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ABSTRACT

It is widely accepted that vanishing and exploding gradient values are the main
reason behind the difficulty of deep network training. In this work, we take a further
step to understand the optimization of deep networks and find that both gradient
correlations and gradient values have strong impacts on model training. Inspired
by our new finding, we explore a simple yet effective network architecture search
(NAS) approach that leverages gradient correlation and gradient values to find well-
performing architectures. To be specific, we first formulate these two terms into a
unified gradient-based kernel and then select architectures with the largest kernels
at initialization as the final networks. The new approach replaces the expensive
“train-then-test” evaluation paradigm with a new lightweight function according
to the gradient-based kernel at initialization. Experiments show that our approach
achieves competitive results with orders of magnitude faster than “train-then-test”
paradigms on image classification tasks. Furthermore, the extremely low search
cost enables its wide applications. It also obtains performance improvements on
two text classification tasks.1

1 INTRODUCTION

Understanding and improving the optimization of deep networks has been an active field of artificial
intelligence. One of the mysteries in deep learning is why extremely deep neural networks are
hard to train. Currently, the vanishing and exploding gradient problem is widely believed to be
the main answer (Bengio et al., 1994; Hochreiter & Schmidhuber, 1997; Pascanu et al., 2013).
Gradients exponentially decrease (or increase) from the top layer to the bottom layer in a multi-
layer network. By extension, the current vanishing and exploding gradient problem also refers to
extremely small (or large) gradient values. Following this explanation, several widely-used training
techniques have been proposed to assist optimization. These studies can be roughly classified into
four categories: initialization-based approaches (Glorot & Bengio, 2010; He et al., 2015; Zhang
et al., 2019), activation-based approaches (Hendrycks & Gimpel, 2016; Klambauer et al., 2017),
normalization based approaches (Ioffe & Szegedy, 2015; Salimans & Kingma, 2016; Ulyanov et al.,
2016; Lei Ba et al., 2016; Nguyen & Salazar, 2019), and skip-connection-based approaches (He et al.,
2016; Huang et al., 2017a). These techniques provide good alternatives to stabilize gradients and
bring promising performance improvements.

Despite much evidence showing the importance of steady gradient values, we are still curious about
whether there are unexplored but important factors. To answer this question, we conduct extensive
experiments and find some surprising phenomena. First, the accuracy curves of some models converge
well with the remaining gradient vanishing and exploding problem. Second, we find several cases
where models with similar gradient values show different convergence performance. These results
indicate that gradient values may not be vital as much as we expect, and some hidden factors play
a significant role in optimization. To answer this question, we explore other gradient features,
such as covariance matrix, correlations, variance, and so on. These features are used to evaluate
gradients from different perspectives. The covariance matrix evaluates the similarity between any two
parameters, which is widely used in optimization studies (Zhao & Zhang, 2015; Faghri et al., 2020).
Gradient correlation is defined to evaluate the similarity between any two examples. Among them,
experiments show that gradient correlation is an important factor. Compared to widely-explored

1We will release the code on publication.
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gradient values, gradient correlations are rarely studied. As gradient values affect the step size in
optimization, vanishing gradients prevent models from changing weight values. In the worst case, this
could completely stop training. Gradient correlations evaluate the randomness of gradient directions
in Euclidean space. Lower gradient correlations indicate more “random” gradient directions and more
“conflicting” parameter updates. For a better understanding, we visualize absolute gradient values
and gradient correlations (See Section 4 for more details). It illustrates that models with either small
values or small correlations show worse convergence and generalization performance, indicating the
importance of these two factors.

Following the new finding, we take a further step to explore gradient correlations and gradient values
in network architecture search. We first formulate two factors into a unified gradient-based kernel,
which is defined as the average of a gradient dot-product matrix. Motivated by the observation that
architectures with larger kernels at initialization tend to have better average results, we develop a
lightweight network architecture search approach, called GT-NAS, which evaluates architectures
according to the gradient-based kernel at initialization. Unlike other NAS approaches that evaluate
architectures via full training, which takes massive computation resources, GT-NAS only relies on
a few examples for kernel calculation. We first select top-k architectures with largest kernels as
candidates, which are then trained to select the best one based on validation performance. In practice,
k is usually set to be a very small value. Experiments show that GT-NAS achieves competitive
results with extremely fast search on NAS-Bench-201 (Ying et al., 2019), a NAS benchmark dataset.
The low search cost allows us to apply NAS on diverse tasks. Specifically, the structure searched
by the proposed policy outperforms the naive baseline without NAS on 4 datasets covering image
classification and text classification.

The main contributions are summarized as follows:

• We propose that both gradient correlations and gradient values matter in optimization, which
gives a new insight to understand and develop optimization techniques.
• Following the new finding, we propose a gradient-based kernel approach for NAS, which is

able to search for well-performing architectures efficiently.
• Experiments show that GT-NAS achieves competitive results with orders of magnitude faster

than the naive baseline.

2 RELATED WORK

Understanding and improving optimization Understanding and improving the optimization of
deep networks has long been a hot research topic. Bengio et al. (1994) find the vanishing and
exploding gradient problem in neural network training. To address this problem, a lot of promising
approaches have been proposed in recent years, which can be classified into four research lines.

The first research line focuses on initialization (Sutskever et al., 2013; Mishkin & Matas, 2016;
Hanin & Rolnick, 2018). Glorot & Bengio (2010) propose to control the variance of parameters via
appropriate initialization. Following this work, several widely-used initialization approaches have
been proposed, including Kaiming initialization (He et al., 2015), Xaiver initinalization (Glorot &
Bengio, 2010), and Fixup initialization (Zhang et al., 2019). The second research line focuses on
normalization (Ioffe & Szegedy, 2015; Lei Ba et al., 2016; Ulyanov et al., 2016; Wu & He, 2018;
Nguyen & Salazar, 2019). These approaches aim to avoid the vanishing gradient by controlling
the distribution of intermediate layers. The third is mainly based on activation functions to make
the derivatives of activation less saturated to avoid the vanishing problem, including GELU acti-
vation (Hendrycks & Gimpel, 2016), SELU activation (Klambauer et al., 2017), and so on. The
motivation behind these approaches is to avoid unsteady derivatives of the activation with respect to
the inputs. The fourth focuses on gradient clipping (Pascanu et al., 2013).

Gradient-based Kernel Our work is also related to gradient-based kernels (Advani & Saxe, 2017;
Jacot et al., 2018). NTK (Jacot et al., 2018) is a popular gradient-based kernel, defined as the Gram
matrix of gradients. It is proposed to analyze model’s convergence and generalization. Following
these studies, many researchers are devoted to understand current networks from the perspective
of NTK (Lee et al., 2019; Hastie et al., 2019; Allen-Zhu et al., 2019; Arora et al., 2019). Du et al.
(2019b) use the Gram matrix of gradients to prove that for an m hidden node shallow neural network
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with ReLU activation, as long as m is large enough, randomly initialized gradient descent converges
to a globally optimal solution at a linear convergence rate for the quadratic loss function. Following
this work, Du et al. (2019a) further expand this finding and prove that gradient descent achieves
zero training loss in polynomial time for a deep over-parameterized neural network with residual
connections.

Network architecture search Neural architecture search aims to replace expert-designed networks
with learned architectures (Chang et al., 2019; Li et al., 2019; Zhou et al., 2020; He et al., 2020a; Fang
et al., 2020; He et al., 2020b; You et al., 2020; Alves & de Oliveira, 2020). The first NAS research
line mainly focuses on random search. The key idea is to randomly evaluate various architectures and
select the best one based on their validation performance. However, despite promising results, many
of them require thousands of GPU days to achieve desired results. To address this problem, Ying
et al. (2019) propose a reinforcement learning based search policy which introduces an architecture
generator with validation accuracy as reward. Another research line is based on evolution approaches.
Real et al. (2019) propose a two-stage search policy. The first stage selects several well-performing
parent architectures. The second stage applies mutation on these parent architectures to select the best
one. Following this work, So et al. (2019) apply the evolution search on Transformer networks and
achieve new state-of-the-art results on machine translation and language modeling tasks. Although
these approaches can reduce exploration costs, the dependence on validation accuracy still leads to
huge computation costs. To get rid of the dependence on validation accuracy, several studies (Jiang
et al., 2019; Liu et al., 2019; Dong & Yang, 2019; Zela et al., 2020; Chu et al., 2020) re-formulate the
task in a differentiable manner and allow efficient search using gradient descent. Unlike these studies,
we propose a lightweight NAS approach, which largely reduces evaluation cost. Furthermore, the
new approach does not rely on additional search models, thus also saves memory usage.

3 NOTATIONS: GRADIENT VALUE AND GRADIENT CORRELATION

Assume g(l)i = {g(l)i,1, · · · , g(l)i,r} is the gradient vector of example i with respect to all parame-
ters in the l-th layer. r is the total number of parameters. We combine all gradient vectors together
to construct a gradient matrix G(l) ∈ Rd×r where d refers to the number of training examples. We
define a matrix P (l) to store the dot-product of gradients. The dot-product between two gradient
vectors is:

P (l)i,j = 〈G(l)i,G(l)j〉. (1)

We divide P (l) by the norm of gradient vectors to get a gradient correlation matrix C(l):

C(l)i,j =
P (l)i,j

||G(l)i|| · ||G(l)j ||
. (2)

Then, we use the average value of C(l) as the final correlation score:

R = E(C(l)). (3)

Here we also evaluate the absolute gradient value:

V = E(|G(l)|). (4)

Since it requires too much time to calculate R and V for plenty of training examples, we randomly
sample µ examples to estimate R and V in implementation for fast calculation. The dot-product
between vectors with too many elements will cause the overflow problem. We also randomly sample
θ parameters when calculating R. To avoid the sampling bias that might affect our findings, we
test different µ ∈ [50, 100, 200, 300, 400, 500] and θ ∈ [50, 100, 200, 300, 400, 500], and observe the
same phenomena. For simplicity, we show our findings in the next section with µ = 50 and θ = 50.

4 RETHINKING VANISHING AND EXPLODING GRADIENTS

In this section, we first analyze how the problem of vanishing and exploding gradient arises. Then,
we show some experimental cases to prove that vanishing and exploding gradient values are not the
only factors behind the difficulty of deep network training.
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4.1 VANISHING AND EXPLODING GRADIENTS IN TRAINING DEEP NETWORKS

We consider a simple multi-layer fully-connected neural network with L layers. Assume that the
output of h-th layer is:

y(h) = σ(w(h)y(h−1)), (5)

where σ is the activation function and w(h) is the weight matrix. The gradient for the h-th layer with
respect to the weight matrix w(h) is:

∂L
∂w(h)

= 〈 ∂L
∂y(L)

,y(h−1) ∂y
(L)

∂y(h)
J (h)〉 = 〈 ∂L

∂y(L)
,y(h−1)(

L∏
k=h+1

J (k)w(k))J (h)〉, (6)

where L is the loss function and ∂L
∂y(L) is the derivative of the output of the last layer2. y(h−1) is the

output of h− 1 layer. J (k) is the diagonal matrix where the main diagonal is the list of the derivatives
of the activation with respect to the inputs in the k-th layer:

J (k) = diag(σ′(w(k)
1 y(k−1)), · · · , σ′(w(k)

d y(k−1))) ∈ Rd×d, (7)

where d is the dimension of the activation and w
(k)
d is the d-th row in matrix w(k) in the k layer.

From this equation, we can see that the norm of weight matrix w, the output of previous layer y(h−1)

and the derivative of activation play an important role in controlling the gradient stability. Most
previous studies mainly focus on these key terms to address the vanishing and exploding problem.

(a) Baseline (b) LayerNorm (c) SELU (d) Residual (e) ResNorm

Figure 1: Gradient values on different models. The X-axis is the index of layers and Y-axis denotes
the average absolute gradient value in each layer. The dotted line shows the average of all absolute
gradients in a model. “Baseline” has extremely low gradient values on all layers and its gradients are
multiplied by 1000 for clear presentation. Even with advanced training techniques, the vanishing and
exploding problem is not addressed completely. The gradients between the top layer and the bottom
layer are still in orders of magnitude in “LayerNorm”, “Residual”, and “ResNorm”.

4.2 GRADIENT VALUES AND GRADIENT CORRELATIONS BOTH MATTER

To empirically evaluate the effects of unsteady gradient values, we implement widely-used optimiza-
tion techniques, including activation-based techniques (e.g., SELU), normalization-based techniques
(e.g., LayerNorm), and skip-connection-based techniques (e.g., Residual). We adopt a 32-layer
multi-layer perceptron (MLP) network as the backbone for MNIST (LeCun et al., 2010), an image
classification dataset. The bottom is a 2-layer convolutional component and the top is a 30-layer
feed-forward component. The baseline model uses ReLU activation and Xavier initialization (Glorot
& Bengio, 2010). The evaluated techniques are then added into the baseline. All the models use the
same hyper-parameter settings for a fair comparison. We use the AdaGrad optimizer (Duchi et al.,
2011) with a learning rate 1.0 and adopt a learning rate decay mechanism with γ = 0.7. The batch
size is set to 64. All experiments run on a single NVIDIA V100 GPU. The total number of running
epochs is 15.

Figure 1 shows gradient value curves in different layers at initialization, and Figure 2 demonstrates
the distribution over gradient values at initialization and at training stages. “Baseline” has serious
gradient vanishing problems with extremely small values in all layers at initialization. With the

2Here we adopt numerator layout notation.
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Figure 2: From left to right, we demonstrate the charts of gradient values at initialization and at
training stages, gradient correlations at initialization, and at training stages. “Baseline” and “Layer-
Norm” with either lower gradient correlations or lower gradient values achieve worse convergence
performance. “ResNorm” and “Residual” with higher gradient correlations or higher gradient values,
obtain better convergence performance.

increase of training steps, the vanishing problem is slightly addressed but still serious. It is as expected
that “Baseline” achieves the worst convergence performance with 89.52 test accuracy, as shown in
Figure 3. With advanced training optimization techniques, some layers have larger gradient values.
The accuracy curves of “SELU”, “Residual” and “ResNorm” converge well. These results verify the
importance of steady gradient values in optimization. However, there are still some cases that are
hard to understand from the perspective of gradient values. First, it is out of our expectation that the
accuracy curves of “LayerNorm”, “Residual”, and “ResNorm” converge well although the gap of
gradients between the top layer and the bottom layer in these models is still in orders of magnitude.
These results demonstrate that a deep network is robust to vanishing or exploding gradients to
some extent. Second, “SELU” and “ResNorm” with similar ranges of gradient values show distinct
convergence speed. It indicates that there are still unknown factors behind the optimization of deep
networks.

Figure 3: Test accuracy of different mod-
els on CIFAR10.

In addition to gradient values, we observe that gradient
correlations contribute to the convergence performance.
We compute gradient correlations based on Eq. 2. Figure 2
shows gradient correlation distributions. Compared to
“SELU” and “ResNorm”, “LayerNorm” has much lower
gradient correlations and shows worse convergence per-
formance. Despite extremely low gradient values, “Base-
line”with higher average gradient correlations at initial-
ization achieves faster convergence than “LayerNorm”.
These results demonstrate that gradient correlations also
matter in optimization.

5 LEVERAGING GRADIENT
CORRELATIONS AND GRADIENT VALUES
IN NETWORK ARCHITECTURE SEARCH

We also explore how to leverage this new finding to improve the performance of deep networks
in real-world tasks. First, we unify these two items into a gradient-based kernel, defined as the
average of the Gram matrix of gradient, i.e., P in Eq.1. Starting with several simple architectures,
one observation is that networks with larger kernels at initialization tend to achieve higher average
convergence performance. Motivated by this observation, we propose to adopt the gradient-based
kernel on NAS to search for the optimal architecture.

First, we generate s possible architectures as the search space S. In this work, we do not fix the
generating policy to keep the flexibility on diverse tasks and scenarios. For each architecture, we
calculate the gradient-based kernel based on Eq.1 and select k architectures with the highest scores
as candidates, which are then trained from scratch to get their results on a validation set. For fast
calculation, we set µ = 50 and θ = 50 when estimating kernel. The architecture with the highest
validation accuracy is selected as the final architecture. We normalize gradients by subtracting the
average of sampled gradients before calculation. The new evaluation function does not need any
training steps. Compared to other NAS approaches that train hundreds of architectures, the new
approach largely reduces search costs.
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6 EXPERIMENTS

In this section, we evaluate the proposed approach on NAS-Bench-201, a NAS benchmark dataset. It
provides a fair setting for evaluating different search techniques.

6.1 DATASETS

NAS-Bench-201 is a benchmark dataset for NAS algorithms, constructed on image classification
tasks, including CIFAR10, CIFAR100, and ImageNet-16-120 (ImageNet). CIFAR10 and CIFAR100
are two widely used datasets3. CIFAR-10 consists of 60,000 32x32 color images in 10 classes, with
6,000 images per class. There are 50,000 training images and 10,000 test images. CIFAR100 has
100 classes containing 600 images each. There are 500 training images and 100 testing images per
class. ImageNet is provided by Chrabaszcz et al. (2017). NAS-Bench-201 chooses 4 nodes and 5
representative operation candidates for the operation set, which generates 15,625 cells/architectures
as search space. In summary, NAS-Bench-201 enables researches to easily re-implement previous
approaches via providing all architecture evaluation results. However, since these results are unavail-
able in real-world tasks, we take the evaluation time into account when computing the search time for
a fair comparison.

6.2 BASELINES

We compare the proposed approach with the following baselines:

Random search algorithms It includes two baselines, random search (RS) (Bergstra & Bengio,
2012) and random search with parameter sharing (RSPS) (Li & Talwalkar, 2019).

Reinforcement learning based algorithms It includes one baseline, RL (Williams, 1992). RL is
a method that introduces an architecture generator to generate well-performing architectures.

Evolution based search algorithms It includes one baseline: regularized evolution for architecture
search (REA) (Real et al., 2019).

Differentiable algorithms It includes two baselines, DARTS (Liu et al., 2019) and GDAS (Dong
& Yang, 2019). DARTS reformulates the search problem into a continues search problem. Following
this work, GDAS updates a sub-graph rather than a whole graph for higher speeds.

Hyper-parameter optimization algorithms It includes one baseline, BOHB (Falkner et al., 2018).
This approach combines the benefits of both Bayesian optimization and bandit-based methods.

We use the released code provided by Dong & Yang (2020) for baseline implementation. See
Appendix A for more implementation and baseline details.

6.3 RESULTS

Table 1 shows the comparison between GT-NAS and the state-of-the-art approaches. The details of
search time computing are described in Appendix A. RS is a naive baseline, which randomly selects
architectures for full-training and evaluation. It is one of the most time-consuming approaches and
achieves good accuracy improvements with 0.46 and 1.25 gains on CIFAR100 and ImageNet. RL
adds learning into the search process and can explore more well-performing architectures. However,
due to its unsteady training characteristic, RL does not beat RS on three datasets. REA contains two
search stages: parent search and mutation. The second stage explores new architectures based on
best-performing parent architectures. This approach achieves the highest performance with 93.72,
72.12, and 45.01 accuracy scores on CIFAR10, CIFAR100, and ImageNet. In conclusion, despite
good results, these baselines require considerable time for architecture evaluation.

In comparison, there are also several approaches that achieve much better speed-up performance, such
as RSPS, GDARTS and DARTS. However, the accuracy of architectures searched by these approaches

3https://www.cs.toronto.edu/ kriz/cifar.html
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Table 1: Performance of different approaches on CIFAR10, CIFAR100, and ImageNet. “Time” means
the search time. GT-NAS achieves competitive results with an extremely higher speed. In GT-NAS,
all search steps can be finished within a few hours on a single GPU.

Type Model CIFAR10 CIFAR100 ImageNet
Acc Time(s) Speed-up Acc Time(s) Speed-up Acc Time(s) Speed-up

w/o Search ResNet 93.97 N/A N/A 70.86 N/A N/A 43.63 N/A N/A

Search

RS 93.63 216K 1.0x 71.28 460K 1.0x 44.88 1M 1.0x
RL 92.83 216K 1.0x 70.71 460K 1.0x 44.10 1M 1.0x

REA 93.72 216K 1.0x 72.12 460K 1.0x 45.01 1M 1.0x
BOHB 93.49 216K 1.0x 70.84 460K 1.0x 44.33 1M 1.0x
RSPS 91.67 10K 21.6x 57.99 46K 21.6x 36.87 104K 9.6x

Gradient GDAS 93.36 22K 12.0x 67.60 39K 11.7x 37.97 130K 7.7x
DARTS 88.32 23K 9.4x 67.34 80K 5.8x 33.04 110K 9.1x

Kernel GT-NAS 93.42 7K 30.8x 71.42 18K 25.5x 45.35 31K 32.2x

is not high enough. Unlike these studies, GT-NAS achieves competitive results with an extremely
higher speed. Compared to the time-consuming approaches, including RS, RL, REA, and BOHB,
the proposed GT-NAS reduces search cost and brings 30.8x, 25.5x and 32.3x speed-up on CIFAR10,
CIFAR100, and ImageNet. Compared to approaches with higher search speed, including RSPS,
GDAS and DARTS, the proposed GT-NAS obtains large accuracy improvements. The searched
architecture also outperforms ResNet with 0.56 and 1.72 accuracy improvements on CIFAR100 and
ImageNet. Furthermore, all search steps only take a few hours on a single GPU in the proposed
approach. For a better understanding, we visualize the relation between the kernel at initialization
and test accuracy, as shown in Figure 4. The kernel is the average of a dot-product matrix in Eq. 1.
Each dot represents a single architecture with its kernel (X-axis) and accuracy (Y-axis). We draw
two plots with a different granularity of kernel ranges. On three datasets, higher kernels bring better
average model performance. Since the kernel is decided by gradient values and correlations, this
result also verifies our findings that both gradient values and gradient correlations matter.

Universal to different architectures NAS-Bench-201 contains over 100K architectures as search
space, covering common network blocks. On such diverse dataset, the promising results of the
proposed method show that GT-NAS is universal to different architectures.
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(c) ImageNet

Figure 4: Higher kernels brings more steady performance. Each dot represents a single architecture
with its kernel (X-axis) and accuracy (Y-axis). For each dataset, we draw two plots with a different
granularity of kernel ranges.

7 GENERALIZATION ON DIVERSE TASKS

We are also interested in whether GT-NAS can find better structures at acceptable cost on more
datasets. To verify this, we conduct experiments on text classification tasks. Text classification
includes two datasets, MRPC evaluating whether two sentences are semantically equivalent and RTE
recognizing textual entailment. Two classification datasets are provided by Wang et al. (2019). See
Appendix B for more dataset details.
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Table 2: Results on text classification tasks. “Time” refers to search time.

Models MRPC RTE
Acc Time(s) Acc Time(s)

Baseline 92.08 N/A 83.51 N/A
GT-NAS 93.32 (+1.24) 0.4K 83.75(+0.24) 2K

7.1 SEARCH SPACE

For ease of implementation, we first generate some architectures as search space. We define several
skip-connection structures, each with possible candidate architectures. We set the same layer number
for all architectures: 12 encoder layers and 12 decoder layers. These architectures use the same
hype-parameters as the baseline. Here are the details of different structures:

Highway structure It connects all cells in a chain way. In each cell, there exists a highway
connection from the first layer to the last layer. We adopt an average fusion way to merge all inputs
to the last layer. The cell length ranges from 2 to 11 and there are 10 possible architectures.

Look-ahead structure It connects all cells in a chain way. In each cell, the layer is connected in
a chain way except for the last layer. The last layer takes all outputs of previous layers in a cell as
inputs. We adopt an average fusion way to merge all inputs to the last layer. The cell length ranges
from 2 to 11 and there are 10 possible architectures.

DenseNet structure It splits the whole network into different cells (Huang et al., 2017b). The
cell is connected in a fully connected way where the input of current cell comes from all outputs of
previous cells. In each cell, the layer is connected in a chain way. The original network adopts a
concatenation way to fuse the input vector together and elaborately designs a dimension shrinking
and expanding policy. For better generalization, we replace the concatenation fusion with an average
fusion way so that the dimension design efforts are not required. The cell length ranges from 2 to 11
and there are 10 possible architectures.

7.2 RESULTS

The results are shown in Table 2. The architectures searched by GT-NAS achieve better results on
all datasets. Though pre-trained models are widely believed to be the state-of-the-art approaches,
GT-NAS still obtains performance improvements over these strong baselines with 1.24 and 0.24
accuracy improvements on MRPC and RTE datasets. For two classification datasets, we choose top-2
and top-5 architectures for full training and evaluation. It proves that GT-NAS generalizes well on
various datasets. In addition, these results show the importance of skip-connections in deep networks.
Without adding any parameters, simply adjusting the way of connections can bring large performance
improvements.

Universal to different initialization approaches We conduct experiments on two different tasks,
each with different initialization. The former uses Kaiming initialization, and the latter adopts Xaiver
initialization. These two both are popular initialization methods. Table 1 and Table 2 demonstrate
that our method is universal to different initialization approaches.

8 CONCLUSION

In this work, we propose a new explanation that gradient values and gradient correlations both
matter in optimization. We believe that this can give a new insight into further optimization research.
Following this new finding, we develop a fast yet effective approach which obtains competitive results
with much higher speeds on a NAS benchmark dataset. Furthermore, GT-NAS generalizes well and
brings improvements on diverse tasks including image classification and text classification.
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