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Abstract
While pretrained language models achieve ex-001
cellent performance on natural language un-002
derstanding benchmarks, they tend to rely on003
spurious correlations and generalize poorly004
to out-of-distribution (OOD) data. Recent005
work has explored using counterfactually-006
augmented data (CAD)—data generated by007
minimally perturbing examples to flip the008
ground-truth label—to identify robust features009
that are invariant under distribution shift. How-010
ever, empirical results using CAD during train-011
ing for OOD generalization have been mixed.012
To explain this discrepancy, through a toy theo-013
retical example and empirical analysis on two014
crowdsourced CAD datasets, we show that: (a)015
while features perturbed in CAD are indeed ro-016
bust features, it may prevent the model from017
learning unperturbed robust features; and (b)018
CAD may exacerbate existing spurious corre-019
lations in the data. Our results thus show that020
the lack of perturbation diversity limits CAD’s021
effectiveness on OOD generalization, calling022
for innovative crowdsourcing procedures to023
elicit diverse perturbation of examples.024

1 Introduction025

Large-scale datasets have enabled tremendous026

progress in natural language understanding (NLU)027

(Rajpurkar et al., 2016; Wang et al., 2018a) with the028

rise of pretrained language models (Devlin et al.,029

2019; Peters et al., 2018). Despite this progress,030

there have been numerous works showing that mod-031

els rely on spurious correlations in the datasets, i.e.032

heuristics that are effective on a specific dataset033

but do not hold in general (McCoy et al., 2019;034

Naik et al., 2018; Wang and Culotta, 2020). For035

example, BERT (Devlin et al., 2019) trained on036

MNLI (Williams et al., 2017) learns the spurious037

correlation between world overlap and entailment038

label.039

A recent promising direction is to collect040

counterfactually-augmented data (CAD) by ask-041

ing humans to minimally edit examples to flip their042

ground-truth label (Kaushik et al., 2020). Figure 043

1 shows example edits for Natural Language In- 044

ference (NLI). Given interventions on robust fea- 045

tures that “cause” the label to change, the model is 046

expected to learn to disentangle the spurious and 047

robust features. 048

Despite recent attempt to explain the efficacy of 049

CAD by analyzing the underlying causal structure 050

of the data (Kaushik et al., 2021), empirical results 051

on out-of-distribution (OOD) generalization using 052

CAD are mixed. Specifically, Huang et al. (2020) 053

show that CAD does not improve OOD generaliza- 054

tion for NLI; Khashabi et al. (2020) find that for 055

question answering, CAD is helpful only when it 056

is much cheaper to create than standard examples 057

— but Bowman et al. (2020) report that the cost is 058

actually similar per example. 059

In this work, we take a step towards bridging 060

this gap between what theory suggests and what 061

we observe in practice in regards to CAD. An in- 062

tuitive example to illustrate our key observation 063

is shown in Figure 1 (a), where the verb ‘eating’ 064

is changed to ‘drinking’ to flip the label. While 065

there are many other words that could have been 066

changed to flip the label, given only these two ex- 067

amples, the model learns to use only the verbs (e.g. 068

using a Naive Bayes model, all other words would 069

have zero weights). As a result, this model would 070

fail when evaluated on examples such as those in 071

(b) where the quantifier ‘two’ is changed to ‘three’, 072

while a model trained on the unaugmented data 073

may learn to use the quantifiers. 074

First, we use a toy theoretical setting to formal- 075

ize counterfactual augmentation, where we find 076

that perturbations of one robust feature can prevent 077

the model from learning other robust features. Mo- 078

tivated by this, we set up an empirical analysis on 079

two crowdsourced CAD datasets collected for NLI 080

and Question Answering (QA). In the empirical 081

analysis, we identify the robust features by cate- 082

gorizing the edits into different perturbation types 083
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Premise: The lady is standing next to her two children who are eating a pizza.
Original Hypothesis: The two children near the lady are eating something. (Entailment)
Revised Hypothesis: The two children near the lady are drinking something. (Contradiction)

Premise: The lady is standing next to her two children who are eating a pizza.
Original Hypothesis: The two children near the lady are eating something. (Entailment)
Revised Hypothesis: The three children near the lady are eating something. (Contradiction)

(a)

(b)

Figure 1: Illustration of counterfactual examples in natural language inference. Augmenting examples like (a)
hurts performance on examples like (b) where a different robust feature has been perturbed, since the first example
encourages the model to exclusively focus on the highlighted words.

(Wu et al., 2021) (e.g. negating a sentence or chang-084

ing the quantifiers), and show that models do not085

generalize well to unseen perturbation types, some-086

times even performing worse than models trained087

on unaugmented data.088

Our analysis of the relation between perturbation089

types and generalization can help explain other090

observations such as CAD being more beneficial091

in the low-data regime. With increasing data size,092

improvement from using CAD plateaus compared093

to unaugmented data, suggesting that the number094

of perturbation types in existing CAD datasets does095

not keep increasing.096

Another consequence of the lack of diversity in097

edits is annotation artifacts, which may produce098

spurious correlations similar to what happens in099

standard crowdsourcing procedures. While CAD is100

intended to debias the dataset, surprisingly, we find101

that crowdsourced CAD for NLI exacerbates word102

overlap bias (McCoy et al., 2019) and negation103

bias (Gururangan et al., 2018a) observed in existing104

benchmarks.105

In sum, we show that the effectiveness of current106

CAD datasets is limited by the set of robust features107

that are perturbed. Furthermore, they may exacer-108

bate spurious correlations in existing benchmarks.109

Our results highlight the importance of increasing110

the diversity of counterfactual perturbations during111

crowdsourcing: We need to elicit more diverse ed-112

its of examples that make models more robust to113

the complexity of language.114

2 Toy Example: Analysis of a Linear115

Model116

In this section, we use a toy setting with a linear117

Gaussian model and squared loss to formalize coun-118

terfactual augmentation and discuss the conditions119

required for it’s effectiveness. The toy example120

serves to motivate our empirical analysis in Sec- 121

tion 3. 122

2.1 Learning under Spurious Correlation 123

We adopt the setting in Rosenfeld et al. (2020): 124

each example consists of robust features xr ∈ Rdr 125

whose joint distribution with the label is invari- 126

ant during training and testing, and spurious fea- 127

tures xs ∈ Rds whose joint distribution with the 128

label varies at test time. Here dr and ds denote the 129

feature dimensions. We consider a binary clas- 130

sification setting where the label y ∈ {−1, 1} 131

is drawn from a uniform distribution, and both 132

the robust and spurious features are drawn from 133

Gaussian distributions. Specifically, an example 134

x = [xr, xs] ∈ Rd is generated by the following 135

process (where d = dr + ds): 136

y =

{
1 w.p. 0.5

−1 otherwise
(1) 137

xr | y ∼ N (yµr, σ
2
rI) , (2) 138

xs | y ∼ N (yµs, σ
2
sI) , (3) 139

where µr ∈ Rdr ; µs ∈ Rds ; σr, σs ∈ R; and I 140

is the identity matrix.1 The corresponding data 141

distribution is denoted by D. Note that the relation 142

between y and the spurious features xs depends 143

on µs and σs, which may change at test time, thus 144

relying on xs may lead to poor OOD performance. 145

Intuitively, in this toy setting, a model trained 146

with only access to examples from D would not 147

be able to differentiate between the spurious and 148

robust features, since they play a similar role in the 149

data generating process for D. Formally, consider 150

the setting with infinite samples from D where we 151

1This model corresponds to the anti-causal setting
(Scholkopf et al., 2012), i.e. the label causing the features. We
adopt this setting since it is consistent with how most data is
generated in tasks like NLI, sentiment analysis etc.
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learn a linear model (y = wTx where w ∈ Rd)152

by least square regression. Let ŵ ∈ Rd be the153

optimal solution on D (without any counterfactual154

augmentation). The closed form solution is:155

Cov(x, x)ŵ = Cov(x, y)156

ŵ = Cov(x, x)−1µ (4)157

where µ = [µr, µs] ∈ Rd and Cov(·) denotes the158

covariance matrix:159

Cov(x, x) =

[
Σr µrµ

T
s

µsµ
T
r Σs

]
, (5)160

where Σr,Σs are covariance matrices of xr and161

xs respectively. This model relies on xs whose162

relationship with the label y can vary at test time,163

thus it may have poor performance under distribu-164

tion shift. A robust model winv that is invariant to165

spurious correlations would ignore xs:166

winv =
[
Σ−1r µr, 0

]
. (6)167

2.2 Counterfactual Augmentation168

The counterfactual data is generated by editing an169

example to flip its label. We model the perturbation170

by an edit vector z that translates x to change its171

label from y to −y (i.e. from 1 to -1 or vice versa).172

For instance, the counterfactual example of a posi-173

tive example (x,+1) is (x+ z,−1). Specifically,174

we define the edit vector to be z = [yzr, yzs] ∈ Rd,175

where zr ∈ Rdr and zs ∈ Rds are the displace-176

ments for the robust and spurious features. Here, z177

is label-dependent so that examples with different178

labels are translated in opposite directions. There-179

fore, the counterfactual example (xc,−y) gener-180

ated from (x, y) has the following distribution:181

xcr | −y ∼ N (y(µr + zr), σ
2
rI) , (7)182

xcs | −y ∼ N (y(µs + zs), σ
2
sI) . (8)183

The model is then trained on the combined set of184

original examples x and counterfactual examples185

xc, whose distribution is denoted by Dc.186

Optimal edits. Ideally, the counterfactual data187

should de-correlate xs and y, thus it should only188

perturb the robust features xr, i.e. z = [yzr, 0]. To189

find the displacement zr that moves x across the190

decision boundary, we maximize the log-likelihood191

of the flipped label under the data generating distri-192

bution D:193

z∗r = arg max
zr∈Rdr

E(x,y)∼D log p(−y | x+ [yzr, 0])194

= −2µr. (9)195

Intuitively, it moves the examples towards the mean 196

of the opposite class along coordinates of the robust 197

features. 198

Using the edits specified above, if the model 199

trained on Dc has optimal solution ŵc, we have: 200

Cov(x, x)ŵc = Cov(x, y) 201

ŵc =
[
Σ−1r µr, 0

]
= winv. (10) 202

Thus, the optimal edits recover the robust model 203

winv, demonstrating the effectiveness of CAD. 204

Incomplete edits. There is an important assump- 205

tion made in the above result: we have assumed all 206

robust features are edited. Suppose we have two 207

sets of robust features xr1 and xr2,2 then not edit- 208

ing xr2 would effectively make it appear spurious 209

to the model and indistinguishable from xs. 210

In practice, this happens when there are multi- 211

ple robust features but only a few are perturbed 212

during counterfactual augmentation (which can be 213

common during data collection if workers rely on 214

simple patterns to make the minimal edits). Con- 215

sidering the NLI example, if all entailment exam- 216

ples are flipped to non-entailment ones by inserting 217

a negation word, then the model will only rely on 218

negation to make predictions. 219

More formally, consider the case where the orig- 220

inal examples x = [xr1, xr2, xs] and counterfac- 221

tual examples are generated by incomplete edits 222

z = [zr1, 0, 0] that perturb only xr1. Using the 223

same analysis above where zr1 is chosen by maxi- 224

mum likelihood estimation, let the model learned 225

on the incompletely augmented data be denoted 226

by ŵinc. We can then show that the error of the 227

model trained from incomplete edits can be more 228

than that of the model trained without any coun- 229

terfactual augmentation under certain conditions.3 230

Intuitively, this means that perturbing only a small 231

subset of robust features could perform worse than 232

no augmentation, indicating the importance of di- 233

versity in CAD. Next, we show that the problem of 234

incomplete edits is exhibited in real CAD too. 235

3 Diversity and Generalization in CAD 236

In this section, we test the following hypothesis 237

based on the above analysis: models trained on 238

CAD are limited to the specific robust features that 239

2We assume they are conditionally independent given the
label.

3The formal statement of the proposition and the proof is
in Appendix A.
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Type Definition Example # examples
(NLI/BoolQ)

negation Change in negation modifier A dog is not fetching anything. 200/683
quantifier Change in words with numeral POS tags The lady has many → three children. 344/414
lexical Replace few words without changing the POS tags The boy is swimming → running. 1568/1737
insert Only insert words or short phrases The tall man is digging the ground. 1462/536
delete Only delete words or short phrases The lazy person just woke up. 562/44

resemantic
Replace short phrases without affecting rest of the
parsing tree

The actor saw → had just met the
director. 2760/1866

Table 1: Definition of the perturbation types and the corresponding number of examples in the NLI CAD dataset
released by (Kaushik et al., 2020) and the BoolQ CAD dataset released by Khashabi et al. (2020). In the example
edits, the deleted words are shown in red and the newly added words are shown in green.

are perturbed and may not learn other unperturbed240

robust features. We empirically analyze how aug-241

menting counterfactual examples by perturbing one242

robust feature affects the performance on examples243

generated by perturbing other robust features.244

3.1 Experiment Design245

Perturbation types. Unlike the toy example, in246

NLU it is not easy to define robust features since247

they typically correspond to the semantics of the248

text (e.g. sentiment). Following Kaushik et al.249

(2021) and similar to our toy model, we define ro-250

bust features as spans of text whose distribution251

with the label remains invariant, whereas spans of252

text whose dependence on the label can change253

during evaluation are defined as spurious features.254

We then use linguistically-inspired rules (Wu et al.,255

2021) to categorize the robust features into sev-256

eral perturbation types: negation, quantifier,257

lexical, insert, delete and resemantic. Ta-258

ble 1 gives the definitions of each type.259

Train/test sets. Both the training sets and the test260

sets contain counterfactual examples generated by261

a particular perturbation type. To test the general-262

ization from one perturbation type to another, we263

use two types of test sets: aligned test sets where264

examples are generated by the same perturbation265

type as the training data; and unaligned test sets266

where examples are generated by unseen perturba-267

tion types (e.g. training on examples from lexical268

and testing on negation).269

3.2 Experimental Setup270

Data. We experiment on two CAD datasets col-271

lected for SNLI (Kaushik et al., 2020) and BoolQ272

(Khashabi et al., 2020). The size of the paired data273

(seed examples and edited examples) for each per-274

turbation type in the training dataset is given in Ta-275

ble 1. Since some types (e.g. delete) contain too276

few examples for training, we train on the top three 277

largest perturbation types: lexical, insert, and 278

resemantic for SNLI; and lexical, negation, 279

and resemantic for BoolQ. 280

For SNLI, to control for dataset sizes across all 281

experiments, we use 700 seed examples and their 282

corresponding 700 perturbations for each perturba- 283

tion type. As a baseline (‘SNLI seed’), we subsam- 284

ple examples from SNLI to create a similar sized 285

dataset for comparison.4 286

For BoolQ (Clark et al., 2019a), our initial exper- 287

iments show that training on only CAD does not 288

reach above random-guessing. Thus, we include 289

all original training examples in BoolQ (Khashabi 290

et al., 2020), and replace part of them with CAD 291

for each perturbation type. This results in a train- 292

ing set of 9427 examples of which 683 are CAD 293

for each perturbation type. The size 683 is cho- 294

sen to match the the smallest CAD type for BoolQ. 295

As a baseline (‘BoolQ seed’), we train on all the 296

original training examples, consisting of 9427 ex- 297

amples. For both datasets, the training, dev and test 298

sets are created from their respective splits in the 299

CAD datasets. The size of the dev and test sets is 300

reported in Appendix B.2. 301

Model. We use the Hugging Face implementa- 302

tion (Wolf et al., 2019) of RoBERTa (Liu et al., 303

2019) to fine-tune all our models. To account for 304

the small dataset sizes, we run all our experiments 305

with 5 different random seeds and report the mean 306

and standard deviation. Details on hyperparameter 307

tuning are reported in Appendix B.1. 308

4We observe similar trends when using different subsets
of the SNLI data. We report the mean and standard deviation
across different subsets in Appendix B.3.
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Train Data lexical insert resemantic quantifier negation delete

SNLI seed 75.160.32 74.941.05 76.770.74 74.360.21 69.252.09 65.762.34
lexical 79.702.07 68.615.26 71.463.07 69.903.83 66.002.99 61.765.27
insert 67.833.96 79.300.39 70.532.19 66.313.10 55.04.10 69.752.43

resemantic 77.142.12 76.431.05 75.311.10 71.260.36 66.751.69 70.161.09

Table 2: Accuracy of NLI CAD on both aligned and unaligned test sets. We report the mean and standard
deviation across 5 random seeds. Each dataset has a total of 1400 examples. On average models perform worse on
unaligned test sets (i.e. unseen perturbation types).

Train Data lexical negation resemantic quantifier insert

BoolQ seed 65.792.11 62.612.65 68.971.83 61.001.65 57.110.67
lexical 77.381.04 64.322.18 80.781.46 70.752.03 66.771.35
negation 63.181.46 72.912.31 66.742.22 61.752.44 65.421.45

resemantic 72.290.72 64.921.56 75.602.11 70.002.85 64.912.31

Table 3: Accuracy of BoolQ CAD on both aligned and unaligned test sets. We report the mean and standard
deviation across 5 random seeds. Each dataset has a total of 9427 examples. On average models perform worse on
unaligned test sets (i.e. unseen perturbation types).

3.3 Generalization to Unseen Perturbation309

Types310

We discuss results for the main question in this311

section—how does adding CAD generated from312

one perturbation type affect performance on ex-313

amples generated from other perturbation types?314

Table 2 and 3 show results for SNLI and BoolQ.315

CAD performs well on aligned test sets. We316

see that on average models perform very well on317

the aligned test sets (same perturbation type as318

the training set), but do not always do well on un-319

aligned test sets (unseen perturbation types), which320

is consistent with our analysis in Section 2. On321

SNLI, one exception is resemantic, which per-322

forms well on unseen perturbation types. We be-323

lieve this is because it is a broad category (replac-324

ing any constituent) that covers other types such325

as lexical (replacing any word). Similarly, on326

BoolQ, lexical and resemantic both perform327

better than the baseline on some unaligned test sets328

(e.g. quantifier), but they perform much better329

on the aligned test sets.330

CAD sometimes performs worse than the base-331

line on unaligned test sets. For example, on332

SNLI, training on insert does much worse than333

the seed baseline on lexical and resemantic,334

and SNLI seed performs best on quantifier and335

negation. On BoolQ, training on negation does336

slightly worse than the baseline on lexical and337

resemantic. This suggests that augmenting per-338

turbations of one particular robust feature may re-339

duce the model’s reliance on other robust features,340

ins ins+lex ins+lex+resem All Types
Diversity
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Figure 2: OOD accuracy (mean, std. deviation) on
MNLI of models trained on SNLI CAD and SNLI seed
(baseline) with increasing number of perturbation types
and fixed training set size. More perturbation types in
the training data leads to higher OOD accuracy.

that could have been learned without augmentation. 341

3.4 Generalization to Out-of-Distribution 342

Data 343

In Section 3.3, we have seen that training on CAD 344

generated by a single perturbation type does not 345

generalize well to unseen perturbation types. How- 346

ever, in practice CAD contains many different per- 347

turbation types. Do they cover enough robust fea- 348

tures to enable OOD generalization? 349

Increasing Diversity. We first verify that in- 350

creasing the number of perturbed robust features 351

leads to better OOD generalization. Specifically, 352

we train models on subsets of SNLI CAD with 353

increasing coverage of perturbation types and eval- 354

uate on MNLI as the OOD data. Starting with 355

5



1000 2000 3000 4000 5000
Training Data Size

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0
Ac

cu
ra

cy

Train: CAD, Eval: MNLI
Train: SNLI, Eval: MNLI

Figure 3: Accuracy on the OOD set (MNLI)
for models trained on increasing amounts of NLI
CAD. CAD is more beneficial in the low data
regime, but its benefits taper off (compared to
SNLI baseline of same size) as the dataset size in-
creases.
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Train: BoolQ, Eval: MultiRC

Figure 4: F1 score on the OOD set (MultiRC)
for models trained on increasing amounts of QA
CAD. CAD performs comparable to the baseline
in the low data regime, but surprisingly performs
worse with increasing dataset sizes, probably due
to overfitting to a few perturbation types.

BERT RoBERTa

SNLI seed 59.70.3 73.81.2
CAD 60.21.0 70.01.1

Table 4: Accuracy (mean and std. deviation across
5 runs) on MNLI of different pretrained models fine-
tuned on SNLI seed and CAD. CAD seems to be less
beneficial when using better pretrained models.

only insert, we add one perturbation type at a356

time until all types are included; the total number357

of examples are fixed throughout the process at358

1400 (which includes 700 seed examples and the359

corresponding 700 perturbations).360

Figure 2 shows the OOD accuracy on MNLI361

when trained on CAD and SNLI seed examples362

of the same size. We observe that as the number363

of perturbation types increases, models generalize364

better to OOD data despite fixed training data size.365

The result highlights the importance of collecting a366

diverse set of counterfactual examples, even if each367

perturbation type is present in a small amount.368

A natural question to ask here is: If we continue369

to collect more counterfactual data, does it cover370

more perturbation types and hence lead to better371

OOD generalization? Thus we investigate the im-372

pact of training data size next.5373

5The results in Figure 2 when all perturbation types are
included indicate that CAD performs better than the SNLI
baseline. This is not in contradiction with the results found in
Huang et al. (2020), since our models are trained on only a
subset of CAD. This further motivates the study of how CAD
data size affects generalization.

Role of Dataset Size. To better understand the 374

role dataset size plays in OOD generalization, we 375

plot the learning curve on SNLI CAD in Figure 3, 376

where we gradually increase the amount of CAD 377

for training. The baseline model is trained on SNLI 378

seed examples of the same size, and all models are 379

evaluated on MNLI (as the OOD dataset). We also 380

conduct a similar experiment on BoolQ in Figure 4, 381

where a subset of MultiRC (Khashabi et al., 2018) 382

is used as the OOD dataset following Khashabi 383

et al. (2020). Since the test set is unbalanced, we 384

report F1 scores instead of accuracy in this case. 385

For SNLI, CAD is beneficial for OOD general- 386

ization only in low data settings (< 2000 examples). 387

As the amount of data increases, the comparable 388

SNLI baseline performs better and surpasses the 389

performance of CAD. Similarly for BoolQ, we ob- 390

serve that CAD is comparable to the baseline in the 391

low data setting (∼ 1000 examples). Surprisingly, 392

more CAD for BoolQ leads to worse OOD perfor- 393

mance. We suspect this is due to overfitting to the 394

specific perturbation types present in BoolQ CAD. 395

Intuitively, as we increase the amount of data, 396

the diversity of robust features covered by the seed 397

examples also increases. On the other hand, the 398

benefit of CAD is restricted to the perturbed robust 399

features. The plateaued performance of CAD (in 400

the case of NLI) shows that the diversity of pertur- 401

bations may not increase with the data size as fast 402

as we would like, calling for better crowdsourcing 403

protocols to elicit diverse edits from workers. 404

Role of Pretraining. Tu et al. (2020) show that 405

larger pretrained models generalize better from mi- 406
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Figure 5: Fraction of entailment/neutral/contradiction examples in the SNLI seed set and CAD where (a) negation
words are present in the hypothesis; (b) word overlap bias is observed. We observe that the distribution is more
skewed in CAD compared to the seed examples, towards contradiction for the negation bias (a) and towards
entailment for the word overlap bias (b).

nority examples. Therefore, in our case we would407

expect CAD to have limited benefit on larger pre-408

trained models since they can already leverage409

the diverse (but scarce) robust features revealed410

by SNLI examples. We compare the results of411

BERT (Devlin et al., 2019) and RoBERTa (Liu412

et al., 2019) trained on SNLI CAD in Table 4.413

For the RoBERTa model (pretrained on more data),414

CAD no longer improves over the SNLI baseline,415

suggesting that current CAD datasets may not have416

much better coverage of robust features than what417

stronger pretrained models can already learn from418

benchmarks like SNLI.419

4 CAD Exacerbates Existing Spurious420

Correlation421

An artifact of underdiverse perturbations is the422

newly introduced spurious correlations. As an423

example, in the extreme case where all entail-424

ment examples are flipped to non-entailment by the425

negation operation in Table 1, the model would426

learn to exclusively rely on the existence of nega-427

tion words to make predictions, which is clearly428

undesirable. In this section, we study the impact429

of CAD on two known spurious correlations in430

NLI benchmarks: word overlap bias (McCoy et al.,431

2019) and negation bias (Gururangan et al., 2018b).432

Negation bias. We take examples where there is433

a presence of a negation word (i.e. "no", "not",434

"n’t") in the hypothesis, and plot the fraction of435

examples in each class in both the seed and the436

corresponding CAD examples in Figure 5a. As437

expected, contradiction is the majority class in the438

seed group, but surprisingly, including CAD ampli-439

Stress Test MNLI subset

SNLI Seed 57.54.6 63.33.8
CAD 49.61.5 55.74.2

Table 5: Accuracy of models on challenge examples
in the stress test and MNLI, where non-contradiction
examples contain a negation word in the hypothesis.
Models trained on CAD perform worse on both sets,
implying that it exacerbates the negation bias.

fies the fraction of contradiction examples! As a re- 440

sult, training on CAD leads to worse performance 441

on challenge sets that counter the negation bias 442

compared to training on seed examples of the same 443

size. Specifically, we test on the ‘negation’ part of 444

the Stress Tests (Naik et al., 2018)6 and challenge 445

examples in the combined MNLI development set 446

which contain negation words in the hypothesis but 447

are not contradictions. Table 5 shows that models 448

trained on CAD perform worse on both test sets, 449

implying that they rely more on the negation bias. 450

Word-overlap bias. Similarly, in Figure 5b, we 451

show that CAD amplifies the fraction of entail- 452

ment examples among those with high word over- 453

lap (i.e. more than 90% of words in the hypoth- 454

esis are present in the premise). Models trained 455

on SNLI and CAD both perform poorly (< 10% 456

accuracy) on the non-entailment subset of HANS 457

challenge set (McCoy et al., 2019), which exploits 458

the word overlap bias. 459

Takeaway. This section reveals that in the pro- 460

cess of creating CAD, we may inadvertently exacer- 461

6Synthetic examples where the phrase “and false is not
true” is appended to the hypothesis of MNLI examples.
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bate existing spurious correlations. The fundamen-462

tal challenge here is that perturbations of the robust463

features are only observed through word change in464

the sentence—it is hard to surface the underlying465

causal variables without introducing (additional)466

artifacts to the sentence form.467

5 Related Work468

Label-Preserving Data Augmentation. A com-469

mon strategy to build more robust models is to470

augment existing datasets with examples similar to471

those from the target distribution. Min et al. (2020)472

improve accuracy on HANS challenge set (McCoy473

et al., 2019) by augmenting syntactically-rich ex-474

amples. Jia and Liang (2016) and Andreas (2020)475

recombine examples to achieve better composi-476

tional generalization. There has also been a re-477

cent body of work using task-agnostic data aug-478

mentation by paraphrasing (Wei and Zou, 2019),479

back-translation (Sennrich et al., 2016) and masked480

language models (Ng et al., 2020). The main dif-481

ference between these works and CAD is that the482

edits in these works are label-preserving whereas483

they are label-flipping in CAD—the former pre-484

vents models from being over-sensitive and the485

latter alleviates under-sensitivity to perturbations.486

Label-Changing Data Augmentation. Lu et al.487

(2020) and Zmigrod et al. (2019) use rule-based488

CAD to mitigate gender stereotypes. Gardner et al.489

(2020) build similar contrast sets using expert edits490

for evaluation. In contrast, Kaushik et al. (2020)491

crowdsource minimal edits. Recently, Teney et al.492

(2020) also use CAD along with additional auxil-493

iary training objectives and demonstrate improved494

OOD generalization.495

Kaushik et al. (2021) analyze a similar toy model496

(linear Gaussian model) demonstrating the bene-497

fits of CAD, and showed that noising the edited498

spans hurts performance more than other spans.499

Our analysis complements theirs by showing that500

while spans identified by CAD are useful, a lack of501

diversity in these spans limit the effectiveness of502

CAD, thus better coverage of robust features could503

potentially lead to better OOD generalization.504

Robust Learning Algorithms. Another direc-505

tion of work has explored learning more robust506

models without using additional augmented data.507

These methods essentially rely on learning debi-508

ased representations—Wang et al. (2018b) create a509

biased classifier and project its representation out510

of the model’s representation. Along similar lines, 511

Belinkov et al. (2019) remove hypothesis-only bias 512

in NLI models by adversarial training. He et al. 513

(2019) and Clark et al. (2019b) correct the condi- 514

tional distribution given a biased model. Utama 515

et al. (2020) build on this to remove ‘unknown’ 516

biases, assuming that a weak model learns a biased 517

representations. More recently, Veitch et al. (2021) 518

use ideas from causality to learn invariant predic- 519

tors from counterfactual examples. The main dif- 520

ference between these methods and CAD is that the 521

former generally requires some prior knowledge 522

of what spurious correlations models learn (e.g. 523

by constructing a biased model or weak model), 524

whereas CAD is a more general human-in-the-loop 525

method that leverages humans’ knowledge of ro- 526

bust features. 527

6 Conclusion and Future Directions 528

In this work, we first analyzed CAD theoretically 529

using a linear model and showed that models do not 530

generalize to unperturbed robust features. We then 531

empirically demonstrated this issue in two CAD 532

datasets, where models do not generalize well to un- 533

seen perturbation types. We also showed that CAD 534

amplifies existing spurious correlations, pointing 535

out another concern. Given these results, a natural 536

question is: How can we fix these problems and 537

make CAD more useful for OOD generalization? 538

We discuss a few directions which we think could 539

be helpful: 540

• We can use generative models (Raffel et al., 541

2020; Lewis et al., 2019) to generate diverse 542

minimal perturbations and then crowdsource 543

labels for them (Wu et al., 2021). We can 544

improve the diversity of the generations by 545

masking different spans in the text to be in- 546

filled, thus covering more robust features. 547

• An alternative to improving the crowdsourc- 548

ing procedure is to devise better learning algo- 549

rithms which mitigate the issues pointed out 550

in this work. For example, given that we know 551

the models do not always generalize well to 552

unperturbed features, we can regularize the 553

model to limit the reliance on the perturbed 554

features. 555

We hope that this analysis spurs future work on 556

CAD, making them more useful for OOD general- 557

ization. 558
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A Toy Example Proof 768

Proposition 1. Define the error for a model as `(w) = Ex∼F
[
(wTinvx− wTx)2

]
where the distribution 769

F is the test distribution in which xr and xs are independent: xr | y ∼ N (yµr, σ
2
rI) and xs ∼ N (0, I). 770

Assuming all variables have unit variance (i.e. σr = 1 and σs = 1), ‖µr‖ = 1, and ‖µs‖ = 1, we get 771

`(ŵinc) > `(ŵ) if ‖µr1‖2 < 1+
√
13

6 ≈ 0.767, where ‖ · ‖ denotes the Euclidean norm, and µr1 is the mean 772

of the perturbed robust feature r1. 773

Intuitively, this statement says that if the norm of the edited robust features (in the incomplete-edits 774

model) is sufficiently small, then the test error for a model with counterfactual augmentation will be more 775

than a model trained with no augmentation. 776

Proof for Proposition 1. Given the definition of error we have, 777

`(ŵ) = Ex∼F
[
(wTinvx− ŵTx)2

]
(11) 778

According to equation (6), we have winv =
[
Σ−1r µr, 0

]
where 779

Σr = Cov(xr, xr) = Ex∼D
[
xrx

T
r

]
780

= Ey∼D
[
Ex∼D

[
xrx

T
r |y
]]

781

= Ey∼D
[
I + y2µrµ

T
r

]
782

= I + µrµ
T
r (12) 783

This gives us Σ−1r = (I + µrµ
T
r )−1 = I −αµrµTr using the Sherman-Morrison formula since we have 784

a rank-one perturbation of the identity matrix. Here α = 1
1+|µr|2 = 1

2 , giving winv =
[µr

2 , 0
]
. 785

Now note that according to equation (4), ŵ = M−1µ where M, the covariance matrix can be written as 786

a block matrix as in equation (5). Hence we can formula for inverse of block matrix to get: 787

M−1 =

[
I − 1

3µrµ
T
r −1

3µrµ
T
s

−1
3µsµ

T
r I − 1

3µsµ
T
s

]
(13) 788

Note that we have not shown the actual plugging in the formula of block matrix inverse, and simplifying 789

but it is to verify that MM−1 = I . Therefore, we get 790

ŵ = M−1µ 791

=

[
I − 1

3µrµ
T
r −1

3µrµ
T
s

−1
3µsµ

T
r I − 1

3µsµ
T
s

] [
µr
µs

]
(14) 792

=
1

3
µ (15) 793

since ‖µr‖ = 1 and ‖µs‖ = 1. Plugging all these back into equation (11), we get: 794

`(ŵ) = Ex∼F
[
(
µTr xr

2
− µTx

3
)2
]

795

= Ex∼F
[
µTr xrx

T
r µr

4
+
µTxxTµ

9
− µTr xrx

Tµ

3

]
(16) 796

For the distributionF we have, Ex∼F
[
xrx

T
r

]
= I+µrµ

T
r (since xr is distributed similarly inD andF ), 797

Ex∼F
[
xrx

T
]

=
[
I + µrµ

T
r , 0
]

(since xr and xs are independent in F ) and Ex∼F
[
xxT

]
=
(
I+µrµTr 0

0 I

)
. 798

Plugging all these back and again using ‖µr‖ = 1, ‖µs‖ = 1, we get 799
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Test Set Size (NLI) Size (QA)

lexical 406 314
resemantic 640 332
negation 80 268

quantifier 206 80
insert 376 118
delete 250 -

Table 6: Size of the tests sets corresponding to the different perturbation types for both NLI and QA. For QA, the
number of examples in delete were extremely small and hence we do not use that perturbation type for QA.

`(ŵ) =
1

2
+

2 + 1

9
− 2

3
800

=
1

6
(17)801

For the incomplete edits, we have ŵinc = [Σ−1r1 µr1, 0] where Σ−1r1 = (I + µr1µ
T
r1)
−1 = I − γµr1µTr1,802

γ = 1
1+‖µr1‖2 using the Sherman-Morrison formula again, since we have a rank-one perturbation803

of the identity matrix. This gives ŵinc = 1
1+‖µr1‖2 [µr1, 0]. Note that Ex∼F

[
xrx

T
r

]
= I + µrµ

T
r ,804

Ex∼F
[
xr1x

T
r1

]
= I + µr1µ

T
r1 and Ex∼F

[
xrx

T
r1

]
=
[
I + µr1µ

T
r1, 0

]T . Thus the error for incomplete805

edits is:806

`(ŵinc) = Ex∼F
[
µTr xrx

T
r µr

4
+
µTr1xr1x

T
r1µr1

(1 + ‖µr1‖2)2
− µTr xrx

T
r1µr1

1 + ‖µr1‖2

]
807

=
1

2
+
‖µr1‖2

1 + ‖µr1‖2
− ‖µr1‖2 (18)808

Thus using equation (17) and (18), we get `(ŵinc) > `(ŵ) if 3‖µr1‖4 − ‖µr1‖2 − 1 < 0 which is809

exactly satisfied when ‖µr1‖2 < 1+
√
13

6 .810

811

B Additional Experiments & Results812

Here, we report more details on the experiments as well as present some additional results.813

B.1 Experiment Details814

For NLI, models are trained for a maximum of 10 epochs, and for QA all models are trained for a815

maximum of 5 epochs (convergence is faster due to the larger dataset size). The best model is selected by816

performance on a held-out development set, that includes examples from the same perturbation type as in817

the training data.818

B.2 Dataset Details819

The size of the training datasets and how they are constructed are described in Section 3.2. Here, we give820

more details on the size of the various test sets used in the experiments. The size of the CAD datasets821

for the different perturbation types are given Table 6 for both NLI and QA. Note that all test sets contain822

paired counterfactual examples, i.e. the seed examples and their perturbations belonging to that specific823

perturbation type.824
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Train Data All types lexical insert resemantic quantifier negation delete

SNLI seed 67.840.84 75.160.32 74.941.05 76.770.74 74.360.21 69.252.09 65.762.34
SNLI seed (subsamples) 64.871.02 75.061.89 71.382.30 73.841.60 69.123.17 66.752.87 63.602.44

lexical 70.441.07 81.810.99 74.041.04 74.931.16 72.421.58 68.752.16 67.043.00
insert 66.001.41 71.082.53 78.981.58 71.741.53 68.150.88 57.754.54 68.802.71

resemantic 70.801.68 77.232.35 76.591.12 75.401.44 70.771.04 67.252.05 70.401.54

Table 7: Results for the different perturbation types in NLI with multiple subsamples of the dataset. ( denotes
aligned test sets). We observe that there is variance across different subsamples, but the majority of the trends
reported in Section 3.3 still hold true.

Train Data All types lexical insert resemantic quantifier negation delete

SNLI seed 71.410.40 79.901.00 78.080.49 79.841.17 75.921.17 77.252.42 70.880.68
lexical 73.100.56 83.540.91 77.280.64 80.810.47 75.720.86 78.001.69 70.721.46
insert 72.910.54 80.390.88 78.930.66 80.560.76 76.890.84 77.252.66 71.432.40

resemantic 73.440.33 81.230.64 77.970.51 81.060.49 76.601.42 75.752.03 73.841.25

Table 8: Results for the different perturbation types in NLI with larger dataset sizes, with 10% of the data being
the perturbations ( denotes aligned test sets).

B.3 Accounting for small dataset sizes 825

The experiments in Section 3.2 were run for 5 different random initializations, and we report the mean 826

and standard deviation across the random seeds. For completeness, we also report results when using 827

different subsamples of the SNLI dataset. Table 7 shows the mean and standard deviation across 5 different 828

subsamples, along with the rest of the results which were presented in Section 3.3. We observe that even 829

though there is variance in results across the different subsamples, majority of the trends reported in 3.3 830

are consistent across the different subsamples — CAD performs well on aligned test sets, but does not 831

necessarily generalize to unaligned test sets. 832

To account for the small dataset sizes, we also ran an experiment using the NLI CAD dataset analogous 833

to the QA setup—using a larger number of SNLI examples (7000) and replace a small percentage of them 834

(10%) with perturbations of the corresponding perturbation type. We ensure that the original examples 835

from which the perturbations were generated are also present in the dataset. Thus, all experiments will 836

have much larger dataset sizes than before (7000 vs 1400), while still using counterfactual examples 837

generated only by one specific perturbation type. The results for this experiment are reported in Table 8. 838

We observe that CAD still performs best on aligned test sets but only marginally — this happens since 839

a large fraction of the dataset (90%) is similar across all experiments. Although CAD performs worse 840

on unaligned test sets than the aligned test sets, it does not necessarily perform worse than the SNLI 841

baseline — this happens since the larger number of seed examples will implicitly regularize the model 842

from overfitting to that specific perturbation type. 843
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