0.2 2162.085 1.643 1.366 141.266 1.259 1.581 0.989 0.715 0.785 0.672 0.687 0.694

0.5 3359.900 2.144 1.694 60.944 1.717 2.014 1.110 0.605 0.608 0.570 0.570 0.579CIFAR
0.8 2175.928 1.120 0.898 4.819 1.000 0.946 0.551 0.538 0.516 0.494 0.495 0.490

0.2 2901.842 2.512 1.854 69.319 1.931 2.415 1.681 0.689 0.692 0.641 0.645 0.650

0.5 3143.413 2.142 1.785 78.210 1.942 2.084 1.519 0.575 0.578 0.551 0.551 0.566SIFT
0.8 3099.105 2.515 1.742 67.894 1.988 2.131 1.451 0.390 0.379 0.356 0.357 0.408

0.2 2589.518 1.895 1.413 76.141 1.415 1.859 1.052 0.689 0.690 0.665 0.691 0.650

0.5 3262.297 1.991 1.553 75.549 1.574 1.860 1.007 0.641 0.645 0.628 0.607 0.566PROTEIN
0.8 2141. 515 1.489 1.414 71.125 1.589 1.894 0.918 0.618 0.634 0.632 0.615 0.408

0.2 3624.475 2.181 1.793 87.477 1.775 2.029 1.203 0.592 0.597 0.556 0.556 0.563

0.5 3056.585 1.952 1.587 81.825 1.561 1.797 0.989 0.654 0.661 0.620 0.618 0.613RCV1
0.8 3056.783 1.956 1.641 79.417 1.598 1.799 1.000 0.642 0.653 0.605 0.606 0.609
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Table 7: Comparison of RMSE with𝑚 = 5, 000 search candidates and 𝑛 = 1, 000 search candidates with various missing 𝜌 on
different datasets. A smaller value denoted better performance.

n=5,000
m=1,000

Missing
Ratio ZERO MEAN kNN LR RF GROUSE KFMC DMC CMC SMC QASMC CQASMC

0.2 1935.363 1.498 1.259 156.788 1.160 1.431 0.873 0.746 0.807 0.711 0.718 0.697

0.5 3163.896 1.348 0.997 5.202 1.222 1.182 0.664 0.443 0.403 0.397 0.397 0.491ImageNet
0.8 1823.131 0.781 0.614 7.841 0.674 0.652 0.325 0.574 0.566 0.535 0.536 0.396

0.2 2310.817 1.022 0.783 3.567 0.917 0.887 0.456 0.483 0.594 0.553 0.554 0.529

0.5 2314.151 1.091 0.790 3.426 0.915 0.891 0.461 0.497 0.484 0.439 0.439 0.423MNIST
0.8 2140.673 0.985 0.748 8.300 0.849 0.805 0.487 0.546 0.530 0.502 0.503 0.504

0.2 1926.079 1.781 1.531 114.301 1.361 1.700 1.098 0.745 0.804 0.720 0.720 0.726

0.5 2014.142 0.945 0.741 65.019 0.835 0.806 0.489 0.515 0.520 0.473 0.474 0.475CIFAR
0.8 2425.479 0.957 0.724 67.901 0.831 0.819 0.479 0.492 0.489 0.452 0.454 0.485

0.2 3253.020 2.138 1.874 60.949 1.835 2.032 1.266 0.642 0.644 0.601 0.616 0.637

0.5 2134.877 1.341 1.431 65.145 1.031 0.849 1.654 0.512 0.564 0.564 0.567 0.564SIFT
0.8 2883.282 1.110 0.840 64.416 1.002 0.963 1.560 0.411 0.383 0.355 0.356 0.362

0.2 3223.142 2.156 1.642 54.142 2.641 2.433 1.141 0.652 0.651 0.631 0.664 0.694

0.5 3440.121 2.454 2.037 87.979 2.018 2.287 1.271 0.617 0.621 0.579 0.581 0.602PROTEIN
0.8 3413.145 2.514 2.314 79.314 1.909 2.151 1.159 0.619 0.631 0.589 0.589 0.622

0.2 3253.020 2.138 1.874 60.949 1.835 2.032 1.266 0.642 0.644 0.615 0.616 0.614

0.5 3603.686 2.080 1.600 66.476 1.621 1.932 1.072 0.604 0.611 0.573 0.567 0.581RCV1
0.8 2544.756 1.273 1.929 70.981 1.945 2.208 1.291 0.620 0.621 0.588 0.586 0.606

Table 8: Comparison of Time Cost (seconds) with 𝑛 = 2, 000

search candidates and𝑚 = 1, 000 query items with various
missing 𝜌 on different datasets. A smaller value denoted
better performance.

𝑛=2,000
𝑚=1,000

Missing
Ratio DMC CMC SMC QASMC CQASMC

0.2 97.605 214.391 200.530 76.146 27.015

0.5 96.495 229.878 165.490 77.576 26.515ImageNet
0.8 100.027 282.974 134.880 81.349 26.484

0.2 102.018 213.748 128.548 69.026 20.043

0.5 96.366 227.495 128.651 68.566 22.054MNIST
0.8 100.333 223.190 133.114 65.824 24.443

0.2 79.836 175.972 203.876 66.563 26.348

0.5 74.198 174.743 141.386 74.008 27.850CIFAR
0.8 72.022 175.378 139.840 85.355 26.630

0.2 69.174 100.043 209.686 88.548 26.278

0.5 73.593 137.571 282.720 88.844 27.853SIFT
0.8 75.296 141.379 305.000 91.662 28.783

0.2 45.991 112.644 168.192 88.021 26.354

0.5 37.136 95.537 198.990 89.065 27.055PROTEIN
0.8 45.269 117.114 157.489 81.864 29.011

0.2 47.200 114.993 163.253 79.880 26.435

0.5 47.465 121.871 157.749 80.229 26.932RCV1
0.8 54.696 126.589 158.662 81.353 27.260

Lemma B.4. If 𝐴 is PD, then | |𝑥 | |𝐴 := 𝑥⊤𝐴𝑥 ≤ 𝜆max (𝐴)𝑥⊤𝑥 and
| |𝑥 | |𝐴 := 𝑥⊤𝐴𝑥 ≥ 𝜆min (𝐴)𝑥⊤𝑥

Proof. Note that

𝑥⊤𝐴𝑥 = ⟨𝑥,𝐴𝑥⟩ = ⟨𝑥,𝑈⊤Σ𝑈𝑥⟩ = ⟨𝑈⊤𝑥, Σ𝑈𝑥⟩ = ∑
𝑖 𝜆𝑖𝑦

2

𝑖
, where

𝑦 = 𝑈𝑥 , and | |𝑦 | | = | |𝑥 | |.
Thus, taking the maximum and min-mum 𝜆, we obtain our result.

□

Lemma B.5. Assume | |
(
𝑆−1
pp
− 𝑆−1

pp
′
)
| |𝐹 ≤ 𝜖1, | |𝛾 −𝛾 ′ | |𝐹 ≤ 𝜖2, we

have

| |
(
𝐼 + 𝛾∗𝑆−1

pp

)
𝑣0 −

(
𝐼 + 𝛾 ′𝑆−1

pp
′
)
𝑣0 | | ≤ (

(
𝛾∗𝜖1 +

√
𝑛𝜆2

max

(
𝑆−1
pp

)
𝜖2

)
𝑛

where the dimension of 𝑣0 is 𝑛.

Table 9: Comparison of Time Cost (seconds) with 𝑛 = 3, 000

search candidates and𝑚 = 1, 000 query items with various
missing 𝜌 on different datasets. A smaller value denoted
better performance.

𝑛=3,000
𝑚=1,000

Missing
Ratio DMC CMC SMC QASMC CQASMC

0.2 97.605 214.391 200.530 76.146 27.015

0.5 96.495 229.878 165.490 77.576 26.515ImageNet
0.8 100.027 282.974 134.880 81.349 26.484

0.2 102.018 213.748 128.548 69.026 20.043

0.5 96.366 227.495 128.651 68.566 22.054MNIST
0.8 100.333 223.190 133.114 65.824 24.443

0.2 79.836 175.972 203.876 66.563 26.348

0.5 74.198 174.743 141.386 74.008 27.850CIFAR
0.8 72.022 175.378 139.840 85.355 26.630

0.2 69.174 100.043 209.686 88.548 26.278

0.5 73.593 137.571 282.720 88.844 27.853SIFT
0.8 75.296 141.379 305.000 91.662 28.783

0.2 45.991 112.644 168.192 88.021 26.354

0.5 37.136 95.537 198.990 89.065 27.055PROTEIN
0.8 45.269 117.114 157.489 81.864 29.011

0.2 47.200 114.993 163.253 79.880 26.435

0.5 47.465 121.871 157.749 80.229 26.932RCV1
0.8 54.696 126.589 158.662 81.353 27.260

Proof. 


(𝐼 − 2𝛾∗𝑆−1
pp

)
𝑣0 −

(
𝐼 − 2𝛾 ′𝑆−1

pp

)
𝑣0





≤ 2




𝛾∗𝑆−1
pp
− 𝛾 ′𝑆−1

pp





𝐹



𝑣0


≤ 2

(


𝛾∗ (𝑆−1
pp
− 𝑆−1

pp

)



𝐹
+




𝑆−1
pp
(𝛾 − 𝛾′)





𝐹

) 

𝑣0


(𝑎)
≤ 2

(
𝛾∗𝜖1 +




𝑆−1
pp




 𝜖2) 𝑛
(𝑏 )
≤ 2

(
𝛾∗𝜖1 +

√
𝑛𝜆2

max

(
𝑆−1
pp

)
𝜖2

)
𝑛

□

(a) is due to | |
(
𝑆−1
pp
− 𝑆−1

pp
′
)
| |𝐹 ≤ 𝜖1, | |𝛾 − 𝛾 ′ | |𝐹 ≤ 𝜖2.

(b) is due to Lemma B.3.
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Table 10: Comparison of Time Cost (seconds) with 𝑛 = 4, 000

search candidates and𝑚 = 1, 000 query items with various
missing 𝜌 on different datasets. A smaller value denoted
better performance.

𝑛=4,000
𝑚=1,000

Missing
Ratio DMC CMC SMC QASMC CQASMC

0.2 96.291 205.023 200.560 81.420 27.115

0.5 94.474 272.922 137.070 75.697 26.329ImageNet
0.8 91.814 219.453 161.170 76.795 27.014

0.2 95.210 221.877 165.767 70.480 26.419

0.5 97.573 228.800 155.451 73.028 27.960MNIST
0.8 93.691 240.372 158.634 77.608 27.632

0.2 80.883 144.731 196.658 85.878 27.028

0.5 88.882 225.155 250.973 77.199 28.632CIFAR
0.8 89.138 233.421 281.737 85.695 22.478

0.2 74.145 99.589 202.988 80.939 29.270

0.5 79.708 199.163 246.371 85.649 22.169SIFT
0.8 75.280 183.807 260.078 93.261 26.467

0.2 46.742 110.897 167.928 82.548 27.403

0.5 41.758 94.208 196.647 82.890 26.630PROTEIN
0.8 45.296 108.610 158.170 87.747 26.511

0.2 48.606 113.606 154.619 76.131 26.354

0.5 46.940 107.666 165.954 78.400 26.277RCV1
0.8 48.032 113.999 155.026 76.713 26.189

Lemma B.6. if 𝑓 is strongly convex and ∇2 𝑓 (𝑥) is Lipschitz con-
tinuous, we have 

𝑥𝑘+1 − 𝑥★



2
≤ 𝑐𝑘



𝑥𝑘 − 𝑥★


2

where 𝑐𝑘 is a constant ,and 0 < 𝑐𝑘 < 1.

Proof. This can be found in page 9 http://www.seas.ucla.edu/

~vandenbe/236C/lectures/qnewton.pdf. □

Lemma B.7. Let 𝑥𝑘 be the 𝑘-th iteration of the CG method with
𝑋0. For PD matrix 𝑆𝑝𝑝 ,



𝑥∗ − 𝑥𝑘

𝐴 ≤ 2

(√︁
𝜅 (𝑆𝑝𝑝 ) − 1√︁
𝜅 (𝑆𝑝𝑝 ) + 1

)𝑘 

𝑥∗ − 𝑥0

𝐴
where 𝜅 (𝑆𝑝𝑝 ) = 𝜆max (𝑆𝑝𝑝 )/𝜆min ((𝑆𝑝𝑝 ))

Proof. Proof is on theorem 3.5 in https://www.math.uci.edu/

~chenlong/226/CG.pdf.

□

Lemma B.8. If 𝐴 is PD, then

𝜆min (𝑆𝑝𝑝 )
∑
𝑖




𝑥∗ − 𝑥𝑘𝑖 


 ≤ 2

(√
𝜅 (𝑆𝑝𝑝 )−1√
𝜅 (𝑆𝑝𝑝 )+1

)𝑘
𝜆max (𝑆𝑝𝑝 )

∑
𝑖




𝑥∗ − 𝑥𝑘𝑖 


.
Proof. From Lemma B.7 and Lemma B.4

𝜆min (𝑆𝑝𝑝 )
∑︁
𝑖




𝑥∗ − 𝑥𝑘𝑖 



≤

∑︁
𝑖




𝑥∗ − 𝑥𝑘𝑖 



𝐴
≤ 2

(√︁
𝜅 (𝑆𝑝𝑝 ) − 1√︁
𝜅 (𝑆𝑝𝑝 ) + 1

)𝑘 ∑︁
𝑖



𝑥∗ − 𝑥0𝑖 

𝐴
≤ 2

(√︁
𝜅 (𝑆𝑝𝑝 ) − 1√︁
𝜅 (𝑆𝑝𝑝 ) + 1

)𝑘
𝜆max (𝑆𝑝𝑝 )

∑︁
𝑖




𝑥∗ − 𝑥𝑘𝑖 


 .
□

Lemma B.9.

(
𝐼 + 𝛾∗𝑆−1

pp

)
𝑣0 ≤ ( 𝑐

𝜆min (𝐼+2𝛾∗𝑆−1pp
) )

3𝑛, where 0 < 𝑐 <

𝜆min.

| |
(
𝐼 − 2𝛾∗𝑆−1

pp

)
𝑣0 −

(
𝐼 + 2𝛾∗𝑆−1

pp

)−1
𝑣0 | |

≤ | |
(
𝐼 − 2𝛾∗𝑆−1

pp

)
𝑣0 −

(
𝐼 + 2𝛾∗𝑆−1

pp

)−1
| | | |𝑣0 | |

≤ ( 𝑐

𝜆min (𝐼 + 2𝛾∗𝑆−1pp
)
)3𝑛

The last inequality is based on the result from [52].

Theorem B.10. When running conjugate gradient with 𝑘1 step,
and Quasi-Netwon method with 𝑘2 step, QABSVC has

| |𝑣∗ −
(
𝐼 + 2𝛾 ′𝑆−1

pp
′
)−1

𝑣0 | | ≤ 𝑂 (𝑐𝑘1
0
) +𝑂 (𝑐𝑘2

1
)

where 0 < 𝑐0 < 1, and 0 < 𝑐1 < 1.

Proof. Noting that 𝑣∗ =
(
𝐼 + 2𝛾∗𝑆−1

pp

)−1
𝑣0 by the KKT condi-

tion, where𝛾∗ satisfying (
(
𝐼 + 2𝛾𝑆−1

pp

)−1
𝑣0)⊤𝑆−1

pp

(
𝐼 + 2𝛾𝑆−1

pp

)−1
𝑣0 =

𝐼 . By directly com-binding the lemma B.5,

| |𝑣∗ −
(
𝐼 + 𝛾 ′𝑆−1

pp
′
)
𝑣0 | | ≤ (

(
𝛾∗𝜖1 +

√
𝑛𝜆2

max

(
𝑆−1
pp

)
𝜖2

)
𝑛

Then, by using Lemma B.8 Lemma B.6,

𝜆min (𝑆𝑝𝑝 )𝜖1 ≤ 2

(√︁
𝜅 (𝑆𝑝𝑝 ) − 1√︁
𝜅 (𝑆𝑝𝑝 ) + 1

)𝑘1
𝜆max (𝑆𝑝𝑝 )




𝑆−1𝑝𝑝 − 𝑆0



 .

𝜖2 ≤ 2𝑐
𝑘2
1
| |𝛾0 − 𝛾∗ | |

Then, we have:

| |𝑣∗ −
(
𝐼 + 2𝛾 ′𝑆−1

pp
′
)−1

𝑣0 | |
≤ 𝑂 (𝑐𝑘1

0
) +𝑂 (𝑐𝑘2

1
)

□

http://www.seas.ucla.edu/~vandenbe/236C/lectures/qnewton.pdf
http://www.seas.ucla.edu/~vandenbe/236C/lectures/qnewton.pdf
https://www.math.uci.edu/~chenlong/226/CG.pdf
https://www.math.uci.edu/~chenlong/226/CG.pdf
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