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Abstract

Large language models (LLMs) are revolu-001
tionizing many science and engineering fields.002
However, their huge model sizes impose ex-003
tremely demanding needs of computational re-004
sources in the pre-training stage. Although005
low-rank factorizations can reduce model pa-006
rameters, their direct application in LLM pre-007
training often lead to non-negligible perfor-008
mance loss. To address this fundamental chal-009
lenge, we introduce CoLA and its memory-010
efficient implementation, CoLA-M. We lever-011
age the low-rank structure observed widely in012
model activations, enforcing non-linear trans-013
formations between factorized weight matrices014
to reduce model size, boost model capacity and015
training efficiency. Experiments on LLaMA016
models with 60 million to 7 billion parameters017
show that CoLA reduces the computing cost018
by 2××× and improves training throughput by019
1.86××× while maintaining full-rank level per-020
formance. CoLA-M further squeezes memory021
cost without sacrificing throughput, offering a022
pre-training approach with collectively superior023
parameter, computing, and memory efficiency.024
The LLMs produced are also 2××× smaller, en-025
abling faster inference with lower memory cost026
on resource-constrained platforms. 1027

1 Introduction028

Large foundation models have revolutionized the029

landscape of artificial intelligence, achieving un-030

precedented success in the language, vision, and031

scientific domains. In a quest to improve accuracy032

and capability, foundation models have become033

huge. Several studies (Kaplan et al., 2020; Hoff-034

mann et al., 2022; Krajewski et al., 2024; Kumar035

et al., 2024) have highlighted a rapid increase in036

the size of the model and the number of training037

tokens. Models such as 175B GPT-3 (Brown et al.,038

2020), 405B LLaMA-3 (Dubey et al., 2024), and039

*Equal contribution
1Code available here.

Figure 1: A joint comparison of validation perplexity,
estimated compute FLOPs (per block, step) and model
size between various pre-training methods on a LLaMA-
1B model with a token batch size of 256. Among them,
our proposed CoLA is the only one that reduces both
compute FLOPs and model size while demonstrating
on par validation perplexity with full-rank training.

540B PaLM (Chowdhery et al., 2023) are just a few 040

examples of this trend. Under such circumstances, 041

a large number of GPUs are needed in order to pro- 042

vide the computational and high-bandwidth mem- 043

ory capacity needed to pre-train large fundation 044

models over long periods of time (months). The 045

staggering increase in cost results in an unsustain- 046

able trend, prompting the need to develop cost- 047

efficient pre-training techniques that reduce the 048

scale, FLOPs, and GPU memory cost. 049

Motivation: At the core of increasing resource 050

utilization and cost is the simple practice of scal- 051

ing up full-size linear layers in decoder-only ar- 052

chitectures, which has proven to be a viable and 053

straightforward strategy. Thus, to break free from 054

this unsustainable trend, it is imperative to improve 055

architecture efficiency. This has been widely stud- 056

ied in the deep learning community, involving dif- 057

ferent levels of factorization of weight matrices: 058

from simple matrix factorizations, i.e., a singular 059

value decomposition (SVD), to higher-order tensor 060

factorizations such as Canonical Polyadic, Tucker, 061

and Tensor-Train (TT) format. Extensive studies 062

have shown that such factorizations can effectively 063

reduce the total number of parameters needed to 064
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achieve similar performance in numerous domains065

(Sainath et al., 2013; Jaderberg et al., 2014; Lebe-066

dev et al., 2014; Novikov et al., 2015; Tjandra et al.,067

2017; Dao et al., 2021; Sui et al., 2024; Yang et al.,068

2024; Zhang et al., 2024), especially when neural069

networks are overparameterized.070

Limitations of state-of-art: The techniques071

mentioned above have been applied only to a lim-072

ited degree to pre-training tasks, and their find-073

ings suggest that the pure low-rank or sparse struc-074

ture often downgrades model performance (Khodak075

et al., 2021; Kamalakara et al., 2022; Chekalina076

et al., 2023; Zhao et al., 2024; Hu et al., 2024;077

Mozaffari et al., 2024). This has pivoted most re-078

cent work of efficient pre-training into two direc-079

tions: 1) Accumulating multiple low-rank updates080

(Huh et al., 2024; Lialin et al., 2023); 2) Enforcing081

low-rank structures in gradients rather than param-082

eters (Zhao et al., 2024; Chen et al., 2024; Huang083

et al.; Liao et al., 2024; Hao et al., 2024; Zhu et al.,084

2024). Both approaches have their limitations. 1)085

The accumulation of low-rank updates requires086

instantiating a full-rank matrix and a deeply cus-087

tomized training strategy that periodically merges088

and restarts the low-rank components. This cre-089

ates computing overhead in practice and can only090

achieve (if only) marginal computing and memory091

reduction. 2) Enforcing low-rank gradients reduces092

only the optimizer memory and adds additional093

computation that downgrades training throughput.094

Furthermore, the memory saving caused by gradi-095

ent compression becomes negligible as the training096

batch size increases, as activations dominate the097

total memory cost. A recent paper called SLTrain098

(Han et al., 2024) revisited the notion of parame-099

ter efficiency in foundation model pre-training, by100

having both low-rank factors and an unstructured101

sparse matrix. SLTrain effectively reduces the total102

number of parameters without significantly hurting103

model performance. However, it still introduces104

computing overhead on top of full-rank training105

due to the necessary reconstruction of low-rank106

factors. We note that none of the above works has107

achieved superior efficiency of parameter, com-108

puting, and memory simultaneously without per-109

formance drop in both training and inference for110

foundation model pre-training.111

Contributions: In this paper, we propose CoLA:112

Compute-Efficient Pre-Training of LLMs via Low-113

rank Activation, and its memory efficient imple-114

mentation CoLA-M, to achieve all the desirable115

properties mentioned above. We summarize our116

CoLA(-M) SLTrain GaLore ReLoRA

Parameter ↓↓↓ ✓✓✓ ✓✓✓ ××× ×××

Compute ↓↓↓ Training ✓✓✓ ××× ××× ✓✓✓
Inference ✓✓✓ ××× ××× ×××

Memory ↓↓↓ Training ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Inference ✓✓✓ ✓✓✓ ××× ×××

Throughput ↑↑↑ Training ✓✓✓ ××× ××× ×××
Inference ✓✓✓ ××× ××× ×××

Table 1: Summary and comparison of different types of
efficiency across various pre-training methods.

contributions as follows: 117

• We propose CoLA, a novel architecture that en- 118

forces explicit low-rank activations by injecting 119

non-linear operations between factorized weight 120

matrices. CoLA can greatly reduce the comput- 121

ing FLOPS while maintaining the performance 122

of full-rank pre-training. 123

• We provide a memory efficient implementation, 124

namely CoLA-M, to achieve superior memory 125

reduction without sacrificing throughput. 126

• We extensively pre-train LLaMA with 60M up 127

to 7B parameters. CoLA reduces model size and 128

computing FLOPs by 2×××, while maintaining on- 129

par performance to its full-rank counterpart. At 130

the system level, CoLA improves 1.86××× train- 131

ing and 1.64××× inference throughput. CoLA-M 132

reduces total pre-training memory by 2/3, while 133

still manages to improve 1.3××× training through- 134

put over full-rank baselines. 135

A high-level comparison of CoLA/CoLA-M with 136

main baselines is provided in Table 1. 137

2 Related Work 138

Model Compression. Recent research on efficient 139

LLM pre-training primarily focuses on memory 140

savings. To out best knowledge, SLTrain (Han 141

et al., 2024) is the first method that reduces both 142

trainable parameters and total parameters in LLM 143

pre-training, without significantly hurting model 144

performance. This also reduces memory usage 145

for model, gradients, and optimizer states (see its 146

smaller circle in Fig. 1). However, the existence 147

of its unstructured sparse matrix S requires recon- 148

structing W̃ = BA + S, otherwise it will incur 149

dense-sparse multiplications that are still memory 150

costly (Fig. 3c). This causes additional comput- 151

ing than the full-rank baseline. LoRA/ReLoRA 152

(Hu et al., 2021; Lialin et al., 2023) reduces train- 153

able parameters by freezing a full-rank W0 and 154

training (at least in a later stage) only low-rank 155
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factors, potentially reducing memory needs. Yet,156

any compute savings are limited because the for-157

ward pass yields a larger compute than its full-rank158

counterpart, especially when the rank must stay rel-159

atively large in pre-training tasks. CoMERA (Yang160

et al., 2024) achieves higher model compression161

and FLOP reduction, but its low-rank tensor op-162

erations are GPU unfriendly. Similar to matrix-163

compressed approaches, CoMERA cannot avoid a164

performance drop either. Some works investigate165

pure structured sparsity or combined with low-rank166

factors (Hu et al., 2024; Mozaffari et al., 2024)167

to achieve speed up, but still show a significant168

performance drop during the pre-training stage.169

Gradient Compression. GaLore (Zhao et al.,170

2024) reduces memory by projecting gradients into171

a low-rank space, shrinking optimizer states be-172

low the typical 2× AdamW overhead (Loshchilov,173

2017). However, it increases computation by174

adding up/down projections on top of already175

compute-heavy full-rank training. As shown in176

Fig. 1, its estimated FLOPs surpass full-rank train-177

ing on the LLaMA-1B scale. Follow-up work178

(Chen et al., 2024; Huang et al.; Liao et al., 2024;179

Hao et al., 2024; Zhu et al., 2024) further explores180

low-rank gradient projection. While these methods181

are promising, they are mostly orthogonal to our182

focus. Crucially, these methods are still computing183

lower-bounded by the full-rank baseline. Our goal184

instead is to reduce computing cost to a fraction185

of full-rank training, thus lowering the demand of186

computing resources in LLM pre-training.187

This paper presents an alternative approach that188

explores the low-rank property in model activa-189

tions from an architectural perspective. This is con-190

ceptually different from the above model compres-191

sion methods despite the similarity in their formula-192

tions. Our approach is mostly orthogonal with gra-193

dient compression techniques, meaning that they194

can be combined to further boost efficiency.195

3 CoLA for Efficient LLM Pre-Training196

3.1 A Motivating Example197

Many previous works have observed the low-rank198

structure of model activations in deep neural net-199

works (Cui et al., 2020; Huh et al., 2021). We200

also observe this phenomenon in LLMs, i.e. the201

effective rank of the activations is much smaller202

than their original dimensionality. To quantify this,203

we define the effective rank r(α) of activation as204

the minimal number of singular values needed to205

Figure 2: MLP Activation Spectrum of the pre-trained
GPT-2 small (Radford et al., 2019). Model activations
are evaluated on the WikiText2 dataset. a) The singular
value decay across different decoder blocks. b) The full
dimension vs. effective rank (α = 0.95) per block.

preserve an α-fraction of the total spectral energy. 206

Formally: 207

r(α) = min

{
k

∣∣∣∣∣
∑k

i=1 σ
2
i∑n

i=1 σ
2
i

≥ α

}
, (1) 208

where σ1, σ2, . . . , σn are the singular values of the 209

activation matrix, and 0 < α ≤ 1 is the desired 210

ratio of preserved information. As shown in our 211

experiments, the rapid decay of singular values 212

[Fig. 2a] leads to much smaller r(α) compared to 213

the full dimension [Fig. 2b]. This highlights the 214

significant low-rank nature in the activations of 215

pre-trained LLMs. More results showing the same 216

pattern can be found in Appendix A. 217

3.2 Low Rank Weights + Activations 218

Motivated by the observed low-rank nature of LLM 219

activations, we propose to enforce explicit low- 220

rank activation via injecting non-linearity between 221

factorized weight matrices. 222

Let W ∈ Rdout×din be the weight matrix of an 223

arbitrary linear layer followed by a nonlinear acti- 224

vation in the transformer architecture: 225

h = σ (Wx) , with x ∈ Rdin . (2) 226

We replace W by two low-rank matrices A ∈ 227

Rr×din and B ∈ Rdout×r, where rank r < 228

min(din,out) is a hyper-parameter, and inject a non- 229

linear activation σ in the middle. This modifi- 230

cation results in a transformation consisting of 231

(linear ◦ non-linear ◦ linear) operations: 232

h′ = Bσ(Ax). (3) 233

During the backward step, we simply apply the 234

chain rule to compute gradients w.r.t each of the 235
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Figure 3: Comparison between CoLA (ours) and other efficient pre-training frameworks. a) LoRA/ReLoRA (Lialin
et al., 2023) maintains a full-rank frozen weight; b) GaLore (Zhao et al., 2024) only reduces optimizer states by
down and up projecting gradients; c) SLTrain (Han et al., 2024) requires necessary reconstruction of the low-rank
and sparse matrices; d) CoLA (ours) is a pure low-rank method involves only rank r weight matrices.

Operation FLOPs

Attention: Q, K, V 6nd2

Attention: SDP 4n2d

Attention: Project 2nd2

Feed-forward 6nddff

Total Forward 8nd2 + 4n2d+ 6nddff

Total Backward 16nd2 + 8n2d+ 12nddff

Table 2: Breakdown compute of a single LLaMA de-
coder layer in full-rank training. Lower-order terms
such as bias, layer norm, activation are omitted.

low rank factors as236

∇B = ∇h′zT ,∇z = BT∇h′ ,∇o = ∇z ⊙ σ′(o),

∇A = ∇ox
T ,∇x = AT∇o,

(4)237

where o = Ax, z = σ(o), ⊙ denote the element-238

wise product. We empirically find that keeping239

the original nonlinearity on top of Eq. (3) does not240

harm the performance, nor necessarily brings bene-241

fits. However, applying Eq. (3) to all linear layers242

regardless of whether being followed by nonlinear-243

ity is crucial to boost model performance. We refer244

more details to the ablation study in Appendix E.245

Fig. 4 shows the architecture of each transformer246

block when adopting CoLA into the LLaMA archi-247

tecture. We highlight the fact that only the original248

linear layers and (if any) their follow-up non-linear249

transformation are modified to the CoLA formu-250

lation. Other computations such as the scaled-dot251

product of the self-attention, as well as residual con-252

nections and the element-wise product of LLaMA’s253

feed-forward layers, remain unchanged.254

3.3 Computing Efficiency255

We analyze and compare the computational com-256

plexity of CoLA with other efficient pre-training257

Methods FLOPs

Full-Rank CFull-Rank = 24nd2 + 12n2d+ 18nddff

CoLA CCoLA = 48ndr + 12n2d+ 18nr(d+ dff)

(Re)LoRA CLoRA = CCoLA + 16nd2 + 12n2d+ 12nddff

SLTrain CSLTrain = CFull-Rank + 24d2r + 18ddffr

GaLore CGaLore = CFull-Rank + 16d2r + 12ddffr

Table 3: Estimated compute of a single LLaMA decoder
layer for different pre-training methods. Results com-
bine forward, backward and any additional compute
occurred at optimizer step.

methods based on the LLaMA architecture. We 258

adopt a similar notion from (Kaplan et al., 2020), 259

where a general matrix multiply (GEMM) between 260

an M ×N matrix and an N ×K matrix involves 261

roughly 2MNK add-multiply operations. We de- 262

note the model inner width as d, and the inner width 263

of the feed-forward layer as dff. For simplicity, we 264

only show non-embedding calculations of a sin- 265

gle sequence with token batch size of n for each 266

decoder layer. This is because the total computa- 267

tion scales only linearly with the number of layers 268

nlayer and the number of sequences nseq. Further- 269

more, lower-order cheap operations of complexity 270

O(nd) or O(ndff) are omitted, such as bias, layer 271

norm, non-linear function, residual connection, and 272

element-wise product. 273

We show the detailed cost of the full-rank train- 274

ing in Table. 2. Notice that we apply the 2× rule 275

when calculating the backward cost. This is be- 276

cause for each forward GEMM that Eq. (2) de- 277

scribes, two GEMMs are needed to compute gradi- 278

ents for both the weight matrix W and the input x, 279

and are of the same cost the forward GEMM, i.e., 280

∇x = WT∇h,∇W = ∇hx
T . (5) 281

We apply the same analysis to all the following 282
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Figure 4: A decoder block in CoLA with LLaMA-like
architecture (layer norms, rotary positional embeddings
are omitted for simplicity). Every linear layer is re-
placed by low-rank factorization with a non-linear func-
tion in between. Modules painted in sketch are the
re-computations during the backward step of CoLA-M
(a memory efficient implementation of CoLA).

pre-training methods:283

• LoRA/ReLoRA (Hu et al., 2021; Lialin et al.,284

2023): hLoRA = W0x+BAx, with fixed W0.285

• SLTrain (Han et al., 2024): hSLTrain = BAx +286

Sx = (BA⊕IV)x, where ⊕ denotes the scatter-287

add operator, I and V are the indices and values288

of non-zero elements in the sparse matrix S.289

• GaLore (Zhao et al., 2024): Rt = PT
t Gt, G̃t =290

PNt, where Pt projects the gradient Gt onto a291

low-rank space, and then projects it back when292

updating the full-rank weight W.293

We summarize the computational costs of these294

methods in Table 3 and observe that the costs of295

SLTrain and GaLore are lower bounded by full-296

rank training, while (Re)LoRA is lower bounded297

by CoLA when choosing the same rank. In con-298

trast, CoLA reduces the computation from full-rank299

training when r < 0.62d, assuming dff ≈ 2.5d in300

LLaMA-like architecture. The default rank choice301

is set to r = 1
4d, leading to a reduction in compute302

Figure 5: Memory breakdown for LLaMA-1B using
fairly large sequence batch sizes in pre-training. The
activation memory is at dominant place.

Figure 6: Memory breakdown of pre-training LLaMA-
1B on single GPU using different pre-training methods.
Activation is at dominance for most methods.

to about half of the full-rank training. We refer all 303

details of compute analysis to Appendix B. 304

4 CoLA-M: A Memory-Efficient 305

Implementation 306

Although CoLA has more intermediate results 307

from each low-rank projection and the following 308

non-linear function (as shown in Fig. 4), we can 309

choose strategically which ones to save in order to 310

balance re-computations with memory overhead. 311

In this section, we design and develop CoLA- 312

M, a memory-efficient implementation to leverage 313

CoLA’s structural advantage to achieve superior 314

memory saving without sacrificing throughput. 315

4.1 Memory Breakdown in Pre-Training 316

We assume a common notion that training modern 317

transformers with Adam (or AdamW) involves four 318

key memory components (Zhao et al., 2024; Han 319

et al., 2024): model parameters, gradients, opti- 320

mizer states, and activations (intermediate forward- 321

pass results). Gradients consume 1× model size, 322

Adam consumes 2×, and activations typically con- 323

sume 1 ∼ 4×, depending on the batch size. 324
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Methods Memory Re-Compute

Full-Rank 20nd+ 2n2h N/A

Vanilla GCP nd 23nd2 + 4n2d

CoLA 17.5nd+ 2n2h+ 14nr N/A

CoLA-M 2nd+ 7nr 18.5ndr + 4n2d

Table 4: Memory and re-computation analysis of full-
rank training with vanilla GCP vs. CoLA and CoLA-M.

Methods Memory Saving Re-Compute

LLAMA-1B w/
vanilla GCP 20.25 GB 1×

CoLA-M-1B 18.94 GB 0.22×

Table 5: Quantitative comparison of memory saving and
re-computation between vanilla GCP and CoLA-M.

We focus on the scenario where the memory325

cost determined by the model size is not in the ex-326

treme limit of the GPU. We argue that this is rather327

realistic, since the model size and the minimum re-328

quired tokens should scale up simultaneously dur-329

ing pre-training (Kaplan et al., 2020; Hoffmann330

et al., 2022; Krajewski et al., 2024; Kumar et al.,331

2024). A tiny batch size on a single GPU would332

be impractical. Therefore, we analyze memory us-333

age on a 40-GB A100 or a 94-GB H100 GPU with334

a fairly large sequence batch size. Fig. 5 shows335

that activations dominate memory usage in this336

setup. Although our method overall consumes less337

memory than full-rank training (largely due to pa-338

rameter efficiency), vanilla CoLA allocates more339

memory to activations. However, we argue that340

our unique architecture can significantly enhance341

existing memory-saving techniques and consume342

only a fraction of the original cost.343

4.2 CoLA Enables Efficient Checkpointing344

Gradient checkpointing (GCP) (Chen et al., 2016)345

is a system-level technique that reduces memory346

usage by selectively storing (“checkpointing”) only347

a subset of intermediate activations during the for-348

ward pass. When the backward pass begins, the349

missing activations are recomputed on the fly in-350

stead of being stored in memory, thereby lowering351

the memory cost. A vanilla (also the most effec-352

tive) implementation of GCP in LLM pre-training353

is to save merely the input and output of each trans-354

former block, and re-compute everything within355

each block during the backward step. Some works356

have investigated the optimal selection of check-357

points through both empirical and compiler view358

Figure 7: We show how memory reduction scales with
the re-computation in full-rank training with GCP and
compare with CoLA-M. With similar gains on memory
efficiency, CoLA-M effectively reduces re-compute by
4.6×, enabling compute efficient checkpointing.

(Feng and Huang, 2021; He and Yu, 2023). Such 359

techniques can also be developed for CoLA, and 360

are beyond the scope of this paper. 361

Motivated by the bottleneck structure of CoLA, 362

we implement CoLA-M as saving only the low- 363

rank activations (red circles in Fig. 4), and re- 364

compute the up projections, and (if applicable) 365

the self-attention (painted in sketch in Fig. 4) 366

during the backward pass. This reduces the re- 367

computation cost to half of the CoLA forward. We 368

analyze the memory and re-computation cost using 369

the same notions as in Section 3.3 and denote h 370

as the number of attention heads. We further sim- 371

plify the analysis under LLaMA architecture by 372

uniformly assuming dff ≈ 2.5d. The memory and 373

re-computation overhead are shown in Table 4. We 374

refer the detailed analysis to Appendix C. 375

Although delicate optimizations of GCP is be- 376

yond our scope, we show in Table 5 and in Fig. 7 377

the quantitative results and scaling behavior of GCP 378

on LLaMA-1B when applying a heuristic check- 379

pointing strategy. We observe that CoLA-M greatly 380

reduces re-computation cost while achieving simi- 381

lar memory saving as vanilla GCP. 382

5 Experiments 383

5.1 Pre-Training LLaMA on C4 384

We validate our proposed methods by extensively 385

pre-training LLaMA-like LLMs from 60M to 7B 386

scales. Experiments were performed on NVIDIA 387

A100/H100 GPUs. We closely follow the exper- 388

iment settings of (Zhao et al., 2024; Han et al., 389

2024), and directly compare CoLA with their re- 390

ported results. We use the C4 dataset (Raffel et al., 391
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Table 6: Comparison across various efficient pre-training methods of validation perplexity (PPL (↓)), number of
parameters in millions (Param), and the estimated memory usage (Mem) including model, gradient and optimizer
states based on BF16 precision. We pre-train LLaMA models from 60M to 1B on the C4 dataset (Raffel et al., 2020)
following the same setup and compare results directly against those reported in (Zhao et al., 2024; Han et al., 2024).

60M 130M 350M 1B

r / d 128 / 512 256 / 768 256 / 1024 512 / 2048
Tokens 1.1B 2.2B 6.4B 13.1B

PPL Param (M) Mem (GB) PPL Param (M) Mem (GB) PPL Param (M) Mem (GB) PPL Param (M) Mem (GB)

Full-rank 34.06 58 0.43 24.36 134 1.00 18.80 368 2.74 15.56 1339 9.98
ReLoRA 37.04 58 0.37 29.37 134 0.86 29.08 368 1.94 18.33 1339 6.79
GaLore 34.88 58 0.36 25.36 134 0.79 18.95 368 1.90 15.64 1339 6.60
SLTrain 34.15 44 0.32 26.04 97 0.72 19.42 194 1.45 16.14 646 4.81

CoLA 34.04 43 0.32 24.48 94 0.70 19.40 185 1.38 15.52 609 4.54

Mem (GB) 10k 40k 65k 80k

8-bit Adam 72.59 N/A 18.09 N/A 15.47

8-bit GaLore 65.16 26.87 17.94 N/A 15.39

SLTrain 60.91 27.59 N/A

CoLA-M 28.82 22.76 16.21 14.59 13.82

Table 7: Validation perplexity of LLaMA-7B pre-trained
on C4 dataset. 8-bit Adam/GaLore are collected from
(Zhao et al., 2024). SLTrain is collected from (Han
et al., 2024). No results of BF16 Adam reported. We
emphasize that CoLA outperforms other methods at
150k steps (14.61 & 14.65) by using only 65k steps.

2020), which is a colossal, cleaned version of Com-392

mon Crawl’s web crawl corpus. C4 dataset has393

been widely used for pre-training LLMs. Train-394

ings were done without data repetition on a suffi-395

ciently large amount of tokens. We compare CoLA396

with baselines including full-rank pre-training,397

ReLoRA (Hu et al., 2021), GaLore (Zhao et al.,398

2024), and SLTrain (Han et al., 2024), with a focus399

on methods that explore model efficiency.400

We implement CoLA and its memory efficient401

variant CoLA-M by parameterizing all linear layers402

into the proposed linear-nonlinear-linear composi-403

tion [i.e. Eq. (3)], and keep all other parameters404

and operations unchanged. We use AdamW op-405

timizer and cosine annealing learning rate sched-406

uler (Loshchilov and Hutter, 2016) with warm-up.407

We remark that CoLA is NO more sensitive to408

optimizer-related hyper-parameters. We refer more409

details to Appendix D.410

Table 6 compares our methods and other efficient411

pre-training techniques in terms of validation per-412

plexity, parameter size, and estimated memory us-413

age of model, gradients and optimizer states. CoLA414

has the smallest model size, thereby consumes the415

least memory, and demonstrates on-par validation416

perplexity compared to the full-rank baselines. Ta-417

ble 7 compares the validation perplexity on the418

60M 130M 350M

PPL FLOPs PPL FLOPs PPL FLOPs

Full-Rank 34.06 1× 24.36 1× 18.80 1×

Control 37.73 0.4× 27.05 0.5× 20.53 0.4×

CoLA 34.04 0.4× 24.48 0.5× 19.40 0.4×
31.52 0.7× 23.97 0.7× 18.32 0.7×

Table 8: Scaling behavior of CoLA and full-rank train-
ing. Control represents scaling down the full-rank train-
ing cost to be similar with CoLA in default, by reducing
number of layers and/or size down model width.

7B model. We highlight the fact that CoLA out- 419

performs 8-bit Adam/GaLore at their 150k steps 420

(14.61 & 14.65) using only 65k steps. Meanwhile 421

the total memory cost of CoLA-M is less than half 422

of the other methods. We also emphasize our com- 423

parison with GaLore and SLTrain. Our proposed 424

method has an overall better performance, whilst 425

further reduces model size on top of the reduction 426

of SLTrain. More importantly, we follow our dis- 427

cussion in Section 3.3 and remark that CoLA has 428

uniformly fewer computations than GaLore and 429

SLTrain when applying the same rank. 430

5.2 Scaling Behavior 431

We briefly discuss how CoLA might scale differ- 432

ently compared to full-rank training. A comprehen- 433

sive investigation of this topic is beyond the scope 434

of this work due to the huge computing cost. 435

Table 8 shows a few experiments on how CoLA 436

might be improved when computing is scaled up. 437

The default rank choice reduces the compute cost 438

to about a half of full-rank training, without signifi- 439

cantly hurting the model performance. Meanwhile, 440

if we relax the computing restriction and increase 441

the rank to be greater than one quarter of d, then 442

CoLA outperforms full-rank training in all three 443

scales, while still being able to reduce the comput- 444

ing cost. One might argue that full-rank training 445

can also be scaled down to a similar compute of 446
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1B (BZ = 64) 7B (BZ = 16)

Mem (GB) Throughput FLOPs Mem (GB) Throughput FLOPs

Full-Rank 69.84 12,365 1× 84.94 5,810 1×

Vanilla GCP 14.89 8,799 1.68× 52.49 4,357 1.67×

CoLA 66.46 22,979 0.40××× 55.52 9,638 0.40×××

CoLA-M 17.33 16,617 0.55× 26.82 7,026 0.54×

Table 9: Detailed measurements and comparison of
CoLA and CoLA-M against full-rank and vanilla GCP
on a 94 GB H100 GPU. CoLA-M consumes only one
third of the memory while achieving higher throughput
than full-rank training with only about half its compute.

Figure 8: Comparison of throughput measured when
pre-training a LLaMA-1B on a 40 GB A100 GPU with
sequence batch size of 16 for different methods.

CoLA and might perform similarly. We implement447

such baselines in Table 8 and refer this setup to448

“Control". We typically reduce the number of lay-449

ers or the model width of full-rank models to scale450

down their computing cost. We find empirically451

that they will tend to reduce performance quickly452

and dramatically underperform CoLA.453

5.3 System Measurements454

We further investigate the efficiency of CoLA from455

a more practical perspective. It is often observed456

that a theoretically less expensive method can have457

worse system-level performance due to poorly de-458

signed hardware implementation or lack of system-459

aware optimizations. We show that this is NOT460

the case for CoLA, by illustrating that its out-of-461

the-box system performance already significantly462

outperforms the full-rank training and other effi-463

cient training methods. We focus on the actual464

memory usage and the pre-training throughput.465

Fig. 8 shows the measured throughput for pre-466

training the LLaMA/CoLA 1B model. The se-467

quence batch size is set as 16, which fully uti-468

lizes the A100 GPU. Among all these methods,469

CoLA and CoLA-M are the only two that show470

higher GPU throughput than the full-rank base-471

line, while all other methods downgrade through-472

1B (BZ=32) 7B (BZ=32)

Mem (GB) Throughput Mem (GB) Throughput

Full-rank 5.74 21,109 18.15 11,086

SLTrain 4.18 20,096 12.70 9,968

CoLA 3.84 34,697 10.87 16,012

Table 10: Comparison of memory (GB) and throughput
(Token/sec) at inference time on an A100 GPU.

put due to their computing overhead. In partic- 473

ular, CoLA-M, the memory-efficient CoLA that 474

significantly reduces overall GPU memory, still 475

shows higher training throughput despite the re- 476

computation overhead. Meanwhile, vanilla GCP, 477

which uses a similar idea of trading compute for 478

memory, reduces throughput from the full-rank 479

baseline by 26%. We show further the details of 480

these measurements in Table 9, and also compare 481

their estimated FLOPs. At both 1B and 7B scale, 482

CoLA-M manages to almost halve the computing 483

cost and reduce the memory usage by two thirds, 484

achieving a great balance between computing and 485

memory efficiency. We refer more details of our 486

system profiling to Appendix. F. 487

5.4 Inference Performance 488

We highlight the fact that CoLA not only reduces 489

pre-training resources but also speeds up inference 490

and reduces its memory cost. Table 10 shows 491

that CoLA improves inference throughput by up 492

to 1.64××× while reducing memory cost by up to 493

1.67×××. 494

6 Conclusions 495

We propose CoLA, and its memory efficient variant 496

CoLA-M, to achieve collectively parameter, com- 497

pute and memory efficiency at both pre-training 498

and inference time for large foundation models. 499

CoLA effectively reduces 2× model size while 500

preserving full-rank level performance. More im- 501

portantly, we show the reduction does not come 502

with additional compute. Instead, CoLA halves 503

compute and almost doubles training throughput 504

from its full-rank counterpart. When memory is of 505

higher concerns, CoLA-M trades only minimum 506

compute for state-of-the-art memory reduction dur- 507

ing pre-training, meanwhile still reducing compute 508

and improving throughput. We hope our work will 509

inspire the community to further investigate the ar- 510

chitecture efficiency that has been overlooked and 511

under-discovered for large foundation models. 512
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7 Limitations513

This work limits the study of our proposed for-514

mulation under LLaMA-like architectures. The515

adaptation of CoLA to other architectures is con-516

ceptually trivial, but their performance is to be517

evaluated via real experiments. In this work, we518

only pre-train each model to be roughly compute-519

optimal (for original LLaMA models, not CoLA),520

while industry-produced LLMs (that are of similar521

scales) are often over-trained. It is worth investigat-522

ing the performance of CoLA when significantly523

over-trained. We leave this computing-expensive524

research for future work.525
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A Observation of Low-Rank Activation 712

in Pre-Trained GPT2 713

In this section, we further show the low-rank struc- 714

ture in model activations evaluated on a pre-trained 715

GPT-2 (Radford et al., 2019) small. The evaluation 716

is conducted with sequence batch size of 64 and 717

sequence length of 1024. We fix α = 0.95 through- 718

out this section. Similar patterns are observed from 719

the attention layers (Fig. 9, 10, 11). The low-rank 720

nature of activations is evident across all the differ- 721

ent components of the model. This suggests that 722

despite the high-dimensional representations, the 723

effective dimensionality of the activations remains 724

constrained. 725
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Figure 9: Activation Spectrum of Attention Layer (Q)

Figure 10: Activation Spectrum of Attention Layer (K)

B Detailed Compute Analysis726

According to Table. 2, the total compute of full-727

rank training is simply combining forward and728

backward as729

CFull-Rank = 24nd2 + 12n2d+ 18nddff. (6)730

In our proposed architecture, every single linear731

layer is replaced by low rank matrices A, B, and732

an activation function sandwiched in between. The733

activation only introduces trivial compute thus can734

be omitted in the calculation. For each d2 and ddff735

in Eq. (6), CoLA effectively converts them into736

2dr and r(d+ dff). Therefore the total compute of737

CoLA is738

CCoLA = 48ndr + 12n2d+ 18nr(d+ dff). (7)739

Plugging in an actual setting of LLaMA/CoLA-1B,740

in which r = 1
4d and r ≈ 1

10dff, we achieve a741

compute reduction from Eq. (6) to approximately742

CCoLA-1B = 16.5nd2 + 12n2d+ 1.8nddff. (8)743

We now discuss and compare CoLA with other744

efficient pre-training methods in terms of their com-745

pute complexity. We start with LoRA (Hu et al.,746

2021) and ReLoRA (Lialin et al., 2023). They747

share the same architecture that’s shown in Fig. 3748

Figure 11: Activation Spectrum of Attention Layer (V)

a), in which low rank matrices A ∈ Rr×din and 749

B ∈ Rdout×r are adapted onto a full rank matrix 750

W0 ∈ Rdout×din . Hence modifies Eq. (2) into 751

h = W0x+BAx. (9) 752

This yields a consistently more expensive forward 753

step than the full-rank training regardless the choice 754

of r. During the backward step, since gradient 755

does not flow into W0, only one GEMM that com- 756

putes gradient w.r.t x is involved with the full-rank 757

component W0x. Combining together both full- 758

rank and low-rank components in both forward and 759

backward step, the total compute of LoRA is 760

CLoRA = 16nd2 + 12n2d+ 12nddff 761

+ 48ndr + 18nr(d+ dff)︸ ︷︷ ︸
CCoLA

. (10) 762

When choosing the same r for LoRA and CoLA, 763

we have CLoRA > CCoLA always true. 764

In ReLoRA (Lialin et al., 2023), the hybrid 765

strategy that warms up with the full-rank training 766

arises more uncertainties in analyzing its complex- 767

ity. And such strategy needs delicate tuning of 768

hyper-parameters such as the full rank warm-up 769

ratio, the restart frequency of optimizer, etc, and 770

the choice of rank might also be affected by these 771

strategy-level hyper-parameters. Therefore, we fol- 772

low the same notion in (Zhao et al., 2024) that only 773

consider the pure low-rank training of ReLoRA, 774

which simplifies the compute analysis of ReLoRA 775

to be the same as LoRA. 776

SLTrain (Han et al., 2024) proposes a low-rank 777

+ sparse parameterization instead of having a fixed 778

full-rank matrix W0. The architecture of SLTrain 779

is shown in Fig. 3 c). We continue using the no- 780

tation for the low-rank matrices, and denote the 781

sparse matrix as S, with the sparsity level as δ. 782

This modifies Eq. (2) into 783

h = BAx+ Sx = (BA⊕I V)x, (11) 784
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where ⊕ denotes the scatter-add operator, I and V785

denote the indices and values of non-zero elements786

in S. This implementation avoids instantiating a787

full sized S, instead keeping only the non-zero788

elements. However, this introduces non-trivial re-789

construction cost of BA in every step. And if we790

further denote W̃ = BA⊕I V , then the forward791

data-flow that starts from W̃ is the same as in the792

full-rank training, as well as the backward data-793

flow that ends at W̃. Therefore, the total compute794

of SLTrain should be Cfull-rank plus reconstructing795

W̃, and its corresponding 2× compute during back-796

ward, i.e.,797

CSLTrain = Cfull-rank + 24d2r + 18ddffr. (12)798

For the last class of method to discuss, GaLore799

(Zhao et al., 2024) and it’s follow-ups such as Fira800

(Chen et al., 2024) and APOLLO (Zhu et al., 2024),801

all investigate the memory efficiency associated802

with the AdamW optimizer. We only show the data-803

flow GaLore in Fig. 3 b), others are similar except804

some minor differences in how to manipulate gra-805

dients. The model architecture is kept unchanged806

in all these methods. Therefore, the complexity807

analysis is on the additional compute for projecting808

gradients into a low-rank space. GaLore proposes809

the following update rules:810

Rt = PT
t Gt, G̃t = α ·PNt,

Wt = Wt−1 + η · G̃t,
(13)811

where the projector Pt ∈ Rd×r at time t is com-812

puted by decomposing Gt ∈ Rd×d via singular813

value decomposition (SVD) and is updated peri-814

odically, Nt ∈ Rd×r is the low-rank optimizer815

states, α is a scaling factor and η is the learning816

rate. Therefore, the total compute of GaLore is817

CGaLore = Cfull-rank + 16d2r + 12ddffr. (14)818

We remark that the compute analysis for the819

additional cost of SLTrain and GaLore (and its vari-820

ants) is of limited scope and does not necessarily821

reflect their actual overhead. The actual cost will822

be dependent on other practical considerations on823

both algorithm and system level, such as the spe-824

cific use case of these methods (e.g., pre-training,825

fine-tuning, etc), the actual number of the optimizer826

steps performed, the actual number of forward and827

backward steps performed when fixing total train-828

ing tokens (i.e., if the hardware can afford larger829

batch sizes then the actual steps are fewer). It is830

almost impossible to give a unified notion while 831

being fair when comparing between them. Hence 832

we follow the similar setup used in (Zhao et al., 833

2024; Han et al., 2024; Chen et al., 2024; Zhu et al., 834

2024) when they analyze memory efficiency and 835

measure system-level performance. However, it is 836

rather safe to conclude that the overall cost intro- 837

duced by GaLore and its variants will be diluted in 838

real practices of pre-training due to the optimizer 839

step is not frequent as forward and backward steps, 840

hence are less expensive than SLTrain. Nonethe- 841

less, we highlight the fact that all the aforemen- 842

tioned methods are non-trivially more expensive 843

than CoLA in terms of compute, and are all (except 844

LoRA/ReLoRA) lower bounded by the full-rank 845

training. 846

C Detailed Memory Analysis 847

We continue using the notions defined in Section. 848

4.2 and start with the activation memory of full- 849

rank training: 850

Mfull-rank = 3nd︸︷︷︸
Q,K,V

+2n2h+ 2nd︸ ︷︷ ︸
attention

+11nd︸ ︷︷ ︸
ffw

851

2nd︸︷︷︸
residual connection

+ 2nd︸︷︷︸
layer norm

= 20nd+ 2n2h. (15) 852

When applying vanilla GCP, only the output of 853

each block is saved, and all other activations are re- 854

computed when needed. This dramatically reduces 855

the total activation memory to only 856

Mvanilla-GCP = nd. (16) 857

However, such benefit comes with a cost equal to 858

almost an entire forward step. From Table. 2, we 859

have the cost of vanilla-GCP as 860

Cvanilla-GCP = Cfull-rank + 23nd2 + 4n2d. (17) 861

Although we mentioned that delicate optimization 862

of vanilla-GCP is beyond the scope of our discus- 863

sion, we show a heuristic strategy when selecting 864

checkpoints. Refer to Eq. (15), activations that as- 865

sociated with minimal re-compute are: layer norm, 866

residual connection, and non-linear function (in- 867

cluded in the ffw term). Then intuitively these acti- 868

vations should always be re-computed when trying 869

to save memory. In fact this can save a fair amount 870

of memory. Note in this paper we analyze compute 871

in pure theoretical notion that lower order terms 872

does not bring noticeable effect hence are omitted. 873

In practice, however, re-computation brings latency 874
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even for theoretically trivial operations, and will875

lower the overall GPU throughput. Other terms876

in Eq. (15) are all significant components when877

mapping to FLOPs change. One can gradually add878

more operations into the re-compute list and trade879

for more memory savings. We show the trend how880

they scale in Fig. 7.881

Now we discuss CoLA and how it enables com-882

pute efficient checkpointing. We first evaluate how883

much memory overhead introduced by the low-rank884

activations. Compared to Eq. (15), CoLA adds 2nr885

for each of the low-rank layers, i.e., nr for Ax,886

another nr for σ(Ax), thereby887

MCoLA = Mfull-rank+ 14nr︸ ︷︷ ︸
low-rank σ

− 2.5nd︸ ︷︷ ︸
remove original σ

(18)

888

We notice that when model scales up, the origi-889

nal LLaMA activation no longer brings benefit to890

model performance, hence can be removed, which891

corresponds to 2.5nd less activations.892

As shown in Figure. 4, CoLA has multiple non-893

linear functions injected along the normal data-894

flow. This partitions the previously longer path,895

i.e., the whole block, to significantly shorter paths896

bounded by these low-rank activations. This pro-897

vides a natural selection of checkpoints that are898

of r-dimensional instead of d. More importantly,899

these shorter paths halve the re-compute steps. We900

show in Figure. 4 that only the weights that are901

painted in sketch need re-computation during the902

backward step of CoLA-M. This reduces signifi-903

cantly the cost of implementing GCP in CoLA-like904

architecture, results in the cost of only905

CCoLA-M = CCoLA + 18.5ndr + 4n2d. (19)906

Meanwhile, the memory saving of CoLA-M is907

still significant. We have the activation memory908

of CoLA-M as909

MCoLA-M = 2nd+ 7nr. (20)910

D Hyper-Parameters911

For optimizer related hyper-parameters, we empir-912

ically found 0.003 is a balanced choice of learn-913

ing rate for most of the models we trained, this914

is similar to the settings in (Han et al., 2024). For915

CoLA-1B, this learning rate triggers a unstable loss916

curve, thereby is reduced to 0.002, and is further917

reduced to 0.001 for CoLA-7B as a conservative918

practice. For smaller models like CoLA-60M, an919

60M 130M 350M

CoLA w/ Both σ 34.04 24.48 19.56

CoLA w/ Only Low-Rank σ 34.35 25.20 19.40

CoLA w/ Only Low-Rank σ
– Reduced 35.41 25.90 20.50

CoLA w/ Only Full-Rank σ 36.26 26.85 21.18

Table 11: Ablation study regarding where to place the
low-rank non-linear functions.

even larger learning rate such 0.006 can be adopted. 920

For the warm-up ratio, weight decay and gradient 921

clipping, we found the commonly adopted settings, 922

0.1, 0.01, 0.5, are proper choices for CoLA. Other 923

than the standard optimizer parameters, one needs 924

to pre-define a rank r when initializing CoLA. A 925

default choice is set to approximately one quarter 926

of the model inner width, i.e., r = 1
4d. 927

E Ablation Study 928

We empirically found that keeping the original 929

LLaMA nonlinearity on top of our proposed formu- 930

lation Eq. (3) helps improve the model performance 931

at smaller scales, such as 60M and 130M. However, 932

when scaling up to 350M we no longer observe 933

such a benefit. Therefore, the default setting of pre- 934

training CoLA-1B/7B is set to use only low-rank 935

nonlinearity. We found also evident that applying 936

low-rank nonlinearity (i.e., Eq. (3)) regardless of 937

whether the original linear layer being followed by 938

nonlinearity is crucial to boost model performance. 939

Results are shown in Table. 11, in which "CoLA 940

w/ Both σ" means keeping the original nonlinearity 941

on top of proposed low-rank nonlinearity, "CoLA 942

w/ Only Low-Rank σ" means applying Eq. (3) in 943

an agnostic way to all linear layers, "CoLA w/ 944

Only Low-Rank σ – Reduced" means only apply- 945

ing Eq. (3) to the linear layers that are originally 946

followed by nonlinearity, "CoLA w/ Only Full- 947

Rank σ" means keeping the low-rank factorization 948

but does not apply low-rank nonlinearity. 949

F Detailed Profiling Setting 950

This section provides a detailed explanation of the 951

experimental setup for system-level measurements. 952

For the memory breakdown in Fig. 6, we use a 953

sequence batch size of 32. For throughput mea- 954

surement in Fig. 8, we use a sequence batch size 955

of 16 because the full-rank model cannot fit into 956

40GB A100 when using a sequence batch size of 957

32. Throughput is measured incorporating one for- 958
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ward pass, one backward pass, and one optimizer959

step. This setup reflects a realistic training sce-960

nario, particularly in a multi-GPU environment,961

such as an 8x A100 cluster utilizing simple data962

parallelism. For a fair comparison, we set the up-963

date step in GaLore/APOLLO to 200, ensuring that964

the computationally expensive SVD/random pro-965

jection is performed only once every 200 optimizer966

steps and is distributed across a single optimizer967

step. All experiments are conducted on a single968

GPU to isolate the effected of FLOP reduction on969

throughput improvement, without being influenced970

by multi-GPU framework settings or communica-971

tion overhead. For Table. 7, memory consumption972

is measured on a 94GB H100 with a sequence batch973

size of 16. For Table. 10, inference is performed974

using the same configuration as pre-training, with975

a sequence batch size of 32.976

14


