
Formal Confinement

Quinn Dougherty
quinn@beneficialaifoundation.org

Abstract
We would like to put the AI in a box. We show how to create an interface between the box and the

world out of specifications in Lean. It is the AI’s responsibility to provide a proof that its (restricted)
output abides by the spec. The runnable prototype is at https://github.com/quinn-dougherty/formal-

confinement.

1. Introduction
Previously, classical AI safety warned against trying to put the AI in a box [1]. Yudkowsky famously
convinced people of this via a roleplay game in the extropians mailing list days [2]. Recent work
from AI Control and Safeguarded AI has reignited interest in this long neglected area.

• AI Control [3], [4] (Ctrl) is reasoning about getting useful work out of an untrusted (possibly
misaligned) AI. [3] introduces control evaluations, stress‑testing safety protocols in an APPS [5]
backdooring testbed: GPT‑4 attempts to embed hidden backdoors, GPT‑3.5 flags the riskiest
submissions, and scarce audits verify only the worst cases.

• Safeguarded AI [6] (SgAI) tries to isolate the trust surface to a specification and a proof checker. In
SgAI’s “gatekeeper” architecture, every proposed action must come with a machine-checkable
proof. The AI generates proof certificates; a minimal, verified checker enforces them. However,
proof certificates in SgAI express probabilistic semantics and cyberphysical systems, which are
sufficiently hard that we haven’t seen a prototype from them yet.

What these lines of work have in common is policing the interface between the AI and the outside
world. Though boxes don’t solve the whole problem with respect to arbitrary superintelligences,
they are still worthwhile because we can use non-robust techniques to get us through some
percentage of the transition, empowering our successors to bootstrap from there to something more
robust [7].

Separately, a forgotten literature on proof-carrying code [8] (PCC) provides a background for the
AI’s obligation to tag code it wants to execute in the world with a “proof” that the code is
“correct” (up to some specification). Reviving ideas from PCC for AI safety is discussed in [9] and
[10].

Here, we’re seeking a minimal, concrete, end-to-end prototype synthesizing a subset of these ideas.

1.1. Contributions
We present a natural midpoint between PCC and Ctrl, while for simplicity ignoring many
characteristics of SgAI (Section 4). We deliver a prototype¹ AI box in Python in which we can lock up
an agent graph that writes programs in a toy language along with correctness proofs in Lean [11].
This is arguably the first prototype of a special case of SgAI’s gatekeeper.

¹https://github.com/quinn-dougherty/formal-confinement

quinn@beneficialaifoundation.org
https://github.com/quinn-dougherty/formal-confinement
https://github.com/quinn-dougherty/formal-confinement
https://github.com/quinn-dougherty/formal-confinement

2. A Formal Confinement Protocol (FCP)
2.1. Overview
A box is a program that takes a specification and asks a simple agent graph to provide a program
that satisfies it and prove that the program is correct with respect to the specification. If the proof is
successful, then the code is passed back to the caller tagged with the proof for auditing.

𝜆𝜎.𝜎𝑥 > 0

𝜆𝜎.𝜎𝑥 > 1

<imp>
 x := x + 1
</imp>

<prf> ... </prf>

Lean4

World

Figure 1: Box protocol at example specification. The AI accepts a specification (formally (Env →
ℙ) × (Env → ℙ))) and returns proof-carrying code, with the option of returning nothing.

2.2. Preliminaries
Let ℙ be the type of propositions. Let imp be the minimal imperative programming language with
expressions valued in integers containing skip, sequence, assign, if, and while statements. Let Env
be the state type, assigning variable names to values, and let Assertion be the assertion type,
predicates on state. Formally,

Env ≔ string→ int64
Assertion ≔ Env → ℙ

Execution is a function from a command and a state that returns a state (exec : imp→ Env → Env).
A hoare triple [12] is a ternary predicate expressing when a command sends an assertion (the
precondition) to another assertion (the postcondition), quantified over all states. Formally,

hoare ≔ 𝑃𝑐𝑄 ↦
∀(𝜎1𝜎2 : Env), 𝑃𝜎1 → exec 𝑐𝜎1 = 𝜎2 → 𝑄𝜎2 :

Assertion → imp→ Assertion → ℙ

and denoted hoare 𝑃𝑐𝑄 = {𝑃 }<imp> 𝑐 </imp>{𝑄}. A term of type {𝑃 }<imp> 𝑐 </imp>{𝑄} is a proof
that the triple is true.

2.3. Example trace
Let’s walk through an FCP trace as you’d see it if you cloned our repo, pictured in Figure 2.

First, the user passes in a precondition and a postcondition. We will continue using the example in
Figure 1, passing in 𝑥 > 0 and 𝑥 > 1 for precondition and postcondition, respectively. Let’s say for
the sake of argument that the AI’s first guess is x := x - 1;. Then, the proof agent will flail about
until MAX_ITERATIONS is reached, since the program is incorrect, at which point it will report to the
boundary its failed proof state. Then, the boundary replies “try again, I’m not executing that code in
the world” and hands the program back to the AI, asking for another one. Suppose that this time, the
AI finds x := x + 1;. This time, the proof agent converges and Lean reports an exit code of 0. The
AI sends the imp program to the boundary and attests to its correctness with the Lean program,
which it also attaches.

1. User provides specification
Precondition: 𝑥 > 0, Postcondition: 𝑥 > 1

2. AI generates code
Code generated

3. Proof attempt

Prove?❌ Fails

x := x - 1;

Try again

✅ Succeeds

x := x + 1;

4. Execute safely

Code + proof

Proof fails Proof succeeds

Figure 2: Example trace described.

The Lean program would look like this (Note it must be run with lake build in the appropriate lake
project, as it has imports)

import Imp
open Imp

example : {{astn x > 0}}(imp { x := x + 1; }){{astn x > 1}} := by
 auto_hoare_pos

Listing 1: Proof of the example hoare triple from Figure 1.

This file paired with an exit code of zero pinned to a particular Lean toolchain (version) can be
signed in a GPG context for attestation of correctness.

3. Experiments
We test the following specifications

Sample Precondition Postcondition ∀-bound metavariables

gt8 x = 0 x > 8 —

swap x = ~n <^> y = ~m x = ~m <^> y = ~n n m

facto x = ~n y = ~(
 let rec go := fun (x :
Int) => match x with
 | .ofNat m => match m
with
 | .zero => 1
 | .succ k => k.succ *
go (Int.ofNat k)
 | .negSucc _ => 0
 decreasing_by apply
Nat.lt_succ_self
 go n
)

n

on claude-sonnet-4-20250514, claude-opus-4-20250514, gpt-4.1-2025-04-14, and o3-2025-04-16. For
each run the imp programmer and the prover are the same model (though in principle they need not
be).

3.1. Architecture
We use a simple loop scaffold. The robot in Figure 1 is effectively one short loop that writes imp code
(almost never using more than one try) and another longer loop that writes Lean proofs.

3.2. Results

Experiment Model Status Iterations Verification Burden

gt8 anthropic/claude-
sonnet-4-20250514

✅ 1 1.525

gt8 anthropic/claude-
opus-4-20250514

✅ 3 3.664

gt8 openai/gpt-4.1-2025-04-14 ✅ 1 1.516

gt8 openai/o3-2025-04-16 ✅ 1 2.036

swap anthropic/claude-
sonnet-4-20250514

✅ 3 4.239

swap openai/gpt-4.1-2025-04-14 ⌛ 11 —

swap openai/o3-2025-04-16 ✅ 1 3.284

facto anthropic/claude-
sonnet-4-20250514

⌛ 11 —

facto anthropic/claude-
opus-4-20250514

⌛ 11 —

facto openai/gpt-4.1-2025-04-14 ⌛ 11 —

facto openai/o3-2025-04-16 ⌛ 11 —

Table 1: Experiment results². The empty hourglass ⌛ denotes divergence after running out of proof
loop budget (hitting max iterations)

The verification burden 𝑘 says that if it costs 𝑥 tokens to complete the program, then it costs 𝑘𝑥
tokens to prove it correct. Divergence is hardly evidence that the program completion is incorrect,
because our proof performance is so poor.

²Note that swap on ops4 returned an unhandled exception.

snt4, gt8

ops4, gt8

gpt41, gt8

o3, gt8

snt4, swap

o3, swap

0 19 38 56 75
0

1.1

2.1

3.2

4.2

Cost ($ per output MTok) (June 2025)
Ve

rifi
ca

tio
n

Bu
rd

en

Figure 3: Verification burden vs model cost. Each point represents a successful verification attempt.

Due to our provided tactic hoare_auto_pos, these verification burdens are not realistic to what
they’d be in more general settings. Since long proofs with base tactics are brittle (tracking
hypothesis names, whitespace, etc.), a future direction is to ask the language model to synthesize
tactics that shorten the proof, though the tokens spent synthesizing tactics would count against the
verification burden.

4. Related Work
4.1. Proof-carrying code and LLMs
Our work is well situated within PCC [8] and the closely related certifying algorithms [13]. Our
setup is similar to that in [14], who only approve code that that comes with a Dafny proof, but over
there they emphasize the use of verification condition generation to make the specification
elicitation from the human a little easier.

4.2. Confinement
In the seminal [15], Lampson 1973 states confinement rules to reason about when a program is or
isn’t confined.
1. Total isolation or transitivity: either it does not call any other program or if it calls another

program that program is also confined.
2. Masking and enforcement: all inputs (including side-channels) must be fully specified and

enforced by the caller, and input to covert channels conforms to caller’s specifications.

Building on Lampson, [7] considers confinement of AI, especially superintelligence.

In the hopes of starting a new subfield of computer security, AI Safety Engineering, we define
the Artificial Intelligence Confinement Problem (AICP) as the challenge of restricting an
artificially intelligent entity to a confined environment from which it can’t exchange
information with the outside environment via legitimate or covert channels if such information
exchange was not authorized by the confinement authority

— Yampolskiy 2012 [7]

The current formal confinement work explores a restriction of Yampolskiy’s AICP to the imp
programming language, where the confinement authority is the user providing precondition and
postcondition backed by Lean. In fact, the setting is so restricted that we meet the Lampson rules
almost for free.

See [16] for a review of common software bugs and cybersecurity pitfalls, many of which are greatly
alleviated if not outright blocked by formal verification. For something more modern, see [17] for
the connection between LLM agents and information-flow security.

4.3. AI control
Ctrl [3] frames oversight as a contest between an untrusted model, a trusted model, and limited
high-quality audits. Their trusted/untrusted monitoring, defer‑to‑trusted routing, and trusted editing
strategies map out a safety-usefulness Pareto frontier, with trusted editing nearly eliminating
backdoors at modest utility cost

The main difference between the current work and Ctrl [3] is we don’t emphasize intentional
subversion (as in try to elicit it for stress testing). We’re keen to do this soon.

4.4. Safeguarded AI
SgAI [6] wants to accomplish confinement via proof-carrying code, but crucially attempts to reason
with probabilistic semantics and expected value bounds so it can tackle dynamical and stochastic
systems. This enables safety guarantees over stochastic and continuous domains at the cost of a
more complex proof stack.

Our protocol instead fixes the domain to discrete imp programs and embeds Lean proofs for every
action, shrinking the trusted base to Lean’s off-the-shelf kernel and an interpretable specification.

5. Future Work
5.1. Non-toy languages
There are several formal verification stacks that work on real world languages like C [18], [19] or
Rust [20], [21]. It is conceptually straightforward to extend our codebase to work with them rather
than imp. In less restricted settings, we might find that we do not get the Lampson rules [15] for free.
Additionally, non-toy settings could be at a high enough volume to give us richer verification burden
statistics, which we’re interested in because the world should know what the safety overhead of
formal verification is in the age of LLMs.

5.2. mcp-hardened
We used MCP to orchestrate the agent graph. If MCP is an appropriate foundational framework for a
box, it’d be nice to build in stronger security guarantees and fewer footguns. A hardened MCP
would enable box devs to rely on the framework to increase friction to writing insecure boxes. For
example, depending on my server’s log permissions or the oracle client’s print statements, an
incorrect program could leak to the caller. If we’d like to deploy narrowly superhuman AIs in boxes,
this becomes more important.

5.3. Demonstrate subversive code getting caught by the protocol and sent
back to the model

In [3], Greenblatt et al elicit subversive code from the AI to see if their protocol can catch it. It’d be
nice to transfer this aspect to the PCC setting. This is the obvious direction to study completeness of
specifications, or the problem of expressing programs via specs uniquely as well as correctly.

6. Acknowledgments
Thank you Stephen Mell for discussion.

Bibliography
[1] LessWrong Contributors, “AI Boxing (Containment).” [Online]. Available: https://www.

lesswrong.com/w/ai-boxing-containment

[2] E. Yudkowsky, “The AI-Box Experiment.” [Online]. Available: https://www.yudkowsky.net/
singularity/aibox

[3] R. Greenblatt, B. Shlegeris, K. Sachan, and F. Roger, “AI Control: Improving Safety Despite
Intentional Subversion.” [Online]. Available: https://arxiv.org/abs/2312.06942

[4] A. Bhatt et al., “Ctrl-Z: Controlling AI Agents via Resampling.” [Online]. Available: https://
arxiv.org/abs/2504.10374

[5] D. Hendrycks et al., “Measuring Coding Challenge Competence With APPS,” ArXiv, 2021,
[Online]. Available: https://api.semanticscholar.org/CorpusID:234790100

[6] D. Dalrymple, “Safeguarded AI: Constructing Guaranteed Safety,” 2024. [Online]. Available:
https://www.aria.org.uk/media/3nhijno4/aria-safeguarded-ai-programme-thesis-v1.pdf

[7] R. V. Yampolskiy, “Leakproofing the Singularity: Artificial Intelligence Confinement Problem,”
Journal of Consciousness Studies, vol. 19, no. 1–2, pp. 194–214, 2012.

[8] G. C. Necula, “Proof-Carrying Code,” in Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, in POPL '97. Paris, France: Association for
Computing Machinery, 1997, pp. 106–119. doi: 10.1145/263699.263712.

[9] M. Tegmark and S. Omohundro, “Provably safe systems: the only path to controllable
AGI.” [Online]. Available: https://arxiv.org/abs/2309.01933

[10] D. "davidad" Dalrymple et al., “Towards Guaranteed Safe AI: A Framework for Ensuring Robust
and Reliable AI Systems.” [Online]. Available: https://arxiv.org/abs/2405.06624

[11] L. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer, “The Lean Theorem Prover
(System Description),” in Automated Deduction - CADE-25, A. P. Felty and A. Middeldorp, Eds.,
Cham: Springer International Publishing, 2015, pp. 378–388.

[12] “Hoare.” in Software Foundations. 2024. [Online]. Available: https://softwarefoundations.cis.
upenn.edu/plf-current/Hoare.html

[13] R. M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer, “Certifying Algorithms,” Computer
Science Review, vol. 5, no. 2, pp. 119–161, 2011, doi: 10.1016/j.cosrev.2010.09.009.

[14] P. Kamran, P. Devanbu, and C. Stanford, “Vision Paper: Proof-Carrying Code Completions,” in
39th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW
'24), New York, NY, USA: ACM, Oct. 2024, p. 7. doi: 10.1145/3691621.3694932.

[15] B. W. Lampson, “A note on the confinement problem,” Commun. ACM, vol. 16, no. 10, pp. 613–
615, Oct. 1973, doi: 10.1145/362375.362389.

[16] Artificial General Intelligence: 9th International Conference, AGI 2016, New York, NY, USA, July
16-19, 2016, Proceedings. Springer International Publishing, 2016. doi:
10.1007/978-3-319-41649-6.

[17] M. Costa et al., “Securing AI Agents with Information-Flow Control.” [Online]. Available:
https://arxiv.org/abs/2505.23643

https://www.lesswrong.com/w/ai-boxing-containment
https://www.lesswrong.com/w/ai-boxing-containment
https://www.yudkowsky.net/singularity/aibox
https://www.yudkowsky.net/singularity/aibox
https://arxiv.org/abs/2312.06942
https://arxiv.org/abs/2504.10374
https://arxiv.org/abs/2504.10374
https://api.semanticscholar.org/CorpusID:234790100
https://www.aria.org.uk/media/3nhijno4/aria-safeguarded-ai-programme-thesis-v1.pdf
https://doi.org/10.1145/263699.263712
https://arxiv.org/abs/2309.01933
https://arxiv.org/abs/2405.06624
https://softwarefoundations.cis.upenn.edu/plf-current/Hoare.html
https://softwarefoundations.cis.upenn.edu/plf-current/Hoare.html
https://doi.org/10.1016/j.cosrev.2010.09.009
https://doi.org/10.1145/3691621.3694932
https://doi.org/10.1145/362375.362389
https://doi.org/10.1007/978-3-319-41649-6
https://arxiv.org/abs/2505.23643

[18] C. Pulte, D. C. Makwana, T. Sewell, K. Memarian, P. Sewell, and N. Krishnaswami, “CN:
Verifying Systems C Code with Separation-Logic Refinement Types,” Proceedings of the ACM on
Programming Languages, vol. 7, no. POPL, pp. 1–32, Jan. 2023, doi: 10.1145/3571194.

[19] M. Sammler, R. Lepigre, R. Krebbers, K. Memarian, D. Dreyer, and D. Garg, “RefinedC:
Automating the Foundational Verification of C Code with Refined Ownership Types,” in
Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, in PLDI '21. Virtual, Canada: ACM, Jun. 2021, pp. 158–174. doi:
10.1145/3453483.3454036.

[20] A. VanHattum, D. Schwartz-Narbonne, N. Chong, and A. Sampson, “Verifying Dynamic Trait
Objects in Rust,” in Proceedings of the 44th International Conference on Software Engineering:
Software Engineering in Practice, in ICSE-SEIP '22. Pittsburgh, PA, USA: Association for
Computing Machinery, May 2022, pp. 321–330. doi: 10.1145/3510457.3513031.

[21] A. Lattuada et al., “Verus: Verifying Rust Programs using Linear Ghost Types (extended
version).” [Online]. Available: https://arxiv.org/abs/2303.05491

https://doi.org/10.1145/3571194
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/3510457.3513031
https://arxiv.org/abs/2303.05491

	Introduction
	Contributions

	A Formal Confinement Protocol (FCP)
	Overview
	Preliminaries
	Example trace

	Experiments
	Architecture
	Results

	Related Work
	Proof-carrying code and LLMs
	Confinement
	AI control
	Safeguarded AI

	Future Work
	Non-toy languages
	mcp-hardened
	Demonstrate subversive code getting caught by the protocol and sent back to the model

	Acknowledgments
	Bibliography

