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Abstract

Vision-language models in pathology enable multimodal case retrieval and automated re-
port generation. Many of the models developed so far, however, have been trained on
pathology reports that include information which cannot be inferred from paired whole
slide images (e.g., patient history), potentially leading to hallucinated sentences in gener-
ated reports. To this end, we investigate how the selection of information from pathology
reports for vision-language modeling affects the quality of the multimodal representations
and generated reports. More concretely, we compare a model trained on full reports against
a model trained on preprocessed reports that only include sentences describing the cell and
tissue appearances based on the H&E-stained slides. For the experiments, we built upon the
BLIP-2 framework and used a cutaneous melanocytic lesion dataset of 42,433 H&E-stained
whole slide images and 19,636 corresponding pathology reports. Model performance was
assessed using image-to-text and text-to-image retrieval, as well as qualitative evaluation
of the generated reports by an expert pathologist. Our results demonstrate that text pre-
processing prevents hallucination in report generation. Despite the improvement in the
quality of the generated reports, training the vision-language model on full reports showed
better cross-modal retrieval performance.
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1 Introduction

Vision-language modeling has seen much improvement in recent years (Li et al., 2023; Liu
et al., 2024; Radford et al., 2021; Yu et al., 2022). Following the success in the domain of
natural images, similar models have been developed for medical domains such as pathol-
ogy (Ahmed et al., 2024; Ding et al., 2024; Lu et al., 2024; Shaikovski et al., 2024). Ap-
plications of vision-language models in pathology include uni- and cross-modal retrieval of
cases from databases and automated report generation. The latter can potentially alleviate
the increasing workload of pathologists (Berb́ıs et al., 2023; Van der Laak et al., 2021).

In addition to descriptions of cell and tissue appearances on hematoxylin and eosin
(H&E)-stained whole slide images (WSIs), pathology reports often also include clinical
information, patient history, and additional diagnostic results from immunohistochemical
(IHC) stains and molecular tests. These types of information are either difficult to predict
correctly or cannot accurately be inferred from the H&E-stained WSIs at all. If sentences
with this information are part of the training dataset, then vision-language models are prone
to hallucination (i.e., the generation of statements that contradict or cannot be verified
from the source content) (Ji et al., 2023). For example, outcomes of IHC staining and
molecular testing are present in the reports generated by PRISM (Shaikovski et al., 2024)
and TITAN (Ding et al., 2024).

Although most of these errors can easily be recognized and corrected by a pathologist,
doing so adds to the workload again, undermining the potential benefits of automation. To
address this problem, Ahmed et al. (Ahmed et al., 2024) applied a post-processing procedure
using regular expressions based on a set of keywords to remove specific information, such as
the precise anatomical location, from generated reports. However, this approach increases
the system’s complexity for deployment, likely misses words that should be removed if the
keyword set is not all-encompassing, and becomes more challenging to apply for removal of
(sub)sentences.

Furthermore, unlike most pathology-specific vision-language models, which as of yet
have been trained primarily to generate diagnoses (Ahmed et al., 2024; Shaikovski et al.,
2024), our focus lies on generating descriptions of cell and tissue patterns. The motivation
for this is twofold: (1) writing these descriptions is often the most time-consuming part for
a pathologist and could, for that reason, yield the largest efficiency gain if automated; and
(2) reaching a definitive diagnosis for ambiguous cases can be difficult, if not impossible,
without the results from additional diagnostic tests.

As the main contribution, we investigate how selecting information from pathology re-
ports for vision-language modeling affects the quality of the multimodal representations
and generated reports. Building upon a text preprocessing workflow we developed in prior
work (Lucassen et al., 2024b), we compare training on full pathology reports against train-
ing only on the H&E-related sentences that describe the cell and tissue appearances. All
experiments were performed using the BLIP-2 framework (Li et al., 2023) and a dataset of
H&E-stained WSIs with corresponding pathology reports for 19,636 cutaneous melanocytic
lesions. Model performance was evaluated using image-to-text and text-to-image retrieval,
as well as assessment of the accuracy and usability of the generated reports by an expert
dermatopathologist. All code and model parameters are made publicly available 1.

1. https://github.com/nuldertien/PathBLIP-2
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2 Materials and Methods

2.1 Dataset

The dataset used in this study consists of melanocytic lesion cases retrospectively collected
from the digital archive of the Department of Pathology at the University Medical Center
Utrecht, the Netherlands. All cases were accessioned between January 1, 2013, and Decem-
ber 31, 2020. More information about the curation process of the dataset can be found in
(Lucassen et al., 2025). For each case, all unique, H&E-stained WSIs and the corresponding
pathology report were included after de-identification. The study was conducted in com-
pliance with the hospital’s research ethics committee guidelines. Cases from patients who
opted out of the use of their data for research purposes were excluded.

The pathology reports were preprocessed using a workflow described in detail in prior
work (Lucassen et al., 2024b). After translation from Dutch to English, the reports were
segmented into subsentences based on the information content. Pretrained language models
were used for the translation and segmentation after being finetuned for the respective
tasks. Two variants of each report were created by selecting part of the subsentences:
(1) all sentences from the original report; and (2) only the sentences with cell and tissue
appearances written based on the H&E-stained WSIs. All cases with an empty report for
one or both of the variants were excluded from the dataset.

Acquisition of the WSIs was performed using either a ScanScope XT scanner (Ape-
rio, Vista, CA, USA) at 20× magnification with a resolution of 0.50 µm per pixel (slides
scanned before 2016) or a NanoZoomer 2.0-XR scanner (Hamamatsu photonics, Hama-
matsu, Shizuoka, Japan) at 40× magnification with a resolution of 0.23 µm per pixel (slides
scanned starting from 2016). To guide the WSI tessellation, tissue cross-sections and pen
markings were segmented in each WSI at 1.25× magnification using SlideSegmenter (Lu-
cassen et al., 2024a). Non-overlapping tiles of 4,096×4,096 pixels were extracted from the
WSIs at 20× magnification. Tiles with identified pen markings or covered by tissue for less
than 5% were excluded.

The dataset comprised of 42,433 H&E-stained WSIs from 19,636 melanocytic lesions
with one report each, acquired from 14,951 unique patients. The majority of these lesions
(81.9%) were benign common nevi, otherwise known as moles. The rest included non-
common nevi, melanocytomas, and melanomas, ranging from benign to intermediate to
malignant. In total, the reports describing only the H&E-related cell and tissue patterns
contained 1,425,573 words across 129,121 sentences. In contrast, the full reports contained
2,132,008 words across 185,570 sentences. The dataset was split on a patient level into sets
for training (80%), validation (10%), and testing (10%).

2.2 Vision-Language Model

We built upon the BLIP-2 framework (Li et al., 2023), which was designed for parameter-
efficient vision-language modeling. An overview of the vision-language model and training
procedure is shown in Fig. 1.

All extracted WSI tiles for a case are converted to 192-dimensional feature vectors
using the second stage of HIPT (Chen et al., 2022) (i.e., two successive Vision Transform-
ers (ViTs) (Dosovitskiy et al., 2021) pretrained on The Cancer Genome Atlas (TCGA)
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Figure 1: Overview of the vision-language modeling framework. Feature vectors are ex-
tracted using HIPT (Chen et al., 2022) from all tiles of the tessellated WSIs.
Pathology reports, with or without information selection, are tokenized and em-
bedded. The Q-Former is trained for representation learning in the first stage
and report generation in the second stage.

dataset (Liu et al., 2018)). This image encoder is connected using the so-called Querying
Transformer (Q-Former) to a pretrained language model with mostly frozen parameters.
The Q-Former consists of two parallel Transformer (Vaswani et al., 2017) submodules of 12
blocks: (1) an image submodule with trainable embeddings of 768 dimensions as input, also
referred to as query embeddings, that extract information from the image feature vectors
using cross-attention layers in every other block; and (2) a submodule with tokenized text
embeddings as input and without cross-attention layers. Both submodules share the same
self-attention layers, which enables interaction between image and text information through
the query embeddings.

The output query embeddings returned by the image submodule of the Q-Former are
prepended to the sequence of tokens for autoregressive language generation using BioGPT (Luo
et al., 2022). This language model has a decoder-only Transformer architecture with 24 lay-
ers, 347 million parameters, a vocabulary size of 42,384 tokens, and was pretrained on a
biomedical text corpus.

2.3 Training for Representation Learning

To limit the required memory, only the Q-Former parameters were optimized for multi-
modal representation learning, while the parameters of the image encoder and text em-
bedding layer remained frozen. The parameters of the Q-Former were initialized based on
BERT-base-uncased (Devlin et al., 2019), except for the cross-attention layers and query
embeddings, which were randomly initialized at the start of training. Following the first
stage of the BLIP-2 training procedure (see Fig. 1), the Q-Former was trained using an
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image-text contrastive loss LITC, image-text matching loss LITM, and image-grounded text
generation loss LITG.

The contrastive loss is optimized by maximizing the similarity between matching pairs
of image and text embeddings, while minimizing the similarity between all unmatching pairs
of image and text embeddings:

LITC=− 1

2N

(
N∑
i

log
exp(max(x⊤

i yi)/τ)∑N
j=1exp(max(x⊤

i yj)/τ)
+

N∑
i

log
exp(max(y⊤i xi)/τ)∑N
j=1exp(max(y⊤i xj)/τ)

)
(1)

where (xi, yi) is the i-th matching image-text pair in the batch. Here, xi are multiple,
L2-normalized output query embeddings from the Q-Former with image information, yi
is a single text embedding for the [CLS] token, N is the batch size, and τ is a trainable
temperature parameter. A unimodal mask is used for the self-attention layers.

For the matching loss, the batch of matching image-text pairs is expanded with all
images paired with an unmatching text, and all texts paired with an unmatching image,
tripling the original batch size. Unmatching counterparts with a high similarity to the
matching counterpart were more likely to be sampled. A fully connected layer is attached
to predict, based on an output query embedding, whether an image-text pair matches or
not. By averaging the predicted logits for all output query embeddings, a final prediction
is obtained. The matching loss is optimized by minimizing the binary cross-entropy:

LITM = − 1

3N

3N∑
i=1

ci logP (qi) + (1 − ci) log(1 − P (qi)) (2)

where qi are the output query embeddings for the i-th image-text pair, ci is the binary
label indicating whether the i-th pair matches or not, and N is the original batch size. A
bidirectional mask is used for the self-attention layers.

The image-grounded text generation loss is optimized by minimizing the cross-entropy of
the paired text y under the forward autoregressive factorization with teacher-forcing (Williams
and Zipser, 1989) to parallelize computation:

LITG = − 1

T

T∑
t=1

logP (yt|y1:t−1,x) (3)

where yt is the t-th token of the text report y with length T , y1:t−1 represents all embedded
tokens preceding the embedding of the current token, and x represents the query embeddings
with image information from the Q-Former. A multimodal, causal mask is used for the self-
attention layers.

The model with 16 querying embeddings was trained on the sum of LITC, LITM, and
LITG for 25 epochs with a batch size of 20. Model parameters were updated using a
learning rate of 1 · 10 -4 with a cosine learning rate scheduler and 1,000 warmup steps. The
AdamW (Loshchilov and Hutter, 2019) optimization algorithm (β1 = 0.9, β2 = 0.999) was
used with weight decay equal to 0.01. The model was trained with label smoothing (Szegedy
et al., 2016) for the contrastive loss with α = 0.9 (which was omitted from Eq. 1 for brevity).
Hyperparameters were tuned based on the validation set results. The final model parameters
were selected based on the epoch with the lowest validation loss.
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2.4 Training for Report Generation

In the second stage of the BLIP-2 training procedure, the Q-Former is connected to BioGPT
for report generation (see Fig. 1). A fully connected layer is used to transform the output
embeddings with image information from the Q-Former to the dimensionality of the text
embeddings. The parameters of the Q-Former (pretrained in the prior representation learn-
ing stage using full reports), the fully connected layer, and the final fully connected layer
of the BioGPT model were optimized during training based on the image-grounded text
generation loss in Eq. 3.

The model with 64 querying embeddings was trained for 21 epochs with a batch size of
36. Model parameters were updated using a learning rate of 1 · 10 -3 with a cosine learn-
ing rate scheduler and 1,000 warmup steps. The AdamW (Loshchilov and Hutter, 2019)
optimization algorithm (β1 = 0.9, β2 = 0.999) was used with weight decay equal to 0.01. Hy-
perparameters were tuned based on the validation set results. The final model parameters
were selected based on the epoch with the lowest validation loss.

3 Results

3.1 Retrieval Performance

The quality of the learned representations was evaluated using cross-modal retrieval based
on the cases in the independent test set (N = 1,970). Cross-modal retrieval assesses to what
extent the pathology reports can be matched to the corresponding WSIs (and vice versa)
based on the similarity of the image and text representations. Performance on the retrieval
tasks was expressed in terms of the recall at k (i.e., the proportion of cases for which the
matching item is in the top k retrieved items), as well as the mean and median rank of
the matching items retrieved. Bootstrapping (R = 1,000 samples) was used to calculate
95% confidence intervals (CIs) using the percentile method. The set of items for retrieval
was not sampled as part of the bootstrapping procedure to prevent matching conflicts for
duplicates. The retrieval performance was evaluated for the models trained on the two
report variants (i.e., full reports or only the descriptions of H&E-related cell and tissue
patterns) and repeated using both variants of the reports for retrieval.

The results for the cross-modal retrieval are shown in Table 1 for image-to-text matching
and in Table 2 for text-to-image matching. The best retrieval performance was achieved by
the model trained on full reports when the full reports were also used for matching. The two
models performed on par when matching was done using the preprocessed reports including
only the sentences with cell and tissue appearances based on H&E-stained WSIs. The worst
retrieval scores were seen for the model trained on the preprocessed reports when the full
reports were used for matching. Text-to-image matching performed notably worse than
image-to-text matching for this combination of training and retrieval. This is in contrast
to all other combinations, where the results for image-to-text and text-to-image matching
were comparable.

3.2 Report Generation Performance

We performed a reader study to evaluate the quality of the generated reports. A total of 50
cases from the test set were randomly selected with stratification based on the diagnosis (25
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Table 1: Results for image-to-text matching based on the cases in the independent test set
(N = 1,970). Note that lower scores represent better performance for the rank.

Training Retrieval Recall at k Rank
k = 1 k = 5 k = 10 Mean Median

H&E only H&E only
0.022 0.105 0.176 137.7 61

(0.017-0.030) (0.092-0.119) (0.159-0.192) (128.8-146.7) (56-67)

Full report
0.018 0.081 0.131 172.4 79

(0.013-0.024) (0.068-0.091) (0.118-0.145) (162.8-182.6) (72-88)

Full report H&E only
0.024 0.095 0.164 135.7 63

(0.017-0.031) (0.082-0.107) (0.147-0.180) (127.5-144.5) (56-68)

Full report
0.058 0.182 0.279 83.3 31

(0.048-0.068) (0.164-0.198) (0.259-0.300) (77.4-89.5) (29-35)

Table 2: Results for text-to-image matching based on the cases in the independent test set
(N = 1,970). Note that lower scores represent better performance for the rank.

Training Retrieval Recall at k Rank
k = 1 k = 5 k = 10 Mean Median

H&E only H&E only
0.027 0.104 0.168 141.0 60.5

(0.019-0.034) (0.090-0.116) (0.150-0.184) (131.8-150.3) (56-67)

Full report
0.014 0.064 0.113 202.3 101.5

(0.009-0.019) (0.053-0.074) (0.099-0.127) (190.9-214.2) (92-109)

Full report H&E only
0.024 0.090 0.154 138.6 62

(0.017-0.030) (0.077-0.103) (0.138-0.170) (130.4-146.7) (57-67)

Full report
0.058 0.172 0.270 87.0 31

(0.047-0.068) (0.155-0.188) (0.250-0.288) (80.4-93.0) (29-35)

common nevi and 25 melanocytic lesions of various other subtypes) to cover both common
and rare entities. For all selected cases, the original report written by a pathologist as
part of routine clinical practice was collected and the two vision-language model variants
were used to generate a report. A pathologist (W.B.) experienced in dermatopathology was
recruited to independently evaluate the three reports per case. The evaluation consisted
of counting factual errors, unverifiable statements, important missing information, and re-
peated phrases. The reports were also scored on a scale from 1 to 5, ranging from mostly
inaccurate with no expected benefit from using the report as starting point to highly ac-
curate with minimal to no adjustments needed for use in clinical practice. The pathologist
only had access to the WSIs during the reader study. To prevent bias in the evaluation,
reports were randomly ordered per case and the pathologist was blinded from the origin of
the report.

The mean and standard deviation of the error counts and quality score from the reader
study are shown in Table 3. The vision-language model trained on full reports produced,
on average, 3.0 (± 4.8) statements that could not be verified based on the H&E-stained
WSIs per report. Less unverifiable statements were produced for common nevi, averaging
1.2 (± 0.4) occurrences compared to 4.9 (± 6.4) for other subtypes of melanocytic lesions.
This is in line with the proportion of the reports that does not describe H&E-related cell
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Table 3: Results of the reader study with blinded evaluation by a pathologist are presented
as the mean and standard deviation. The score reflects the overall accuracy and
usability of the reports on a 1-5 scale. The count of unverifiable statements is not
applicable to pathologist-written reports.

Data Written by Error count per report Score
Factual Unverifiable Omission Repetition

All Model - Full report 1.9 ± 1.8 3.0 ± 4.8 0.2 ± 0.5 0.8 ± 2.1 2.4 ± 1.2

(N = 50) Model - H&E only 1.7 ± 1.7 0.0 ± 0.0 0.6 ± 1.1 0.1 ± 0.5 2.8 ± 1.4

Pathologist 0.7 ± 1.0 – 0.3 ± 0.5 0.8 ± 1.8 3.9 ± 1.0

Common nevi Model - Full report 1.0 ± 1.0 1.2 ± 0.4 0.2 ± 0.5 0.0 ± 0.0 3.2 ± 1.2

(N = 25) Model - H&E only 0.9 ± 0.9 0.0 ± 0.0 0.3 ± 0.5 0.1 ± 0.3 3.7 ± 1.2

Pathologist 0.5 ± 0.7 – 0.3 ± 0.5 0.1 ± 0.3 4.2 ± 0.9

Other lesions Model - Full report 2.8 ± 2.0 4.9 ± 6.4 0.2 ± 0.4 1.5 ± 2.8 1.7 ± 0.7

(N = 25) Model - H&E only 2.5 ± 1.9 0.0 ± 0.0 1.0 ± 1.5 0.1 ± 0.6 1.9 ± 1.0

Pathologist 0.9 ± 1.3 – 0.3 ± 0.5 1.5 ± 2.3 3.6 ± 1.0

and tissue patterns in the dataset, with and average of 25.3% of the words for common nevi
and 43.0% of the words for other melanocytic lesion subtypes. Additionally, more repeated
information was seen in the reports generated by the model trained on full reports. In
comparison, no statements were generated that could not be supported nor contradicted
based on the H&E-stained WSIs by the model with preprocessed reports as training data.
The number of factual errors was comparable for the two vision-language models. Overall,
the accuracy and usability of the reports generated by both models was scored higher for
common nevi than for the other melanocytic lesions. The scores for the reports written
by pathologists as part of routine clinical practice were the highest, although considerable
inter-observer disagreement was seen as well, based on the average of 0.7 (± 1.0) factual
errors in these reports.

4 Discussion and Conclusion

Our study investigated the effect of information selection as part of text preprocessing on
the performance of vision-language models in pathology. In cross-modal retrieval, the model
trained on full pathology reports outperformed the model trained only on the descriptions
of H&E-related cell and tissue patterns. Studying which types of additional information
contribute positively to retrieval performance is an interesting direction for future work.
Models trained on full reports, however, were also prone to generating unverifiable as well
as redundant statements, particularly for more uncommon melanocytic lesions. Despite the
unique characteristics of each pathology domain, we expect that these results generalize
beyond melanocytic skin lesions.

In conclusion, our findings suggest that text preprocessing effectively prevents hallucina-
tion in pathology report generation. While this improved the overall accuracy and usability
of generated reports, albeit not yet to the level of a pathologist, training on full reports
showed superior performance in cross-modal retrieval.
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