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Fig. 1: A selection of the tasks we use to study if a single, task-agnostic LLM prompt can generate a dense sequence of end-
effector poses, when given only object detection and segmentation models, and no in-context examples, motion primitives,
pre-trained skills, or external trajectory optimisers.

Abstract— Large Language Models (LLMs) have recently
shown promise as high-level planners for robots when given
access to a selection of low-level skills. However, it is often
assumed that LLMs do not possess sufficient knowledge to be
used for the low-level trajectories themselves. In this work,
we address this assumption thoroughly, and investigate if an
LLM (GPT-4) can directly predict a dense sequence of end-
effector poses for manipulation tasks, when given access to
only object detection and segmentation vision models. We
designed a single, task-agnostic prompt, without any in-context
examples, motion primitives, or external trajectory optimisers.
Then we studied how well it can perform across 30 real-
world language-based tasks, such as “open the bottle cap” and
“wipe the plate with the sponge”, and we investigated which
design choices in this prompt are the most important. Our
conclusions raise the assumed limit of LLMs for robotics, and
we reveal for the first time that LLMs do indeed possess an
understanding of low-level robot control sufficient for a range
of common tasks, and that they can additionally detect failures
and then re-plan trajectories accordingly. Videos, prompts, and
code are available at: https://www.robot-learning.uk/language-
models-trajectory-generators.

Index Terms— AI-Based Methods, Big Data in Robotics and
Automation, Deep Learning in Grasping and Manipulation

I. INTRODUCTION

In recent years, Large Language Models (LLMs) have at-
tracted significant attention and acclaim for their remarkable
capabilities in reasoning about common, everyday tasks [1].
This widespread recognition has since led to efforts in the
robotics community to adopt LLMs for high-level task plan-
ning [2]. However, for low-level control, existing proposals
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have relied on auxiliary components beyond the LLM, such
as pre-trained skills, motion primitives, trajectory optimisers,
and numerous language-based in-context examples (Fig. 5).
Given the lack of exposure of LLMs to physical interaction
data, it is often assumed that LLMs are incapable of low-
level control [3], [4], [5].

However, until now, this assumption has not been thor-
oughly examined. In this paper, we now investigate if LLMs
have sufficient understanding of low-level control to be
adopted for zero-shot dense trajectory generation for
robot manipulators, without the need for the aforemen-
tioned auxiliary components. We provide an LLM (GPT-
4 [6]) with access to off-the-shelf object detection and seg-
mentation models, and then require all remaining reasoning
to be performed by the LLM itself. We also require that
the same task-agnostic prompt is used for all tasks, such as
“open the bottle cap” and “wipe the plate with the sponge”,
which we took from the recent literature. And through this
investigation, we uncovered the underlying principles and
strategies that empower LLMs to navigate the complexities
of robot manipulation.

Consequently, our contributions are threefold: (1) We
demonstrate, for the first time, that a pre-trained LLM, when
provided with only an off-the-shelf object detection and seg-
mentation model, can guide zero-shot a robot manipulator
by outputting a dense sequence of end-effector poses,
without the need for pre-trained skills, motion primitives,
trajectory optimisers, or in-context examples. (2) We present
several ablation studies which shed light on what techniques
and prompts lead to the emergence of these capabilities.
(3) We study how, by analysing the trajectory of objects

https://www.robot-learning.uk/language-models-trajectory-generators
https://www.robot-learning.uk/language-models-trajectory-generators


(1) INITIAL PROMPT

TASK-AGNOSTIC PROMPT

Available functions...

Environment set-up...

Code generation...

Initial planning...

LANGUAGE PLANNING

The task involves a
sinusoidal motion...

Here is a step-by-step
trajectory plan...

OBJECT DETECTOR

mustard bottle

OBJECT TRACKER

EXECUTE ON ROBOT SUCCESS DETECTION PROMPT
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User command...

Mustard bottle poses...
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GPT-4(2) LLM GENERATION (3) API INTERFACE (4) SUCCESS DETECTION

CODE GENERATION

detect_object(...)

def generate_trajectory...
execute_trajectory(...)
close_gripper()

task_completed()

TASK DESCRIPTION

"shake the mustard bottle"

NO YES

Fig. 2: An overview of the pipeline. (1) The main prompt along with the task instruction is provided to the LLM, from which
it (2) generates high-level natural language reasoning steps before outputting Python code (3) to interface with a pre-trained
object detection model and execute the generated trajectories on the robot. (4) After task execution, an off-the-shelf object
tracking model is used to obtain 3-D bounding boxes of the previously detected objects over the duration of the task, which
are then provided to the LLM as numerical values to detect whether the task was executed successfully or not.

across an image, LLMs can also detect if a task has failed
and subsequently re-plan an alternative trajectory.

II. PROBLEM FORMULATION

We investigate if an LLM (GPT-4 [6]) can predict a
dense sequence of end-effector poses to solve a range of
manipulation tasks. We now explain what the assumptions
and constraints are in our investigation, followed by details
of the tasks used for evaluation. Given this background, we
then present our investigation and its results in Sec. III.

Assumptions and Constraints: We design a task-agnostic
prompt to study the zero-shot control capabilities of LLMs,
with the following assumptions: (1) no pre-existing motion
primitives, policies or trajectory optimisers: the LLM should
output the full sequence of end-effector poses itself ; (2) no
in-context examples: we study the ability of LLMs to reason
about tasks given their internal knowledge alone, and no part
of any task is explicitly mentioned in the prompt, either in
the form of examples or instructions; (3) the LLM can query
a pre-trained vision model to obtain information about the
scene, but should autonomously generate, parse and interpret
the inputs and outputs; (4) no additional pre-training or fine-
tuning on robotics-specific data: we focus our research on
pre-trained and widely available models, so that our work
can easily be reproduced even with limited compute budget.
Details of the real-world experimental setup are presented in
Appendix B.

Task Selection: In pursuit of objectivity, we opt to bench-
mark our zero-shot LLM-guided robotic control against a
challenging repertoire of everyday manipulation tasks. We
recreated 30 everyday manipulation tasks from recent
robotics papers published at leading conferences [5], [7],
[8], [9], [3], often tackled by relying on hundreds of manual
demonstrations. This serves as a representative benchmark of
real-world challenges, mirroring the complexity and diversity

of the tasks encountered in contemporary robotics research.
We choose tasks which semantically cover the most repre-
sentative tabletop robot behaviours expressed in these papers,
and success criteria are human-evaluated and designed to
mirror those proposed in the original papers. For each com-
bination of task and method in the following experimental
sections, we calculate the success rate over 5 trials, randomis-
ing the positions and orientations of the objects for each
trial. The task description is provided in natural language
to the LLM, after which no additional human feedback or
intervention is allowed. The full list of tasks is shown in
Fig. 3, and example task success and failure videos are
available at https://www.robot-learning.uk/language-models-
trajectory-generators.

III. PROMPT DEVELOPMENT

Full Prompt: The core motivation of our work is to
investigate whether LLMs can inherently guide robots with
minimal dependence on specialised external models and
components, in order to provide effective and useful insights
for the robotics community. Through this investigation, we
designed a single task-agnostic prompt for a range of ev-
eryday manipulation tasks, which does not require any in-
context examples or task-specific guidance. Fig. 2 illustrates
the main information flow in our framework, showing how
the task-agnostic prompt interfaces with the vision models
and the robot.

Through our experiments outlined in this section, our final
prompt formulation instructs the LLM to self-summarise and
decompose the predicted plan into steps, before generating
Python code which, when run by a standard Python inter-
preter, outputs a dense sequence of poses for the end-effector
to follow; this pipeline resulted in the best performance
across those we experimented with. We include details
fundamental to all tasks, such as coordinate definitions, as
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Table 1

Without 
replanning

Without 
replanning

ATTEMPT 2 ATTEMPT 3 WIth Replanning Sum with and 
without replanning

Sum with and 
without replanning

pick the chip bag 
on the left of the 
table

80 4 0 4 80

pick the rightmost 
can

80 4 0 1 1 5 100

pick the fruit in the 
middle

100 5 0 5 100

pick the chip bag 
which is to the 
right of the can

80 4 1 1 5 100

knock over the left 
bottle

40 2 0 0 0 2 40

move the fruit 
which is on the 
right towards the 
bottle

100 5 0 5 100

move the banana 
near the pear

40 2 0 0 0 2 40

push the bottle on 
the left side to the 
orange

40 2 1 0 1 3 60

move the can to 
the bottom of the 
table

40 2 0 0 0 2 40

move the lonely 
object to the 
others

20 1 0 0 0 1 20

push the can 
towards the right

80 4 0 4 80

use the sponge to 
clean the can

60 3 1 1 4 80

place the apple in 
the bowl

80 4 1 1 5 100

pick the apple 
from the bowl and 
place it on the 
table

100 5 0 5 100

wipe the plate 
with the sponge

60 3 0 3 60

shake the mustard 
bottle

100 5 0 5 100

stir the mug with 
the spoon

0 0 0 0 0 0

draw a five-
pointed star 10cm 
wide on the table 
with a pen

40 2 0 2 40

drop the ball into 
the cup

60 3 0 3 60

align the bottle 
vertically

60 3 1 1 4 80

open the bottle 
cap

60 3 0 3 60

insert the bread 
into the toaster

40 2 0 2 40

pick up the bowl 0 0 0 1 1 1 20

move the pan to 
the left

60 3 0 3 60

wipe the table 
with the sponge, 
while avoiding the 
plate on the table

20 1 0 1 20

draw a circle 
10cm wide with its 
centre at 
[0.0,0.3,0.0] with 
the gripper closed

80 4 0 4 80

unplug the 
charger

40 2

take out tissue 
from the 
dispenser

80 4

lower the 
brightness of the 
lamp

0 0

hang the towel on 
the rack

80 4

AVERAGE 57.3333333333333 63.8461538461538

pick the chip bag on the left of the table
pick the rightmost can

pick the fruit in the middle
pick the chip bag which is to the right of the can

knock over the left bottle
move the fruit which is on the right towards the bottle

move the banana near the pear
push the bottle on the left side to the orange

move the can to the bottom of the table
move the lonely object to the others

push the can towards the right
use the sponge to clean the can

place the apple in the bowl
pick the apple from the bowl and place it on the table

wipe the plate with the sponge
shake the mustard bottle

stir the mug with the spoon
draw a five-pointed star 10cm wide on the table with a pen

drop the ball into the cup
align the bottle vertically

open the bottle cap
insert the bread into the toaster

pick up the bowl
move the pan to the left

wipe the table with the sponge, while avoiding the plate on the table
draw a circle 10cm wide with its centre at [0.0,0.3,0.0] with the gripper closed

unplug the charger
take out tissue from the dispenser
lower the brightness of the lamp

hang the towel on the rack
AVERAGE

0 20 40 60 80 100

MAIN PROMPT SUCCESS RATE ON 30 TASKS

TASK SUCCESS RATE (%)
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Fig. 3: Success rates of the best-performing prompt in our investigation on 30 manipulation tasks.

well as functions available for the LLM to call, such as
detect object, which returns the calculated 3-D bound-
ing boxes of the queried objects directly to the LLM. We also
include instructions which aim to improve the correctness
and reliability of the generated trajectories, such as guidance
on step-by-step reasoning, code generation, and collision
avoidance. The full prompt is shown in Appendix D.

We investigated the LLM’s ability to solve zero-shot a
range of manipulation tasks, by evaluating the full prompt
on the full set of tasks taken from the recent literature. These
tasks and their success rates are presented in Fig. 3. Re-
markably, our experiments reveal that LLMs, when equipped
with an off-the-shelf vision model and no external motion
primitives, policies, or trajectory optimisers, do indeed ex-
hibit notable proficiency in executing the majority of these
tasks, by directly predicting a dense sequence of end-effector
poses. In the original papers from which these tasks are
selected [8], [7], [9], solving these tasks required numerous
human demonstrations. As such, these findings underscore
the potential of LLMs as intuitive and versatile guides for
robotic manipulation that minimise the need for human
time and supervision. A sample LLM output is shown in
Appendix F.

Prompt Ablations: During the design of this full prompt,
we identified several challenges when using LLMs for low-
level control, without access to other external dependencies.
In this section, we now outline these challenges which
motivated the final design of the prompt, and accompany
them with results from ablation studies conducted across a
diverse set of tasks (Fig. 4), where certain parts of the full
prompt were removed. We choose a subset of the 30 original
tasks for the ablation studies, which we list in Appendix E,
that still capture the various manipulation challenges in the
full set. The ablated components of the full prompt are shown

in Appendix D.
(1) LLMs often require step-by-step reasoning to solve

tasks. Prior work has shown that the reasoning capabilities
of LLMs can be improved by asking them to break down
the task in a step-by-step manner [10], [11], and adopting
this strategy, we prompt the LLM (1) to break down the
trajectory into a sequence of sub-trajectory steps, and (2)
to include in the plan when to lower the gripper to make
contact with an object. We find that, without including these
step-by-step reasoning prompts, the LLM often omits key
trajectory steps required to execute the task successfully, such
as opening or closing the gripper, or aligning the gripper to
be parallel to the graspable side of the object, which are not
stated explicitly in the prompt. Indeed, the first three columns
in Fig. 4 show that prompting the LLM to think step by step
resulted in the highest performance increase.

(2) LLMs can be prone to write code which results
in errors, both syntactically and semantically. While
much improvement has been made in the domain of code
generation by LLMs [12], [6], their outputs can still throw
errors, as well as produce undesirable results when executed.
In order to mitigate this, and inspired again by the power
of LLMs performing an internal monologue with natural
language reasoning, we prompt the LLM to document any
functions it defines, with their expected inputs and outputs,
and their data types. In addition, we include a prompt
instructing the LLM to define reusable functions for common
motions (for example, linear trajectory from one point to
another), to prevent instances where, as a notable example,
it would hard-code the height of the gripper inside a function
definition, and reuse that function for another sub-trajectory
step which should have been executed at a different height.
Similarly, we prompt the LLM to name each sub-trajectory
step variable with a number to relate it to each of the steps
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Fig. 4: We investigate the effect of removing parts of the main prompt on task success rates.

in the high-level trajectory plan, and to minimise the chance
of omitting a sub-trajectory step. The effects of removing
these prompt components are, again, noticeable (fourth and
fifth columns in Fig. 4).

(3) LLMs are trained on limited grounded physical
interaction data. Due to the scarcity of grounded physical
interaction data in their training corpora [13], LLMs often
fail to take into account possible collisions between the
objects being manipulated. We therefore prompt the LLM
to pay attention to the dimensions of the objects and to
generate additional waypoints and sub-trajectories, which
could help with avoiding collisions. We also include in
the prompt a specific phrase which we noticed during our
investigation was being used frequently by the LLM for its
internal reasoning (“clear objects and the tabletop”). Our
experiments show that, while removing this particular phrase
from the collision avoidance prompt lowered performance
(sixth column in Fig. 4), LLMs do possess some inherent
understanding of possible collisions between different ob-
jects, as they performed well even after removing the entire
collision avoidance prompt (tenth column in Fig. 4).

(4) LLMs often fail to reason about complex trajectory
shapes. In a manner similar to the first challenge, we employ
a two-step strategy, where initially, we explicitly ask the
LLM to generate a textual description of the shape of the
motion trajectory as internal reasoning (for example, shaking
involves a sinusoidal motion), before outputting the actual
sequence of poses required to execute this trajectory (in
contrast to Challenge (1), where we prompted the LLM to
output a more detailed step-by-step trajectory plan). This has
been shown to be beneficial in prior work [4], and indeed
this result is also reflected in the eighth column in Fig. 4.

(5) LLMs often fail to reason about how to interact
with objects. In our experiments, we found that LLMs often
simplified and failed to reason about more intricate details of
object interaction, such as realising that some objects require
interaction with a specific part (for example, the rim of a
bowl, or the handle of a pan). In order to enable the LLM
to detect the most suitable object part to interact with, we
prompt it to describe the object part in high-level natural
language, and we see in the ninth column in Fig. 4 that this
results in more tasks being executed successfully.

IV. FURTHER INVESTIGATIONS

We conduct further ablation studies regarding the modality
of the trajectory generation (whether to output the trajec-

tory directly in numerical values as language tokens, or to
generate Python code which, when executed, outputs the
trajectory), the extent to which each output modality is
executable by the robot, and the performance of the different
available LLMs. The tasks used for these ablation studies are
shown in Appendix E. We also detail the ability of LLMs to
detect whether a task was executed successfully or not and
subsequently re-plan the trajectory, the various sources of
error which led to task execution failures when performing
the 30 tasks with the main prompt, and provide a detailed
comparison against Code as Policies [14], which is closest to
our work. We present the full details of these investigations
in Appendix C.

V. CONCLUSIONS

The primary contribution of this paper is an investigation
into to what extent an LLM can successfully predict dense
sequences of end-effector poses for a range of real-world
manipulation tasks. To differentiate this from other previous
works, we imposed constraints that the LLM must use a
single task-agnostic prompt without any in-context exam-
ples, and has access to only off-the-shelf object detection
and segmentation vision models, with no other auxiliary
components. Our experiments encompassed 30 diverse tasks
drawn from the recent literature, and we showed that GPT-4,
together with the prompt we designed, can perform well on
many of these tasks.

With today’s LLMs and our zero-shot prompt, there are
several types of tasks which are too challenging, such as
those requiring high precision, complex trajectory shapes,
and richer perception beyond just computing bounding
boxes. As LLMs continue to improve, we may see improved
abilities to solve these tasks, and recent advances in VLMs
will help to better interface language and vision. But for now,
this paper raises the assumed limit of the utility of LLMs for
robotics, and we hope that the insights we provide will help
those developing their own LLM-based robot controllers, and
will encourage those leading the field in LLMs and VLMs
to further align developments with robotics applications.
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APPENDIX

A. Related Work
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Fig. 5: A taxonomy of requirements of LLM-based zero-shot
methods from the recent literature.

While prior works have made significant strides in
leveraging LLMs for various aspects of robotic control [2],
several limitations and dependencies on external modules
persist. The core motivation of our work is to investigate
whether these limitations are inherent, or if LLMs can
be deployed for low-level control, going from language to
a dense sequence of end-effector poses. In this section, we
provide an overview of the relevant literature and highlight
key distinctions between prior approaches and our research
focus.

LLMs for Robotics: There have been a number of
works which leverage the common-sense knowledge and
instruction-following capabilities of LLMs, but they have
relied on external components for the full low-level trajec-
tory generation. Both Code as Policies [14] and ChatGPT
for Robotics [15] rely on predefined motion primitives for
robot control, and their focus is predominantly on high-

level planning. In the case of SayCan [5], robotics-specific data is required to pre-train the skills. VoxPoser [3] and Language
to Rewards [4] have explored the use of LLMs to generate high-reward regions for robot movement, but these methods
still necessitate external trajectory optimisers to compute a trajectory, such as cost and reward functions used to evaluate
randomly sampled trajectories along with Model Predictive Control (MPC) [3]. VoxPoser [3], Code as Policies [14], and
SayCan [5] have also relied heavily on providing in-context examples to the LLM input. However, these methods can
encounter challenges when extrapolating beyond the demonstrated tasks. A summary of these works and their required
auxiliary components is shown in Fig. 5.

Out of the aforementioned works, Code as Policies [14] is closest to our work. However, instead of relying on predefined
primitives and in-context examples, we focus our investigation on the generation of trajectories more complex than a sequence
of linear interpolations and without any task-specific guidance, thus broadening the scope of applicability and adaptability
in the real world and reducing the reliance on human expertise. We also show that these complex trajectories are generated
from their internal knowledge of these tasks, instead of relying solely on the use of external libraries for code generation, and
that this understanding is not only beneficial for trajectory generation, but also for task success detection as well, providing
insight into the capabilities of LLMs to detect and recover from failures.

Foundation Models for Robotics: Recent works [16], [17] demonstrated that a Vision Language Model (VLM) [18]
can be fine-tuned with a large robotics-related dataset of actions to enable zero-shot language-conditioned control. It has
also been shown that such demonstrations can be provided directly to LLMs in the form of language tokens as in-context
examples [19], [20]. Other works on foundation models include Socratic Models [21], which proposes to leverage a number of
them via language-based exchange, and Inner Monologue [22] which focuses on environment feedback for success detection,
scene description, and human interaction. VLMs and LLMs have also been used in reinforcement learning settings for their
planning and success detection capabilities, especially in long-horizon tasks [23].

Language and Visual Grounding: Although not the main focus of our work, there have been numerous methods to ground
the visual information for language-conditioned robot manipulation, such as embedding CLIP features into NeRFs [24], [25],
[26], and keypoint extraction for object encoding [19] and demonstration retrieval [27], [28]. DALL-E-Bot [29] introduces
web-scale image diffusion models to ground the target rearrangement scene, whereas Dream2Real [30] makes use of CLIP
similarity scores to determine the most visually plausible target scene.



B. Real-World Experimental Setup

place the apple in the
bowl

move the lonely object to
the others

pick the chip bag which is
to the right of the can

wipe the plate with the
sponge

Fig. 6: Example wrist-camera observations re-
ceived by the robot at the start of each task, and
their corresponding task instructions.

We run our experiments on a Sawyer robot equipped with a 2F-85
Robotiq gripper. We use two Intel RealSense D435 RGB-D cameras,
one mounted on the wrist of the robot, and the other fixed on a tripod,
to observe the environment. The wrist-mounted camera captures a top-
down view of the environment at the beginning of an episode (Fig. 6),
which is used by a vision model if queried by the LLM. We utilise a pre-
trained object detection model, LangSAM [31] (based on Grounding
DINO [32] and Segment Anything [33]), and whenever the LLM calls
detect object, we automatically calculate 3-D bounding boxes of
the queried objects from the segmentation maps returned by LangSAM
using the camera calibration, and provide the bounding boxes to the
LLM. The LLM then leverages this visual understanding of the envi-
ronment to predict a sequence of 4-D end-effector poses (3 dimensions
for position, 1 dimension for rotation about the vertical axis), as well as
either open gripper or close gripper commands. This is then
executed by the robot in an open loop, using a position controller to
move sequentially between each pose, hence producing a full trajectory.
After task execution, we use XMem [34] to track the segmentation maps
over the entire duration of the task, which is then later used for detecting
if the task was successful or not.



C. Additional Details to Further Investigations
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Fig. 7: (A) We compare the performance of different widely used LLMs. (B) We compare the abilities of these LLMs to
generate outputs that are directly executable by the robot. (C) We compare different modes for the trajectory output. (D) We
measure the percentage of control outputs from the LLM that are directly executable by the robot. (E) We compare different
modes for controlling the gripper. (F) We demonstrate the ability of LLMs to detect failures and re-plan autonomously.

SELF-SUMMARISATION

To perform the shaking task, the mustard bottle should
move in a sinusoidal motion.

The robot arm should grasp the body of the mustard
bottle, approaching it along its shorter side.

Here is a detailed step-by-step plan:

1. Go to above the mustard bottle...

TRAJECTORY GENERATION

def gen_traj...

traj_1 = gen_traj(...)

exec_traj(traj_1)

close_gripper()...

MAIN PROMPT

You are a sentient
AI...

TRAJECTORY GENERATION

# trajectory 1:

[0.1,0.2,0.3,0.0,1]

# trajectory 2:

[0.1,0.2,0.1,0.0,0]...

LLM OUTPUT

INPUT

USER INPUT

"shake the mustard
bottle"

CODE OUTPUT OR NUMERICAL OUTPUT

Fig. 8: Given the full main prompt and the user
input command, the LLM first outputs a high-level
natural language self-summarisation of the trajec-
tory plan, before generating either code which
computes and executes the trajectory, or the final
trajectory directly as a list of numerical values.

(1) How should the final trajectory be represented? In this set
of experiments, we explore the optimal way for the LLM to output
the sequence of end-effector poses. Specifically, we conduct ablation
studies to evaluate whether this should be represented as a list of
numerical values or as code for trajectory generation. Fig. 8 shows
the distinction between these two output modes.

The results, summarised in Fig. 7 C, offer valuable insights. Notably,
our investigation shows that outputting code that generates the trajectory
outperforms predicting the trajectory directly as an explicit list of
numerical poses for the end-effector to follow, represented as language
tokens (Fig. 8). In particular, we observe that representing trajectories as
numerical values or as code yields similar performance for most tasks,
with distinctions emerging in cases involving more intricate trajectories
(for example, drawing a circle or a five-pointed star), where outputting
code that generates such trajectories prevails (60% success rates for
code output compared to 10% for numerical output). This suggests a
fundamental property of LLMs for control: while not trained on physical
interactions and trajectories, their understanding of both code and
mathematical / geometrical structures [6], [35] can bridge these
two modes of thinking. Once the overall trajectory shape has been
identified by the LLM, while it can be challenging to follow it directly
in numbers, it is proficient at generating code that itself can follow
complex paths.

Additionally, we study whether directly generating a list of numerical
poses, or code that then generates the poses itself, leads to executable
outputs more often. Giving low-level control to the LLM poses the
risk of the robot receiving wrongly formatted outputs that cannot be
executed by the robot. Therefore, in this ablation, we investigate how
often the output of the LLM is formatted such that it is executable by
the robot. We include prompts instructing the LLM to follow a specific
format for the trajectory generation (for the former, we require a list
between the 〈trajectory〉 and 〈/trajectory〉 tags without any

Python functions, and for the latter, we require any Python code to be between the ```python and ``` tags). Given the
output of the LLM, if an error is thrown during automatic parsing according to this format, we provide the LLM with the
error message and ask it to correct the output, for up to three times. Measuring the percentage of executable outputs (Fig. 7
D) demonstrates that outputting code results in 100% of executable trajectories, while direct numerical values cannot be
parsed even after three self-corrections for some episodes.

(2) How should the LLM output the gripper action? We also investigate the optimal way of letting the LLM control
the gripper open or close action: we compare using a binary variable a ∈ {0, 1} or explicit functions open gripper,
close gripper. Our results, in Fig. 7 E, demonstrate that the LLM achieves better performance when using explicit
functions, while using a binary variable leads to more errors. A notable failure case stemmed from the LLM hard-coding
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Coordinate system: +x is to the right...
User command is "pick the rightmost can".
Can 1 poses: [0.2,0.2,0.1], [0.2,0.2,0.1],         
             [0.2,0.2,0.1], [0.2,0.2,0.3].
Can 2 poses: ...
Can 3 poses: ...

Given the above information, can you determine
whether the task was completed successfully or not?

TASK SUMMARY PROMPT

The task was not completed successfully.

Can you summarise the trajectory executed
on the robot, and the relevant object
poses, for this and any previous failed
attempts?

Can you also suggest what went wrong, and
suggest specific changes that would be
appropriate?

Fig. 9: Our experiments demonstrate that LLMs can interpret the trajectories of objects to detect successful and unsuccessful
episodes.

the gripper state to be open in one of the functions it defined for itself, such that when the same function was then used to
generate the object approach-and-lift sub-trajectory steps, the gripper failed to close and grasp the object. Having explicit
functions to open and close the gripper, on the other hand, allowed a decoupling of these fundamental actions and enabled
the correct functions to be called at any time during the overall trajectory generation plan.

1
2

3

Fig. 10: (1) The LLM attempts to grasp the bowl
at its centroid, recognises failure, and (2) proposes
a new trajectory. (3) On its third attempt after re-
planning again, it successfully grasps the bowl.

(3) Which of the currently available LLMs perform best at
following instructions outlined in the prompt? Next, we present
results on ablation studies conducted to determine the best-performing
LLM on the main prompt. We see in Fig. 7 B that out of the five most
popular LLMs currently available for public use to date [6], [36], [37],
[38], [39], and under the same constraints as the executable output
study presented in Fig. 7 D, only GPT-4 and Claude 3 (Opus) were
able to generate code which was able to be executed 100% of the time
(regardless of whether the resulting code output completed the task
successfully or not), whereas the outputs for Gemini 1.0 Pro, Claude
2 and Llama 2 (70B Chat) were only executable 88.0%, 68.0% and
36.0% of the time, respectively. The corresponding success rates for
the five LLMs are shown in Fig. 7 A.

(4) Can LLMs recognise unsuccessful trajectories, and adapt
their plan? We also delve into the ability of LLMs to recognise and
respond to failures during task execution. Our experiments demonstrate
that, by analysing the numerical trajectories of objects, LLMs can
autonomously detect failure outcomes and initiate re-planning to rectify
them. We therefore demonstrate that LLMs possess not only the ability
to generate trajectories, but also to discern whether they represent

successful or unsuccessful episodes, given the tasks requested by the user. Our proposed pipeline for task success
detection and re-planning is shown in Fig. 9.

For each of the 5 trials of a task, when a failure is identified, the LLM modifies the original plan to tackle the possible
issue. In Fig. 7 F, we demonstrate that this leads to a small improvement in performance, without the need for any human
intervention. As a notable example, the LLM always fails at grasping a bowl on its first try (Fig. 3), attempting to grasp
it by the centroid (Fig. 10). Through a sequence of two re-planning iterations, however, the LLM adapts its trajectory and
then successfully grasps the bowl by its rim, leading to an increase from 0% to 20% in the overall task execution success
rate.
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Fig. 12: (Left) We compare our zero-shot task
performance across 30 tasks to that of Code as
Policies (CaP). (Right) We demonstrate that our
prompt is able to generalise to unseen tasks with
higher performance than using CaP-style prompt-
ing with a varying number of in-context examples
(in brackets).

(5) What were the main failure modes? Finally, we present
the main failure modes of the main prompt on the 30 manipulation
tasks. We group the sources of error into the following categories:
(1) gripper pose prediction error, where the LLM was unable to
predict accurate enough goal poses for the gripper, and this resulted
in wrong parameterisations of trajectory generation functions (which
the LLM defined for itself previously); (2) task planning error, where
the LLM was unable to plan a correct high-level sequence of steps to
complete the task successfully (for example, calling close gripper
before lowering the gripper to the object to grasp it); (3) trajectory
generation function definition error, where the LLM coded wrongly the
function which would be used to generate the dense sequence of end-
effector poses (the function itself would be executable by a Python
interpreter, but as opposed to Error (1) which was concerned with
the parameterisation of such functions, the function itself was wrongly
defined; for example, hard-coding the gripper to be open or closed, or its
height within the function definition); (4) object detection error, where
the wrong segmentation map was returned by the object detector based
on the text queried by the LLM; (5) camera calibration error, where
the LLM might have generated the correct trajectory for the bounding
box it was provided with, but the bounding box itself was incorrectly
calculated due to noisy camera data and this resulted in the task being
unsuccessful. The full breakdown is shown in Fig. 11.

We can see that nearly half of the failure cases can be attributed to
the more difficult task of predicting accurate gripper poses (48.3%),
compared to high-level planning (25.9%), of which numerous works
have already shown that LLMs are capable [5], [40]. Regarding the
object detection errors, most of the errors were due to the object detector
not being able to segment the object parts correctly when queried by
the LLM, such as the rim of a bowl, or the slot of a toaster.

(6) How does our work compare against Code as Policies? We
perform two further sets of experiments in simulation and with ground-
truth object poses, comparing our zero-shot task-agnostic prompt
against the prompt structure set out in Code as Policies (CaP) [14],
which makes use of in-context examples and motion primitives. Firstly,

we compare the performance of the original CaP prompt on the same 30 tasks, and find that while for the basic pick-and-
place tasks, for which examples have already been provided, it has near-perfect success rates, it is unable to generalise at
all to more complex tasks, resulting in a lower average success rate of 22.0%, compared to 57.3% for our prompt.

Secondly, we study the role of CaP-style in-context examples in enabling (or limiting) unseen task generalisation, and
compare the success rates of CaP prompts with a varying number of additional manually engineered in-context examples (0,
10, and 20) on 10 unseen tasks. We find that with additional examples, the performance on unseen tasks increases, but even
with 20 extra examples covering similar tasks to the unseen ones, the CaP prompts are unable to perform as well (highest
34.0%) as our zero-shot task-agnostic prompt (46.0%). These results are shown in Fig. 12.



D. Prompts and Ablations

Fig. 13: The full main prompt.



Fig. 14: The full prompt with the highlighted sections removed for the ablation studies on the main prompt.



Fig. 15: The full prompt with the highlighted sections removed for the ablation studies on the main prompt (continued).



Fig. 16: The full prompt with the highlighted sections removed for the ablation studies on the main prompt (continued).



Fig. 17: The full main prompt modified for evaluating the LLM’s ability to generate trajectories directly in numbers as
language tokens.



Fig. 18: The full main prompt modified for ablation studies on the gripper action output.



Fig. 19: Task success detection prompt.

Fig. 20: Task re-planning prompt, to be appended to the main prompt if the LLM detects that the task has failed and needs
to be re-planned and retried.

Fig. 21: Task summary prompt, as part of task re-planning.



E. Tasks Selected for Ablation Studies

Fig. 22: List of tasks selected for ablation studies of the main prompt in Sec. III and of the different LLMs in Sec. IV.

Fig. 23: List of tasks selected for ablation studies of the action output in Sec. IV.



F. Sample LLM Output

Fig. 24: Sample LLM output on the “draw a five-pointed star 10cm wide on the table with a pen” task.



Fig. 25: Sample LLM output on the “draw a five-pointed star 10cm wide on the table with a pen” task (continued).



Fig. 26: Sample LLM output on the “draw a five-pointed star 10cm wide on the table with a pen” task (continued).

Fig. 27: Sample LLM output on the “draw a five-pointed star 10cm wide on the table with a pen” task (continued).



Fig. 28: Sample LLM output on the “draw a five-pointed star 10cm wide on the table with a pen” task (continued).
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