
LREVAL: Long-Chain Reasoning Evaluation for Large Language Models

Anonymous ACL submission

Abstract

The evaluation of reasoning capabilities is cru-001
cial for the advancement of Artificial General002
Intelligence. While Large Language Models003
(LLMs) demonstrate proficiency in reasoning004
tasks, existing benchmarks such as GSM8K005
and LogiQA are limited, focusing mainly on in-006
dividual problem-solving with linear logic and007
static conditions. To bridge this gap, we intro-008
duce an automated data construction pipeline009
that simulates real-world reasoning scenarios010
by combining existing reasoning problems into011
more complex, long-chain reasoning problems.012
Based on this pipeline, a new benchmark,013
LREval, is designed to assess comprehensive014
reasoning skills, such as multi-step logical015
deduction, integration of diverse information016
sources, and dynamic decision-making. The017
evaluations underscore huge reasoning chal-018
lenges faced by LLMs. Closed-source models019
perform well in dynamic contexts but strug-020
gle with integrating information from multiple021
sources, while open-source models exhibit the022
opposite trend. Moreover, model performance023
is highly sensitive to perturbations in task con-024
ditions, revealing the fragility of reasoning ca-025
pabilities in current LLMs and the necessity026
for robust evaluation frameworks. Additionally,027
models struggle with tasks requiring simulta-028
neous comprehension of multiple languages,029
further emphasizing their limitations in multi-030
lingual understanding.031

1 Introduction032

In recent years, large language models (LLMs)033

(Brown et al., 2020; OpenAI, 2023; Touvron et al.,034

2023; Bai et al., 2023) have made remarkable035

progress in foundational natural language process-036

ing (NLP) tasks and capability-specific tasks, show-037

casing impressive abilities in generation (Dubey038

et al., 2024a), reasoning (Huang and Chang, 2023),039

and instruction following (Zhang et al., 2023a).040

Reasoning ability, an essential aspect of general in-041

telligence, has attracted significant attention from042

researchers. To evaluate the reasoning capabil- 043

ity of LLMs, a variety of datasets have been em- 044

ployed, including mathematical reasoning bench- 045

marks GSM8K (Cobbe et al., 2021) and MATH 046

(Hendrycks et al., 2021), logical reasoning dataset 047

LogiQA (Liu et al., 2020), and commonsense rea- 048

soning dataset HellaSwag (Zellers et al., 2019). 049

These evaluations provide valuable insights into 050

basic reasoning abilities. However, they fall short 051

in offering a comprehensive assessment due to sev- 052

eral limitations (Yang et al., 2024b). Current rea- 053

soning benchmarks tend to: 1) focus on isolated 054

problems, emphasizing linear reasoning where 055

each step depends only on the previous; 2) involve 056

a single source of information, resulting in simple 057

information processing requirements; 3) remain 058

largely static, lacking the flexibility necessary to 059

evaluate the models’ ability to dynamically adapt 060

to changes in conditions and context. Thus, a new 061

dataset is essential to evaluate comprehensive rea- 062

soning capabilities, e.g., multi-step logical deduc- 063

tion, integration of multiple information sources, 064

dynamic decision-making, and chaining of interme- 065

diate conclusions. These abilities not only encom- 066

pass deep logical thinking requirements but also 067

play a vital role in complex real-world scenarios. 068

Addressing the challenges of manual data col- 069

lection, which is both costly and inefficient (Wu 070

et al., 2024), we introduce an automated data con- 071

struction pipeline. This pipeline simulates real- 072

world reasoning scenarios by combining existing 073

reasoning problems into more complex, long-chain 074

reasoning problems. It consists of two key compo- 075

nents including the collection of existing reason- 076

ing problems to form a subproblem set, and the 077

combination of these subproblems into complex, 078

long-chain tasks using two innovative strategies. 079

Specifically, we employ two core combination 080

strategies including answer combination and prob- 081

lem jumping, as illustrated in Fig. 1. The answer 082

combination strategy targets the evaluation of infor- 083
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Answer Combination
The following is a long-chain reasoning problem that requires 
solving several sub-problems and then combining their answers 
into a single formatted string.

Let's break down the problem:
Answer question Q1.
Answer question Q2.
Concatenate the answers of Q1, and Q2 into a single string, 
separating them with ‘####’. Explain your answer step by step 
and give the final answer on the last line by itself in the format of 
‘The answer of Q1 is [answer1].
The answer of Q2 is [answer2].
The final answer is \boxed{[answer1]####[answer2]}’.

Where [answer1] must be integer, [answer2] must be one of A, B, 
C and D, and the final answer must be put within \boxed{}.

Q1: {Q1}
Q2: {Q2}

Problem Jumping
The following is a multi-hop long-chain reasoning problem that requires jumping to the 
subsequent question based on the answer to the previous question.

Initial question: {Q0}
Square each digit in the answer to the initial question, sum these squares, and then take 
the result modulo 2 to obtain a key number X.
First jump: If X is equal to 0, proceed to Q1_0. If X is equal to 1, proceed to Q1_1.

Q1_0: {Q1}
Q1_1: {Q2}

Solve the multi-hop question. Explain your answer step by step and give the final 
answer on the last line by itself in the format of
‘The answer of the initial question is [answer0].
The first-jump question is [question1].
The answer of the first-jump question is [answer1].
The final answer is \boxed{[answer0]====[answer1]}’.

Where [answer0] must be integer, [answer1] must be one of A, B, C and D, and the 
final answer must be put within \boxed{}.

Figure 1: This figure presents the templates for the answer combination and problem-jumping strategies. The text
highlighted in red indicates the parameters that need to be filled in.

mation integration and structured reasoning, requir-084

ing sequential resolution of independent subprob-085

lems. Conversely, the problem-jumping strategy,086

inspired by mechanisms in (Krosnick et al., 2010),087

examines dynamic decision-making, where sub-088

sequent subproblems depend conditionally on the089

answers to prior questions. Various logical jump-090

ing mechanisms, such as sequential (q2 → q3),091

backtracking (q1 → q3), and composite jumping092

((q1, q2) → q3), offer robust testing of model adapt-093

ability. Appendix Figs 6 and 7 present examples of094

backtracking and composite jumping, respectively.095

Utilizing this pipeline, we construct two versions096

of datasets including Easy and Hard, to accommo-097

date different complexity evaluation needs, shown098

in Table 1. The Easy version applies only the an-099

swer combination strategy. The Hard subset de-100

pends exclusively on the problem-jumping strategy.101

Additionally, a Chinese benchmark is designed to102

support multilingual evaluation, showcasing the103

pipeline’s versatility. Evaluations expose notable104

reasoning limitations in LLMs, e.g., the advanced105

reasoning model o1-mini exhibits reasoning gaps106

of 14.21% and 18.16% in the English Easy and107

Hard subset, respectively. Overall, our conclusions108

are as follows:109

• Closed-source LLMs excel in flexible adapta-110

tion and dynamic decision-making, whereas111

open-source LLMs have a slight advantage in112

information integration and structured reason-113

ing, highlighting differences in training data114

and strategies.115

• LLMs below 7B parameters demonstrate lim-116

ited capabilities in instruction understanding 117

and reasoning. 118

• Even minor changes in task conditions affect 119

model performance, underscoring the fragility 120

of the reasoning capabilities of LLMs. 121

• Mainstream LLMs struggle with tasks requir- 122

ing simultaneous multilingual comprehension, 123

revealing their multilingual reasoning limita- 124

tions. 125

2 Related Works 126

With the rapid development of LLMs, evaluat- 127

ing their capabilities, particularly reasoning abil- 128

ity, has become increasingly critical (Valmeekam 129

et al., 2022). Recognizing its pivotal role, re- 130

searchers have developed a variety of datasets to 131

assess the reasoning abilities of LLMs (Chang 132

et al., 2024). Typical examples include mathe- 133

matical reasoning datasets like GSM8K (Cobbe 134

et al., 2021), MCGSM8K (Zhang et al., 2024b), 135

GaokaoBench-Math (Zhang et al., 2023b), Theo- 136

remQA (Chen et al., 2023), and MATH (Hendrycks 137

et al., 2021). Additionally, logical reasoning 138

datasets like LogiQA (Liu et al., 2020) and com- 139

monsense reasoning datasets such as HellaSwag 140

(Zellers et al., 2019) have garnered significant at- 141

tention within the research community. 142

Complementing these efforts, some studies have 143

sought to explore the compositional reasoning abil- 144

ities of models through multi-hop problems, where 145

the overall solution relies on accurately combin- 146

ing answers to sub-problems. For instance, Press 147
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Language Subproblem Source Dataset Combination Strategy Dataset Size Subproblem Size Difficulty Level

English
GSM8K:MATH:LogiQA
= 400:400:400

Easy Answer Combination 1000 2 1

Hard
Problem Jumping 1000 2 2
Problem Jumping 1000 3 3
Problem Jumping 1000 4 4

Chinese
MGSM:LogiQA
= 250:250

Easy Answer Combination 500 2 1
Hard Problem Jumping 500 2 2

Table 1: An overview of the LREval benchmark. Overall, LREval contains test data in both Chinese and English,
with each portion comprising the Easy and Hard portions.

et al. (2023) introduces the multi-hop question-148

answer task, e.g., “Who won the Master’s Tour-149

nament the year Justin Bieber was born”, designed150

to assess the application and reasoning of factual151

knowledge. Bhuiya et al. (2024) incorporates dis-152

tractor paragraphs into the reading comprehension153

task, thereby concentrating on the ability to dis-154

cern and synthesize information from multiple tex-155

tual sources. Another study (Hosseini et al., 2024)156

chains two test questions together so that the an-157

swer to the first question is used as a variable in158

the second question, testing how well LLMs can159

combine learned concepts to solve new problems.160

Unlike existing methods, our constructed dataset161

employs innovative strategies including problem162

jumping and answer combination to create long-163

chain reasoning challenges. Our dataset is designed164

to simulate real-world complex reasoning scenar-165

ios by pushing models to tackle tasks requiring166

multi-step logical reasoning, the integration of in-167

formation from diverse sources, dynamic decision-168

making, and the sequential linking of intermedi-169

ate conclusions. This approach not only evaluates170

how well models handle complex cognitive tasks171

but also reflects more authentic reasoning require-172

ments, providing a more comprehensive assess-173

ment of LLM capabilities.174

3 Data Construction175

This section details the data construction pipeline.176

We begin with the creation of the subproblem set,177

proceed with the combination strategies of answer178

combination and problem jumping, and conclude179

with evaluation metrics and the entire data construc-180

tion process.181

3.1 Construction of Subproblem Set182

As illustrated in Table 1, the English subprob-183

lems are drawn from three representative reasoning184

datasets: GSM8K (Cobbe et al., 2021), MATH185

(Hendrycks et al., 2021), and LogiQA (Liu et al.,186

2020). The GSM8K dataset comprises 7,000 grade 187

school math word problems. The MATH dataset 188

consists of 5,000 mathematics competition samples. 189

The LogiQA dataset offers 650 logical comprehen- 190

sion samples available in both English and Chinese. 191

From each of these datasets, we randomly sam- 192

ple 400 English examples, resulting in a combined 193

collection of 1,200 subproblems. 194

For Chinese subproblems, we utilize MGSM 195

(Shi et al., 2023) and LogiQA (Liu et al., 2020), 196

as there is no Chinese equivalent for the MATH 197

dataset. MGSM provides translations of 250 198

GSM8K examples across ten languages. We ran- 199

domly choose 250 Chinese examples from MGSM 200

and LogiQA, creating a set of 500 subproblems. 201

3.2 Combination Strategies 202

The strategies for combining problems are cate- 203

gorized into two types: answer combination and 204

problem jumping. 205

3.2.1 Answer Combination 206

In the answer combination strategy, subproblems 207

remain independent and must be solved sequen- 208

tially in a specific order, e.g., q3 → q1 → q2. The 209

answers to the subproblems are then concatenated 210

into a single string, separated by a fixed format 211

including “===”, “####”, or “****”. Key guide- 212

lines include: 1) Each subproblem has a clear input 213

and a unique output. 2) Subproblems must be an- 214

swered in a specific order to form the final answer. 215

3) The final answer is derived by concatenating the 216

answers of all subproblems using a predetermined 217

format. An example template is shown in the left 218

part of Fig. 1, where the red text highlights the 219

parameters to be filled. 220

3.2.2 Problem Jumping 221

In the problem-jumping strategy, there are clear 222

conditional dependencies among the subproblems, 223

as illustrated in the right part of Fig. 1. Each jump 224

provides multiple candidate subproblems, with the 225
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Algorithm 1 Algorithm for Constructing the Easy set
Require: Subproblem set Q, string concatenation format set Comb = [####,====, ∗∗∗∗], dataset size ME, subproblem

size of the long-chain reasoning problems S = 2, the answer combination template TC

Ensure: An Easy subset DE contains ME long-chain reasoning problems, each consisting of S subproblems combined using
the answer combination strategy

1: Initialize with an empty list DE

2: i = 1
3: while i ≤M do
4: S subproblems [q1, ...qS] with different answers are randomly sampled from Q
5: A string concatenation format c is sampled from Comb
6: Generate a random order O = (random.shuffle [1, ...,S]) to solve all the subproblems
7: Construct a sample pi by filling the answer combination template TC with parameters [q1, ...qS], c,O
8: Appending the new sample pi into DE

9: i← i+ 1
10: Return DE

path determined by the answers to the preceding226

questions. The specific guidelines are as follows:227

1) Each subproblem has a clear input and a unique228

output. 2) Within the same jump, each subproblem229

yields a unique answer. 3) Subproblems may con-230

nect to one or more non-sequential subproblems.231

4) The final answer is derived by concatenating the232

answers of all subproblems using a predetermined233

format.234

3.2.3 Diversified Jumping Rules235

Jumping rules are crafted based on the format of236

the answers, which are categorized into option la-237

bels, integers, and strings. Our design follows these238

guiding principles: 1) Each jump action associated239

with an answer is distinct and unambiguous, en-240

suring that there are no overlapping or confusing241

options. 2) Jumping rules are designed based on242

straightforward logic or basic arithmetic (addition,243

subtraction, multiplication, division, and modulus),244

to maintain simplicity. In line with these principles,245

we have developed the following jumping rules:246

Option Labels: Direct jumping (Ro1). Specif-247

ically, each option label (e.g., A, B, C, D) cor-248

responds to a specific candidate subproblem. For249

example, option label A maps to the first candi-250

date subproblem, while option label D maps to the251

fourth candidate subproblem.252

Integers: Jumping based on arithmetic opera-253

tions involves the following methods: summing all254

the numbers provided in the answers and then ap-255

plying modulus N (Ri1), subtracting the smallest256

number from the largest number and then apply-257

ing modulus N (Ri2), summing the squares of all258

the numbers and then applying modulus N (Ri3),259

converting the sum directly to base N and taking260

the last digit (Ri4). Finally, the results from these261

operations are mapped to the N candidates. For262

example, a result of 3 would map to the first candi- 263

date subproblem, while a result of 0 would map to 264

the fourth candidate subproblem. 265

Strings: Jumping methods for answers that are 266

strings involve arithmetic operations based on the 267

numeric digits within the strings: summing all the 268

individual numeric digits (0-9) and then applying 269

modulus N (Rs1), subtracting the smallest individ- 270

ual numeric digit from the largest and then applying 271

modulus N (Rs2), summing the squares of all indi- 272

vidual numeric digits and then applying modulus 273

N (Rs3). Finally, the results from these operations 274

are mapped correspondingly to the N candidates. 275

Furthermore, three different logical jumping 276

methods are established: 277

Sequential Jumping: The path to the (i+ 1)-th 278

subproblem relies on the i-th subproblem. This 279

creates a straightforward, linear sequence where 280

each step logically follows from the previous one. 281

Backtracking Jumping: The path to the (i+ 1)- 282

th subproblem depends on any one of the earlier 283

subproblems from 1 to i− 1. This involves explor- 284

ing and revisiting previous subproblems to find a 285

viable solution. 286

Composite Jumping: The path to the (i+ 1)-th 287

subproblem based on any two subproblems from 288

1 to i. It allows for a more complex and nuanced 289

decision-making process by considering multiple 290

prior interactions simultaneously. 291

3.3 Evaluation Metrics 292

In addition to assessing the accuracy of long-chain 293

reasoning problems by exact string match, we also 294

utilize the reasoning gap, which reflects how often 295

models can correctly answer subproblems individ- 296

ually but not generate the overall solution. The 297

formula for calculating the reasoning gap in the 298

long-chain reasoning problems composed of n sub- 299
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problems is:300

gap = 1− (s∗/sn), (1)301

where s denotes accuracy on the subproblem set,302

and s∗ denotes the actual accuracy of the long-303

chain reasoning problems.304

3.4 Construction of Dataset305

Based on the proposed pipeline, two datasets in306

Chinese and English are constructed, introduced in307

Table 1. The English dataset consists of Easy and308

Hard versions. The Easy subset employs an answer309

combination approach, with a subproblem size of310

2 and a problem complexity of 1. Algorithm 1 de-311

tails the construction algorithm for the Easy subset,312

which requires generating the string concatenation313

format, the order for solving all subproblems, and314

the collection of subproblems. These parameters315

are then input into the answer combination tem-316

plate illustrated in the left part of Fig. 1 to create a317

complete sample.318

The Hard subset employs a problem-jumping319

strategy, with subproblem sizes of 2, 3, and 4, cor-320

responding to problem complexities of 2, 3, and 4,321

respectively. The data construction algorithm for322

the Hard subset is detailed in Appendix Algorithm323

2. Similar to the answer combination algorithm, a324

series of parameters must be generated and then325

input into the problem-jumping template shown in326

the right part of Fig. 1. Appendix Figs 6 and 7327

provide detailed examples of long-chain reasoning328

problems with a subproblem size of 4, utilizing the329

problem-jumping strategy.330

4 Experiments331

This section focuses on two main aspects: evalu-332

ating the reasoning capabilities of various models333

on LREval and analyzing the potential factors in-334

fluencing model performance.335

4.1 Experimental Setup336

We evaluate the performance of several representa-337

tive instruction-tuned models, including: (i) closed-338

source models GPT-4o1 (OpenAI, 2023), o1-mini2,339

and Claude-3.5-sonnet3, (ii) open-source models340

including LLaMA3.1, LLaMA3.2 (Dubey et al.,341

2024b), Qwen2.5 (Yang et al., 2024a), Mistral-342

Nemo, Mistral-Large, and Gemma2 series (Riv-343

ière et al., 2024). Due to the long-chain reasoning344

1gpt-4o-2024-11-20
2o1-mini-2024-09-12
3claude-3-5-sonnet-20241022

process required by the task, all models except 345

o1-mini are evaluated using the Chain of Thought 346

(CoT) approach (Wei et al., 2022), which involves 347

prompting step-by-step thinking. 348

4.2 Evaluation on the English portion of 349

LREval 350

Table 2 presents an overview of the evaluation re- 351

sults on the English portion of LREval. Accuracy 352

indicates the correctness of a model on long-chain 353

reasoning problems, with higher values being bet- 354

ter. Reasoning gap reflects how often models can 355

correctly answer subproblems individually but fail 356

to generate the overall solution for the long-chain 357

problem, with lower values being preferable. First, 358

smaller models under 7B exhibit nearly 100% rea- 359

soning gap on the Hard subset, underscoring their 360

limited reasoning capabilities. As model size in- 361

creases, the reasoning gap narrows, suggesting that 362

scaling up models can enhance their long-chain 363

reasoning abilities. However, noticeable reasoning 364

gaps still exist, e.g., the reasoning gaps of Qwen2.5- 365

72B reach 12.40%, 36.34%, and 54.24% on the 366

2-hop (problems with a subproblem size of 2), 3- 367

hop, and 4-hop hard subsets, respectively. Even the 368

most advanced closed-source models show substan- 369

tial reasoning gaps, particularly in 4-hop problems, 370

where the smallest gap with o1-mini is as high as 371

27.73%. These results underscore the challenges 372

posed by the proposed long-chain reasoning task. 373

Closed-source models generally outperform 374

open-source models on the Hard subset. How- 375

ever, on the Easy subset, closed-source models 376

perform even worse than open-source models with 377

70B parameters or more. This indicates that closed- 378

source models excel in reasoning tasks that require 379

flexible adaptation and dynamic decision-making, 380

whereas open-source models have a slight advan- 381

tage in information integration and structured rea- 382

soning. This performance disparity suggests un- 383

derlying differences in the training methodologies 384

and architecture designs between closed-source and 385

open-source models. Closed-source models likely 386

benefit from proprietary enhancements and access 387

to diverse, high-quality datasets, which equip them 388

with robust capabilities for handling complex, high- 389

stakes reasoning tasks that necessitate flexibility 390

and adaptive problem-solving strategies. On the 391

other hand, open-source models might be lever- 392

aging broader community-driven advancements 393

and collaborative fine-tuning techniques, which 394

enhance their ability to integrate information and 395
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Model
Reasoning Gap ↓ (%) Accuracy ↑ (%)

Easy Hard Easy Hard

2-hop 2-hop 3-hop 4-hop 2-hop 2-hop 3-hop 4-hop

Open-source models (<7B)
LLaMA3.2-1B 88.48 100.00 100.00 100.00 0.60 0.00 0.00 0.00
LLaMA3.2-3B 77.60 100.00 100.00 100.00 1.10 0.00 0.00 0.00
Qwen2.5-0.5B 98.16 100.00 100.00 100.00 0.10 0.00 0.00 0.00
Qwen2.5-1.5B 61.05 97.30 100.00 100.00 10.10 0.70 0.00 0.00
Qwen2.5-3B 36.26 92.68 95.65 98.89 27.00 3.10 1.20 0.20
Gemma-2-2B 48.47 98.39 100.00 100.00 9.60 0.30 0.00 0.00

Open-source models (7B)
LLaMA3.1-8B 21.41 56.08 76.42 89.15 27.20 15.20 4.80 1.30
Gemma-2-9B 18.35 82.22 61.52 84.02 30.30 6.60 8.70 2.20
Qwen2.5-7B 21.35 54.26 76.42 88.93 42.30 24.60 9.30 3.20

Open-source models (14B)
Mistral-nemo-2407 14.79 37.66 61.20 83.32 27.20 19.90 7.00 1.70
Qwen2.5-14B 10.58 36.71 48.94 59.44 55.10 39.00 24.70 15.40

Open-source models (34B)
Gemma-2-27B 12.80 61.50 53.74 75.26 37.60 16.60 13.10 4.60
Qwen2.5-32B 10.03 39.81 46.33 71.66 58.30 39.00 28.00 11.90

Open-source models (≥70B)
LLaMA3.1-70B 9.79 57.15 57.02 76.44 45.90 21.80 15.60 6.10
Qwen2.5-72B 5.87 12.40 36.34 54.24 60.50 56.30 32.80 18.90
Mistral-large-2407 6.17 21.45 38.30 49.58 52.20 43.70 25.60 15.60

Open-source reasoning models
QwQ-32B-Preview -4.44 39.82 28.28 40.36 63.00 36.30 33.60 21.70

Closed-source models
GPT-4o 8.36 11.62 30.53 44.04 53.40 51.50 30.90 19.00
o1-mini 14.21 7.67 19.09 27.73 62.71 67.49 50.57 38.62
Claude-3.5 15.94 19.12 34.70 53.61 52.80 50.80 32.50 18.30

Table 2: Evaluation results of different models on the English portion of LREval. 4-hop indicates that the subproblem
size is equal to 4. Higher accuracy is preferable, while a smaller reasoning gap is desirable.

perform structured, systematic reasoning.396

4.3 Analyses397

In this section, we first investigate model perfor-398

mance on the jumping rules designed in this paper.399

Then, we explore various factors that may influence400

model performance.401

4.3.1 Analysis of the Designed Jumping Rules402

We directly evaluate the accuracy of all tested mod-403

els on each jump rule, shown in Appendix Table 4.404

Detailed prompts can be found in Appendix Fig. 8.405

The input texts are derived from the answers to the406

subproblems within the subproblem set. For cases407

where the preceding answer is an option, there is408

only one rule, i.e., direct jumping (Ro1). For cases409

where the preceding answer is an integer, there are410

four rules including Ri1, Ri2, Ri3, and Ri4. For411

cases where the preceding answer is a string, there412

are three rules: Rs1, Rs2, and Rs3. Detailed jump-413

ing rules can be found in subsection 3.2.3.414

Additionally, three sixth-grade student annota-415

tors are engaged to establish a human baseline for416

each jumping rule. Detailed guidelines are intro-417

duced to ensure consistency and clarity before the418

evaluation begins. To manage costs, 10% of sam- 419

ples are sampled for each jumping rule. Remark- 420

ably, all annotators achieve 100% accuracy across 421

all rules, demonstrating the designed jumping rules 422

are trivial for humans to follow. However, small 423

models smaller than 7B exhibit low accuracy on 424

these jump rules, with results as low as 11.25%. 425

This indicates a severe deficiency in the context 426

understanding and reasoning capabilities of small 427

models. In contrast, closed-source models and 428

open-source models (≥ 70B) achieve over 96.50% 429

accuracy on these jump rules, indicating that these 430

rules are equally straightforward for larger models. 431

Notably, QwQ-32B-Preview reaches a lower aver- 432

age accuracy than Qwen2.5-32B, primarily due to 433

a high failure rate in parsing its predicted answers. 434

4.3.2 Exploring the Factors Affecting Model 435

Performance 436

Due to the reasoning gap of models smaller than 437

7B being nearly 100%, our analysis focuses exclu- 438

sively on models with 7B parameters and above. 439

Since some factors do not simultaneously appear 440

in both the problem-jumping and answer combi- 441

nation strategies, they are analyzed only within 442
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2-Cands 4-Cands 6-Cands 10-Cands 20-Cands

LLaMA3.1-8B 33.78 24.27 30.26 29.56 43.65
Gemma-2-9B 20.81 14.67 27.26 32.17 61.33
Qwen2.5-7B 16.57 33.90 34.49 39.48 57.11

Avg 23.72 24.28 30.67 33.74 54.03

Mistral-Nemo 27.32 33.35 35.57 44.14 54.30
Qwen2.5-14B 19.83 26.37 14.92 19.01 28.01

Avg 23.57 29.86 25.25 31.58 41.15

Gemma-2-27B 9.85 10.45 13.49 18.04 24.72
Qwen2.5-32B 11.30 34.08 29.47 35.44 29.47

Avg 10.57 22.27 21.48 26.74 27.10

LLaMA3.1-70B 4.71 4.71 4.99 9.70 14.68
Qwen2.5-72B 0.74 11.92 11.38 12.19 10.01
Mistral-Large 10.80 13.02 12.47 4.99 1.11

Avg 5.42 9.88 9.61 8.96 8.60

Table 3: This table illustrates the reasoning gap (%) of
the tested models when addressing candidate subprob-
lems of varying scales.

the strategy where they are present. Unless stated443

otherwise, each analysis is based on 400 samples.444

We first explore how the size of candidate sub-445

problems affects model performance, using sub-446

problems sourced from the GSM8K portion in the447

subproblem set, with a subproblem size of 2. As448

shown in Table 3, increasing the candidate subprob-449

lem size from 2 to 4 results in a widening reasoning450

gap among the models. When the size is further in-451

creased to 20, models smaller than 70B experience452

an ongoing rise in the reasoning gap. In contrast,453

models with 70B parameters or more show minimal454

change, highlighting their enhanced robustness.455

Second, we analyze the impact of different logi-456

cal jumping methods on model performance, utiliz-457

ing subproblems from the GSM8K portion with a458

subproblem size of 4. As shown in columns two to459

four of Appendix Table 6, the backtracking jump-460

ing method results in the largest reasoning gap. In461

this scenario, the model often overlooks the back-462

tracking conditions and continues to follow a se-463

quential jumping approach. This suggests that the464

model lacks adequate dynamic decision-making465

capabilities.466

Third, we examine how increasing the subprob-467

lem size affects model performance, using subprob-468

lems derived from the GSM8K portion. Fig. 2469

illustrates the results utilizing the problem-jumping470

strategy. The reasoning gap gradually increases as471

the subproblem size expands from 2 to 4. How-472

ever, when the size increases from 4 to 6, the473

reasoning gap jumps sharply to nearly 90%. Ex-474

tending the size to 10 results in the reasoning gap475

reaching 100%. A similar trend is evident in Ap-476

pendix Fig. 5, which shows results utilizing the477
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Figure 2: This figure illustrates the trend of the rea-
soning gap as the subproblem size increases within the
problem-jumping setting.

answer-combination strategy. This substantial in- 478

crease beyond a certain threshold suggests that the 479

complexity of long-chain reasoning tasks exhibits 480

non-linear characteristics. 481

Fourth, we explore the impact of various string 482

concatenation formats including “====” (C1), 483

“####” (C2), and “****” (C3), on model perfor- 484

mance, utilizing subproblems from the GSM8K 485

portion with a subproblem size of 2. Results 486

for long-chain problems employing the problem- 487

jumping strategy are presented in columns five to 488

seven of Appendix Table 6. The reasoning gap 489

varies significantly across these three formats, with 490

the highest difference reaching 57.52%. This un- 491

derscores the fragility of the models’ reasoning 492

capabilities. Notably, using “===” as a separator 493

results in a much lower reasoning gap compared 494

to the other formats, suggesting that it may help 495

the model organize and integrate information from 496

diverse sources more effectively. However, a differ- 497

ent phenomenon emerges in columns eight to ten of 498

Appendix Table 6, which displays results utilizing 499

the answer-combination strategy. In this case, the 500

reasoning gap across the three string concatenation 501

methods is closely similar. This consistency might 502

be attributed to the inherently lower complexity and 503

clearer structure of the answer combination strat- 504

egy, which may minimize the influence of separator 505

choice on model reasoning. 506

Finally, within the answer combination strategy, 507

we examine the impact of swapping the order of 508

subproblems. We utilize the long-chain reasoning 509

problems with a subproblem size of 2. The com- 510

parison of outcomes from the two configurations 511

is shown in columns 11 to 12 of Appendix Table 512

6. The findings reveal that changing the order of 513

subproblems results in variations in model perfor- 514
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mance, underscoring the models’ fragile reason-515

ing capabilities. Specifically, when the math prob-516

lem (GSM8K) precedes the multiple-choice ques-517

tion (LogiQA), denoted as “G+L”, the reasoning518

gap is larger for Qwen, Mistral, and Gemma mod-519

els. In contrast, when the math problem follows520

the multiple-choice question, denoted as “L+G”,521

the reasoning gap is greater for LLaMA3.1. This522

discrepancy likely stems from the differing train-523

ing data and strategies employed by each model,524

highlighting how model-specific characteristics can525

influence reasoning performance when presented526

with varied problem sequences.527

5 Multilingual Evaluation528

This section presents the evaluation and analyses on529

the Chinese portion of LREval shown in Appendix530

Table 5. Consistent with the results on English data531

shown in Table 2, the model’s long-chain reasoning532

capability is insufficient.533

Additionally, we examine the multilingual un-534

derstanding capabilities of the models using the535

MGSM and MLogiQA datasets. These datasets are536

sourced from the P-MMEval benchmark (Zhang537

et al., 2024a) and feature test data in ten lan-538

guages including English, Chinese, Arabic, Span-539

ish, Japanese, Korean, Thai, French, Portuguese,540

and Vietnamese. Specifically, for each English541

problem in MGSM or MLogiQA, we retrieve par-542

allel problems in nine other languages to construct543

a long-chain reasoning problem, employing an an-544

swer concatenation strategy. The English subprob-545

lem is prompted to be solved first. An example of546

the evaluation prompt is shown in Appendix Fig. 8.547

The reasoning gap is measured by how often mod-548

els can correctly answer the English subproblems549

but not generate the overall solution. We report the550

average reasoning gap for models of similar sizes,551

as categorized in Table 5. As shown in Appendix552

Fig. 4, even large models with 70B parameters or553

more still exhibit an average reasoning gap of ap-554

proximately 10%. This result demonstrates that al-555

though LLMs exhibit strong multilingual capabili-556

ties when handling questions in different languages557

individually, their performance remains inadequate558

in scenarios that require simultaneous comprehen-559

sion of multiple languages.560

To intuitively assess the model’s multilingual561

understanding capabilities, we combine all test562

data from ten different languages in MGSM and563

MLogiQA into a multilingual subproblem set. For564
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Figure 3: This figure illustrates the reasoning gap on
the long-chain problems solved in the order of language
sequence.

each instance, we randomly select three subprob- 565

lems from this set to form a long-chain problem 566

using the answer combination strategy, producing 567

a total of 400 samples. The problems are prompted 568

to be solved sequentially by language, such as solv- 569

ing the problem in Chinese first, followed by En- 570

glish, and then Korean. An example of the eval- 571

uation prompt is shown in Appendix Fig. 8. We 572

also report the average reasoning gap for models 573

of similar sizes, adhering to the model size clas- 574

sification method detailed in Table 5. The result 575

presented in Fig. 3 reveals a significant reasoning 576

gap for all tested models. For example, the average 577

reasoning gap for models with 70B parameters or 578

more reaches 35.34%. These findings highlight the 579

model’s shortcomings in multilingual comprehen- 580

sion. 581

6 Conclusion 582

In this paper, we introduce a pipeline that lever- 583

ages existing reasoning problems to create more 584

complex long-chain reasoning tasks. Then, we 585

introduce a new benchmark, LREval, including 586

both Easy and Hard versions. The former em- 587

phasizes the model’s proficiency in information 588

integration and structured reasoning, while the lat- 589

ter primarily examines the model’s capabilities in 590

dynamic decision-making and flexible adaptation. 591

Furthermore, we conduct extensive experiments 592

on representative LLMs, including both general 593

and reasoning-focused models. Our evaluations un- 594

cover huge reasoning challenges and failures faced 595

by current LLMs, underscoring the fragility of their 596

reasoning capabilities and emphasizing the need 597

for robust evaluation frameworks. 598
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Limitations599

Through the above experiments and analyses, we600

summarize the following limitations:601

1) Scope of Reasoning Tasks: While LREval602

introduces a novel framework for assessing the rea-603

soning capabilities in LLMs, the dataset may not604

encompass the full spectrum of reasoning skills605

required in various real-world applications. Future606

work should focus on expanding the answer com-607

bination strategy to comprehensively evaluate the608

performance and adaptability of LLMs across a609

wider range of contexts.610

2) Limited problem jump rules: The current set611

of problem-jumping rules in LREval is somewhat612

narrow. By introducing a greater variety of jumping613

rules that mimic more complex, real-world prob-614

lem structures, future iterations of the dataset could615

offer a more comprehensive challenge to LLMs,616

better evaluating their capabilities in handling intri-617

cate reasoning problems.618
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man participants were in accordance with the eth-621
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Table 4 presents model accuracy on the designed 925
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B Multilingual Evaluation 927
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Model Ro1 Ri1 Ri2 Ri3 Ri4 Rs1 Rs2 Rs3 Avg

Open-source models (<7B)
LLaMA3.2-1B 21.50 32.25 12.25 19.00 24.75 19.50 17.75 17.50 20.56
LLaMA3.2-3B 25.25 29.75 11.25 18.00 20.25 22.25 17.50 17.25 20.19
Qwen2.5-0.5B 30.50 38.50 28.25 26.25 25.25 17.50 20.00 20.75 25.88
Qwen2.5-1.5B 74.00 78.75 57.50 64.50 82.75 62.25 60.25 56.50 67.06
Qwen2.5-3B 90.50 94.75 90.00 88.25 88.75 85.00 82.25 78.00 87.19
Gemma-2-2B 38.50 77.00 67.75 58.25 88.50 66.50 62.75 69.00 66.03

Open-source models (7B)
LLaMA3.1-8B 96.25 99.25 90.25 96.75 99.00 86.25 81.25 82.50 91.44
Gemma-2-9B 97.25 99.75 99.50 90.75 98.75 91.50 94.00 93.50 95.63
Qwen2.5-7B 99.75 99.50 98.25 99.50 98.50 89.75 97.00 90.50 96.59

Open-source models (14B)
Mistral-Nemo 98.25 96.00 81.50 88.25 93.50 87.00 88.75 86.50 89.97
Qwen2.5-14B 100.00 97.00 95.00 98.50 98.25 95.25 97.00 93.75 96.84

Open-source models (34B)
Gemma-2-27B 100.00 99.75 99.75 99.75 100.00 97.75 98.50 98.50 99.25
Qwen2.5-32B 100.00 99.75 99.75 99.50 100.00 96.75 99.25 96.75 98.97

Open-source models (≥70B)
LLaMA3.1-70B 99.75 99.50 99.00 99.75 100.00 96.50 99.50 98.00 99.00
Qwen2.5-72B 100.00 99.75 99.75 100.00 100.00 96.75 99.00 97.00 99.03
Mistral-Large 100.00 100.00 100.00 99.75 99.75 97.50 99.25 96.75 99.13

Open-source reasoning models
QwQ-32B-Preview 84.75 93.00 90.00 95.00 93.00 90.00 78.25 83.00 88.38

Closed-source models
GPT-4o 100.00 100.00 100.00 100.00 100.00 99.00 100.00 99.00 99.75
o1-mini 100.00 100.00 100.00 100.00 100.00 99.00 100.00 100.00 99.88

Claude-3.5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.00 99.88

Human 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 4: This table presents model accuracy (%) on the designed jumping rules. The third column shows the
accuracy of direct jumping utilizing the jumping rule of Ri1.

Model
Reasoning Gap ↓ (%) Accuracy ↑ (%)

Easy Hard Easy Hard

Open-source models (<7B)
LLaMA3.2-1B 100.00 100.00 0.00 0.00
LLaMA3.2-3B 84.38 100.00 0.60 0.00
Qwen2.5-0.5B 100.00 100.00 0.00 0.00
Qwen2.5-1.5B 46.60 91.10 12.00 2.00
Qwen2.5-3B 17.23 87.61 29.40 4.40
Gemma-2-2B 51.92 98.86 8.40 0.20

Open-source models (7B)
LLaMA3.1-8B 9.17 53.72 31.40 16.00
Gemma-2-9B 14.15 73.47 35.60 11.00
Qwen2.5-7B 5.70 57.39 47.80 21.60

Open-source models (14B)
Mistral-Nemo 16.26 47.27 32.40 20.40
Qwen2.5-14B 2.50 34.38 62.40 42.00

Open-source models (34B)
Gemma-2-27B 6.10 55.86 46.80 22.00
Qwen2.5-32B 0.88 29.36 69.60 49.60

Open-source models (≥70B)
LLaMA3.1-70B -1.54 41.10 56.20 32.60
Qwen2.5-72B 2.13 13.01 68.40 60.80
Mistral-Large 0.21 17.11 62.60 52.00

Table 5: Evaluation results of different models on the
Chinese portion of LREval.
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Figure 4: This figure illustrates the reasoning gap on
the long-chain problems composed of 10 parallel sub-
problems, employing the answer combination strategy.
The line labeled “MGSM” corresponds to all 10 parallel
samples derived from the MGSM dataset.

E Example Prompts 942

Fig. 8 illustrates several prompts. Fig. 6 illus- 943

trates backtracking jumping, while Fig. 7 depicts 944

composite jumping. 945
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Problem Jumping Answer Combination

Model
Logical Jumping Way String Concatenation Format String Concatenation Format Subproblem Order

Sequential Backtracking Composite C1 C2 C3 C1 C2 C3 G+L L+G

LLaMA3.1-8B 56.33 89.58 63.78 24.27 25.33 67.24 9.13 11.24 8.78 1.69 31.88
Gemma-2-9B 59.30 76.26 64.20 14.67 99.69 100.00 11.91 8.53 10.07 12.50 9.66
Qwen2.5-7B 65.13 82.74 76.53 33.90 99.12 33.31 8.34 8.34 9.22 18.58 15.69

Avg 60.26 82.86 68.17 24.28 74.71 66.85 9.79 9.37 9.36 10.92 19.08

Mistral-Nemo 67.76 81.87 81.87 33.35 54.93 30.18 18.43 20.97 18.43 15.01 3.43
Qwen2.5-14B 47.35 68.47 57.76 26.37 74.09 40.28 3.47 4.01 3.74 14.55 7.94

Avg 57.56 75.17 69.81 29.86 64.51 35.23 10.95 12.49 11.09 14.78 5.68

Gemma-2-27B 30.70 69.04 43.97 10.45 70.86 100.00 2.87 2.56 5.90 1.44 3.46
Qwen2.5-32B 44.66 76.75 83.52 34.08 35.17 59.58 0.99 1.80 2.62 5.52 3.91

Avg 37.68 72.89 63.74 22.27 53.01 79.79 1.93 2.18 4.26 3.48 3.68

LLaMA3.1-70B 32.47 80.36 30.63 4.71 69.53 86.43 3.60 2.22 2.49 -0.94 4.35
Qwen2.5-72B 32.78 68.77 48.84 11.92 13.56 13.56 -0.62 1.29 -0.08 11.39 6.65
Mistral-Large 24.49 76.06 38.00 13.02 13.85 41.55 -0.83 0.00 -0.83 5.77 4.07

Avg 29.92 75.06 39.16 9.88 32.31 47.18 0.72 1.17 0.53 5.41 5.02

Table 6: This table provides a detailed exhibition of how different factors affect the reasoning gap (%) when
employing problem-jumping and answer combination strategies. “G+L” signifies that, in the long-chain problem
with a subproblem size of 2, the math subproblem (GSM8K) is arranged before the multiple-choice subproblem
(LogiQA).
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Figure 5: This figure illustrates the trend of the rea-
soning gap as the subproblem size increases within the
answer combination setting.
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Algorithm 2 Algorithm for Constructing the Hard Subset with Each Consisting of 4 Subproblems
Require: Subproblem set Q, string concatenation format set Comb = [####,====, ∗ ∗ ∗∗], dataset size MH = 1000,

subproblem size of the long-chain reasoning problem S = 4, problem jumping template TH, jumping rule set Jump,
candidate subproblem size list NC = [2, 3, 4]

Ensure: An Hard subset DH contains MH long-chain reasoning problems with each consisting of S subproblems combined
using the problem jumping strategy

1: Initialize with an empty list DH

2: i = 1
3: while i ≤MH do
4: j← 1
5: Randomly sample one subproblem from the subproblem set Q without replacement to serve as the first-hop problem q1

6: Utilize the first-hop problem q1 as the preceding problem qpre for the first jump, with its answer serving as the preceding
answer apre

7: If the preceding answer apre is an option label, the number of candidate problems must match the number of available
options. Otherwise, randomly sample one number nj from NC. Then, randomly sample nj subproblems Cj with different
answers from Q without replacement

8: Based on the preceding answer apre, randomly sample a problem jumping rule Rj

9: Determine the second-hop problem q2 from the candidate subproblems Cj according to the jumping rule Rj and the
preceding answer apre

10: j← 2
11: Randomly select one from [q1, q2] as the preceding problem to the second jump, using its answer as the preceding

answer
12: Repeat Steps 7 and 8
13: Determine the third-hop problem from the candidate subproblems Cj according to the jumping rule and the preceding

answer
14: j← 3
15: Check if there are two integer answers to [q1, q2, q3]. If so, perform a combination judgment: add the two integer

answers together to form the preceding answer. Then, repeat Steps 7 and 8. Otherwise, randomly select one problem from
[q1, q2, q3] as the preceding problem and repeat Steps 7 and 8.

16: Determine the fourth-hop problem from the candidate subproblems according to the jumping rule and the preceding
answer

17: Sample one string concatenation format c from Comb
18: Construct a sample pi by filling the problem jumping template TH with parameters, including [q1,q2,q3,q4], c,

[n1,n2,n3],[R1,R2,R3],[C1,C2,C3], etc.
19: Appending the new sample pi into DH

20: i← i+ 1
21: Return DH

14



The following is a multi-hop long-chain reasoning problem that requires jumping to the subsequent question based on the answer 
to the previous question.

Initial question: {Q0}

Square each digit in the answer to the initial question, sum these squares, and then take the result modulo 4 to obtain a key number 
X.
First jump: If X is equal to 2, proceed to Q1_3. If X is equal to 3, proceed to Q1_1. If X is equal to 1, proceed to Q1_0. If X is 
equal to 0, proceed to Q1_2.

Q1_1: {Q1}
Q1_3: {Q2}
Q1_2: {Q3}
Q1_0: {Q4}

For the answer to the first-jump question:
1. Identify and extract each individual numeric digit (0-9) present in the input, treating each digit as a separate character regardless 
of whether they appear together in numbers, fractions, radicals, or any complex expressions.
2. Sum all the extracted numeric digits.
3. If there are no numeric digits, return the sum as 0.
4.Take the sum modulo 2 to obtain a key number Y. 
Second jump: If Y is equal to 1, proceed to Q2_1. If Y is equal to 0, proceed to Q2_0. 

Q2_0: {Q5}
Q2_1: {Q6}

Sum each digit of the answer to the initial question, then take the result modulo 3 to obtain a key number Z.
Third jump: If Z is equal to 0, proceed to Q3_1. If Z is equal to 2, proceed to Q3_0. If Z is equal to 1, proceed to Q3_2.

Q3_0: {Q7}
Q3_2: {Q8}
Q3_1: {Q9}

Solve the multi-hop question. Explain your answer step by step and give the final answer on the last line by itself in the format of 
‘The answer of the initial question is [answer0]. 
The first-jump question is [question1]. 
The answer of the first-jump question is [answer1].
The second-jump question is [question2].
The answer of the second-jump question is [answer2].
The third-jump question is [question3].
The answer of the third-jump question is [answer3].
The final answer is \boxed{[answer0]####[answer1]####answer2]####[answer3]}.’
Where [answer0] must be integers, and the final answer must be put within \boxed{}.

Let’s think step by step.

Figure 6: This figure illustrates the backtracking jumping.
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The following is a multi-hop long-chain reasoning problem that requires jumping to the subsequent question based on the answer 
to the previous question.

Initial question: {Q0}

Let X be the answer to the initial question.
First jump: If X is equal to C, proceed to Q1_2. If X is equal to A, proceed to Q1_3. If X is equal to D, proceed to Q1_1. If X is 
equal to B, proceed to Q1_0.

Q1_1: {Q1}
Q1_3: {Q2}
Q1_2: {Q3}
Q1_0: {Q4}

Subtract the smallest digit from the largest digit in the answer to the initial question (ignore the negative sign for this calculation). 
If there are fewer than two digits, return the difference as 0. Then take the difference modulo 2 to obtain a key number Y.
Second jump: If Y is equal to 1, proceed to Q2_1. If Y is equal to 0, proceed to Q2_0. 

Q2_0: {Q5}
Q2_1: {Q6}

Add the answer from the first-jump question to the answer from the second-jump question to get the sum. Then, add each digit of 
this sum. Finally, take the result modulo 4 to obtain a key number Z.
Third jump: If Z is equal to 0, proceed to Q3_1. If Z is equal to 2, proceed to Q3_0. If Z is equal to 1, proceed to Q3_2. If Z is 
equal to 3, proceed to Q3_3.

Q3_0: {Q7}
Q3_2: {Q8}
Q3_1: {Q9}
Q3_3: {Q10}

Solve the multi-hop question. Explain your answer step by step and give the final answer on the last line by itself in the format of 
‘The answer of the initial question is [answer0]. 
The first-jump question is [question1]. 
The answer of the first-jump question is [answer1].
The second-jump question is [question2].
The answer of the second-jump question is [answer2].
The third-jump question is [question3].
The answer of the third-jump question is [answer3].
The final answer is \boxed{[answer0]****[answer1]****answer2]****[answer3]}.’
Where [answer0] must be integers, and the final answer must be put within \boxed{}.

Let’s think step by step.

Figure 7: This figure illustrates the composite jumping.
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Prompt for the long-chain problem composed of three parallel subproblems
The following is a long-chain reasoning problem that requires solving several sub-problems and then combining their answers into a single 
formatted string.
Let's break down the problem: Answer question Q1. Answer question Q2. Answer question Q3. Concatenate the answers of Q1, Q2, and Q3 
into a single string, separating them with ‘====’. Explain your answer step by step and give the final answer on the last line by itself in the 
format of 
‘The answer of Q1 is [answer1]. The answer of Q2 is [answer2]. The answer of Q3 is [answer3]. The final answer is 
\boxed{[answer1]====[answer2]====[answer3]}’.
Where [answer1], [answer2], and [answer3] must be integers, and the final answer must be put within \boxed{}.
Q1: Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She 
sells the remainder at the farmers' market daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers' market?
Q2: Les canes de Janet pondent 16 œufs par jour. Chaque matin, elle en mange trois au petit déjeuner et en utilise quatre autres pour préparer 
des muffins pour ses amis. Ce qui reste, elle le vend quotidiennement au marché fermier, au prix de 2 $ l'œuf de cane frais. Combien (en 
dollars) gagne-t-elle chaque jour au marché fermier ?
Q3: Os patos de Janet põem 16 ovos por dia. Ela come três no café da manhã todas as manhãs e usa quatro para fazer muffins para seus 
amigos todos os dias. Ela vende o restante no mercado de agricultores diariamente por $2 por ovo fresco de pato. Quanto ela ganha em dólares 
todos os dias no mercado de agricultores?
Let’s think step by step.

Prompt for the long-chain problem solved in the order of language sequence
The following is a long-chain reasoning problem that requires solving several multilingual sub-problems and then combining their answers 
into a single formatted string.
Let’s break down the problem: Answer the question written in Korean. Answer the question written in French. Answer the question written in  
Chinese. Concatenate the answers of all the questions into a single string, separating them with ‘====’. Explain your answer step by step and 
give the final answer on the last line by itself in the format of 
‘The answer of the Korean question is [answer1]. The answer of the French question is [answer2]. The answer of the Chinese question is 
[answer3]. The final answer is \boxed{[answer1]====[answer2]====[answer3]}’.
Where [answer1] must be integer, [answer2] must be integer, [answer3] must be integer, and the final answer must be put within \boxed{}.
Q1: Deux trains partent de San Rafael au même moment. Ils se dirigent d'abord vers l'ouest et parcourent tous les deux 80 miles. Le jour 
suivant, ils voyagent vers le nord, couvrant 150 miles. Quelle est la distance parcourue par chaque train au cours de ces deux jours ?
Q2: 존은  3시간  동안  복숭아를  따왔습니다 . 그는  1분에  복숭아  2개를  딸  수  있습니다 . 그가  복숭아를  몇  개  따냈나요 ?
Q3: 弗兰基每天晚上做完作业后看电视。周一和周二，他每晚看一集自己最喜欢的节目，一集 1 小时。周三，他看了几集每集 30 分
钟的节目。周四，他提早做完了作业，看了一集每集 1 小时的节目和一集每集 30 分钟的节目。周五，因为有周末，他可以熬夜，

所以他看了 2 集每集 1 小时的节目。如果他一共看了 7 小时的电视，他在周三看了多少集每集 30 分钟的节目？

Let’s think step by step.

Prompt for direct jumping
The following is a multi-hop problem that requires jumping to the subsequent question based on the input.
Input: 36
Subtract the smallest digit from the largest digit in the input (ignore the negative sign for this calculation). If there are fewer than two digits, 
return the difference as 0. Then take the difference modulo 4 to obtain a key number X.
First jump: If X is equal to 3, proceed to Q2. If X is equal to 1, proceed to Q1. If X is equal to 0, proceed to Q4. If X is equal to 2, proceed to 
Q3.
Solve the multi-hop question. Explain your answer step by step and give the final answer on the last line by itself in the format of 
‘The first-jump question is [question1]’. Where [question1] must be one of Q1, Q2, Q3, and Q4.
Let’s think step by step.

Figure 8: This figure displays several example prompts.
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