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ABSTRACT

Accurate interpretation of Electrocardiogram (ECG) signals is pivotal for diag-
nosing cardiovascular diseases. Integrating ECG signals with their accompanying
textual reports holds immense potential to enhance clinical diagnostics through
the combination of physiological data and qualitative insights. However, this in-
tegration faces significant challenges due to inherent modality disparities and the
scarcity of labeled data for robust cross-modal learning. To address these ob-
stacles, we propose C-MELT, a novel framework that pre-trains ECG and text
data using a contrastive masked auto-encoder architecture. C-MELT uniquely
combines the strengths of generative with enhanced discriminative capabilities to
achieve robust cross-modal representations. This is accomplished through masked
modality modeling, specialized loss functions, and an improved negative sampling
strategy tailored for cross-modal alignment. Extensive experiments on five public
datasets across diverse downstream tasks demonstrate that C-MELT significantly
outperforms existing methods, achieving an average AUC improvement of 15% in
linear probing with only one percent of training data and 2% in zero-shot perfor-
mance without requiring training data over state-of-the-art models. These results
highlight the effectiveness of C-MELT, underscoring its potential to advance au-
tomated clinical diagnostics through multi-modal representations.

1 INTRODUCTION

Electrocardiograms (ECGs), obtained through non-invasive electrode placement, provide a critical
window into the heart’s electrical activity by measuring voltage differences across specific anatomi-
cal regions. The standard 12-lead ECG, which captures unique electrical potential differences from
each lead, plays a vital role in diagnosing a wide spectrum of cardiac conditions, like arrhyth-
mias. In recent years, significant progress has been made in leveraging deep learning techniques
for automated ECG interpretation (Yan et al., 2019; Ebrahimi et al., 2020; Siontis et al., 2021).
However, these supervised deep learning approaches often necessitate large volumes of expertly an-
notated data, which are frequently scarce and expensive to acquire. Self-supervised learning (SSL)
has emerged as a compelling alternative, offering the potential to learn robust representations from
abundant unlabeled ECG data. These learned representations can be effectively utilized for zero-shot
learning on novel tasks and adapted via fine-tuning to specific downstream applications, thereby mit-
igating the reliance on extensive labeled datasets.

Numerous studies have explored the potential of SSL in the ECG domain, demonstrating its effi-
cacy in learning representations from vast quantities of unlabeled data. These efforts generally fall
into two main tracks: contrastive and generative approaches. Contrastive methods, exemplified by
works such as (Chen et al., 2020; 2021; Chen & He, 2021; Grill et al., 2020; Kiyasseh et al., 2021;
Oh et al., 2022; McKeen et al., 2024), aim to learn discriminative representations by maximizing
the similarity between positive pairs (e.g., different augmentations of the same ECG signal) and
minimizing the similarity between negative pairs (e.g., ECGs from different patients) within the em-
bedding space. Conversely, generative approaches (Hu et al., 2023; Zhang et al., 2022a; 2023) focus
on reconstructing the input data, typically by predicting masked or missing segments of the ECG
signal, thereby learning to capture the underlying data distribution. Therefore, integrating both con-
trastive and generative approaches within a unified framework could leverage their complementary
strengths, leading to a more powerful method for learning robust representations (Kim et al., 2021;
Li et al., 2022b; Song et al., 2024).
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Despite advancements, existing ECG-based SSL approaches have largely overlooked the valuable
information embedded within clinical text reports, which offer key insights into underlying cardiac
conditions and have the potential to significantly enhance a model’s diagnostic accuracy (Zhang
et al., 2022c; Chen et al., 2022). This oversight highlights a critical gap in the field: the lack of
emphasis on jointly learning ECG-text cross-modal representations. While some recent efforts (Liu
et al., 2024; Lalam et al., 2023; Li et al., 2024) have attempted to bridge this gap by integrating ECG
signals and clinical reports through cross-modal contrastive learning, the potential of learning unified
representations that capture the intricate interplay between ECG signals and their corresponding
textual descriptions shown in generative approaches remains largely unexplored. Moreover, the
prevailing reliance on these contrastive methods presents inherent limitations. They depend on the
availability of negative samples and often struggle to capture cross-modal relationships effectively
due to difficulties in defining appropriate negative pairings across different modalities.

In this work, we depart from the reliance on either solely contrastive learning or stand-alone gen-
erative approaches for cross-modal representation learning. We introduce C-MELT, a novel hybrid
framework that synergistically integrates both learning paradigms to effectively capture fine-grained
input details and discriminative ECG-text features. Our approach employs a transformer-based en-
coder specifically for ECG signals and a well-pre-trained language model for clinical text encoder
in a masked auto-encoder architecture, together with tailored loss functions that promote the joint
learning of robust cross-modal representations. Additionally, we introduce a nearest-neighbor neg-
ative sampling strategy, a crucial refinement often overlooked in previous methods, to ensure that
negative samples are contextually selected and thereby, enhance the discriminative capability of the
learned representations. To rigorously evaluate the efficacy of C-MELT, we conduct extensive exper-
iments on various public ECG datasets and demonstrate that our method significantly outperforms
recent state-of-the-art baselines across all evaluation settings and datasets.

2 RELATED WORK

ECG Self-supervised Learning. Self-supervised learning (SSL) has been shown to work effec-
tively across various modalities, including vision (Li et al., 2022a; Han et al., 2021), language (De-
vlin, 2018; He et al., 2020; Chung et al., 2024), and time-series data (Tonekaboni et al., 2021; Zhang
et al., 2022b; Saeed et al., 2019). Particularly, recent advances in applying SSL to ECG signals have
demonstrated that models can learn meaningful representations from large amounts of unlabeled
data, which is crucial in medical domains where labeled datasets are often limited and expensive to
acquire. Here, we mainly discuss two common SSL approaches: generative and contrastive, which
have seen notable progress in ECG representation learning in recent years.

Early contrastive methods such as SimCLR (Chen et al., 2020), MoCo (Chen et al., 2021), Sim-
Siam (Chen & He, 2021), and BYOL (Grill et al., 2020) introduced the concept of maximizing
agreement between augmented views of the same data sample by employing augmentation strategies
to create challenging positive and negative pairs. In the context of ECG signals, recent approaches
like 3KG (Gopal et al., 2021) apply physiologically inspired spatial and temporal augmentations, us-
ing vectorcardiogram (VCG) transformations to capture the three-dimensional spatiotemporal char-
acteristics of the heart’s electrical activity. Similarly, CLOCS (Kiyasseh et al., 2021) developed
Contrastive Multi-Segment Coding (CMSC), which enhances the model’s ability to handle varying
ECG signal characteristics across different axes—space, time, and patients. Building on this, (Oh
et al., 2022) incorporates Wav2vec 2.0 (Baevski et al., 2020), CMSC, and random lead masking
to simulate different global and local lead configurations during training, thereby improving model
robustness and achieving impressive results on ECG downstream tasks.

On the other hand, generative approaches (Hu et al., 2023; Zhang et al., 2022a; Na et al., 2024) are
less prevalent, but play a crucial role in ECG SSL. These methods focus on capturing the underly-
ing structure of the data by training auto-encoder models to generate or reconstruct masked input
data, enabling the model to understand and represent key features and patterns. For instance, ST-
MEM (Na et al., 2024) utilizes a masked auto-encoder with a spatio-temporal patchifying technique
to model relationships in 12-lead ECG signals. Additionally, the Cross-Reconstruction Transformer
(CRT) (Zhang et al., 2023) employs frequency-domain and temporal masking to reconstruct missing
ECG segments, demonstrating the innovative use of generative SSL in ECG analysis.
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Figure 1: Illustration of our contrastive masked ECG-language modeling technique.

ECG-Text Multi-modal Representation Learning. Multi-modal representation learning com-
bines information from different data types, shown to effectively improve model performance (Lin
et al., 2024; Du et al., 2023). Particularly, pioneering works like CLIP-based models (Radford
et al., 2021; Rasheed et al., 2023; Zhai et al., 2023) have proven the power of contrastive learning
in aligning visual and textual modalities, achieving strong generalizations across a broad range of
tasks. Applying similar ideas to the ECG domain, MERL (Liu et al., 2024) leverages cross-modal
and uni-modal alignment techniques to generalize ECG and text-based medical classification tasks.
However, it overlooks the critical role of negative sample selection for contrastive learning and lacks
exploring generative approaches for fine-grained multi-modal learning, limiting performance in end
tasks.

3 METHOD

We propose C-MELT, a framework designed to learn generalizable cross-modal representations
by aligning electrocardiogram (ECG) signals and corresponding medical text reports. C-MELT
leverages masked language modeling (MLM) and masked ECG modeling (MEM) to reconstruct
randomly masked segments within the input text and ECG signals, respectively. This encourages
the model to learn fine-grained features within each modality. Furthermore, we introduce Siglep
(Sigmoid language ECG pre-training) loss, which is based on SigLIP Zhai et al. (2023), and a
nearest-neighbor negative sampling strategy. These directly promote discriminative representation
learning and enhance cross-modal alignment, besides the ECG-text matching (ETM) learning task.

Figure 1 depicts the overall architecture of C-MELT, which comprises two main branches: an ECG
encoder and a text encoder. The ECG encoder utilizes a transformer-based architecture (Vaswani
et al., 2023) to process the input ECG signals and generate corresponding representations, denoted
as Hx ∈ RLx×d, where Lx represents the sequence length of the ECG signal and d represents the
embedding dimension. The text encoder utilizes the recent pre-trained Flan-T5 model (Chung et al.,
2024) which, to our knowledge, has not been previously applied to this task, to extract high-level se-
mantic embeddings from the clinical text, denoted as Ht ∈ RLt×d, where Lt represents the sequence
length of the text. These encoder outputs are then passed through a fusion module, which employs a
cross-attention mechanism to integrate information from both modalities, generating fused represen-
tations denoted as Hf ∈ R(Lx+Lt)×d. The model subsequently employs three distinct heads: two
decoders, responsible for reconstructing the masked portions of the ECG signal (X̂) and text (Tm),
respectively, and a contrastive prediction head for ECG-text matching. Additionally, we introduce
two projection heads, gx and gt, following the ECG and text encoders, respectively. These pro-
jection heads, along with the Siglep loss, facilitate learning discriminative representation between
these modalities. The model is trained by jointly optimizing four loss functions: masked language
modeling loss (LMLM ), masked ECG modeling loss (LMEM ), ECG-text matching loss (LETM ),
and the Siglep loss (LSiglep). The subsequent subsections provide a detailed description of each
component within the C-MELT framework.

3.1 MULTI-MODAL MASKED AUTO-ENCODERS.

ECG Encoder. We implement the ECG encoder (denoted as Fx) based on a transformer architec-
ture, which was originally developed for efficiently processing sequential data in parallel (Vaswani
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et al., 2023). We first follow (Oh et al., 2022) to apply a masking strategy to the ECG input
X ∈ RL×C to encourage robust feature learning, where L is the length of the signal and C is the
number of channels. Specifically, we leverage random lead masking as an on-the-fly augmentation
where each lead randomly masked with a probability of p = 0.5 during pre-training. Furthermore,
we use a dropout layer on the input with p = 0.1 to enable masking modeling. We then pass the
masked input into a series of convolutional layers, each followed by GELU activation functions
and group normalization. The extracted features are subsequently projected into a 768-dimensional
space. Following that, we add a convolutional positional encoding layer to preserve the temporal
order of the ECG sequence. Next, we employ eight transformer encoder layers, each including a
multi-head self-attention mechanism that allows the model to attend to different parts of the input
sequence simultaneously. We conduct an experiment exploring the effects of different numbers of
transformer layers in Section 4.

Language (Text) Encoder. For our text encoder, we utilize the Flan-T5-base encoder (denoted as
Ft), which outputs 768-dimensional embeddings. The input to the encoder consists of token indices
generated by the Flan-T5 tokenizer, represented as T ∈ ZM , where M is the maximum sequence
length. Flan-T5 is an advanced version of the T5 model (Raffel et al., 2023), which has been pre-
trained on a massive and diverse text dataset covering numerous tasks, such as summarization and
question answering. Note that our text encoder is fine-tuned during the pre-training stage. We also
conduct an ablation with various text encoders in Section 4 to support our choice of Flan-T5.

Fusion Module. The fusion module begins with linear projections that map the outputs of the
ECG and language encoders to a 768-dimensional space. We apply modality-specific embeddings
to the projected features to distinguish between ECG and text data. Importantly, we employ cross-
attention to integrate the ECG and textual information, allowing each modality to inform the other
by learning the relevant features. This cross-attention mechanism is crucial as it enables the model
to leverage the complementary strengths of both ECG and text data more effectively.

Decoders and Loss Functions. After the fusion module, three distinct network heads are intro-
duced, each associated with a specific loss function: masked language modeling (MLM), masked
ECG modeling (MEM), and ECG-text matching (ETM). MLM and MEM are designed for recon-
struction tasks, while ETM adopts a contrastive learning approach to align the different modalities.
We detail each head and its corresponding loss function below:

Masked Language Modeling (MLM). The MLM head consists of a dense layer that outputs a proba-
bility distribution over the vocabulary. The MLM head focuses on predicting the masked tokens in
the input text sequence, encouraging the model to learn contextualized word embeddings through a
reconstruction task. We use the cross-entropy (CE) loss for MLM, as shown in Equation 1:

LMLM = − 1

B

B∑
j=1

∑
m∈Mj

logP (tj,m|tj\Mj
; θ), (1)

where B represents the batch size, Mj is the set of masked positions in the jth sequence, tj,m is
the masked token at position m in the jth sequence, tj\Mj

represents the jth input sequence with
masked tokens removed, and θ represents the model parameters.

Masked ECG Modeling (MEM). Similar to MLM, the MEM head aims to reconstruct the masked
ECG inputs. It consists of a linear embedding layer that maps the input sequence to a lower-
dimensional space (384), followed by learnable mask tokens that represent the missing portions
of the sequence. We apply positional encodings to preserve the temporal structure of the ECG data.
Subsequently, we use a multi-layer transformer decoder to model the dependencies within the se-
quence. Finally, a linear projection layer outputs the predicted ECG features. We train the MEM
head using the mean squared error (MSE) loss between the predicted ECG signal x̂i and the ground
truth ECG signal xi, as shown in Equation 2:

LMEM =
1

B

B∑
i=1

||x̂i − xi||22 (2)

ECG-Text Matching (ETM). Finally, we use ETM to promote alignment between ECG signals and
their corresponding text reports. This is formulated as a binary classification task, where the ETM
head consists of a single dense layer that outputs a scalar ẑxk,tk representing the predicted probabil-
ity. The ETM loss is defined as the binary cross-entropy loss:
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Figure 2: Example of ECG-Text pair (left) and its corresponding negative text samples (right).

LETM = − 1

B

B∑
k=1

[yk log σ(ẑxk,tk) + (1− yk) log(1− σ(ẑxk,tk))] , (3)

where σ is the sigmoid function, yk = 1 if (xk, tk) is a positive pair, and yk = 0 otherwise.

3.2 IMPROVING CONTRASTIVE LEARNING

Siglep Loss Function. In multi-modal masked auto-encoder architectures such as (Chen et al.,
2022), contrastive learning’s effectiveness can be limited by the inherent tension between the
reconstruction-focused generative tasks of autoencoders and the discriminative nature of contrastive
learning. They are more biased for learning to reconstruct masked inputs in generative manners.
This can hinder the model’s capability to learn discriminative features useful for downstream tasks,
such as zero-shot inference or linear probing. Furthermore, although the ETM loss in such archi-
tectures can serve as a form of contrastive loss, it may not be sufficient for building a robust ECG
encoder. Specifically, the ETM module is primarily designed for binary classification based on
fused features rather than directly enhancing the discriminative power of individual encoders. This
limitation can restrict the model’s ability to produce high-quality multimodal embeddings.

Therefore, we propose strengthening contrastive learning in multi-modal masked auto-encoder ar-
chitectures using Siglep loss function. Specifically, we adapt the SigLIP implementation Zhai et al.
(2023), originally proposed for text-image pairs, to the text-ECG domain (Formula 4). This ap-
proach avoids the costly global normalization of softmax-based contrastive losses by operating in-
dependently on each ECG-text pair, improving memory efficiency and scalability. We introduce two
additional network heads to the ECG and text encoders, respectively. Each head consists of a pool-
ing layer, a Tanh activation function, and a dense layer, enabling them to output 768-dimensional
embeddings (denoted as x′

i ∈ R768 for the ith ECG sample and t′j ∈ R768 for the jth text report).

LSiglep = − 1

B

B∑
i=1

B∑
j=1

log

(
1

1 + e−yijx′⊤
i t′j

)
, (4)

where yij = 1 for positive (matching) ECG-text pairs, and yij = −1 otherwise.

Nearest-neighbor-based Negative Sampling (N3S). In contrastive learning, the selection of neg-
ative samples significantly impacts the training process (Xu et al., 2022). Conventional methods
often employ random sampling, where negative text reports are chosen randomly to replace positive
texts. However, this approach may lead to false negative selection, especially in medical datasets,
where randomly chosen reports might share substantial similarities with the positive reports, hinder-
ing effective contrastive learning. This is discussed more in the Appendix A.2.

Therefore, we propose nearest-neighbor negative sampling (N3S), which selects negative samples
based on their dissimilarity in the Flan-T5’s feature space, ensuring they are sufficiently distinct
from the positive samples while remaining semantically related to the domain. Specifically, we first
utilize pre-trained Flan-T5 (small) to generate vector representations, denoted as vt ∈ R512, for
each text report t in the training dataset Dtrain. These embeddings capture the semantic meaning
of the reports. During training, for a given ECG and its corresponding positive text report (xk, t

+
k )

in half of the training batch B, the negative report t−k is selected as one of the top 64 largest cosine
distance reports from the positive report’s embedding vt+k

. As the training progresses with batches

5
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being updated randomly, this ensures that the negative samples are continually changed, introducing
variability while maintaining domain relevance.

To efficiently perform this process, we employ FAISS (Facebook AI Similarity Search) (Douze et al.,
2024), a high-performance library designed for indexing and searching large collections of dense
vectors. FAISS allows us to apply the N3S technique to large-scale datasets in a computationally
tractable manner. Figure 2 shows one example of an ECG-text pair with its potential negative texts
in the training dataset.

4 EXPERIMENTS

Table 1: Performance for 5 lead combinations in diagnosis classification (Dx., by CinC scores scaled
by 100) and patient identification (Id., by %). P-N-lead indicates N zero-padded unavailable leads.

Methods Tasks # Leads

12-lead P-6-lead P-3-lead P-2-lead P-1-lead

W2V (Baevski et al., 2020) Dx. 71.4 64.3 67.6 61.1 52.5
Id. 49.2 41.1 47.0 41.4 24.7

CMSC (Kiyasseh et al., 2021) Dx. 62.5 52.2 57.5 50.7 40.6
Id. 51.3 39.2 51.0 37.8 22.7

3KG (Gopal et al., 2021) Dx. 60.0 51.5 56.3 50.5 41.8
Id. 40.7 32.0 36.7 31.0 19.8

SimCLR(RLM) (Chen et al., 2020) Dx. 57.8 49.7 53.5 48.4 39.3
Id. 35.3 28.9 36.8 30.4 19.2

W2V+CMSC (Oh et al., 2022) Dx. 71.7 61.6 65.6 58.6 48.2
Id. 55.0 43.7 46.6 41.0 28.0

W2V+CMSC+RLM (Oh et al., 2022) Dx. 73.2 66.2 71.4 65.6 55.4
Id. 57.7 45.9 54.8 45.7 31.3

C-MELT Dx. 85.7 81.1 84.2 81.9 76.5
Id. 65.4 57.3 60.5 57.7 41.1

4.1 IMPLEMENTATION DETAILS

4.1.1 PRE-TRAINING TASK.

Pre-train Dataset. In the pre-training stage, we utilize the MIMIC-IV-ECG v1.0 database (Gow
et al., 2023), which includes 800,035 paired samples derived from 161,352 unique subjects. This
dataset contains numerous 10-second ECG recordings sampled at 500 Hz and the corresponding text
reports. Each ECG recording will have several reports, and we simply merge them into one single
report (diagnosis). We apply some necessary processing steps to prepare the custom dataset for
training (e.g., remove empty or containing NaN ECG recordings and clean text by using lowercase,
strip, and punctuation removal), which eventually yields a training size of 779891 samples. We
provide representative examples of ECG-text pairs in Appendix A.1.

Experimental Configurations. Our proposed model is developed based on the fairseq-signals *

framework in our work. We select the Adam optimizer with a learning rate of 5 × 10−5 and use a
tri-stage scheduler with ratios of 0.1, 0.4, and 0.5 for learning rate adjustments. The optimizer is
configured with β1 = 0.9, β2 = 0.98, an epsilon value of 1× 10−6, and a weight decay of 0.01. We
pre-train the proposed model for 300000 steps, maintaining a batch size of 128. The quantitative
experiments are conducted on a single NVIDIA H100-80GB GPU.

4.1.2 DOWNSTREAM TASKS.

Downstream Datasets. We evaluate our pre-trained encoders on five widely-used public datasets:
PhysioNet 2021 (Reyna et al., 2021), PTB-XL (Wagner et al., 2020), CSN (Zheng et al., 2022),
CPSC2018 (Liu et al., 2018), and CODE-test (Ribeiro et al., 2020). We summarize the key infor-
mation of each dataset as follows:

PhysioNet 2021. This dataset contains ECG samples (500 Hz) ranging between 5 and 144 seconds.
We process and fine-tune the subsets as described in (Oh et al., 2022) to validate the pre-trained

*https://github.com/Jwoo5/fairseq-signals
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Table 2: Performance comparison (AUC in %) across multiple methods and datasets. The results
are shown for different percentages of training data used (1%, 10%, 100%).

Methods
PTBXL-Super PTBXL-Sub PTBXL-Form PTBXL-Rhythm CPSC2018 CSN

1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100%

SimCLR (Chen et al., 2020) 63.41 69.77 73.53 60.84 68.27 73.39 54.98 56.97 62.52 51.41 69.44 77.73 59.78 68.52 76.54 59.02 67.26 73.20
BYOL (Grill et al., 2020) 71.70 73.83 76.45 57.16 67.44 71.64 48.73 61.63 70.82 41.99 74.40 77.17 60.88 74.42 78.75 54.20 71.92 74.69
BarlowTwins (Zbontar et al., 2021) 72.87 75.96 78.41 62.57 70.84 74.34 52.12 60.39 66.14 50.12 73.54 77.62 55.12 72.75 78.39 60.72 71.64 77.43
MoCo-v3 (Chen et al., 2021) 73.19 76.65 78.26 55.88 69.21 76.69 50.32 63.71 71.31 51.38 71.66 74.33 62.13 76.74 75.29 54.61 74.26 77.68
SimSiam (Chen & He, 2021) 73.15 72.70 75.63 62.52 69.31 76.38 55.16 62.91 71.31 49.30 69.47 75.92 58.35 72.89 75.31 58.25 68.61 77.41
TS-TCC (Eldele et al., 2021) 70.73 75.88 78.91 53.54 66.98 77.87 48.04 61.79 71.18 43.34 69.48 78.23 57.07 73.62 78.72 55.26 68.48 76.79
CLOCS (Kiyasseh et al., 2021) 68.94 73.36 76.31 57.94 72.55 76.24 51.97 57.79 72.65 47.19 71.88 76.31 59.59 77.78 77.49 54.38 71.93 76.13
ASTCL (Wang et al., 2023) 72.51 77.31 81.02 61.86 68.77 76.51 44.14 60.93 66.99 52.38 71.98 76.05 57.90 77.01 79.51 56.40 70.87 75.79
CRT (Zhang et al., 2023) 69.68 78.24 77.24 61.98 70.82 78.67 46.41 59.49 68.73 47.44 73.52 74.41 58.01 76.43 82.03 56.21 73.70 78.80
ST-MEM (Na et al., 2024) 61.12 66.87 71.36 54.12 57.86 63.59 55.71 59.99 66.07 51.12 65.44 74.85 56.69 63.32 70.39 59.77 66.87 71.36
MERL (Liu et al., 2024) 82.39 86.27 88.67 64.90 80.56 84.72 58.26 72.43 79.65 53.33 82.88 88.34 70.33 85.32 90.57 66.60 82.74 87.95

C-MELT 83.15 88.36 90.11 77.74 82.92 85.15 70.10 78.91 83.98 86.61 92.83 96.71 85.46 91.35 94.92 80.04 87.36 90.71

Table 3: Zero-shot performance (AUC in %) comparison across multiple datasets.

Methods PTBXL-Super PTBXL-Sub PTBXL-Form PTBXL-Rhythm CPSC2018 CSN Average

MERL 74.2 75.7 65.9 78.5 82.8 74.4 75.3

C-MELT 76.2 75.9 66.1 88.6 80.1 76.3 77.1

ECG encoder in two downstream tasks: 1) 26-multi-label cardiac arrhythmia classification (Dx.); 2)
patient identification (Id.), predicting patient ownership of ECG recordings.

PTB-XL. The PTB-XL dataset includes 21,837 ECG signals collected from 18,885 patients. Each
sample has a 12-lead ECG recording sampled at 500 Hz over 10 seconds and corresponding cardiac
labels. We follow (Liu et al., 2024) to split the dataset, including four sub-groups (super, sub, form,
and rhythm). We consider them as the four separated datasets and prepare each of them with the
same train, val, and test set split as in the original paper (Wagner et al., 2020).

CSN. This dataset consists of 23,026 ECG recordings sampled at 500 Hz for 10 seconds with 38 dis-
tinct labels. Therefore, it also supports the evaluation in a classification task. We use 70%:10%:20%
data split as processed in (Liu et al., 2024).

CPSC2018. The dataset contains 6,877 standard 12-lead ECG recordings (500 Hz), which cover 9
distinct categories. Similarly, we also use the same data configuration following (Liu et al., 2024).

CODE-test: This contains 827 12-lead ECG samples (400 Hz) at varying lengths covering 6 abnor-
malities, annotated by several experienced residents and medical students. We resample the ECG
signals to 500 Hz and adjust the lengths to 10 seconds.

Experimental Configurations. To evaluate our model’s performance on downstream tasks, we
conduct three experiments: 1) First, we integrate a linear layer on top of the pre-trained ECG encoder
and fine-tune the entire model to test its efficacy in two tasks within the Physionet 2021 dataset: Dx.
(by CinC score) and Id. (by % accuracy). We report the results with five cases of lead combinations,
as presented in (Oh et al., 2022); 2) Second, we also implement a linear classifier but keep the ECG
encoder frozen. This linear probing approach is applied at different training set sizes (1%, 10%,
and 100%) to assess the macro AUC score (%) on the PTB-XL, CSN, and CPSC2018 test datasets,
facilitating a comparison with our baseline (Liu et al., 2024); 3) Finally, we investigate zero-shot
classification (AUC) on PTB-XL, CSN, CPSC2018 and CODE-test datasets. Here, the texts used
are obtained by passing the category names through GPT-4o for capturing better medical context.
The detailed configuration on each experiment is mentioned in Appendix A.1.

4.2 QUANTITATIVE RESULTS

Full Fine-tuning Classifier. As shown in Table 1, our method consistently outperforms previous
approaches Oh et al. (2022) in both examined tasks. In the classification task, our model achieves
85.7% accuracy with all 12 leads, significantly higher than the best baseline (W2V+CMSC+RLM),
which is 73.2%. This number is even lower than our setting with only 1 lead usage (76.5%). Interest-
ingly, the 3-lead combination yields the second-highest result, only 1.5% lower than using all leads,
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Table 4: Zero-shot performance (AUC in %) under data distribution shift.

Source Domain Zero-shot Training Ratio PTBXL-Super CPSC2018 CSN

Target Domain CPSC2018 CSN PTBXL-Super CSN PTBXL-Super CPSC2018

SimCLR (Chen et al., 2020) ✗ 100% 69.62 73.05 56.65 66.36 59.74 62.11
BYOL (Grill et al., 2020) ✗ 100% 70.27 74.01 57.32 67.56 60.39 63.24
BarlowTwins (Zbontar et al., 2021) ✗ 100% 68.98 72.85 55.97 65.89 58.76 61.35
MoCo-v3 (Chen et al., 2021) ✗ 100% 69.41 73.29 56.54 66.12 59.82 62.07
SimSiam (Chen & He, 2021) ✗ 100% 70.06 73.92 57.21 67.48 60.23 63.09
TS-TCC (Eldele et al., 2021) ✗ 100% 71.32 75.16 58.47 68.34 61.55 64.48
CLOCS (Kiyasseh et al., 2021) ✗ 100% 68.79 72.64 55.86 65.73 58.69 61.27
ASTCL (Wang et al., 2023) ✗ 100% 69.23 73.18 56.61 66.27 59.74 62.12
CRT (Zhang et al., 2023) ✗ 100% 70.15 74.08 57.39 67.62 60.48 63.33
ST-MEM (Na et al., 2024) ✗ 100% 76.12 84.50 62.27 75.19 73.05 64.66
MERL (Liu et al., 2024) ✓ 0% 88.21 78.01 76.77 76.56 74.15 82.86

C-MELT ✓ 0% 72.09 79.11 77.12 82.91 76.24 80.10

Table 5: ECG interpretation comparison (AUC in %): Human experts vs. DNN (Ribeiro et al., 2020) vs.
C-MELT.

Cardio Resident Emergency Resident Medical Student DNN C-MELT (Zero-shot)

92.07 90.52 93.61 96.59 96.79

while the 2-lead and 6-lead combinations produce comparable results, both around 81.5%. This
suggests that the selected leads (I, II, V2) capture sufficient information for accurate performance.
A similar pattern emerges in the identification task, where our model achieves 41.1% accuracy with
a single lead, 60.5% with 3 leads, and 65.4% with 12 leads, surpassing the best baseline by 7%.

Linear Probing Classifier. Table 2 presents the linear probing results, where our method demon-
strates a clear advantage over the baseline approaches Liu et al. (2024). Notably, with only 1%
of the training data, our method shows a substantial improvement over MERL, especially in CSN
(14% enhancement) and PTBXL-Rhythm (33%) datasets. Similarly, impressive results are observed
at 10% and 100% of the data. For example, on the PTBXL-Rhythm dataset, our method achieves
approximately a 10% improvement at the 10% configuration. On the CPSC2018 dataset, we also
observe a considerable increase from 90.57% to 94.92% when using 100% of the training data.

Zero-shot Classifier. We first compare our method with MERL in conventional zero-shot settings
across six datasets, as shown in Table 3. On average, our method achieves 77%, outperforming
MERL by 2%. Notably, MERL performs particularly impressive on the CPSC2018 dataset, while
its results on the other five datasets are consistently lower than ours. Next, we extend the compar-
ison of our method with MERL and other SSL baselines Liu et al. (2024) under data distribution
shifts. Specifically, we compare linear probing (100% training size) of SSL methods with MERL’s
and our zero-shot approach. In this setup, source domain and target domain share some common
categories. Details on this implementation can be found in Appendix A.1. As shown in Table 4,
our results surpass MERL and other methods, except when CPSC2018 is the target domain, which
aligns with our previous observations. Finally, Table 5 shows that our zero-shot model outperforms
three experienced cardiologists (over 3%) and also the in-domain model (Ribeiro et al., 2020), i.e.,
trained with millions of annotated ECG examples. We will discuss more on zero-shot settings in the
Appendix A.3.

4.3 ABLATION STUDIES

We evaluate the impact of the key model components, the choice of language encoders, and vary-
ing the number of transformer layers in the ECG encoder for ablation studies. Here, we focus on
three downstream tasks, including full fine-tuned diagnosis classification (results across five lead
combinations), linear probing at 1% training size, and zero-shot classification using category names
(results across PTB-XL, CSN, and CPSC2018 datasets).

Effects of Key Components. To assess the contribution of different model components, including
Flan-T5, Siglep, and N3S, we systematically remove one component at a time from the default
proposed model. Specifically, we start by eliminating the N3S and train the model with randomly
selected negative samples. Subsequently, we take the Siglep loss away to assess its effectiveness

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

in capturing rich representative embeddings in both encoders. Lastly, by replacing the Flan-T5
language encoder with a standard Bert-base architecture (Devlin, 2018), we consider this as the
baseline model. Table 6 demonstrates the results of this experiment. It can be seen that Siglep
significantly enhances performance, showing an improvement of approximately 15% in both full
fine-tuning and linear probing settings over the baseline model. Meanwhile, adding N3S improves
zero-shot classification by 2%, and introducing Flan-T5 enhances performance in linear probing
by 4% compared to the baseline. These results underscore the effectiveness of each component in
optimizing the model’s performance.

To better understand how our method improves downstream performance, we visualize and compare
the t-SNE embeddings generated by our ECG encoder on the CSN test set with those from MERL.
For clearer visualization, we include only samples from unique categories and exclude categories
with fewer than 50 samples. Figure 3 reveals that our embeddings show more well-defined and
distinct clusters representing different ECG diagnoses, which aligns with expectations.

Table 6: Effects of model components: 1⃝
FlanT5, 2⃝ Siglep, 3⃝ N3S.

1⃝ 2⃝ 3⃝ Full fine-tune Linear probing Zero-shot

✓ ✓ ✓ 81.88 ± 3.52 80.52 ± 6.08 72.50± 9.01

✓ ✓ 80.93 ± 3.74 78.29 ± 6.19 70.61 ± 8.10
✓ 78.29 ± 3.87 67.19 ± 6.14 –

76.81 ± 3.96 63.50 ± 6.95 –

Table 7: Effects of different language en-
coders.

Lang encoder Full fine-tune Linear probing Zero-shot

Flan-T5 81.88 ± 3.52 80.52 ± 6.08 72.50± 9.01

Med-CPT 81.02 ± 3.61 79.57 ± 6.32 71.81 ± 9.14
Deberta 79.23 ± 3.65 78.24 ± 6.21 70.67 ± 9.88
Bert 78.08 ± 3.91 77.58 ± 6.49 69.14 ± 9.97

Table 8: Effects of the number of trans-
former layers from ECG encoder. By
default, our model contains 8 trans-
former layers.

# Layers Full fine-tune Linear probing Zero-shot

8 81.88 ± 3.52 80.52 ± 6.08 72.50± 9.01

4 77.63 ± 4.14 70.17 ± 7.60 70.64 ± 8.63
1 69.40 ± 4.55 66.83 ± 7.52 69.43 ± 9.51

MERL Ours

SA ALS APB AF SVT TWC ST

Figure 3: T-SNE visualization on the CSN test set.

Choice of Language Encoders. In this ablation study, we evaluate the performance of four pre-
trained language models, namely Bert (Devlin, 2018), Deberta (He et al., 2020), Med-CPT (Jin et al.,
2023), and Flan-T5 (Chung et al., 2024) to determine the most suitable language encoder for our
model. Here, only the base versions were tested. As shown in Table 7, Flan-T5 outperforms the
others across multiple metrics, highlighting the importance of choosing a model that excels not only
in general text processing but also in capturing domain-specific nuances, such as ECG reports.

Choice of Number ECG Transformer Layers. As part of our ablation study, we explore the im-
pact of varying the number of transformer layers (1, 4, 8) in the ECG encoder. As shown in Table 8,
increasing the number of layers significantly improves performance. Specifically, the 1-layer model
performs 11% worse than the 8-layer model in full fine-tuning and 13% worse in linear probing.
For zero-shot, the 8-layer model still delivers superior results, with 2% and 3% higher performance
than the 4-layer and 1-layer models, respectively. Although these differences are smaller than in full
fine-tuning, they highlight the language encoder’s impact in improving performance.

5 CONCLUSION

We propose C-MELT to pre-train a model on ECG signals and corresponding texts, utilizing a
novel contrastive masked transformer-based architecture. Our approach is generative self-supervised
learning, enhanced with Siglep loss, and nearest-neighbor negative sampling to support contrastive
aspects. Experimental results demonstrate that our method outperforms previous approaches across
multiple datasets and on a range of downstream tasks, including under full fine-tuning, linear prob-
ing, and zero-shot classification. C-MELT shows promise in advancing ECG-based diagnostic mod-
els, paving the way for more accurate, efficient, and personalized cardiac care.
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REPRODUCIBILITY STATEMENT

We provide detailed information, including dataset descriptions, experiment configurations, and
other discussions in the Appendix. The code and pre-trained model will be made publicly avail-
able once the paper is accepted.
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Chenzhuang Du, Jiaye Teng, Tingle Li, Yichen Liu, Tianyuan Yuan, Yue Wang, Yang Yuan, and Hang Zhao.
On uni-modal feature learning in supervised multi-modal learning, 2023. URL https://arxiv.org/
abs/2305.01233. 3

Zahra Ebrahimi, Mohammad Loni, Masoud Daneshtalab, and Arash Gharehbaghi. A review on deep learning
methods for ecg arrhythmia classification. Expert Systems with Applications: X, 7:100033, 2020. 1

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li, and Cun-
tai Guan. Time-series representation learning via temporal and contextual contrasting. arXiv preprint
arXiv:2106.14112, 2021. 7, 8

Bryan Gopal, Ryan Han, Gautham Raghupathi, Andrew Ng, Geoff Tison, and Pranav Rajpurkar. 3kg: Con-
trastive learning of 12-lead electrocardiograms using physiologically-inspired augmentations. In Machine
Learning for Health, pp. 156–167. PMLR, 2021. 2, 6

Brian Gow, Tom Pollard, Larry A Nathanson, Alistair Johnson, Benjamin Moody, Chrystinne Fernandes,
Nathaniel Greenbaum, Seth Berkowitz, Dana Moukheiber, Parastou Eslami, et al. Mimic-iv-ecg-diagnostic
electrocardiogram matched subset. Type: dataset, 2023. 6, 13, 14
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via redundancy reduction. In International conference on machine learning, pp. 12310–12320. PMLR, 2021.
7, 8

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image pre-
training. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11975–11986,
2023. 3, 5

Huaicheng Zhang, Wenhan Liu, Jiguang Shi, Sheng Chang, Hao Wang, Jin He, and Qijun Huang. Maefe:
Masked autoencoders family of electrocardiogram for self-supervised pretraining and transfer learning.
IEEE Transactions on Instrumentation and Measurement, 72:1–15, 2022a. 1, 2

Wenrui Zhang, Ling Yang, Shijia Geng, and Shenda Hong. Self-supervised time series representation learning
via cross reconstruction transformer. IEEE Transactions on Neural Networks and Learning Systems, 2023.
1, 2, 7, 8

Xiang Zhang, Ziyuan Zhao, Theodoros Tsiligkaridis, and Marinka Zitnik. Self-supervised contrastive pre-
training for time series via time-frequency consistency. Advances in Neural Information Processing Systems,
35:3988–4003, 2022b. 2

Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D Manning, and Curtis P Langlotz. Contrastive
learning of medical visual representations from paired images and text. In Machine Learning for Healthcare
Conference, pp. 2–25. PMLR, 2022c. 2

J Zheng, H Guo, and H Chu. A large scale 12-lead electrocardiogram database for arrhythmia study (version
1.0. 0). PhysioNet 2022Available online httpphysionet orgcontentecg arrhythmia10 0accessed on, 23, 2022.
6, 14, 15

12

https://arxiv.org/abs/2106.00750
https://arxiv.org/abs/1706.03762


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DATA AND TRAINING DETAILS.

In this section, we first visualize representative examples of ECG-text pairs from the MIMIC IV
ECG dataset (Gow et al., 2023), as shown in Figure 4. We also indicate the top 30 common unique
reports (before merging) in Figure 5. Prominent terms such as ”abnormal ecg”, ”normal ecg”,
”atrial fibrillation”, and ”sinus tachycardia” indicate common diagnoses, which suggests prevalent
cardiovascular conditions and typical annotations within this dataset.

(1) Atrial fibrillation. Possible anterior infarct - age undetermined. Inferior/lateral ST-T changes may 
be due to myocardial ischemia. Low QRS voltages in precordial leads. Abnormal ECG.

(3) Sinus arrhythmia. Normal ECG. (4) Bradycardia. Normal ECG except for rate.

(5) Sinus rhythm. Abnormal R-wave progression, early transition. (6) Sinus rhythm. Left axis deviation. RBBB with left anterior fascicular block. Abnormal ECG.

(2) Probable accelerated junctional rhythm. Leftward axis. Lateral T wave changes are nonspecific. 
Abnormal ECG.

(7) Possible atrial flutter with rapid ventricular response. Anterolateral T wave changes are nonspecific. 
Abnormal ECG.

(8) Sinus bradycardia with borderline 1st degree A-V block. Low QRS voltages in precordial leads. 
Borderline ECG.

Figure 4: Examples of ECG-text pairs in MIMIC IV ECG dataset (Gow et al., 2023). We visualize
three leads (I, II, V2) out of twelve.

Next, we provide more details on data configurations in Table 9, including data split, number of
classes, metrics, and the corresponding tasks with the given downstream dataset.

CODE-test: Particularly, this data is from the work of Ribeiro et al. (2020), which is the test
set used for evaluating their trained model’s performance compared with cardiology resident med-
ical doctors. It is worth noting that their training set consists of over 2 million ECG records from
1,676,384 different patients in 811 counties. We evaluate the performance of our method on the
same released test set of 827 samples in a zero-shot manner. These samples are originally sampled
at 400 Hz, with durations of either 10 seconds or 7 seconds. Therefore, we resampled to 500 Hz and
adjusted by truncating or padding with zeros as needed to get 10-second samples. For the gold stan-
dard (ground truth), two expert cardiologists provided their diagnoses. If they agree with each other,
their consensus becomes the gold standard. In cases of disagreement, a third specialist reviews their
diagnoses and determines the final decision.

We also indicate important hyper-parameters during the fine-tuning process in Table 10. We keep
training 200 epochs, batch size at 128, and learning rate at 0.001 for the first three datasets. When
conducting full fine-tuning experiments, we only need to train 100 epochs and specifically lower the
learning rates with 0.00005 and 0.0001 for Dx. and Id. tasks, respectively.

For the distribution shift experiment, we follow the SCP-codes (classes) matching settings in (Liu
et al., 2024), which can be seen in Table 11. This is to support three dataset matches (PTBXL-Super

13
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Figure 5: WordCloud visualization on the top 30 common unique reports from MIMIC IV ECG
dataset.

Table 9: Details on data configurations on five evaluated datasets. Here, LP, ZS are linear probing
and zero-shot respectively, while FFT means full fine-tuning.

Dataset Tasks Metric # Classes Train Valid Test

PTBXL-Super (Wagner et al., 2020) LP, ZS AUC 5 17,084 2,146 2,158
PTBXL-Sub (Wagner et al., 2020) LP, ZS AUC 23 17,084 2,146 2,158
PTBXL-Form (Wagner et al., 2020) LP, ZS AUC 19 7,197 901 880
PTBXL-Rhythm (Wagner et al., 2020) LP, ZS AUC 12 16,832 2,100 2,098

CPSC2018 (Liu et al., 2018) LP, ZS AUC 9 4,950 551 1,376

CSN (Zheng et al., 2022) LP, ZS AUC 38 16,546 1,860 4,620

Physionet2021-Dx. (Reyna et al., 2021) FFT CinC 26 32,640 4,079 4,079
Physionet2021-Id. (Reyna et al., 2021) FFT Accuracy 2,127 147,444 17,670 2,127

CODE-test (Ribeiro et al., 2020) ZS AUC 6 – – 827

and CPSC2018), (PTBXL-Super and CSN), and (CPSC2018 and CSN). It is worth noting that the
None value indicates the target dataset does not have a matching label for given labels in the source
dataset.

A.2 CONTRASTIVE LEARNING DISCUSSION.

Why Using ETM Only Is Not A True Way To Zero-shot Learning. As mentioned in the Method
section, ETM functions as a contrastive learning technique in the masked auto-encoder architecture.
However, it heavily relies on binary classification tasks with explicit ECG-text pairs to learn cross-
modal correspondences. It is not designed for zero-shot learning which strongly requires the model
to generalize to unseen tasks or classes without the need for such supervised pairings or fused infor-
mation during training. This motivates us to use Siglep, boosting the model’s zero-shot ability.

Why N3S Can Enhance The Performance. In medical datasets, particularly the MIMIC-IV ECG
dataset (Gow et al., 2023), we observe a significant amount of duplicate or highly similar text sam-
ples: among nearly 800,000 records, only approximately 180,000 are unique. For instance, over
100,000 samples share an identical text report, which is ”sinus rhythm normal ecg”. Randomly
selecting negative samples for contrastive loss training is not a suitable approach in this scenario.
Therefore, we propose using the N3S technique to more effectively differentiate between similar
and dissimilar samples, improving contrastive learning by selecting more meaningful negatives.
Notably, we observe that during training, the ETM accuracy without N3S stagnates around 75%
while with N3S, it exceeds 96%, demonstrating the significant impact of this approach.
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Table 10: Details on training configurations on the fine-tuned datasets. For optimizer, we keep using
Adam in all experiments.

Dataset # Epoch Batch size Learning rate
PTBXL-Super (Wagner et al., 2020) 200 128 0.001
PTBXL-Sub (Wagner et al., 2020) 200 128 0.001
PTBXL-Form (Wagner et al., 2020) 200 128 0.001
PTBXL-Rhythm (Wagner et al., 2020) 200 128 0.001

CPSC2018 (Liu et al., 2018) 200 128 0.001

CSN (Zheng et al., 2022) 200 128 0.001

Physionet2021-Dx. (Reyna et al., 2021) 100 256 0.00005
Physionet2021-Id. (Reyna et al., 2021) 100 256 0.0001

Table 11: Domain transfer category matching.

PTBXL-Super CPSC2018

HYP None
NORM NORM

CD 1AVB, CRBBB, CLBBB
MI None

STTC STE, STD

PTBXL-Super CSN

HYP RVH, LVH
NORM SR

CD 2AVB, 2AVB1, 1AVB, AVB, LBBB, RBBB, STDD
MI MI

STTC STTC, STE, TWO, STTU, QTIE, TWC

CPSC2018 CSN

AFIB AFIB
VPC VPB

NORM SR
1AVB 1AVB

CRBBB RBBB
STE STE
PAC APB

CLBBB LBBB
STD STE, STTC, STTU, STDD

A.3 ENHANCING ZERO-SHOT PERFORMANCE WITH LLM.

"BIGU": "Based on the input, I generated the 
following subtypes and attributes for Bigeminal pattern 
…Let me know if this meets your requirements!."

"AF": "Atrial Flutter, Atrial Fibrillation, Paroxysmal Atrial 
Flutter, Persistent Atrial Flutter, Long-standing Persistent 
Atrial Flutter."

“AFIB”:"Atrial Fibrillation, Paroxysmal Atrial Fibrillation, 
Persistent Atrial Fibrillation, Long-standing Persistent Atrial 
Fibrillation, Permanent Atrial Fibrillation.” 

"SEHYP": "septal hypertrophy, left ventricular septal 
hypertrophy, right ventricular septal hypertrophy, apical 
septal hypertrophy, mid-septal hypertrophy.”

(1) Response with merging subtypes reducing capability on new tasks

(2) Response showing limitations on LLM’s searching and hallucination

Figure 6: Limitations on MERL’s enhanced texts.

Why Using LLMs But Not As MERL. In zero-shot learning, models typically rely on category
names alone to make predictions. However, by incorporating Large Language Models (LLMs), we
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can enhance the context by generating richer, clinically relevant descriptions of the categories, as
discussed in MERL (Liu et al., 2024). However, we observe two main drawbacks in their enhanced
text reports, as shown in Figure 6: 1) MERL’s performance heavily depends on their sub-types and
attributes searching prompt and additional database. This leads to a limitation when testing detailed
analysis with labels that are different sub-types themselves. Moreover, this also raises suspicion
about the performance when new tasks require labels that are not able to search sub-types and
attributes in the database; 2) Following that point, MERL’s enhanced texts might be uncontrollable to
the outputs where the LLMs provide wrong sub-types or unnecessary context. For example, ”Atrial
Fibrillation” is already in ”AFIB” type but shown to misleadingly be in ”AF”-”Atrial Flutter”.

How Our Work Leverages LLM’s Strength. We address these points using a straightforward
prompt strategy with explicit instructions. Specifically, we employ a prompt: ”You are an experi-
enced cardiologist. For a given clinical term such as ’normal ECG’, your job is to describe each
term clinically and apply your medical domain knowledge to include other relevant explanations
that will help a text encoder like Flan-T5 fully understand medical concepts. Do not include any
recommendations in the description.” This makes the LLM generate clinically accurate and more
focused explainable descriptions, enhancing the text encoding without introducing irrelevant or re-
dundant information. For example, with the code ”AFIB”, our prompt on GPT-4o can output: ”Atrial
Fibrillation (AFIB). Irregular and often rapid heart rate due to uncoordinated atrial activity.”.

Additional Experiments Here, we present additional experiments to highlight the effectiveness
of ETM loss and masking modeling techniques (e.g., MLM, MEM). Specifically, we perform zero-
shot classification with GPT-4o support (reported in AUC (%)) on four datasets: PTBXL-Super,
PTBXL-Form, CSN, and CODE-Test.

Table 12: Impact of ETM. Results report zero-shot classification in AUC (%).

PTBXL-Super PTBXL-Form CSN CODE-Test
w/o ETM 73.2 65.8 76.6 96.2
w ETM 76.2 66.1 76.3 96.8

As indicated in Table 12, the impact of ETM is demonstrated where, removing ETM slightly de-
creases performance across most datasets, particularly in PTBXL-Super (76.2 to 73.2). However,
the effect on CSN is minimal, suggesting dataset-specific sensitivity to ETM.

Table 13: Impact of MLM and MEM. Results report zero-shot classification in AUC (%).

PTBXL-Super PTBXL-Form CSN CODE-Test
w/o MLM + MEM 70.3 67.4 74.5 94.6
w MLM + MEM 76.2 66.1 76.3 96.8

Next, we can see that incorporating MLM and MEM noticeably improves performance across all
evaluated datasets in Table 13. Especially, gains are observed in PTBXL-Super (+5.9%), and CODE-
Test (+2.2%), demonstrating that the reconstruction tasks play an important role in enhancing the
model’s ability for better performance, aligned with our motivation.
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