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Figure 1: We propose ViewCraft3D (VC3D), a method to generate 3D vector graphics from a single
image. VC3D can leverage 3D prior knowledge to generate high-quality and view-consistent 3D
vector graphics.

Abstract

3D vector graphics play a crucial role in various applications including 3D shape
retrieval, conceptual design, and virtual reality interactions due to their ability
to capture essential structural information with minimal representation. While
recent approaches have shown promise in generating 3D vector graphics, they often
suffer from lengthy processing times and struggle to maintain view consistency. To
address these limitations, we propose ViewCraft3D (VC3D), an efficient method
that leverages 3D priors to generate 3D vector graphics. Specifically, our approach
begins with 3D object analysis, employs a geometric extraction algorithm to
fit 3D vector graphics to the underlying structure, and applies view-consistent
refinement process to enhance visual quality. Our comprehensive experiments
demonstrate that VC3D outperforms previous methods in both qualitative and
quantitative evaluations, while significantly reducing computational overhead.
The resulting 3D sketches maintain view consistency and effectively capture the
essential characteristics of the original objects. Project page: https://zhtjtcz.
github.io/VC3D_page/.

1 Introduction

Three-dimensional vector graphics offer a unique balance between abstraction and comprehensibility,
using minimal line elements to convey complex spatial information. These economical representations
have become integral to diverse computing applications, from improving immersive experiences in
virtual environments to facilitating 3D shape retrieval and reconstruction tasks [54, 20, 19, 13, 53].
In virtual reality creation environments, 3D vector graphics serve as intuitive building blocks that
allow artists to materialize spatial concepts directly within immersive spaces [56, 1, 55], bridging
the gap between imagination and digital realization. Recent interactive sketching tools [2, 1, 57]
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have enhanced these creative capabilities by enabling direct manipulation in 3D space. Despite these
advances, creating effective 3D vector graphics remains prohibitively difficult for non-specialists
due to the intricate combination of spatial reasoning, technical interface skills, and artistic judgment
required. This expertise barrier significantly limits widespread adoption and accessibility, highlighting
the need for automated approaches that can generate high-quality 3D vector graphics without requiring
users to have specialized training or artistic expertise.

Figure 2: Examples of VR sketches [33].

Recent years have witnessed remarkable progress
in 2D vector graphics generation. Works like CLI-
Passo [36] and CLIPDraw [7] pioneered the use
of CLIP’s visual-semantic understanding to guide
vector graphics optimization. Building on these
foundations, methods such as VectorFusion [11],
DiffSketcher [45], and SVGDreamer [47] further
leveraged diffusion models to achieve higher fi-
delity and controllability in vector graphics gen-
eration. Concurrently, the field of 3D content cre-
ation [49, 59, 15, 40, 37, 51] has been revolution-
ized by neural rendering techniques and generative
models, making high-quality 3D asset creation in-
creasingly accessible. The convergence of these advancements has catalyzed research in 3D vector
graphics, with pioneering works like 3Doodle [5] and Diff3DS [58] demonstrating the feasibility
of generating expressive 3D line drawings. These approaches have achieved impressive results
in creating 3D vector graphics. However, existing methods predominantly rely on 2D generative
priors—leveraging models like CLIP [28] and diffusion model [30] as supervision signals—while
employing Score Distillation Sampling (SDS) [24] for optimization in 2D projection space rather than
directly in 3D. These indirect approaches inherit a fundamental limitation of 2D SDS optimization:
cross-view inconsistency, which constrains the ability of methods [24, 58]—where the same 3D
element appears inconsistently from different viewpoints. Even with the use of more powerful pre-
trained models, these approaches often struggle to generate coherent 3D vector graphics that remain
consistent across arbitrary viewpoints. For example, Diff3DS [58] employs MVDream [32] to tackle
this issue, but the improvement is only partial. On the other hand, 2D priors from pretrained image
generation models offer only conceptual-level guidance, lacking precise recovery of critical lines
typically found in human-drawn 3D sketches, as illustrated in Figure 2. As a result, the generated
outputs often suffer from messy strokes, missing details, and low structural fidelity.

To overcome these challenges, we propose ViewCraft3D (VC3D), a novel approach that leverages
3D priors for generating high-fidelity and view-consistent 3D vector graphics. Instead of relying
on optimization using 2D priors [58, 5], our method is grounded in 3D geometric attributes within
the 3D domain. This allows it to naturally inherit the cross-view consistency of the 3D object while
faithfully preserving its spatial structure and geometric details, as illustrated in Figure 1. Specifically,
we start by reconstructing a 3D mesh using a pre-trained image-to-3D model. Based on the resulting
mesh, we identify salient regions in 3D space that capture the object’s key structural features. We
then perform point-level clustering using spatial proximity and orientation alignment. These clusters
are subsequently fitted with 3D Bézier curves, and Chamfer Distance loss is used to ensure accurate
geometric approximation. To further refine these vector graphics, we introduce a 3D score distillation
sampling loss based on pretrained 3D generative models, which optimizes the Bézier curve parameters
to enhance both visual quality and structural fidelity. This approach maintains view consistency by
construction, as the optimization occurs directly in 3D space guided by 3D priors.

In summary, our contributions are threefold:

• We propose ViewCraft3D (VC3D), a novel framework for generating high-fidelity 3D vector
graphics that leverages 3D priors rather than 2D projections;

• We develop a two-phase optimization approach combining geometric fitting with 3D-prior
guided refinement, significantly improving visual quality.

• We conduct extensive experiments demonstrating that our approach outperforms existing
methods in both view consistency and generation speed. The results suggest promising
directions for future studies.
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2 Related Work

2.1 2D Vector Graphics Generation

Early approaches in 2D SVG generation, such as CLIPasso [36] and CLIPDraw [7], utilized the visual-
semantic understanding of the CLIP model [28] to guide vector optimization. Subsequent research
introduced more sophisticated approaches, notably those employing diffusion models [8, 30, 6]. Work
like VectorFusion [11], DiffSketcher [45], SVGDreamer [47], and SVGDreamer++ [46] demonstrated
significant improvements in generation quality by employing Score Distillation Sampling [24]. This
technique effectively transfers the generative capabilities of pixel-based models to the vector domain.
LLM4SVG [43] attempts to use LLM to generate SVG, while Reason-SVG [41] introduces the idea
of reinforcement learning to generate better SVG. In addition, SVGFusion [44] explored the use of the
DiT architecture [23] to generate SVG. Furthermore, specialized approaches have been developed for
specific applications. These include Word-as-image [10] for typographic design, CLIPascene [35] for
scene sketching with varying abstraction levels, and VectorPainter [9] for stylized graphics synthesis.

More recently, efforts have focused on mitigating the computational cost associated with iterative
optimization. Works based on autoregressive models, such as Iconshop [39], have demonstrated the
potential for rapid generation, significantly reducing processing times. Concurrently, the adaptation
of large language models (LLMs) for SVG generation has emerged as another promising research
avenue, with works like LLM4SVG [42] and Chat2SVG [38]. And OmniSVG [50] attempts to
employ Vision-Language Models (VLMs) as end-to-end multimodal SVG generators. Together,
these recent advancements aim to ensure high-quality generation while paving the way for future
extensions into 3D representations.

2.2 Recent Advances in 3D Content Generation

Recent years have witnessed remarkable progress in 3D content generation driven by diffusion-
based approaches. Early works like Zero-123 [17] pioneered single-image view synthesis using
geometric priors from diffusion models, while One-2-3-45 [16] extended this to generate full 360-
degree textured meshes. Multi-view consistency became a focus with MVDream [32], which
serves as an implicit 3D prior through multi-view image generation, and Wonder3D [18], which
employs cross-domain attention for consistent normal and color generation. Recent innovations
have further elevated capabilities: Unique3D [37] improved fidelity through multi-level upscaling,
HunYuan3D [49, 59] achieved photorealistic quality, TripoSG [15] utilized triplane optimization with
large-scale data, and Hi3DGen [51] enhanced geometric fidelity through normal bridging. These
cutting-edge approaches primarily focus on generating complete 3D assets with textures and materials,
while our work emphasizes the creation of 3D vector graphics that maintain characteristic abstractions
and representational efficiency. By leveraging the 3D understanding embedded in these advanced
models, particularly TripoSG’s structural representations, we guide our vector optimization toward
semantically meaningful and view-consistent results.

2.3 3D Vector Graphics Generation

Building upon both the 2D vector graphics techniques and recent 3D generation advances discussed
above, 3D vector graphics generation has emerged as a promising research direction. These repre-
sentations extend the fundamental advantages of 2D vector graphics while leveraging 3D generative
capabilities to model complex spatial structures and depth information. This integration enhances
their utility in diverse fields, including web development and digital art. In artistic contexts, works like
DreamWire [27] and Fabricable 3D Wire Art [34] have showcased the potential of 3D vector graphics
to create compelling, view-dependent visual effects, where the perceived objects change based on
viewing angle. To harness these benefits and enable such advanced applications, the development of
robust 3D vector graphics generation techniques has become a key research focus. Initial explorations
in this area include 3Doodle [5], which pioneered a method for generating 3D vector graphics from
multi-view images of the target object. Subsequently, Diff3DS [58] utilized the Score Distillation
Sampling to produce 3D vector graphics conditioned on text or image input. Dream3DVG [52] lever-
ages the optimization process of a 3D Gaussian Splatting [12] to establish a coarse-to-fine generation
approach. However, a notable aspect of these current generative approaches is their predominant
reliance on 2D view-specific loss for optimization. View-specific loss is computed independently
per camera view, and gradients are aggregated across views during optimization. Without strong
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Figure 3: The overall architecture of the proposed method, showcasing the initial generation of 3D
Vector Graphic (3D VG) from an input image and subsequent detail refinement using a pretrained
image-to-3D model.

3D regularization (e.g., geometry priors or multi-view constraints), this results in locally optimal
solutions per view that can conflict globally. While yielding impressive outcomes, this strategy may
not fully exploit 3D spatial cues, potentially leading to challenges such as view inconsistency in the
final 3D vector representations.

3 Methodology

3.1 Overview

In this section, we introduce ViewCraft3D (VC3D), an optimization based method that creates a 3D
vector graphic S3D based on an input image I . We define a 3D vector graphic S3D as a set of 3D
Bézier curves {Ci}ni=1. The curves are defined by a set of control points {Pi,j}mj=1, where Pi,j ∈ R3

is the j-th control point of the i-th curve.

Our method workflow is illustrated in Figure 3. It begins by reconstructing a 3D meshM from a
user-provided image I using an image-to-3D model [15]. We then apply a two-stage process on
the resulting mesh, consisting of Bézier curve fitting followed by detail refinement. The primary
structure fitting stage identifies high-curvature regions in the reconstructed mesh, converts them into
a point cloud, and fits Bézier curves to approximate these structures. The detail refinement stage
re-initializes additional curves in regions overlooked during the first stage and optimizes them using
Score Distillation Sampling(SDS) loss [24], leveraging priors from the diffusion model to guide the
optimization and enhance fine-grained details in the resulting 3D vector graphic representation. This
two-stage approach ensures both structural accuracy and high-fidelity detail preservation.

3.2 Stage I: Primary Structure Fitting

In the first stage, the model extracts key structural information from the reconstructed meshM and
uses it to fit 3D Bézier curves. The fitting process is further optimized using a specially designed
Chamfer Distance loss.

3.2.1 Salient Point Cloud Extraction

To identify high-curvature regions on the mesh, we adopt the Sharp Edge Sampling (SES) process
from Dora [4] to extract a salient point cloud. We traverse each edge of the mesh. For each edge,
if it belongs to two adjacent faces, we compute the angle between the normal vectors of these two
faces. If the angle is below a predefined threshold, we consider this edge as a salient edge. To address
the challenge of extracting salient edges from smooth surfaces (e.g., spheres), we uniformly sample
camera parameters on a horizontal plane. For each sampled viewpoint, we compute the front faces
and back faces. Edges shared by a front face and a back face are identified as silhouette edges. All
such silhouette edges are subsequently incorporated into the salient edge set. After identifying all
salient edges, we sample points along these edges to create a point cloud Ps as ground truth.
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Figure 4: Visualization of point cloud clustering. Each point is assigned an orientation vector (blue
arrows). In (a), the orange point initializes the cluster, and a candidate (red) is evaluated based
on spatial proximity and orientation similarity. In (b), the candidate meets both criteria and is
incorporated into the cluster. This process iterates until the final cluster is formed, as shown in (d).

3.2.2 Point Cloud Clustering

After obtaining the salient point cloud Ps, we aggregate these discrete points into clusters suitable for
Bézier curve fitting. Inspired by EdgeGaussians [3], we perform clustering for edge fitting based on
vertex orientations. While EdgeGaussians directly utilize the principal directions of 3D Gaussians
as orientation vectors, such directional information is absent in our discrete point cloud Ps. To
address this, we introduce an initialization step to estimate orientation vectors for each point in
Ps. Specifically, for each point p, we first identify its k nearest neighbors and then apply Principal
Component Analysis (PCA) [22] to the local neighborhood. The resulting primary eigenvector is
used as an approximation of p’s orientation vector v⃗p.

Once orientation vectors are assigned to each point, we partition the point cloud into multiple clusters
using an iterative expansion process as shown in Fig 4. Each cluster is initialized from a randomly
selected starting point and grows by progressively incorporating neighboring points that satisfy both
spatial proximity and orientation similarity. Specifically, we use the most recently added point in the
cluster, denoted as p, to guide the selection of the next candidate. A candidate point q is added to the
current cluster if it meets two criteria: (1) it lies within the spatial neighborhood of the cluster, i.e.,
dis(p, q) ≤ dthresh; and (2) the direction of the new edge formed by p and q aligns with the orientation
vector of q, i.e., arccos

(∣∣∣ p⃗q
|p⃗q| ·

v⃗q
|v⃗q|

∣∣∣) < θthresh. The expansion continues until no additional points
can be incorporated under these constraints, completing one cluster.

This process repeats across the point cloud to generate a complete set of directional clusters, each
representing potential curves for subsequent Bézier fitting. The randomized clustering method ensures
comprehensive coverage of all geometric features while avoiding bias toward specific regions. Finally,
we filter the small clusters with fewer than τ points, as they are likely to be noise or outliers.

3.2.3 Bézier Curves Fitting

After obtaining these clusters, we attempt to fit them with either straight lines or Bézier curves,
selecting the one with the least error as the fitting result for that cluster.

The fitting process is performed using the Chamfer Distance loss function [26] to minimize the
distance between the Bézier curves and the salient point cloud Ps obtained in Sec. 3.2.1. The fitted
Bézier curves are denoted as {Ci}ni=1. For our implementation, we use cubic Bézier curves with
four control points P0, P1, P2, P3 ∈ R3. The parametric equation for a 3D cubic Bézier curve can be
written in explicit representation as:

B(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3, t ∈ [0, 1] (1)

To generate a point cloud from a set of Bézier curves {Ci}ni=1, we uniformly sample s points along
each curve by evaluating the parametric function B(t) at tj = j−1

s−1 for j = 1, . . . , s. The resulting
point cloud Pc is defined as:
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Pc =
{
Bi(tj) | i ∈ {1, . . . , n}, j ∈ {1, . . . , s}

}
. (2)

Chamfer Distance loss is computed as follows:

Lc(P̃c, Ps) =
λ

|P̃c|

∑
p∈P̃c

min
q∈Ps

∥p− q∥2 + 1

|Ps|
∑
q∈Ps

min
p∈P̃c

∥p− q∥2 (3)

where P̃c denotes Pc augmented with Gaussian noise (introduced for data augmentation), and λ
is a hyperparameter to balance the two terms. The generation of point cloud Pc, which relies on
the Bézier curve formulation in Eq. 1, is differentiable with respect to the curve’s control points.
Consequently, the chain rule enables the gradients from Lc to propagate back to these control points,
facilitating their iterative optimization.

3.3 Stage II: Detail Refinement

Some objects may contain intricate-to-approximate regions that Stage I might miss due to limitations
in the salient point cloud extraction or clustering process. These regions are identified by analyzing
the mesh’s vertex distribution and locating areas not adequately covered by the point cloud Pc

generated in Stage I. For such cases, we introduce an additional refinement stage to handle these
regions by distilling priors from a pretrained image-to-3D model.

First, the parameters of the initial curves {Ci}ni=1 from Stage I are frozen. We randomly initialize
new Bézier curves {C ′

i}n
′

i=1 (with parameters θ′) in regions that are intricate to approximate, thereby
complementing the primary structure. To jointly represent both curve sets, we sample a combined
point cloud Pcombined = Pc ∪ Pc′ and encode it into a latent space Z using a pretrained VAE
encoder from [15]: z = E(Pcombined). Then we refine only the new parameters θ′ via SDS loss [24],
supervised by the input image I .

∇θ′LSDS = Et,ϵ

[
w(t) (ϵϕ(zt, I; t)− ϵ)

∂z

∂θ′

]
(4)

where zt is the noised latent variable at timestep t, ϵϕ is the denoising model conditioned on I ,
and w(t) is a weighting function. This process iteratively adjusts the newly added Bézier curves
to fill in missing details from Stage I, ensuring consistency and high fidelity in the final 3D vector
representation S3D = {Ci}ni=1 ∪ {C ′

i}n
′

i=1.

3.4 3D Vector Graphics Rendering

To enable both qualitative visualization and quantitative evaluation, 3D vector graphic S3D should
be projected onto a 2D plane. As proved by 3Doodle [5], the perspective projection of a 3D Bézier
curve onto a 2D plane yields a 2D rational Bézier curve. Given a 3D curve B(t) and image plane at
z = f (where z is the depth axis and f the focal length), the projection is:

B2D(t) =

(
Bx(t)

f
Bz(t)

By(t)
f

Bz(t)

)
(5)

Consequently, by explicitly defining the camera parameters in 3D space, we obtain a consistent set
of 2D rational Bézier curves that correspond directly to the camera’s viewpoint. These curves can
then be faithfully rendered using DiffVG [14] to generate the corresponding SVG files, which are
subsequently utilized for both comprehensive quantitative metrics and detailed qualitative analysis.

6



4 Experiment

4.1 Implementation Details

Our VC3D framework is implemented in PyTorch. For primary structure fitting stage, we set the
distance threshold dthresh = 0.05 and angle threshold θthresh = 50◦. Each Bézier curve is defined by 4
control points, with s = 64 sample points per curve for optimization. For detail refinement stage, we
employ TripoSG [15] as our pretrained image-to-3D model, with SDS loss weight set to 2× 10−4.
We use the SGD optimizer [29] with a learning rate of 5× 10−3.

All experiments are conducted on a single NVIDIA RTX 4090 GPU. For each input, our method
typically produces fewer than 100 Bézier curves. Our full method takes about 30 minutes to generate
a vector graphic, with 100 optimization steps for Stage I and 200 steps for Stage II. We collected 40
images from prior works and online sources as inputs. All generated 3D vector graphics are rendered
into 12 views using identical camera parameters, upon which the metrics are computed.

4.2 Experimental Results

We compare our approach with two state-of-the-art methods in 3D vector graphics generation:
Diff3DS [58], which designs a depth-aware differentiable rasterizer and leverages 2D diffusion model
priors through SDS loss to generate 3D vector graphics from text or images, and 3Doodle [5], which
employs perceptual losses with multi-view guidance to obtain 3D Bézier curve representations of
objects. To comprehensively evaluate the quality and fidelity of the generated 3D vector graphics, we
employ CLIPScore [28] to measure semantic alignment between rendered views and input images
Furthermore, we use an aesthetic indicator [31] to quantify the aesthetic value.

4.2.1 Qualitative Evaluation

Figure 5 presents qualitative comparisons between our method and previous work, 3Doodle [5]
and Diff3DS [58]. As shown, VC3D produces cleaner, more accurate, and more view-consistent
3D vector graphics. Previous works struggle to capture fine details in reference images, such as
the patterns on butterfly or the handle of the coffee cup. Additionally, their outputs often contain
excessive messy lines (e.g., the chair example). Figure 6 shows the rendering results of our generated
results from different camera viewpoints.

4.2.2 Quantitative Evaluation

Table 1 presents the quantitative analysis results of all methods. Our method outperforms previous
approaches in CLIPScore and Aesthetic Score. Our method achieves a cosine similarity of 0.799,
which is higher than the 0.729 achieved by 3Doodle and the 0.673 achieved by Diff3DS. At the
same time, we achieved the highest score in Aesthetic Score. These superior results demonstrate our
method’s ability to generate semantically and geometrically superior 3D vector graphics.

In addition to the metrics mentioned above, our method demonstrates significant advantages in
generation time. Our method requires only a few SDS loss optimization steps, significantly reducing
generation time. The total runtime for two stages is approximately 0.5 hours, showing notable
improvements compared to 3Doodle (~6 hours) and Diff3DS (~2 hours).

Table 1: Quantitative comparison of VC3D and
previous methods on evaluation metrics. The
bold numbers represent the best performance.

Method CLIPScore ↑ Aesthetic
Score ↑

3Doodle 0.729 4.122
Diff3DS 0.673 3.769

VC3D (Ours) 0.799 4.352

Table 2: Ablation study results comparing differ-
ent variants of our proposed method. The bold
numbers represent the best performance.

Method CLIPScore ↑ Aesthetic
Score ↑

Variant 1 0.779 4.096
Variant 2 0.805 4.167

Full Method 0.818 4.297
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Input Image 3Doodle        ~6h Diff3DS        ~2h VC3D (Ours)        ~0.5h

Figure 5: Qualitative comparison of different methods. Diff3DS and VC3D use a single image I as
input, while 3Doodle uses 120 rendered images of the mesh reconstruction resultM as input.

Figure 6: Multi-view results generated by our method VC3D.

4.3 Ablation Studies and Analysis

To demonstrate the respective contributions of the Chamfer Distance loss and SDS loss, we performed
ablation experiments. We selected a subset of 20 images from the inputs in Section 4.2.1, where
all examples were optimized with SDS loss. And results were recorded after three distinct stages,
corresponding to three variants: (1) Variant 1: This variant refers to the model with the salient point
cloud extraction and the point cloud clustering, (2) Variant 2: This variant is the model with the
first stage only, i.e., Primary Structure Fitting, and (3) Full Method: This is our proposed method,
which comprises two stages. The results are shown in Table 2. The improvements of the Variant 2
against the Variant 1 indicate the benefits brought by using CD loss for optimization. Comparing the
performance of Variant 2 and Full Method, it is clear that the detail refinement stage can further
improve the performance in CLIPScore and Aesthetic Score metrics.

In Figure 7, we show the optimization process of Chamfer Distance loss. The initially fitted Bézier
curves often fail to accurately cover the salient point cloud Ps. The coherence between curves is
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Figure 7: Illustration of the optimization process using Chamfer Distance loss Lc.

Table 3: Ablation study results of only SDS loss. The bold numbers represent the best performance.

Method SDS-only Full Method
CLIP score ↑ 0.622 0.799

Aesthetic Score ↑ 3.653 4.352

also suboptimal. As optimization progresses, the curves gradually extend to form more complete
structures, ultimately achieving both improved coverage of the salient features and enhanced inter-
curve coherence while preserving the overall geometric fidelity of the original shape.

Primary Structure Fitting (Stage I) is a critical component that significantly enhances both generation
quality and efficiency. To demonstrate its importance, we conduct an ablation study by removing
Primary Structure Fitting and solely relying on SDS loss for optimization. Results are shown in
Table 3. It can be observed that the CLIPScore decreases from 0.799 to 0.622, and the Aesthetic
Score drops from 4.352 to 3.653. These reductions signify a marked deterioration in the visual quality
of the generated outputs. Moreover, the SDS-only optimization is extremely inefficient, requiring
approximately 3 hours to generate a vector graphic. Similar results are also observed in related works
like DiffSketcher [45] (Figure 8). Therefore, Primary Structure Fitting is an indispensable step that
provides the necessary structural foundation for the refinement stage.

The visual improvements brought by the SDS loss can be observed in Figure 8, where the refinement
stage compensates for previously overlooked details (e.g., terminal branches on corals) and improves
the structural coherence of the 3D vector graphics.

w/o SDS Loss

Case (a)

1

Input Image w/ SDS Loss w/o SDS LossInput Image w/ SDS Loss

Figure 8: Illustration of the optimization effect of SDS loss Lsds. SDS loss effectively recovers
missing structural information while enhancing geometric detail representation.

These results demonstrate that our two-stage approach effectively balances structural accuracy with
visual quality, leading to more compelling and semantically accurate 3D vector graphics.

We also experimented with the number of Bézier curves. Since the number of Bézier curves is
equal to the number of point clusters, we can control the number of curves by adjusting the cluster
count, i.e., by changing the filtering threshold τ in Point Cloud Clustering stage. As shown in
Figure 9, when τ = 10, point clusters with fewer than 10 points are removed. Increasing the threshold
eliminates more clusters, reducing the number of Bézier curves retained and producing an abstract
result. We conducted an experiment using ten relatively complex examples selected from those
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used in quantitative evaluation. The quantitative results are presented in Table 4. We can see with
the filtering threshold τ increased, the CLIP score and Aesthetic score decrease, suggesting that
geometric details are gradually reduced.

Case (a)
1

Input Image 𝜏 = 10 𝜏 = 20 𝜏 = 30 𝜏 = 40

Figure 9: Effect of the filtering threshold in Point Cloud Clustering. The number of Bézier curves
gradually decreases as τ increases, producing a more abstract effect.

Table 4: Ablation study results of different τ .The bold numbers represent the best performance.

τ 5 10 20 30 40
CLIP score ↑ 0.7523 0.7676 0.7544 0.7340 0.7214

Aesthetic Score ↑ 4.3918 4.3567 4.2349 4.1393 4.0580

5 Limitations and Future Works

While VC3D efficiently generates view-consistent 3D vector graphics, it is noted that individual
curves may inadvertently traverse distinct semantic boundaries. Future work could address this
limitation by incorporating 3D segmentation results as a supervisory signal. This approach would
refine the curve initialization process, ensuring the generated curves align more accurately with the
underlying part structures of the object.

In addition, considering that our method can generate corresponding 3D vector graphics from meshes
with minimal time cost, we can build 3D vector graphics datasets based on open-source mesh datasets
in the future, providing a research foundation for subsequent work.

6 Conclusion

In this paper, we present VC3D, a novel framework for generating view-consistent 3D vector graphics
using 3D priors. Operating directly in 3D space rather than 2D projection planes, our approach
effectively addresses view inconsistency issues. Our two-stage algorithm first identifies salient
structures through geometric clustering and Bézier curve fitting, then refines results using SDS loss
with a pretrained image-to-3D model. Experiments demonstrate that VC3D preserves geometric
characteristics while maintaining view consistency across viewpoints, with advantages in generation
efficiency. This research makes high-quality 3D vector graphics creation more accessible and
applicable to virtual reality, shape retrieval, and conceptual design.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We introduce our contributions in the last paragraph of Sec. 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations in Sec.5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We introduce our methodology in Sec. 3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We introduce details of our approach in Sec.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: The code and data need to be organized and then open-sourced so that others
can use or follow them.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We introduce the experimental details in Sec. 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We introduce the experimental statistical significance in Sec. 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We introduce the computational resources required for the experiment in
Sec. 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the societal impacts in supplemental material.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper of datasets and models in various places in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs is not the core of this paper’s research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Technical Appendices and Supplementary Material

Overview

This supplementary material is organized into several sections that provide additional details and
analysis related to our work on ViewCraft3D (VC3D). Specifically, it includes the following aspects:

• In Section A, we provide detailed implementation information for VC3D.

• In Section B, we present additional qualitative results generated by VC3D.

• In Section C, We compared VC3D with the concurrent work Dream3DVG.

• In Section D, we describe a user study that demonstrates the superiority of our method
compared to existing approaches.

• In Section E, we discuss the applications of VC3D and 3D SVGs.

• In Section F, we discuss the potential societal impact of VC3D.

A Implementation Details of VC3D

A.1 Algorithm Flow of Salient Point Cloud Extraction

Algorithm 1 shows the details of Salient Point Cloud Extraction (in main paper Sec. 3.2.1).

Algorithm 1: Salient Point Cloud Extraction
Input: Mesh fileM, Boolean variable enable_find_silhouette_edges
Output: Salient point cloud Ps

Ps ← ∅ ; // Initialize the salient point cloud
Ps ← SES_Process(M) ; // Extract salient points using SES
if enable_find_silhouette_edges then

E ← Find_Silhouette_Edges(M) ; // Extract silhouette edges
Pe ← Sample_Points(E) ; // Sample points on silhouette edges
Ps ← Ps

⋃
Pe ; // Merge point cloud

return Ps ; // Return the salient point cloud

SES stands for Sharp Edge Sampling, a technique proposed in Dora [4] for extracting salient
point clouds. The parameter enable_find_silhouette_edges is a hyper-parameter that controls
whether silhouette edges are detected. We set this parameter to True when the mesh contains many
smooth surfaces (e.g., spheres, cylinders). Figure 10 illustrates the results on the same example with
enable_find_silhouette_edges set to both True and False for comparison.

Input Image w/o silhouette edges w/ silhouette edges

Figure 10: Effect of Silhouette Edge Extraction. Comparison of outputs with (right) and without
(middle) the silhouette edge extraction enabled.

When the parameter enable_find_silhouette_edges is set to False, the salient edge extraction fails
to capture the outline of the cup body, resulting in an incomplete representation. In contrast, enabling
this parameter (i.e., setting it to True) allows the extraction process to effectively highlight the cup
body, which is clearly reflected in the final result.
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A.2 Details of Detail Refinement

In the Detail Refinement stage, we randomly add N Bézier curves to intricate-to-approximate regions
(as defined in Sec. 3.3 of main paper). By default, N is set to 128, but it can be adjusted based on
the geometric complexity of missing areas. The intricate-to-approximate regions are determined by
the mesh vertices and the point cloud Ps. Specifically, for a point p, if its distance to all points in
the point cloud Ps exceeds a threshold (set to 0.03 in our experiments), it is considered to belong
to the intricate-to-approximate regions. All such points comprise a set Pi, from which vertices are
randomly selected to initialize the Bézier curves.

For both the Bézier curves from the first stage and those newly added in the second stage, we sample
64 points per curve to construct the combined point cloudPcombined. Based on the meshM generated
in the first stage, each point in Pcombined is assigned an approximate normal direction as a geometric
prior. Both Pcombined and corresponding normal directions are then encoded using the VAE encoder
of TripoSG [15] to generate structured latent representations. To ensure stable optimization, the SDS
loss [25] employs medium-strength noise with the range [0.15, 0.4] and multiple denoising steps.
This strategy effectively balances global shape consistency with local detail preservation, thereby
enhancing the visual quality of the generated vector graphics.

B More Qualitative Results

B.1 More Qualitative Results of VC3D

As shown in Figure 11, VC3D is capable of generating high-quality results across a diverse range of
3D object categories, such as animals, industrial products, and furniture.

Figure 11: More qualitative results generated by our method VC3D.

B.2 More Comparisons with Other Methods

Figure 12 presents additional comparisons between our method and baseline methods. It can be
observed that VC3D outperforms these methods in terms of fidelity and view-consistency.
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Input Image 3Doodle Diff3DS VC3D (Ours)

50

42

50

Figure 12: More qualitative comparisons between our method and baseline methods, 3Doodle and
Diff3DS.

C Comparison with Dream3DVG

We conducted a quantitative comparison with Dream3DVG [52]. Specifically, given that Dream3DVG
accepts text prompts as input, we manually convert the input images from our quantitative experiments
into text prompts and use them as input for Dream3DVG. As shown in Table 5, our method achieves
a higher aesthetic score than Dream3DVG.

Table 5: Quantitative comparison of VC3D and Dream3DVG [52]. The bold numbers represent the
best performance.

Method VC3D (Ours) Dream3DVG
Aesthetic Score ↑ 4.352 4.1499

D User Study

We conducted a user study to evaluate the quality of the synthesized 3D vector graphics. The test
set used in the study is identical to that in the main paper and consists of 40 cases, each with results
generated by three different approaches. For the user study, each questionnaire contained 20 cases
randomly sampled from these 40.
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Figure 13: The results of the user study.

We invited 30 volunteers to participate in the study,
with a gender ratio of approximately 5:1 (male to
female). Most participants are university students
from various science and engineering disciplines,
with ages ranging from 18 to 27. Volunteers were
asked to choose the best result for each case based
on two criteria: fidelity and view-consistency. As
shown in Fig. 13, our approach received 71.17%
of the votes, outperforming 3Doodle (13.83%) and
Diff3DS (15%).

E Applications
of VC3D and Resultant 3D SVGs

The inherent editability of 3D vector graphics of-
fers significant advantages for iterative modeling
workflows, a potential explored in several aca-
demic works. (1) 3D vector curves can serve as
real-time guidance for surface creation and editing. For instance, FiberMesh [21] enables the design
of freeform surfaces by allowing users to directly draw and manipulate a network of 3D curves,
which function as a structural vector scaffold for the surface. (2) Some works focus on reconstructing
3D surfaces from a network of 3D vector curves, treating the curve network as an editable and
interpretable representation that facilitates intuitive shape refinement. Notably, True2Form [48] infers
a complete 3D curve network from ambiguous 2D sketches, bridging the gap between sparse 2D
input and structured 3D geometry.

3D vector graphics also support animation production. For example, Blender provides an official
SVG plugin and keyframe interpolation tools. Users can project 3D vector models onto different
viewpoints, and then generate animations using the plugin. This enables the creation of 2D animations
from multiple angles while maintaining strong frame-to-frame consistency.

3D vector graphics are integral to VR/AR applications, and they have already been applied in
some well-known software, such as Tilt Brush, Gravity Sketch, and Mental Canvas. With the rapid
development of VR/AR devices and applications, 3D vector graphics will become more valuable.
Our proposed approach can be used to generate 3D vector graphics assets.

F Societal Impact

Our method, VC3D, significantly enhances the fidelity and view-consistency of 3D vector graphics
generated from a single image. However, as with other generative models, there exists a critical
concern regarding the potential negative societal impact if our model is misused to create inauthentic
or misleading 3D vector content. It is imperative to ensure that the model is used responsibly to
mitigate the risk of adverse social consequences.
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