PocketSR: The Super-Resolution Expert in Your
Pocket Mobiles

Haoze Sun'; Linfeng Jiang?”, Fan Li?, Renjing Pei?, Zhixin Wang?, Yong Guo?,
Jiaqi Xu?, Haoyu Chen*, Jin Han?, Fenglong Song?, Yujiu Yang!™, Wenbo Li**
!Tsinghua University 2Huawei 3Joy Future Academy “HKUST (GZ)
shz220tsinghua.org.cn yang.yujiu@sz.tsinghua.edu.cn fenglinglwb@gmail.com

Abstract

Real-world image super-resolution (RealSR) aims to enhance the visual quality
of in-the-wild images, such as those captured by mobile phones. While existing
methods leveraging large generative models demonstrate impressive results, the
high computational cost and latency make them impractical for edge deployment.
In this paper, we introduce PocketSR, an ultra-lightweight, single-step model
that brings generative modeling capabilities to RealSR while maintaining high
fidelity. To achieve this, we design LiteED, a highly efficient alternative to the
original computationally intensive VAE in SD, reducing parameters by 97.5% while
preserving high-quality encoding and decoding. Additionally, we propose online
annealing pruning for the U-Net, which progressively shifts generative priors from
heavy modules to lightweight counterparts, ensuring effective knowledge transfer
and further optimizing efficiency. To mitigate the loss of prior knowledge during
pruning, we incorporate a multi-layer feature distillation loss. Through an in-depth
analysis of each design component, we provide valuable insights for future research.
PocketSR, with a model size of 146M parameters, processes 4K images in just
0.8 seconds, achieving a remarkable speedup over previous methods. Notably, it
delivers performance on par with state-of-the-art single-step and even multi-step
RealSR models, making it a highly practical solution for edge-device applications.

1 Introduction

Real-world image super-resolution (RealSR) [1, 2, 3, 4, 5, 6, 7] is a fundamental task in computer
vision that reconstructs high-quality images from low-quality inputs. With applications spanning
smartphone photography, medical imaging, and remote sensing, RealSR has driven extensive research
interest and development. Recent breakthroughs in generative modeling—particularly diffusion
models [8, 9, 10, 11, 12, 13, 14]—have opened new frontiers in SR by leveraging powerful generative
priors to recover intricate textures and realistic structures, significantly enhancing image quality.

Scaling up text-to-image (T2I) diffusion models (e.g., from SD1.5 [10] to SD3 [15] or FLUX [16]) has
been shown to markedly improve SR performance [17]. Additionally, integrating multimodal large
language models to generate detailed and accurate image descriptions further unlocks these models’
generative potential [18, 19, 20, 21, 22]. However, the substantial computational cost and slow
inference speed of such large-scale models limit their practical deployment. Consequently, research
efforts have shifted toward efficient SR diffusion methods, focusing on lightweight architectures [23]
and reduced sampling steps [24, 25, 26, 27, 28]. Yet, deploying these models on resource-constrained
edge devices remains a formidable challenge.

Given that low-resolution (LR) inputs provide a rich and detailed prior—far more informative than
the sparse textual cues in T2I generation—it is possible to achieve competitive SR performance with
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Figure 1: Visualization of the real-world image super-resolution results and efficiency of our proposed
method. To enable the practical application of diffusion-based SR models, we introduce PocketSR, an
ultra-lightweight, single-step solution. The top visual examples demonstrate that PocketSR achieves
high-quality super-resolution across diverse scenes, preserving fine details and textures. Best viewed
zoomed in. The bottom section highlights the significant reduction in parameters (10x) and com-
putational cost (6.5x), allowing our model to process 4K images in just 0.8 seconds—dramatically
outpacing existing methods.

a significantly compressed model. Motivated by this insight, we conduct a thorough analysis of the
core components of diffusion models, including the variational autoencoder (VAE) and the U-Net
architecture, and propose tailored strategies to maintain high-fidelity and realistic generation while
substantially reducing the model size. Our approach is built upon three key innovations:

Lite Encoder & Decoder (LiteED). We introduce a highly compressed encoder-decoder design
featuring an ultra-compact encoder for efficient LR feature extraction and conditioning, coupled with
a tiny decoder for high-quality reconstruction. To mitigate potential losses in representational capacity,
we incorporate a Dual-Path Feature Injection mechanism that enriches U-Net inputs with additional
high-dimensional feature channels and Adaptive Skip Connections that retain critical information.
The resulting LiteED contains only 2M parameters, drastically improving model efficiency while
preserving image quality.

Online Annealing Pruning for U-Net. Recognizing the extensive generative priors embedded within
U-Net architectures, we go beyond straightforward channel pruning [23] by introducing an online
annealing pruning strategy. In this approach, lightweight modules are gradually integrated alongside
existing components (e. g., residual blocks, self-attention layers, and feed-forward networks), while the
contributions of original modules are progressively annealed to zero. This smooth transition ensures
a stable knowledge transfer to the pruned architecture. Additionally, we conduct a comprehensive
ablation study to determine optimal pruning positions, ensuring that our lightweight model retains
strong generative capabilities.

Multi-layer Feature Distillation. Prior studies [23, 29] have demonstrated that feature-space
distillation offers a more stable optimization process compared to distillation in the image domain.
Motivated by this observation, we adopt a multi-layer, multi-scale distillation scheme to facilitate
more reliable knowledge transfer. When combined with our online annealing pruning strategy, this
approach substantially reduces computational cost while effectively preserving generative priors.



Through these architectural optimizations, we further integrate adversarial training to develop Pock-
etSR, an ultra-lightweight, one-step diffusion-based SR model with only 146M parameters—just
10.4% of the size of StableSR [3] and 8.2% of OSEDIff [27]. Despite its compactness, PocketSR
achieves performance on par with state-of-the-art approaches while significantly reducing computa-
tional complexity and inference time, as illustrated in Sect. 4.2. Notably, it processes a 4K image in
just 0.8 seconds—7 times faster than OSEDIff [27]. Our findings demonstrate that with carefully
designed modifications, diffusion-based SR models can be both lightweight and powerful, paving the
way for practical deployment in real-world applications.

2 Related Work

2.1 Real-world Image Super-Resolution

Real-world image super-resolution (SR) aims to recover realistic details from degraded inputs while
maintaining overall fidelity. Early image super-resolution (ISR) methods [30, 31, 32, 33] often
converge to the statistical mean of plausible solutions, resulting in overly smoothed outputs and
loss of fine details in real-world scenarios. To overcome this, several works [34, 2, 1, 35, 36, 37]
have explored generative adversarial networks (GANs) for texture enhancement. However, due to
inherent limitations such as mode collapse and training instability [38, 39], GAN-based methods still
struggle to produce realistic textures. More recently, diffusion models [8, 9, 10, 11, 12, 40] have
shown strong generative capabilities in synthesizing fine-grained details and realistic textures, making
them a promising alternative for real-world SR.

2.2 Diffusion-based ISR

Recent advances in diffusion models, especially in text-to-image (T2I) synthesis (e.g., SD3 [15],
FLUX [16]), have led to the development of pre-trained diffusion-based SR methods such as Sta-
bleSR [3], DiffBIR [4], PASD [5], CoSeR [41], SeeSR [19], and SUPIR [18]. These approaches
benefit from the strong image priors of T2I models, achieving impressive results. However, their
reliance on multi-step inference introduces high latency and substantial computational cost.

To address this, recent works aim to reduce inference time by distilling multi-step models into one-
or few-step variants. ResShift [6] accelerates inference by learning residual transitions from LR to
HR images via a Markov chain. Building on this, Wang et al.[24] condense multi-step capabilities
into single-step networks. OSEDiff[27] further leverages VSD [42] to incorporate T2I knowledge
efficiently. PiSA-SR [43] decouples structure restoration and texture enhancement using dual LoRA
sets. Despite these advances, single-step SR methods still remain computationally heavier than
traditional GAN-based models, limiting their deployment on edge devices and highlighting the need
for better efficiency—quality trade-offs.

2.3 Efficient Diffusion Models

Recent efforts on efficient diffusion models [44, 45, 46, 47, 48, 49, 29] focus on architectural opti-
mization to reduce redundancy in large-scale models. SnapFusion [49] disentangles the contributions
of individual modules to balance efficiency and accuracy. MobileDiff [47] improves efficiency by
relocating Transformer blocks to lower-resolution stages. SnapGen [29] cuts computation and model
size by removing high-resolution attention and replacing standard convolutions with depthwise sepa-
rable ones. AdcSR [23] further explores one-step SR model efficiency. In Sect. 4.3, we compare our
design with AdcSR and show that our approach achieves better performance with higher compression.

3 Method

Driven by deployment considerations, our PocketSR framework utilizes SD-Turbo” as the backbone,
which achieves extreme model compression through a two-stage training pipeline. In the first stage,
we replace the original Stable Diffusion’s (SD) variational autoencoder with the Lite Encoder-Decoder
(LiteED), with all parameters set to be trainable. In the second stage, we freeze LiteED and apply our
pruning strategies to the U-Net, gradually removing redundant components.

“https://huggingface.co/stabilityai/sd-turbo
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Figure 2: Overview of PocketSR framework. We replace the original Stable Diffusion variational
autoencoder with LiteED, and apply online annealing pruning and multi-layer feature distillation
strategies to the diffusion U-Net, effectively reducing model parameters and computational complexity
while maintaining excellent super-resolution performance.

3.1 Lite Encoder & Decoder

We propose LiteED, an ultra-lightweight encoder-decoder architecture designed for edge-side super-
resolution. To reduce complexity, we simplify the SD encoder to several convolutional layers,
while maintaining effective feature extraction. Additionally, we replace the original decoder with a
lightweight alternative that offers substantial improvements in efficiency while preserving comparable
image fidelity (detailed in the supplementary materials). Notably, the decoder in LiteED is modular
and can be substituted with a more powerful variant to enhance reconstruction quality, albeit at
the cost of efficiency. The decoder is initialized from an open-source model®, while the encoder is
randomly initialized.

To supplement the ultra-light encoder and enrich the representational capacity, we propose an adaptive
skip connection mechanism in LiteED, as depicted in Figure 2. Specifically, four control coefficients
are generated from the encoder output via an MLP to modulate the multi-scale skip connections.
This adaptive mechanism allows the model to selectively integrate input features during decoding,
effectively mitigating the loss of information due to encoder compression. Additionally, to stabilize
training, we incorporate zero-convolution into the skip connections.

Dual-path Feature Injection. We identify an information bottleneck between the original SD encoder
and the U-Net. For a 512 x 512 image, the output feature size of the SD encoder’s last ResBlock
is [N, 512,64, 64], but it is compressed to [V, 4, 64, 64] in the final convolutional layer. This 128x
reduction in feature dimensionality may lead to substantial information loss, negatively impacting
super-resolution performance. To address this issue and improve the fidelity of the result, we propose
a dual-path feature injection mechanism. Specifically, in our encoder, an additional high-dimensional
feature of size [V, 320, 64, 64] is extracted after the second convolutional layer of LiteED and injected
into the U-Net following the initial block. This strategy enhances the information flow, allowing for
more robust feature extraction. As for feature injection, we employ cross normalization [50], which
has been shown to facilitate fast and stable convergence.

Despite its lightweight design, LiteED proves to be more effective in practice than networks with
several times higher computational complexity. Moreover, the decoder in LiteED can be replaced with
a larger-capacity network, which leads to better performance as demonstrated in our experiments.

3.2 U-Net Pruning

3.2.1 Online Annealing Pruning

Pruning is a straight-forward and effective model compression technique, which is widely used in
efficient image generation [45, 48, 47, 49, 29, 51, 52]. In this paper, we propose online annealing

3https://github.com/madebyollin/taesd
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pruning, a stable and efficient pruning strategy specifically designed for SR. Existing Diffusion U-Net
pruning methods typically simply discard [47, 49] or replace pruned modules [48, 29], which leads to
a significant loss of prior information. Our pruning strategy preserves the prior information through
online knowledge transfer. As shown in Figure 2, we connect the original module M in parallel with
a lightweight replacement module M p. During the training process, we continuously increase the
contribution of the lightweight module, while gradually annealing the contribution of the original
module to zero:

y=0-Mx)+(1-0) Mp(x), M

where x and y represent the module input and output, respectively. The annealing coefficient is
defined as o = min (0, (7' — t) /T, where T is the total number of annealing steps, and ¢ denotes
the current training step. The parameters of the original module are frozen during training. Once
training is complete, the original module is replaced with the lightweight module. The pruned
modules are permanently removed at inference time, yielding a highly compact and efficient model.
Our experiments show that this online pruning approach can better preserve the diffusion prior and
generate more realistic textures (see Sect. 4.3).

3.2.2 Pruning Implementation

Diffusion U-Net comprises four computationally expensive module types: residual blocks, cross-
attention layers, self-attention layers, and feed-forward networks (FFNs). To reduce the number
of parameters and computational cost while preserving performance, we replace each module with
a carefully chosen lightweight counterpart. Lightweight layers (e.g., normalization, activation)
remain unchanged. For residual blocks, we replace all convolutions with depthwise separable
convolutions [55], significantly reducing the number of parameters. Since text input is entirely
discarded, cross-attention layers are replaced with MLPs of two linear layers. Self-attention layers are
approximated using linear attention [56] to reduce computational cost. Finally, the hidden dimension
of the FFN is reduced to one-fourth of its original size.

We also observe that the pruning location has a significant impact on model performance, with its
effect varying according to the module’s depth within the network. Specifically, shallower modules
exert a greater influence on super-resolution quality, while deeper blocks can be pruned with minimal
impact. Taking SD’s U-Net as an example, we label the depths as {I, II, III, and IV}, from shallow to
deep. Figure 3 illustrates the trade-off between performance and efficiency when pruning residual
blocks at different depths. Our results show that pruning at deeper levels (III and IV) significantly
reduces parameter count and computational cost while having negligible impact on performance.
While pruning shallower modules yields greater efficiency gains, it leads to a more noticeable drop in
final performance.

We interpret this phenomenon as deeper layers in the U-Net of a generative diffusion model primarily
process high-level information [57, 58], such as layout and style, which contributes less to the SR
task. This characteristic makes a free lunch for pruning. Our findings extend beyond residual blocks
to other network modules, e.g., self-attention, cross-attention, and FFNs, indicating a general pruning
strategy for SR networks. Balancing efficiency and effectiveness, we prune residual blocks and
FFNs at depths III and IV, while self-attention layers are pruned at depth IV. Additionally, we prune



all cross-attention layers, as their impact on super-resolution quality is minimal. Detailed ablation
experiments on all network module pruning locations are provided in the supplementary material.

3.2.3 Multi-layer Feature Distillation

To better preserve generative priors during pruning, we introduce a feature-level knowledge distillation
strategy. Due to the architectural mismatch between the models before and after pruning, single-layer
distillation may result in training instability. Instead, we adopt a multi-layer global distillation scheme
to enhance robustness and enable stable knowledge transfer:

‘CdiStiH =E Z Hflgre—pruning - (rb ( éost-pruning) Hz ) (2)
l

where fére_pmning and féost_prumng denote the feature representations from the [-th layer of the models

before and after pruning, respectively. Following [59], we implement the mapping function ¢(-) as a
lightweight, trainable projection module composed of a single convolutional layer.

3.3 Training Details

Beyond the aforementioned lightweight optimizations, we further investigate the impact of channel
reduction on model performance, which is compatible with our online annealing pruning strategy.
Notably, direct channel reduction can substantially weaken the model’s learned priors. However, this
adverse effect is markedly mitigated when integrated with the proposed multi-layer feature distillation
strategy. Comprehensive experimental results are provided in the supplementary materials. To strike
a balance between efficiency and performance, we reduce the channel width in the U-Net to 70% of
its original size. Table | presents the final latency, computational cost, and parameter count of our
model in comparison to the original SD-Turbo.

Building on recent progress in one-step diffusion-based generation [60, 61], we introduce adversarial
loss during training to improve texture fidelity. In the first stage, the model is trained using a
combination of MSE loss, LPIPS [62], and adversarial loss. In the second stage, we incorporate the
multi-layer feature distillation loss to retain knowledge from the full-capacity model during pruning.

In the first training phase, we train the unpruned SD U-Net equipped with LiteED for 80,000 steps.
In the second phase, we first apply channel pruning over 80,000 steps, followed by module-wise
online annealing pruning for an additional 8,000 steps. The total number of annealing steps is set to
T = 8000. A fixed batch size of 64 is used throughout the entire training process. We employ the
AdamW optimizer with a learning rate of 1 x 10~%, and the timestep is fixed at ¢ = 999 for one-step
diffusion. Additionally, the original text embedding is replaced with a learnable embedding vector.

4 Experiments

4.1 Experimental Settings

The training dataset comprises approximately 500K high-quality images from LSDIR [63] and
10K images from FFHQ [64]. During training, images are randomly cropped into 512 x 512
patches. Low-quality counterparts are synthesized using the widely adopted degradation pipeline
from Real-ESRGAN [1]. For evaluation, we follow the protocols in [23, 27] and report results on the
DRealSR [65] and RealSR [53] benchmarks.

We compare the proposed PocketSR with four state-of-the-art multi-step methods—StableSR [3],
DiffBIR [4], SeeSR [19], and ResShift [6]—as well as three leading single-step methods: SinSR [24],
AdcSR [23], and OSEDiff [27]. We also compare our model with GAN-based SR methods in the
supplementary material. All models are evaluated using a comprehensive set of metrics, including
perceptual similarity metrics (LPIPS [62], DISTS [66]), fidelity metrics (PSNR, SSIM [67]), and
no-reference quality metrics (NIQE [68], MUSIQ [69]).

4.2 Comparison with State-of-the-Arts

Quantitative and Efficiency Comparison. Table 2 reports quantitative results on RealSR [53]
and DRealSR [65], with efficiency metrics listed in the last five rows. The results show that our



Table 2: Quantitative and efficiency comparisons with state-of-the-art diffusion-based methods on
real-world datasets are presented. The best results for each metric are highlighted in bold. PocketSR
delivers real-time inference at over 60 FPS on an A100 GPU for 512 x 512 inputs, while maintaining
competitive quantitative performance.

Datasets Metrics | StableSR [3] DiffBIR [4] SeeSR [19] ResShift [6] | SinSR [24] OSEDiff [27] AdcSR [23] PocketSR
i 1 iffB hiff i iff S

LPIPS| 0.3018 0.3636 0.3009 0.3460 0.3188 0.2921 0.2885 0.2713

DISTS|] 0.2288 0.2312 0.2223 0.2498 0.2353 0.2128 0.2129 0.2094

PSNR?T 24.70 24.75 25.18 26.31 26.28 25.15 25.47 25.47

RealSR [53] | SSIM?T 0.7085 0.6567 0.7216 0.7421 0.7347 0.7341 0.7301 0.7330
NIQE| 5912 5.535 5.408 7.264 6.287 5.648 5.350 5.067

MUSIQT 65.78 64.98 69.77 58.43 60.80 69.09 69.90 67.07

LPIPS| 0.3284 0.4557 0.3189 0.4006 0.3665 0.2968 0.3046 0.2962

DISTS] 0.2269 0.2748 0.2315 0.2656 0.2485 0.2165 0.2200 0.2139

PSNR? 28.03 26.71 28.17 28.46 28.36 27.92 28.10 28.05

DRealSR [65] | SSIMT 0.7536 0.6571 0.7691 0.7673 0.7515 0.7835 0.7726 0.7675
NIQE| 6.524 6.312 6.397 8.125 6.991 6.490 6.450 5.809

MUSIQ?T 58.51 61.07 64.93 50.60 55.33 64.65 66.26 63.85
Parameters (M) 1410 1717 2524 119 119 1775 456 146
MACs (G) 79940 24234 65857 5491 2649 2265 496 225

Sampling Steps 200 50 50 15 1 1 1 1

Inference Time (s) 11.5 2.7 4.3 0.71 0.13 0.11 0.03 0.016
FPS 0.09 0.37 0.23 1.4 7.7 9.1 333 62.5

method achieves strong super-resolution performance with excellent computational efficiency. First,
the proposed single-step model, PocketSR, has only 146M parameters, achieves the lowest MACs
among all methods, and processes a 512 x 512 image in 0.016 seconds on an A100 GPU—nearly
twice as fast as AdcSR. This low latency and lightweight design make it ideal for real-time and edge
deployment. PocketSR achieves an inference time of only 140ms on a newly released smartphone
model from 2025, representing an over 80% reduction compared to the original, non-lightweight
backbone. Second, PocketSR attains the best LPIPS, DISTS, and NIQE scores, demonstrating
superior perceptual quality. Notably, on the DRealSR dataset, PocketSR surpasses the second-best
method by 10% in NIQE, indicating clearer texture restoration. Third, it delivers competitive fidelity,
achieving PSNR and SSIM on par with AdcSR on RealSR and clearly outperforming multi-step
models such as StableSR, DiffBIR, and SeeSR. Although ResShift and SinSR perform better than
PocketSR in PSNR and SSIM, their texture are not as realistic as PocketSR.

Qualitative Comparison. Figure 4 shows qualitative comparisons, demonstrating that our method
consistently maintains high fidelity and excels in detail reconstruction. In the first row, only DiffBIR,
ResShift, SinSR, and PocketSR successfully recover the diagonal striped texture in the upper-right
corner. However, the textures produced by DiffBIR and SinSR appear visually unrealistic. Among
single-step methods, only PocketSR reconstructs an accurate and perceptually convincing pattern,
highlighting its strength in preserving fine details. The second row further shows that PocketSR
is the only method able to restore the building’s structural details, reinforcing its high fidelity and
detail recovery capabilities. Figure | showcases results across a broader range of natural scenes,
including animals and animes. These results further verify that PocketSR not only achieves faithful
reconstructions but also delivers rich, fine-grained textures across diverse visual contexts.

4.3 Ablation Study

We carefully analyze the effects of the proposed lite encoder and decoder, online annealing pruning,
and multi-layer feature distillation, demonstrating an excellent trade-off between super-resolution
quality and efficiency through extensive experiments. The experiments in this section follow the
first-stage training in Section 3.3, where the unpruned SD U-Net is jointly trained with various
encoder and decoder architectures for 80,000 steps. All settings share the same model and training
configuration, differing only in encoder/decoder architecture. RealSR is used as the test dataset.

Effect of Adaptive Skip Connection and Dual-path Feature Injection. The proposed lite encoder
simplifies the original SD encoder to improve efficiency, which inevitably introduces information
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PocketSR delivers competitive performance, generating well-preserved structures and fine-grained
textures, even when compared to multi-step models.

Table 3: We conducted ablation studies on the core architectural components of LiteED, including
the Adaptive Skip Connection (ASC) and Dual-path Feature Injection (DFI). Additionally, we
compared the proposed lightweight encoder with alternative designs to validate the effectiveness of
our architecture. Finally, we replaced the decoder to assess the structural robustness of LiteED.

Decoder | Encoder |PSNRT SSIM{ LPIPS| DISTS| NIQE/|Time (ms) MACs (G) Param. (M)
Lite Enc. (Ours) | 25.61 0.7431 0.2474 0.1911 5200 | 314 481.6 868.3
Lite Enc. w/o ASC | 25.42 0.7426 02737 02050 5329 | 30.7 480.8 868.3
Lite Dec. (Ours) | Lite Enc. w/o DFI | 2535 0.7427 0.2580 0.1940 5.136 | 31.1 478.6 867.6
PixelUnshuffle 2523 07417 02697 02028 5552 | 30.5 474.8 867.7
SD Enc. 25.19 0.7259 0.2685 0.1981 5.092 | 51.7 1032.2 901.4
SD Dec Lite Enc. (Ours) | 2595 0.7503 0.2390 0.1843 6.899 | 58.1 1669.7 916.2
: SD Enc. 26.00 0.7548 02445 0.1892 6.898 | 79.7 22212 949.6

loss. To address this, we introduce the Adaptive Skip Connection (ASC), which flexibly transfers
essential features to the decoder during encoding. This not only eases the training of the diffusion
U-Net but also improves both fidelity and perceptual quality in the super-resolution results.

Additionally, we design the Dual-path Feature Injection (DFI) module to alleviate the information
bottleneck between the encoder and U-Net (see Sect. 3.1). In our Dual-path Feature Injection (DFI)
design, the lite path provides compressed, information-dense features that offer global structural
guidance and align well with the VAE feature distribution in SD, making them easier for the pretrained
U-Net to utilize. In contrast, the heavy path contains richer details but lower information density,
making it harder for generative models to use directly.

As shown in Table 3, both ASC and DFI consistently improve performance across nearly all metrics
with minimal overhead. Figure 5 further proves: removing either module causes visible degradation,
particularly in the word “Sausage” (first row) and the plastic chair edges (second row).

Comparison between the Lite Encoder and Alternative Encoding Strategies. We compare our
lite encoder with the PixelUnshuffle approach and the original SD encoder (SD Enc.). PixelUnshuffle,
introduced by AdcSR [23], is a lightweight method for injecting low-resolution (LR) features. Despite
similar computational cost, our encoder consistently outperforms PixelUnshuffle across all metrics,
with up to 8.3% improvement in LPIPS. Moreover, our design achieves superior performance on
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reference-based metrics than the SD encoder, with only 46.7 % of its computational cost. We attribute
this to the absence of skip connections and the potential bottleneck in the SD encoder, which may
result in the loss of fidelity-critical information. As shown in Figure 5, PixelUnshuffle often causes
fine detail loss (first row) and oversmoothing (second row), while the SD encoder tends to produce
unnatural textures. These results highlight that a well-designed lightweight encoder can outperform
complex counterparts in SR tasks, offering valuable insights for efficient model design.

Compatibility with more powerful image decoders. Prior studies [70, 23] have shown that
decoder complexity often has a greater impact on performance than encoder complexity. Building
on this, we investigate the decoder flexibility of LiteED by replacing its decoder with the original
SD decoder, while keeping the lite encoder (w/ ASC & DFI) unchanged. This substitution leads
to improved SR quality, albeit with a 247% increase in computational overhead. These results
underscore the generalizability of LiteED, enabling flexible decoder adjustment to balance efficiency
and performance. We also compare our design with the original SD VAE (w/o ASC & DFI). The
variant using the SD decoder and lite encoder achieves comparable performance with a 24.8%
reduction in computational cost, further validating the effectiveness of the LiteED architecture.

Effect of Online Annealing Pruning. In Table 4, we compare the proposed online annealing
pruning strategy with direct lightweight module replacement, denoted as Strategy (1). Our approach
consistently outperforms the baseline across all metrics, especially the no-reference NIQE score,
thanks to its progressive knowledge transfer that better preserves the SD model’s generative prior. As
shown in Figure 6, while direct pruning fails to recover clear brick patterns and wheat textures, our
method yields visually superior and high-quality results.

Effect of Multi-layer Feature Distillation. Multi-layer feature distillation is introduced to enhance
the stability and robustness of knowledge transfer during pruning. As shown in Table 4, removing it
(Strategy 2) degrades performance across all metrics, with LPIPS showing the largest drop (3.8%).
We also evaluate single-layer distillation at the U-Net output (Strategy 3), which slightly outperforms
Strategy 2 but still lags behind the full multi-layer setup. As illustrated in Figure 6, removing
multi-layer distillation results in noticeable noise and artifacts due to unstable training dynamics.



5 Conclusion and limitation

We present PocketSR, a highly efficient single-step model for real-world image super-resolution.
By replacing the heavy VAE in SD with LiteED, PocketSR reduces parameters and latency while
preserving fidelity. Our proposed pruning strategy further enhances efficiency by progressively
transferring generative priors to lightweight modules, optimizing performance without compromising
quality. Experiments show that it achieves significant speedup and performance comparable to
state-of-the-art RealSR models, making it practical for broad deployment.

One limitation of PocketSR is that its detail generation capability under severe degradations remains
to be improved. Moreover, the current framework has not yet been optimized in conjunction with
edge hardware, which we identify as a promising avenue for future research.
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Justification: Our papers are experimentally oriented and do not contain theoretical results.
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* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details of the model training details to reproduce the main results
in Section 3.3.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: We are sorry, but due to company policy, we are unable to provide open source
code to the community at this time.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide details of the training and test sets in Section 4.1.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the specificity of the low-level visual task, model effects are mainly
judged by IQA metrics, and error bars, confidence intervals, or statistical significance tests
are less frequently used.
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
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Experiments compute resources
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
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Justification: We include the comparison of computational efficiency in our experiments,
including the number of parameters, computational cost, and inference time.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics strictly.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is centered around the low-level vision and does not have a significant
social impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our model does not have this risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit all the creators or original owners of assets used in the
paper and mention the license and terms of use explicitly.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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