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Abstract

The evaluation of reasoning capabilities is cru-
cial for the advancement of Artificial General
Intelligence. While Large Language Models
(LLMs) demonstrate proficiency in reasoning
tasks, existing benchmarks such as GSM8K
and LogiQA are limited, focusing mainly on in-
dividual problem-solving with linear logic and
static conditions. To bridge this gap, we intro-
duce an automated data construction pipeline
that simulates real-world reasoning scenarios
by combining existing reasoning problems into
more complex, long-chain reasoning problems.
Based on this pipeline, a new benchmark,
LREval, is designed to assess comprehensive
reasoning skills, such as multi-step logical
deduction, integration of diverse information
sources, and dynamic decision-making. The
evaluations underscore huge reasoning chal-
lenges faced by LLMs. Closed-source models
perform well in dynamic contexts but strug-
gle with integrating information from multiple
sources, while open-source models exhibit the
opposite trend. Moreover, model performance
is highly sensitive to perturbations in task con-
ditions, revealing the fragility of reasoning ca-
pabilities in current LLMs and the necessity
for robust evaluation frameworks. Additionally,
models struggle with tasks requiring simulta-
neous comprehension of multiple languages,
further emphasizing their limitations in multi-
lingual understanding.

1 Introduction

In recent years, large language models (LLMs)
(Brown et al., 2020; OpenAl, 2023; Touvron et al.,
2023; Bai et al., 2023) have made remarkable
progress in foundational natural language process-
ing (NLP) tasks and capability-specific tasks, show-
casing impressive abilities in generation (Dubey
et al., 2024a), reasoning (Huang and Chang, 2023),
and instruction following (Zhang et al., 2023a).
Reasoning ability, an essential aspect of general in-
telligence, has attracted significant attention from

researchers. To evaluate the reasoning capabil-
ity of LLMs, a variety of datasets have been em-
ployed, including mathematical reasoning bench-
marks GSM8K (Cobbe et al., 2021) and MATH
(Hendrycks et al., 2021), logical reasoning dataset
LogiQA (Liu et al., 2020), and commonsense rea-
soning dataset HellaSwag (Zellers et al., 2019).
These evaluations provide valuable insights into
basic reasoning abilities. However, they fall short
in offering a comprehensive assessment due to sev-
eral limitations (Yang et al., 2024b). Current rea-
soning benchmarks tend to: 1) focus on isolated
problems, emphasizing linear reasoning where
each step depends only on the previous; 2) involve
a single source of information, resulting in simple
information processing requirements; 3) remain
largely static, lacking the flexibility necessary to
evaluate the models’ ability to dynamically adapt
to changes in conditions and context. Thus, a new
dataset is essential to evaluate comprehensive rea-
soning capabilities, e.g., multi-step logical deduc-
tion, integration of multiple information sources,
dynamic decision-making, and chaining of interme-
diate conclusions. These abilities not only encom-
pass deep logical thinking requirements but also
play a vital role in complex real-world scenarios.
Addressing the challenges of manual data col-
lection, which is both costly and inefficient (Wu
et al., 2024), we introduce an automated data con-
struction pipeline. This pipeline simulates real-
world reasoning scenarios by combining existing
reasoning problems into more complex, long-chain
reasoning problems. It consists of two key compo-
nents including the collection of existing reason-
ing problems to form a subproblem set, and the
combination of these subproblems into complex,
long-chain tasks using two innovative strategies.
Specifically, we employ two core combination
strategies including answer combination and prob-
lem jumping, as illustrated in Fig. 1. The answer
combination strategy targets the evaluation of infor-



Answer Combination |
The following is a long-chain reasoning problem that requires
solving several sub-problems and then combining their answers
into a single formatted string.

Let's break down the problem: | Square each

| The following is a multi-hop long-chain reasoning problem that requires jumping to the
I subsequent question based on the answer to the previous question.

| Initial question: {Q0}

Problem Jumping

digit in the answer to the initial question, sum these squares, and then take

Answer question Q1.

| the result modulo 2 to obtain a key number X.

Answer question Q2. | First jump:

Concatenate the answers of Q1, and Q2 into a single string, I

separating them with ‘####’. Explain your answer step by step | QL 0: {Q1}
and give the final answer on the last line by itself in the format of | Q1_1: 4Q2}
“The answer of Q1 is [answerl]. I

The answer of Q2 is [answer2].

The final answer is \boxed {[answer | [####[answer2]}’.

I
|
I
Where [answerl] must be integer, [answer2] must be one of A, B, |
C and D, and the final answer must be put within \boxed{}. |

I

I

QL {Q1}

Solve the multi-hop question. Explain your answer step by step and give the final
answer on the last line by itself in the format of

‘The answer of the initial question is [answer(].

The first-jump question is [questionl].

The answer of the first-jump question is [answerl].

The final answer is \boxed {[answer(Q|====[answerl]} .

Where [answer(Q] must be integer, [answerl | must be one of A, B, C and D, and the

If X is equal to 0, proceed to Q1 0. If X is equal to 1, proceed to Q1 1.

Q2: {Q2}

l final answer must be put within \boxed{}.

Figure 1: This figure presents the templates for the answer

combination and problem-jumping strategies. The text

highlighted in red indicates the parameters that need to be filled in.

mation integration and structured reasoning, requir-
ing sequential resolution of independent subprob-
lems. Conversely, the problem-jumping strategy,
inspired by mechanisms in (Krosnick et al., 2010),
examines dynamic decision-making, where sub-
sequent subproblems depend conditionally on the
answers to prior questions. Various logical jump-
ing mechanisms, such as sequential (g2 — g¢3),
backtracking (¢1 — ¢3), and composite jumping
((q1,92) — g3), offer robust testing of model adapt-
ability. Appendix Figs 6 and 7 present examples of
backtracking and composite jumping, respectively.

Utilizing this pipeline, we construct two versions
of datasets including Easy and Hard, to accommo-
date different complexity evaluation needs, shown
in Table 1. The Easy version applies only the an-
swer combination strategy. The Hard subset de-
pends exclusively on the problem-jumping strategy.
Additionally, a Chinese benchmark is designed to
support multilingual evaluation, showcasing the
pipeline’s versatility. Evaluations expose notable
reasoning limitations in LLMs, e.g., the advanced
reasoning model ol-mini exhibits reasoning gaps
of 14.21% and 18.16% in the English Easy and
Hard subset, respectively. Overall, our conclusions
are as follows:

* Closed-source LLMs excel in flexible adapta-
tion and dynamic decision-making, whereas
open-source LLMs have a slight advantage in
information integration and structured reason-
ing, highlighting differences in training data
and strategies.

* LLMs below 7B parameters demonstrate lim-

ited capabilities in instruction understanding
and reasoning.

Even minor changes in task conditions affect
model performance, underscoring the fragility
of the reasoning capabilities of LLMs.

Mainstream LLMs struggle with tasks requir-
ing simultaneous multilingual comprehension,
revealing their multilingual reasoning limita-
tions.

2 Related Works

With the rapid development of LLMs, evaluat-
ing their capabilities, particularly reasoning abil-
ity, has become increasingly critical (Valmeekam
et al.,, 2022). Recognizing its pivotal role, re-
searchers have developed a variety of datasets to
assess the reasoning abilities of LLMs (Chang
et al., 2024). Typical examples include mathe-
matical reasoning datasets like GSM8K (Cobbe
et al., 2021), MCGSMS8K (Zhang et al., 2024b),
GaokaoBench-Math (Zhang et al., 2023b), Theo-
remQA (Chen et al., 2023), and MATH (Hendrycks
et al., 2021). Additionally, logical reasoning
datasets like LogiQA (Liu et al., 2020) and com-
monsense reasoning datasets such as HellaSwag
(Zellers et al., 2019) have garnered significant at-
tention within the research community.
Complementing these efforts, some studies have
sought to explore the compositional reasoning abil-
ities of models through multi-hop problems, where
the overall solution relies on accurately combin-
ing answers to sub-problems. For instance, Press



Language Subproblem Source Dataset Combination Strategy Dataset Size Subproblem Size Difficulty Level
Easy Answer Combination 1000 2 1
Enclish GSMSK:MATH:LogiQA Problem Jumping 1000 2 2
N 400:400:400 Hard  Problem Jumping 1000 3 3
Problem Jumping 1000 4 4
Chinese MGSM:LogiQA Easy Answer Combination 500 2 1
=250:250 Hard Problem Jumping 500 2 2

Table 1: An overview of the LREval benchmark. Overall, LREval contains test data in both Chinese and English,

with each portion comprising the Easy and Hard portions.

et al. (2023) introduces the multi-hop question-
answer task, e.g., “Who won the Master’s Tour-
nament the year Justin Bieber was born”, designed
to assess the application and reasoning of factual
knowledge. Bhuiya et al. (2024) incorporates dis-
tractor paragraphs into the reading comprehension
task, thereby concentrating on the ability to dis-
cern and synthesize information from multiple tex-
tual sources. Another study (Hosseini et al., 2024)
chains two test questions together so that the an-
swer to the first question is used as a variable in
the second question, testing how well LLMs can
combine learned concepts to solve new problems.

Unlike existing methods, our constructed dataset
employs innovative strategies including problem
jumping and answer combination to create long-
chain reasoning challenges. Our dataset is designed
to simulate real-world complex reasoning scenar-
ios by pushing models to tackle tasks requiring
multi-step logical reasoning, the integration of in-
formation from diverse sources, dynamic decision-
making, and the sequential linking of intermedi-
ate conclusions. This approach not only evaluates
how well models handle complex cognitive tasks
but also reflects more authentic reasoning require-
ments, providing a more comprehensive assess-
ment of LLM capabilities.

3 Data Construction

This section details the data construction pipeline.
We begin with the creation of the subproblem set,
proceed with the combination strategies of answer
combination and problem jumping, and conclude
with evaluation metrics and the entire data construc-
tion process.

3.1 Construction of Subproblem Set

As illustrated in Table 1, the English subprob-
lems are drawn from three representative reasoning
datasets: GSMS8K (Cobbe et al., 2021), MATH
(Hendrycks et al., 2021), and LogiQA (Liu et al.,

2020). The GSMS8K dataset comprises 7,000 grade
school math word problems. The MATH dataset
consists of 5,000 mathematics competition samples.
The LogiQA dataset offers 650 logical comprehen-
sion samples available in both English and Chinese.
From each of these datasets, we randomly sam-
ple 400 English examples, resulting in a combined
collection of 1,200 subproblems.

For Chinese subproblems, we utilize MGSM
(Shi et al., 2023) and LogiQA (Liu et al., 2020),
as there is no Chinese equivalent for the MATH
dataset. MGSM provides translations of 250
GSMSK examples across ten languages. We ran-
domly choose 250 Chinese examples from MGSM
and LogiQA, creating a set of 500 subproblems.

3.2 Combination Strategies

The strategies for combining problems are cate-
gorized into two types: answer combination and
problem jumping.

3.2.1 Answer Combination

In the answer combination strategy, subproblems
remain independent and must be solved sequen-
tially in a specific order, e.g., g3 — q1 — ¢2. The
answers to the subproblems are then concatenated
into a single string, separated by a fixed format
including “===", “##HH#", or “****” Key guide-
lines include: 1) Each subproblem has a clear input
and a unique output. 2) Subproblems must be an-
swered in a specific order to form the final answer.
3) The final answer is derived by concatenating the
answers of all subproblems using a predetermined
format. An example template is shown in the left
part of Fig. 1, where the red text highlights the
parameters to be filled.

3.2.2 Problem Jumping

In the problem-jumping strategy, there are clear
conditional dependencies among the subproblems,
as illustrated in the right part of Fig. 1. Each jump
provides multiple candidate subproblems, with the



Algorithm 1 Algorithm for Constructing the Easy set

Require: Subproblem set Q, string concatenation format set Comb = [####, ====, xxxx|, dataset size Mg, subproblem
size of the long-chain reasoning problems S = 2, the answer combination template T'c
Ensure: An Easy subset Dg contains Mg long-chain reasoning problems, each consisting of S subproblems combined using

the answer combination strategy

Construct a sample p; by filling the answer combination template T' ¢ with parameters [q1, ...

qS]a c, o

1: Initialize with an empty list Dg
2:i=1
3: whilei < M do
4: S subproblems [q1, ...qs] with different answers are randomly sampled from Q
5: A string concatenation format c is sampled from Comb
6: Generate a random order O = (random.shuffle [1, ..., S]) to solve all the subproblems
7:
8: Appending the new sample p; into Dg
9: i+—i+1
10: Return Dg

path determined by the answers to the preceding
questions. The specific guidelines are as follows:
1) Each subproblem has a clear input and a unique
output. 2) Within the same jump, each subproblem
yields a unique answer. 3) Subproblems may con-
nect to one or more non-sequential subproblems.
4) The final answer is derived by concatenating the
answers of all subproblems using a predetermined
format.

3.2.3 Diversified Jumping Rules

Jumping rules are crafted based on the format of
the answers, which are categorized into option la-
bels, integers, and strings. Our design follows these
guiding principles: 1) Each jump action associated
with an answer is distinct and unambiguous, en-
suring that there are no overlapping or confusing
options. 2) Jumping rules are designed based on
straightforward logic or basic arithmetic (addition,
subtraction, multiplication, division, and modulus),
to maintain simplicity. In line with these principles,
we have developed the following jumping rules:

Option Labels: Direct jumping (R,1). Specif-
ically, each option label (e.g., A, B, C, D) cor-
responds to a specific candidate subproblem. For
example, option label A maps to the first candi-
date subproblem, while option label D maps to the
fourth candidate subproblem.

Integers: Jumping based on arithmetic opera-
tions involves the following methods: summing all
the numbers provided in the answers and then ap-
plying modulus NV (R;1), subtracting the smallest
number from the largest number and then apply-
ing modulus N (R;2), summing the squares of all
the numbers and then applying modulus N (R;3),
converting the sum directly to base [V and taking
the last digit (R;4). Finally, the results from these
operations are mapped to the N candidates. For

example, a result of 3 would map to the first candi-
date subproblem, while a result of 0 would map to
the fourth candidate subproblem.

Strings: Jumping methods for answers that are
strings involve arithmetic operations based on the
numeric digits within the strings: summing all the
individual numeric digits (0-9) and then applying
modulus N (Rg1), subtracting the smallest individ-
ual numeric digit from the largest and then applying
modulus N (Rg2), summing the squares of all indi-
vidual numeric digits and then applying modulus
N (Rs3). Finally, the results from these operations
are mapped correspondingly to the N candidates.

Furthermore, three different logical jumping
methods are established:

Sequential Jumping: The path to the (i 4+ 1)-th
subproblem relies on the i-th subproblem. This
creates a straightforward, linear sequence where
each step logically follows from the previous one.

Backtracking Jumping: The path to the (i + 1)-
th subproblem depends on any one of the earlier
subproblems from 1 to ¢ — 1. This involves explor-
ing and revisiting previous subproblems to find a
viable solution.

Composite Jumping: The path to the (i + 1)-th
subproblem based on any two subproblems from
1 to 7. It allows for a more complex and nuanced
decision-making process by considering multiple
prior interactions simultaneously.

3.3 Evaluation Metrics

In addition to assessing the accuracy of long-chain
reasoning problems by exact string match, we also
utilize the reasoning gap, which reflects how often
models can correctly answer subproblems individ-
ually but not generate the overall solution. The
formula for calculating the reasoning gap in the
long-chain reasoning problems composed of n sub-



problems is:
gap =1—(s"/s"), (1)

where s denotes accuracy on the subproblem set,
and s* denotes the actual accuracy of the long-
chain reasoning problems.

3.4 Construction of Dataset

Based on the proposed pipeline, two datasets in
Chinese and English are constructed, introduced in
Table 1. The English dataset consists of Easy and
Hard versions. The Easy subset employs an answer
combination approach, with a subproblem size of
2 and a problem complexity of 1. Algorithm 1 de-
tails the construction algorithm for the Easy subset,
which requires generating the string concatenation
format, the order for solving all subproblems, and
the collection of subproblems. These parameters
are then input into the answer combination tem-
plate illustrated in the left part of Fig. 1 to create a
complete sample.

The Hard subset employs a problem-jumping
strategy, with subproblem sizes of 2, 3, and 4, cor-
responding to problem complexities of 2, 3, and 4,
respectively. The data construction algorithm for
the Hard subset is detailed in Appendix Algorithm
2. Similar to the answer combination algorithm, a
series of parameters must be generated and then
input into the problem-jumping template shown in
the right part of Fig. 1. Appendix Figs 6 and 7
provide detailed examples of long-chain reasoning
problems with a subproblem size of 4, utilizing the
problem-jumping strategy.

4 [Experiments

This section focuses on two main aspects: evalu-
ating the reasoning capabilities of various models
on LREval and analyzing the potential factors in-
fluencing model performance.

4.1 Experimental Setup

We evaluate the performance of several representa-
tive instruction-tuned models, including: (i) closed-
source models GPT-40' (OpenAl, 2023), ol-mini?,
and Claude-3.5-sonnet?, (ii) open-source models
including LLaMA3.1, LLaMA3.2 (Dubey et al.,
2024b), Qwen2.5 (Yang et al., 2024a), Mistral-
Nemo, Mistral-Large, and Gemma?2 series (Riv-
iere et al., 2024). Due to the long-chain reasoning

lgpt-40-2024-11-20

201-mini-2024-09-12

3claude-3-5-sonnet-20241022

process required by the task, all models except
ol-mini are evaluated using the Chain of Thought
(CoT) approach (Wei et al., 2022), which involves
prompting step-by-step thinking.

4.2 Evaluation on the English portion of
LREval

Table 2 presents an overview of the evaluation re-
sults on the English portion of LREval. Accuracy
indicates the correctness of a model on long-chain
reasoning problems, with higher values being bet-
ter. Reasoning gap reflects how often models can
correctly answer subproblems individually but fail
to generate the overall solution for the long-chain
problem, with lower values being preferable. First,
smaller models under 7B exhibit nearly 100% rea-
soning gap on the Hard subset, underscoring their
limited reasoning capabilities. As model size in-
creases, the reasoning gap narrows, suggesting that
scaling up models can enhance their long-chain
reasoning abilities. However, noticeable reasoning
gaps still exist, e.g., the reasoning gaps of Qwen2.5-
72B reach 12.40%, 36.34%, and 54.24% on the
2-hop (problems with a subproblem size of 2), 3-
hop, and 4-hop hard subsets, respectively. Even the
most advanced closed-source models show substan-
tial reasoning gaps, particularly in 4-hop problems,
where the smallest gap with ol-mini is as high as
27.73%. These results underscore the challenges
posed by the proposed long-chain reasoning task.
Closed-source models generally outperform
open-source models on the Hard subset. How-
ever, on the Easy subset, closed-source models
perform even worse than open-source models with
70B parameters or more. This indicates that closed-
source models excel in reasoning tasks that require
flexible adaptation and dynamic decision-making,
whereas open-source models have a slight advan-
tage in information integration and structured rea-
soning. This performance disparity suggests un-
derlying differences in the training methodologies
and architecture designs between closed-source and
open-source models. Closed-source models likely
benefit from proprietary enhancements and access
to diverse, high-quality datasets, which equip them
with robust capabilities for handling complex, high-
stakes reasoning tasks that necessitate flexibility
and adaptive problem-solving strategies. On the
other hand, open-source models might be lever-
aging broader community-driven advancements
and collaborative fine-tuning techniques, which
enhance their ability to integrate information and



Reasoning Gap | (%)

Accuracy T (%)

Model

Easy Hard Easy Hard
2-hop 2-hop 3-hop 4-hop 2-hop 2-hop 3-hop 4-hop
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Open-source models (<7B)
LLaMA3.2-1B 88.48 100.00 100.00 100.00 0.60 0.00 0.00 0.00
LLaMA3.2-3B 77.60 100.00 100.00 100.00 1.10 0.00 0.00 0.00
Qwen2.5-0.5B 98.16 100.00 100.00 100.00 0.10 0.00 0.00 0.00
Qwen2.5-1.5B 61.05 97.30 100.00 100.00 10.10 0.70 0.00 0.00
Qwen2.5-3B 36.26 92.68 95.65 98.89 27.00 3.10 1.20 0.20
Gemma-2-2B 48.47 98.39 100.00 100.00 9.60 0.30 0.00 0.00
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Open-source models(78)
LLaMA3.1-8B 21.41 56.08 76.42 89.15 27.20 15.20 4.80 1.30
Gemma-2-9B 18.35 82.22 61.52 84.02 30.30 6.60 8.70 2.20
Qwen2.5-7B 21.35 54.26 76.42 88.93 42.30 24.60 9.30 3.20
. ______________Opensourcemodels(14B)
Mistral-nemo-2407 14.79 37.66 61.20 83.32 27.20 19.90 7.00 1.70
Qwen2.5-14B 10.58 36.71 48.94 59.44 55.10 39.00 24.70 15.40
o ______________Open-sourcemodels(34B)
Gemma-2-27B 12.80 61.50 53.74 75.26 37.60 16.60 13.10 4.60
Qwen2.5-32B 10.03 39.81 46.33 71.66 58.30 39.00 28.00 11.90
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Open-source models (2708)
LLaMA3.1-70B 9.79 57.15 57.02 76.44 45.90 21.80 15.60 6.10
Qwen2.5-72B 5.87 12.40 36.34 54.24 60.50 56.30 32.80 18.90
Mistral-large-2407 6.17 21.45 38.30 49.58 52.20 43.70 25.60 15.60
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Open-source reasoning models
QwQ-32B-Preview -4.44 39.82 28.28 40.36 63.00 36.30 33.60 21.70
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Closed-sourcemodels
GPT-40 8.36 11.62 30.53 44.04 53.40 51.50 30.90 19.00
ol-mini 14.21 7.67 19.09 27.73 62.71 67.49 50.57 38.62
Claude-3.5 15.94 19.12 34.70 53.61 52.80 50.80 32.50 18.30

Table 2: Evaluation results of different models on the English portion of LREval. 4-hop indicates that the subproblem
size is equal to 4. Higher accuracy is preferable, while a smaller reasoning gap is desirable.

perform structured, systematic reasoning.

4.3 Analyses

In this section, we first investigate model perfor-
mance on the jumping rules designed in this paper.
Then, we explore various factors that may influence
model performance.

4.3.1 Analysis of the Designed Jumping Rules

We directly evaluate the accuracy of all tested mod-
els on each jump rule, shown in Appendix Table 4.
Detailed prompts can be found in Appendix Fig. 8.
The input texts are derived from the answers to the
subproblems within the subproblem set. For cases
where the preceding answer is an option, there is
only one rule, i.e., direct jumping (R,1). For cases
where the preceding answer is an integer, there are
four rules including R;1, R;2, R;3, and R;y. For
cases where the preceding answer is a string, there
are three rules: R, Rs2, and Rg3. Detailed jump-
ing rules can be found in subsection 3.2.3.
Additionally, three sixth-grade student annota-
tors are engaged to establish a human baseline for
each jumping rule. Detailed guidelines are intro-
duced to ensure consistency and clarity before the

evaluation begins. To manage costs, 10% of sam-
ples are sampled for each jumping rule. Remark-
ably, all annotators achieve 100% accuracy across
all rules, demonstrating the designed jumping rules
are trivial for humans to follow. However, small
models smaller than 7B exhibit low accuracy on
these jump rules, with results as low as 11.25%.
This indicates a severe deficiency in the context
understanding and reasoning capabilities of small
models. In contrast, closed-source models and
open-source models (> 70B) achieve over 96.50%
accuracy on these jump rules, indicating that these
rules are equally straightforward for larger models.
Notably, QwQ-32B-Preview reaches a lower aver-
age accuracy than Qwen2.5-32B, primarily due to
a high failure rate in parsing its predicted answers.

4.3.2 Exploring the Factors Affecting Model
Performance

Due to the reasoning gap of models smaller than
7B being nearly 100%, our analysis focuses exclu-
sively on models with 7B parameters and above.
Since some factors do not simultaneously appear
in both the problem-jumping and answer combi-
nation strategies, they are analyzed only within



2-Cands 4-Cands 6-Cands 10-Cands 20-Cands

LLaMA3.1-8B 33.78 24.27 30.26 29.56 43.65
Gemma-2-9B 20.81 14.67 27.26 32.17 61.33
Qwen2.5-7B 16.57 33.90 34.49 39.48 57.11
Avg 23.72 24.28 30.67 33.74 54.03
Mistral-Nemo 27.32 33.35 35.57 44.14 54.30
Qwen2.5-14B 19.83 26.37 14.92 19.01 28.01
Avg 23.57 29.86 25.25 31.58 41.15
Gemma-2-27B 9.85 10.45 13.49 18.04 24.72
Qwen2.5-32B 11.30 34.08 29.47 35.44 29.47
Avg 10.57 22.27 21.48 26.74 27.10
LLaMA3.1-70B 471 471 4.99 9.70 14.68
Qwen2.5-72B 0.74 11.92 11.38 12.19 10.01
Mistral-Large 10.80 13.02 12.47 4.99 1.11
Avg 5.42 9.88 9.61 8.96 8.60

Table 3: This table illustrates the reasoning gap (%) of
the tested models when addressing candidate subprob-
lems of varying scales.

the strategy where they are present. Unless stated
otherwise, each analysis is based on 400 samples.

We first explore how the size of candidate sub-
problems affects model performance, using sub-
problems sourced from the GSM8K portion in the
subproblem set, with a subproblem size of 2. As
shown in Table 3, increasing the candidate subprob-
lem size from 2 to 4 results in a widening reasoning
gap among the models. When the size is further in-
creased to 20, models smaller than 70B experience
an ongoing rise in the reasoning gap. In contrast,
models with 70B parameters or more show minimal
change, highlighting their enhanced robustness.

Second, we analyze the impact of different logi-
cal jumping methods on model performance, utiliz-
ing subproblems from the GSM8K portion with a
subproblem size of 4. As shown in columns two to
four of Appendix Table 6, the backtracking jump-
ing method results in the largest reasoning gap. In
this scenario, the model often overlooks the back-
tracking conditions and continues to follow a se-
quential jumping approach. This suggests that the
model lacks adequate dynamic decision-making
capabilities.

Third, we examine how increasing the subprob-
lem size affects model performance, using subprob-
lems derived from the GSM8K portion. Fig. 2
illustrates the results utilizing the problem-jumping
strategy. The reasoning gap gradually increases as
the subproblem size expands from 2 to 4. How-
ever, when the size increases from 4 to 6, the
reasoning gap jumps sharply to nearly 90%. Ex-
tending the size to 10 results in the reasoning gap
reaching 100%. A similar trend is evident in Ap-
pendix Fig. 5, which shows results utilizing the
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Figure 2: This figure illustrates the trend of the rea-
soning gap as the subproblem size increases within the
problem-jumping setting.

answer-combination strategy. This substantial in-
crease beyond a certain threshold suggests that the
complexity of long-chain reasoning tasks exhibits
non-linear characteristics.

Fourth, we explore the impact of various string
concatenation formats including “====" (C}),
“HHE (Cy), and “***¥*” ((C3), on model perfor-
mance, utilizing subproblems from the GSMSK
portion with a subproblem size of 2. Results
for long-chain problems employing the problem-
jumping strategy are presented in columns five to
seven of Appendix Table 6. The reasoning gap
varies significantly across these three formats, with
the highest difference reaching 57.52%. This un-
derscores the fragility of the models’ reasoning
capabilities. Notably, using “===""as a separator
results in a much lower reasoning gap compared
to the other formats, suggesting that it may help
the model organize and integrate information from
diverse sources more effectively. However, a differ-
ent phenomenon emerges in columns eight to ten of
Appendix Table 6, which displays results utilizing
the answer-combination strategy. In this case, the
reasoning gap across the three string concatenation
methods is closely similar. This consistency might
be attributed to the inherently lower complexity and
clearer structure of the answer combination strat-
egy, which may minimize the influence of separator
choice on model reasoning.

Finally, within the answer combination strategy,
we examine the impact of swapping the order of
subproblems. We utilize the long-chain reasoning
problems with a subproblem size of 2. The com-
parison of outcomes from the two configurations
is shown in columns 11 to 12 of Appendix Table
6. The findings reveal that changing the order of
subproblems results in variations in model perfor-



mance, underscoring the models’ fragile reason-
ing capabilities. Specifically, when the math prob-
lem (GSMS8K) precedes the multiple-choice ques-
tion (LogiQA), denoted as “G+L", the reasoning
gap is larger for Qwen, Mistral, and Gemma mod-
els. In contrast, when the math problem follows
the multiple-choice question, denoted as “L+G”,
the reasoning gap is greater for LLaMA3.1. This
discrepancy likely stems from the differing train-
ing data and strategies employed by each model,
highlighting how model-specific characteristics can
influence reasoning performance when presented
with varied problem sequences.

5 Multilingual Evaluation

This section presents the evaluation and analyses on
the Chinese portion of LREval shown in Appendix
Table 5. Consistent with the results on English data
shown in Table 2, the model’s long-chain reasoning
capability is insufficient.

Additionally, we examine the multilingual un-
derstanding capabilities of the models using the
MGSM and MLogiQA datasets. These datasets are
sourced from the P-MMEval benchmark (Zhang
et al.,, 2024a) and feature test data in ten lan-
guages including English, Chinese, Arabic, Span-
ish, Japanese, Korean, Thai, French, Portuguese,
and Vietnamese. Specifically, for each English
problem in MGSM or MLogiQA, we retrieve par-
allel problems in nine other languages to construct
a long-chain reasoning problem, employing an an-
swer concatenation strategy. The English subprob-
lem is prompted to be solved first. An example of
the evaluation prompt is shown in Appendix Fig. 8.
The reasoning gap is measured by how often mod-
els can correctly answer the English subproblems
but not generate the overall solution. We report the
average reasoning gap for models of similar sizes,
as categorized in Table 5. As shown in Appendix
Fig. 4, even large models with 70B parameters or
more still exhibit an average reasoning gap of ap-
proximately 10%. This result demonstrates that al-
though LLMs exhibit strong multilingual capabili-
ties when handling questions in different languages
individually, their performance remains inadequate
in scenarios that require simultaneous comprehen-
sion of multiple languages.

To intuitively assess the model’s multilingual
understanding capabilities, we combine all test
data from ten different languages in MGSM and
MLogiQA into a multilingual subproblem set. For
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Figure 3: This figure illustrates the reasoning gap on
the long-chain problems solved in the order of language
sequence.

each instance, we randomly select three subprob-
lems from this set to form a long-chain problem
using the answer combination strategy, producing
a total of 400 samples. The problems are prompted
to be solved sequentially by language, such as solv-
ing the problem in Chinese first, followed by En-
glish, and then Korean. An example of the eval-
uation prompt is shown in Appendix Fig. 8. We
also report the average reasoning gap for models
of similar sizes, adhering to the model size clas-
sification method detailed in Table 5. The result
presented in Fig. 3 reveals a significant reasoning
gap for all tested models. For example, the average
reasoning gap for models with 70B parameters or
more reaches 35.34%. These findings highlight the
model’s shortcomings in multilingual comprehen-
sion.

6 Conclusion

In this paper, we introduce a pipeline that lever-
ages existing reasoning problems to create more
complex long-chain reasoning tasks. Then, we
introduce a new benchmark, LREval, including
both Easy and Hard versions. The former em-
phasizes the model’s proficiency in information
integration and structured reasoning, while the lat-
ter primarily examines the model’s capabilities in
dynamic decision-making and flexible adaptation.
Furthermore, we conduct extensive experiments
on representative LLMs, including both general
and reasoning-focused models. Our evaluations un-
cover huge reasoning challenges and failures faced
by current LLMs, underscoring the fragility of their
reasoning capabilities and emphasizing the need
for robust evaluation frameworks.



Limitations

Through the above experiments and analyses, we
summarize the following limitations:

1) Scope of Reasoning Tasks: While LREval
introduces a novel framework for assessing the rea-
soning capabilities in LLMs, the dataset may not
encompass the full spectrum of reasoning skills
required in various real-world applications. Future
work should focus on expanding the answer com-
bination strategy to comprehensively evaluate the
performance and adaptability of LLMs across a
wider range of contexts.

2) Limited problem jump rules: The current set
of problem-jumping rules in LREval is somewhat
narrow. By introducing a greater variety of jumping
rules that mimic more complex, real-world prob-
lem structures, future iterations of the dataset could
offer a more comprehensive challenge to LLMs,
better evaluating their capabilities in handling intri-
cate reasoning problems.
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authors. Informed consent was obtained from all
individual participants included in the study.
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A Model Performance on the Designed
Jumping Rules

Table 4 presents model accuracy on the designed
jumping rules.

B Multilingual Evaluation

Table 5 presents the evaluation results on the Chi-
nese portion of LREval. Fig. 4 illustrates the rea-
soning gap on the long-chain problems composed
of 10 parallel subproblems.

C Investigation of the Factors Affecting
Model Performance

Table 6 shows how the three factors impact model
performance. Fig. 5 shows the trend of the reason-
ing gap as the subproblem size increases within the
answer combination setting.

D Algorithm for Data Constructing

This section introduces the algorithm for construct-
ing the Hard subset, with each set comprising four
subproblems, as detailed in Algorithm 2.
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Model Ry R;; Rio Ri3 Ry Rq Ry R Avg
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Open-source models (<7B) _______________________________.
LLaMA3.2-1B 21.50 32.25 12.25 19.00 24.75 19.50 17.75 17.50 20.56
LLaMA3.2-3B 25.25 29.75 11.25 18.00 20.25 22.25 17.50 17.25 20.19
Qwen2.5-0.5B 30.50 38.50 28.25 26.25 25.25 17.50 20.00 20.75 25.88
Qwen2.5-1.5B 74.00 78.75 57.50 64.50 82.75 62.25 60.25 56.50 67.06
Qwen2.5-3B 90.50 94.75 90.00 88.25 88.75 85.00 82.25 78.00 87.19
Gemma-2-2B 38.50 77.00 67.75 58.25 88.50 66.50 62.75 69.00 66.03
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Open-source models(78)
LLaMA3.1-8B 96.25 99.25 90.25 96.75 99.00 86.25 81.25 82.50 91.44
Gemma-2-9B 97.25 99.75 99.50 90.75 98.75 91.50 94.00 93.50 95.63
Qwen2.5-7B 99.75 99.50 98.25 99.50 98.50 89.75 97.00 90.50 96.59
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Open-source models (148)
Mistral-Nemo 98.25 96.00 81.50 88.25 93.50 87.00 88.75 86.50 89.97
Qwen2.5-14B 100.00 97.00 95.00 98.50 98.25 95.25 97.00 93.75 96.84
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Open-source models(34)
Gemma-2-27B 100.00 99.75 99.75 99.75 100.00 97.75 98.50 98.50 99.25
Qwen2.5-32B 100.00 99.75 99.75 99.50 100.00 96.75 99.25 96.75 98.97
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Open-source models (2708)
LLaMA3.1-70B 99.75 99.50 99.00 99.75 100.00 96.50 99.50 98.00 99.00
Qwen2.5-72B 100.00 99.75 99.75 100.00 100.00 96.75 99.00 97.00 99.03
Mistral-Large 100.00 100.00 100.00 99.75 99.75 97.50 99.25 96.75 99.13
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Open-source reasoning models
QwQ-32B-Preview 84.75 93.00 90.00 95.00 93.00 90.00 78.25 83.00 88.38
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Closed-source models
GPT-40 100.00 100.00 100.00 100.00 100.00 99.00 100.00 99.00 99.75
ol-mini 100.00 100.00 100.00 100.00 100.00 99.00 100.00 100.00 99.88
Claude-3.5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.00 99.88
Human 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 4: This table presents model accuracy (%) on the designed jumping rules. The third column shows the
accuracy of direct jumping utilizing the jumping rule of R;;.

Model Reasoning Gap | (%) Accuracy 1 (%) 5o - mf:g”;'m
Easy Hard Easy  Hard
,,,,,,,,,, Open-source models (<78) =
LLaMA3.2-1B  100.00  100.00 0.00  0.00 83
LLaMA3.2-3B  84.38 100.00 0.60  0.00 2
Qwen2.5-0.5B  100.00  100.00 0.00  0.00 S %
Qwen2.5-1.5B  46.60 91.10 1200 2.00 g gy
Qwen2.5-3B 17.23 87.61 29.40  4.40 0] T
Gemma-2-2B 51.92 98.86 840 020 >~ ]
~_________ Open-source models (7B) 0 10 20 30 40 50 60 70
LLaMA3.1-8B 90.17 5372 3140 1600 Model Size
Gemma-2-9B 14.15 73.47 35.60  11.00 ) ) ) )
Qwen2.5-7B 570 57.39 4780 21.60 Figure 4: This figure illustrates the reasoning gap on
Open-source models (14B) the long-chain prqblems composed of .10 parallel sub-
"Mistral-Nemo 1626 4727 3040 2040 problems, employing the answer combination strategy.
Qwen2.5-14B 2.50 34.38 62.40  42.00 The line labeled “MGSM” corresponds to all 10 parallel
Open-source models (34B) samples derived from the MGSM dataset.
Gemma-2-27B  6.10 55.86 46.80  22.00
Qwen2.5-32B 0.88 29.36 69.60  49.60
~________ Open-source models (>70B) E Example Prompts
LLaMA3.1-70B  -1.54 41.10 56.20  32.60
Qwen2.5-72B 2.13 1301 6840 60.80 Fig. 8 illustrates several prompts. Fig. 6 illus-
Mistral-Large 0.21 17.11 62.60 52.00

trates backtracking jumping, while Fig. 7 depicts
composite jumping.

Table 5: Evaluation results of different models on the
Chinese portion of LREval.
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Problem Jumping Answer Combination

Model Logical Jumping Way String Concatenation Format ~ String Concatenation Format ~ Subproblem Order
Sequential Backtracking Composite  C} Cy Cs C Cy Cs G+L L+G
LLaMA3.1-8B 56.33 89.58 63.78 2427 25.33 67.24 9.13 11.24 8.78 1.69 31.88
Gemma-2-9B 59.30 76.26 64.20 14.67 99.69 100.00 1191 853 10.07 12.50 9.66
Qwen2.5-7B 65.13 82.74 76.53 3390 99.12 33.31 834 834 9.22 18.58 15.69
Avg 60.26 82.86 68.17 2428 7471 66.85 9.79 937 9.36 10.92 19.08
Mistral-Nemo 67.76 81.87 81.87 3335 54.93 30.18 18.43 2097 18.43 15.01 3.43
Qwen2.5-14B 47.35 68.47 57.76 26.37 74.09 40.28 347 4.01 3.74 14.55 7.94
Avg 57.56 75.17 69.81 29.86 64.51 35.23 1095 12.49 11.09 14.78 5.68
Gemma-2-27B 30.70 69.04 43.97 10.45 70.86 100.00 287  2.56 5.90 1.44 3.46
Qwen2.5-32B 44.66 76.75 83.52 34.08 35.17 59.58 099 1.80 2.62 5.52 391
Avg 37.68 72.89 63.74 2227 53.01 79.79 193 218 4.26 3.48 3.68
LLaMA3.1-70B 32.47 80.36 30.63 471  69.53 86.43 3.60 222 2.49 -0.94 4.35
Qwen2.5-72B 32.78 68.77 48.84 11.92 13.56 13.56 -0.62  1.29 -0.08 11.39 6.65
Mistral-Large 24.49 76.06 38.00 13.02 13.85 41.55 -0.83  0.00 -0.83 5.77 4.07
Avg 29.92 75.06 39.16 9.88 3231 47.18 072  1.17 0.53 541 5.02

Table 6: This table provides a detailed exhibition of how different factors affect the reasoning gap (%) when
employing problem-jumping and answer combination strategies. “G+L" signifies that, in the long-chain problem
with a subproblem size of 2, the math subproblem (GSMS8K) is arranged before the multiple-choice subproblem
(LogiQA).
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Figure 5: This figure illustrates the trend of the rea-
soning gap as the subproblem size increases within the
answer combination setting.
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Algorithm 2 Algorithm for Constructing the Hard Subset with Each Consisting of 4 Subproblems

Require: Subproblem set Q, string concatenation format set Comb = [####, ====, x * xx|, dataset size Mg = 1000,

subproblem size of the long-chain reasoning problem S = 4, problem jumping template T, jumping rule set Jump,
candidate subproblem size list N¢ = [2, 3, 4]

Ensure: An Hard subset Dy contains My long-chain reasoning problems with each consisting of S subproblems combined

10:
11:

12:
13:

14:
15:

17:
18:

19:
20:
21:

AR

using the problem jumping strategy

: Initialize with an empty list D

i=1

: whilei < My do

j«1

Randomly sample one subproblem from the subproblem set Q without replacement to serve as the first-hop problem q1

Utilize the first-hop problem q; as the preceding problem qpre for the first jump, with its answer serving as the preceding
answer apre

If the preceding answer apre is an option label, the number of candidate problems must match the number of available
options. Otherwise, randomly sample one number n; from N¢. Then, randomly sample n; subproblems Cj with different
answers from Q without replacement

Based on the preceding answer apre, randomly sample a problem jumping rule R;

Determine the second-hop problem g2 from the candidate subproblems C; according to the jumping rule R; and the
preceding answer apre

j<2

Randomly select one from [q1, 2] as the preceding problem to the second jump, using its answer as the preceding
answer

Repeat Steps 7 and 8

Determine the third-hop problem from the candidate subproblems Cj according to the jumping rule and the preceding
answer

j«<3

Check if there are two integer answers to [q1, 92, q3]. If so, perform a combination judgment: add the two integer
answers together to form the preceding answer. Then, repeat Steps 7 and 8. Otherwise, randomly select one problem from
[a1, 92, qs] as the preceding problem and repeat Steps 7 and 8.

Determine the fourth-hop problem from the candidate subproblems according to the jumping rule and the preceding
answer

Sample one string concatenation format ¢ from Comb

Construct a sample p; by filling the problem jumping template Ty with parameters, including [q1, 92, qs, q4], ¢,
[n1,n2,n3],[R1, Rz, R3),[C1, C2, Cs], etc.

Appending the new sample p; into Dy

i—i+1
Return Dy
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The following is a multi-hop long-chain reasoning problem that requires jumping to the subsequent question based on the answer
to the previous question.

Initial question: {QO0}

Square each digit in the answer to the initial question, sum these squares, and then take the result modulo 4 to obtain a key number
X.

First jump: If X is equal to 2, proceed to Q1 3. If X is equal to 3, proceed to Q1 1. If X is equal to 1, proceed to Q1 _0. If X is
equal to 0, proceed to Q1_2.

Q1_1: {Q1}
Q1_3: {Q2}
Q1_2: {Q3}
Q1_0: {Q4}

For the answer to the first-jump question:

1. Identify and extract each individual numeric digit (0-9) present in the input, treating each digit as a separate character regardless
of whether they appear together in numbers, fractions, radicals, or any complex expressions.

2. Sum all the extracted numeric digits.

3. If there are no numeric digits, return the sum as 0.

4.Take the sum modulo 2 to obtain a key number Y.

Second jump: If Y is equal to 1, proceed to Q2_1. If Y is equal to 0, proceed to Q2 0.

Q2_0: {Q5}
Q2_1: {Q6}

Sum each digit of the answer to the initial question, then take the result modulo 3 to obtain a key number Z.
Third jump: If Z is equal to 0, proceed to Q3 1. If Z is equal to 2, proceed to Q3 0. If Z is equal to 1, proceed to Q3 2.

Q3_0: {Q7}
Q3_2: {Q8}
Q3_1: {Q9}

Solve the multi-hop question. Explain your answer step by step and give the final answer on the last line by itself in the format of
‘The answer of the initial question is [answer0].

The first-jump question is [questionl].

The answer of the first-jump question is [answerl].

The second-jump question is [question2].

The answer of the second-jump question is [answer2].

The third-jump question is [question3].

The answer of the third-jump question is [answer3].

The final answer is \boxed {[answer(####[answer | |##t#answer2 |####[answer3]} .

Where [answer0] must be integers, and the final answer must be put within \boxed{}.

Let’s think step by step.

Figure 6: This figure illustrates the backtracking jumping.
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The following is a multi-hop long-chain reasoning problem that requires jumping to the subsequent question based on the answer
to the previous question.

Initial question: {QO0}

Let X be the answer to the initial question.
First jump: If X is equal to C, proceed to Q1_2. If X is equal to A, proceed to Q1_3. If X is equal to D, proceed to Q1_1. If X is
equal to B, proceed to Q1_0.

Q1_1: {Q1}
Q1_3: {Q2}
Q1_2: {Q3}
Q1_0: {Q4}

Subtract the smallest digit from the largest digit in the answer to the initial question (ignore the negative sign for this calculation).
If there are fewer than two digits, return the difference as 0. Then take the difference modulo 2 to obtain a key number Y.
Second jump: If Y is equal to 1, proceed to Q2_1. If Y is equal to 0, proceed to Q2 _0.

Q2_0: {Q5}
Q2_1: {Q6}

Add the answer from the first-jump question to the answer from the second-jump question to get the sum. Then, add each digit of
this sum. Finally, take the result modulo 4 to obtain a key number Z.

Third jump: If Z is equal to 0, proceed to Q3_1. If Z is equal to 2, proceed to Q3_0. If Z is equal to 1, proceed to Q3_2.If Z is
equal to 3, proceed to Q3_3.

Q3_0: {Q7}
Q3_2: {Q8}
Q3_1: {Q9}
Q3_3: {Q10}

Solve the multi-hop question. Explain your answer step by step and give the final answer on the last line by itself in the format of
‘The answer of the initial question is [answer(].

The first-jump question is [questionl].

The answer of the first-jump question is [answerl].

The second-jump question is [question2].

The answer of the second-jump question is [answer2].

The third-jump question is [question3].

The answer of the third-jump question is [answer3].

The final answer is \boxed {[answer0]****[answer] |****answer2]****[answer3]}.’

Where [answer(Q] must be integers, and the final answer must be put within \boxed{}.

Let’s think step by step.

Figure 7: This figure illustrates the composite jumping.
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Prompt for the long-chain problem composed of three parallel subproblems

The following is a long-chain reasoning problem that requires solving several sub-problems and then combining their answers into a single
formatted string.

Let's break down the problem: Answer question Q1. Answer question Q2. Answer question Q3. Concatenate the answers of Q1, Q2, and Q3
into a single string, separating them with ‘====". Explain your answer step by step and give the final answer on the last line by itself in the
format of

‘The answer of Q1 is [answerl]. The answer of Q2 is [answer2]. The answer of Q3 is [answer3]. The final answer is

\boxed {[answer]]====[answer2]====[answer3]}".

Where [answerl], [answer2], and [answer3] must be integers, and the final answer must be put within \boxed{}.

Q1: Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She
sells the remainder at the farmers' market daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers' market?
Q2: Les canes de Janet pondent 16 ceufs par jour. Chaque matin, elle en mange trois au petit déjeuner et en utilise quatre autres pour préparer
des muffins pour ses amis. Ce qui reste, elle le vend quotidiennement au marché fermier, au prix de 2 $ I'ceuf de cane frais. Combien (en
dollars) gagne-t-elle chaque jour au marché fermier ?

Q3: Os patos de Janet pdem 16 ovos por dia. Ela come trés no café da manha todas as manhas e usa quatro para fazer muffins para seus
amigos todos os dias. Ela vende o restante no mercado de agricultores diariamente por $2 por ovo fresco de pato. Quanto ela ganha em dolares
todos os dias no mercado de agricultores?

Let’s think step by step.

Prompt for the long-chain problem solved in the order of language sequence

The following is a long-chain reasoning problem that requires solving several multilingual sub-problems and then combining their answers
into a single formatted string.

Let’s break down the problem: Answer the question written in Korean. Answer the question written in French. Answer the question written in
Chinese. Concatenate the answers of all the questions into a single string, separating them with ‘====". Explain your answer step by step and
give the final answer on the last line by itself in the format of

‘The answer of the Korean question is [answerl]. The answer of the French question is [answer2]. The answer of the Chinese question is
[answer3]. The final answer is \boxed {[answer]]====[answer2]====[answer3]}".

Where [answerl] must be integer, [answer2] must be integer, [answer3] must be integer, and the final answer must be put within \boxed{}.
Q1: Deux trains partent de San Rafael au méme moment. Ils se dirigent d'abord vers l'ouest et parcourent tous les deux 80 miles. Le jour
suivant, ils voyagent vers le nord, couvrant 150 miles. Quelle est la distance parcourue par chaque train au cours de ces deux jours ?

Q21 ZE23AMZt St F50tE MRASLILH = 120 SS027HE € 4+ ASLICH 27t 2508 2 GRLIR?

Q3: HEEBAG LMTELEFEN. B—HAZ tERE—SACKREXNTE, — &1/, B=, #hET/IEEE£30H
MHTE, BN, WREMETEL, BT —S£85 1 /\HHTEN—S8E30 240 THE. AR, EAFRR. ITMER.
FTRMBET 2 &K /NN E. MRM—£EFT 7/\HHEN, wER=F7ZPEE5 30 TN TE?

Let’s think step by step.

Prompt for direct jumping

The following is a multi-hop problem that requires jumping to the subsequent question based on the input.

Input: 36

Subtract the smallest digit from the largest digit in the input (ignore the negative sign for this calculation). If there are fewer than two digits,
return the difference as 0. Then take the difference modulo 4 to obtain a key number X.

First jump: If X is equal to 3, proceed to Q2. If X is equal to 1, proceed to Q1. If X is equal to 0, proceed to Q4. If X is equal to 2, proceed to
Q3.

Solve the multi-hop question. Explain your answer step by step and give the final answer on the last line by itself in the format of

‘The first-jump question is [question1]’. Where [question]] must be one of Q1, Q2, Q3, and Q4.

Let’s think step by step.

Figure 8: This figure displays several example prompts.
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