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Abstract
Automatic evaluation on low-resource lan-001
guage translation suffers from a deficiency of002
parallel corpora. Round-trip translation could003
be served as a clever and straightforward tech-004
nique to alleviate the requirement of the paral-005
lel evaluation corpus. However, there was an006
observation of negative correlations between007
the evaluation scores by forward and round-008
trip translations in the era of statistical machine009
translation (SMT). In this paper, we first re-010
visit the round-trip translation evaluation and011
unveil its long-standing misunderstanding is es-012
sentially caused by copying mechanism. After013
removing copying mechanism in SMT, round-014
trip translation scores can reflect the forward015
translation performance. Then, we demonstrate016
the rectification is overdue as round-trip transla-017
tion could benefit multiple machine translation018
evaluation tasks. To be more specific, round-019
trip translation could be used i) to predict corre-020
sponding forward translation scores; ii) to iden-021
tify adversarial competitors in shared tasks via022
cross-system verification; and iii) to improve023
the performance of the recently advanced qual-024
ity estimation model.025

1 Introduction026

Thanks to the recent progress of neural machine027

translation (NMT) and large-scale multilingual028

corpora, machine translation (MT) systems have029

achieved remarkable performances on high- to030

medium-resource languages (Fan et al., 2021; Pan031

et al., 2021; Goyal et al., 2022a). However, the032

development of MT technology on low-resource033

language pairs still suffers from insufficient data034

for training and evaluation (Aji et al., 2022; Sid-035

dhant et al., 2022). Recent advanced multilingual036

pre-trained language model explores the methods037

trained on monolingual data, using data augmen-038

tation and denoising auto-encoding method (Xia039

et al., 2019; Liu et al., 2020). However, high-040

quality parallel corpora are still required for eval-041

uating translation quality. Such requirement is042

especially resource-consuming when working on 043

i) hundreds of underrepresented low-resource lan- 044

guages (Bird and Chiang, 2012; Joshi et al., 2019; 045

Aji et al., 2022) and ii) translations for specific 046

domains (Li et al., 2020; Müller et al., 2020). 047

In order to mitigate the deficiency of parallel 048

corpora, conducting Round-trip Translation (RT) 049

could be a promising method for training data aug- 050

mentation and evaluation solely on the monolingual 051

corpus. RT entails two components, one forward 052

translation (FT), and the other backward transla- 053

tion (BT). FT translates a given sentence in the 054

source language A to a sentence in target language 055

B, then the output sentence from FT are trans- 056

lated back to language A via a back translation 057

system. However, the existing literature demon- 058

strates that the automatic evaluation score on RT 059

(RT-SCORE) unfortunately fails to reflect the score 060

of FT quality (FT-SCORE) on statistical machine 061

translation (SMT) and rule-based machine transla- 062

tion (RMT) systems (Huang, 1990; Koehn, 2005; 063

Somers, 2005; Zaanen and Zwarts, 2006). This un- 064

derstanding impedes the usage of RT for MT eval- 065

uation on monolingual data, until some recent em- 066

pirical discovery of RT could be helpful for quality 067

estimation (QE) using sentence embeddings (Moon 068

et al., 2020; Crone et al., 2021). In this work, we 069

revisit the dispute on the usefulness of RT-SCORE 070

in the era of SMT versus NMT. The main reason 071

is due to the fact that SMT (and RMT) usually 072

incorporate implicitly reversible rules in their trans- 073

lation. For example, copying unrecognized tokens 074

forward to target languages is sometimes penalized 075

by FT evaluation while it is usually awarded by RT 076

evaluation. Extensive experiments are conducted 077

to demonstrate the effect of copying mechanism 078

on SMT. Later, we illustrate strong correlations 079

between FT-SCOREs and RT-SCOREs on various 080

MT systems, including NMT and SMT without the 081

copying mechanism. 082

The finding sets the basis of using RT-SCORE 083
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for MT evaluation. Three application scenarios in084

MT evaluation have been investigated to show the085

effectiveness of RT-SCORE. Firstly, RT-SCOREs086

can be used to predict FT-SCOREs via training087

a simple but effective linear regression model on088

several hundred languages pairs. The prediction089

performance is robust in evaluating transferred MT090

systems and unseen language pairs including low-091

resource languages. Then, a cross-system check092

(X-Check) mechanism is introduced to RT evalua-093

tion for real-world MT shared tasks. By leveraging094

the estimation from multiple translation systems,095

X-Check manages to identify those adversarial096

competitors, which rely heavily on the copy strat-097

egy. Finally, RT-SCOREs are proved effective in098

improving the performance of a recently advanced099

quality estimation model.100

2 Related Work101

Reference-based Machine Translation Evalua-102

tion Metric. Designing high-quality automatic103

evaluation metric for translation is one of the fun-104

damental challenges in MT research. Most existing105

metrics largely rely on parallel corpora to provide106

aligned texts as references (Papineni et al., 2002;107

Lin, 2004). One can compare translated outputs108

against references to estimate the performance of109

MT systems. The string-based metrics incorporate110

lexical matching rate for translation quality, such111

as BLEU (Papineni et al., 2002), ChrF (Popović,112

2015) and TER (Snover et al., 2006). In addi-113

tion, metrics using pre-trained language models114

to estimate the semantic relevance of texts, such as115

BERTScore (Zhang et al., 2020) and BLEURT (Sel-116

lam et al., 2020), are demonstrated to match human117

evaluation (Kocmi et al., 2021). Some reference-118

based evaluation metrics require supervised train-119

ing to work well (Mathur et al., 2019; Rei et al.,120

2020). While these automatic evaluation metrics121

are widely applied in MT evaluation, they fail122

in the low-resource language translation scenar-123

ios where there are no ground-truth parallel refer-124

ences (Mathur et al., 2020). Our work paves the125

way towards reference-free evaluation for MT.126

Reference-free Quality Estimation. In recent127

years, there has been a surge of interest in de-128

signing QE metrics, which aims to predict transla-129

tion quality from human expert judgement with-130

out the access to parallel reference translations131

in the run-time (Specia et al., 2010, 2013; Bo-132

jar et al., 2014; Zhao et al., 2020). Recent focus133

on QE is mainly based on human evaluation ap- 134

proaches, direct assessment (DA) and post-editing 135

(PE), where researchers intend to train models on 136

numerous human evaluation score features to esti- 137

mate MT quality. Despite few unsuccessful early 138

QE works towards predicting automatic evalua- 139

tion metric (Blatz et al., 2004), current QE met- 140

rics generally require human-annotated DA and PE 141

data at sentence level for training on the target lan- 142

guages pairs. Recent progresses, YiSi-2 (Lo, 2019), 143

COMET-QE-MQM (Rei et al., 2021), to name a 144

few, demonstrate their effectiveness on WMT shared 145

tasks. Our work follows a zero-shot setting for 146

low-resource translation quality evaluation, mean- 147

ing there is no need for data in the tested language 148

pairs to train our predictors. 149

3 Revisiting Round-trip Translation 150

3.1 Evaluation on Round-trip Translation 151

Given machine translation systems, TA→B and 152

TB→A, between two languages (LA and LB), and a 153

monolingual corpus DA = {ai}Ni=1, FT transforms 154

ai to b′i = TA→B(ai) and BT translates it back to 155

A, a′i = TB→A(TA→B(ai)). FT and BT constitute 156

a round-trip translation (RT). 157

The evaluation scores on round-trip translation 158

(RT-SCORE) with regard to an automatic evalua- 159

tion metric M is 160

RT-SCORE
M
A⟳B =

1

N

N∑
i=1

M(TB→A(TA→B(ai)), ai)

(1) 161

where sacreBLEU, spBLEU, chrF and 162

BERTScore are target metrics M in our 163

discussion. 164

On the other hand, traditional MT evaluation on 165

parallel corpus is 166

FT-SCORE
M
A→B =

1

N

N∑
i=1

M(TA→B(ai), bi) (2) 167

given a (virtual) parallel corpus DA||B = 168

{(ai, bi)}Ni=1. The main research question is 169

whether FT-SCOREs are correlated to therefore 170

could be predicted by RT-SCOREs. 171

3.2 RT Evaluation on Statistical Machine 172

Translation 173

The previous analysis on the automatic evalua- 174

tion scores from RT and FT shows that they are 175

negatively correlated. Such a long-established un- 176

derstanding started from the era of RMT (Huang, 177
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Figure 1: The comparison of the forward translation (FT) and round-trip translation (RT) performance of two
translation systems, System 1 and System 2 are based on Statistical Machine Translation (SMT) and Neural Machine
Translation (NMT), respectively. The conflict conclusions by FT Scores (System 1 < System 2) and RT Scores
(System 1 > System 2) are attributed to the translation of the underlined words, ‘reclassified’ and ‘Biotech’.

1990) and lasted through SMT (Koehn, 2005;178

Somers, 2005) and prevented the usage of RT to179

MT evaluation. We argue that the negative observa-180

tions are probably due to the selected SMT models181

involve some reversible transformation rules, e.g.,182

copying unrecognized tokens in translation. As an183

example illustrated in Figure 1, the MT System 1184

works worse than its competing System 2, as Sys-185

tem 1 fails to translate ‘reclassified’ and ‘Biotech’.186

Instead, it decides to copy the words in source lan-187

guage (En) directly to the target outputs. During188

BT, System 1 manages to perfectly translate them189

back without any difficulty. For System 2, although190

translating ‘Biotechnologie’ (De) to ‘Biotechnol-191

ogy’ (En) is adequate, it is not appreciated by the192

original reference in this case. Consequently, the193

rankings of these two MT systems are flipped ac-194

cording to their FT and RT scores. Previous error195

analysis study on SMT (Vilar et al., 2006) also196

mentioned that the unknown word copy strategy197

is one of the major causes resulting in the transla-198

tion errors. We therefore argue that the reversible199

transformation like word copy could have intro-200

duced significant bias to the previous experiments201

on SMT (and RMT). Then, we conduct experi-202

ments to replicate the negative conclusion. Interest-203

ingly, removing the copying mechanism can almost204

perfectly resolve the negation in our experiments.205

3.3 Experiments and Analysis206

We compare RT and FT on SMT following207

the protocol by Somers (2005); Koehn (2005).208

Moses (Koehn and Hoang, 2009) is utilized to209

train phrase-based MT systems (Koehn et al.,210

2003), which were popular in the SMT era.1 We211

train SMT systems on News-Commentary v8212

1We follow the baseline setup in the Moses’ tutorial in
http://www2.statmt.org/moses/?n=Moses.Baseline.

(Tiedemann, 2012), as suggested by WMT organiz- 213

ers (Koehn and Monz, 2006). We test our sys- 214

tems on four language pairs (de-en, en-de, cs- 215

en, and en-cs) in the competition track of WMT 216

2020 Translation Shared Tasks (Barrault et al., 217

2020), namely news track WMT2020-News. RT- 218

SCOREs and FT-SCOREs are calculated based 219

on sacreBLEU in this section. Then, we use 220

Kendall’s τ to verify the correlation of RT-SCOREs 221

and FT-SCOREs (Kendall, 1938). We train five sys- 222

tems using different phrase dictionary by varying 223

phrase probability threshold from 0.1, to 0.5. The 224

higher threshold indicates the smaller phrase table 225

and hence a better chance of processing unknown 226

words by the corresponding MT systems. During 227

translation inference, we consider two settings for 228

comparison, one drops the unknown words and the 229

other one copies these tokens to the outputs. Hence, 230

we end up having two groups of five outputs from 231

various SMT systems. 232

Lang. Pair K. τ ↑ Improv.w/ cp w/o cp
de-en -1.00 1.00 2.00
en-de -1.00 1.00 2.00
cs-en -1.00 1.00 2.00
en-cs -1.00 1.00 2.00

Table 1: Comparison between RT-SCORE and FT-
SCORE on two groups of systems with copying (w/
cp) and without copying (w/o cp) unknown words using
Kendall’s τ on four language pairs.

In Table 1, we examine whether the relevance 233

between RT-SCOREs and FT-SCOREs on five 234

SMT systems. The performance is measured by 235

Kendall’s τ . The correlation is essentially decided 236

by the copying mechanism. Specifically, their cor- 237

relation turns to perfectly positive for those systems 238

not allowed copying. In Figure 2, we further vi- 239

sualize RT-SCOREs and FT-SCOREs of five SMT 240

3



0.1 0.2 0.3 0.4 0.5
Phrase probability

10.0

20.0

30.0

40.0

50.0

sa
cr

eB
LE

U
RT
FT
RT
FT

(a) FT vs RT on SMT with word copy.

0.1 0.2 0.3 0.4 0.5
Phrase probability

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

sa
cr

eB
LE

U

RT
FT
RT
FT

(b) FT vs RT on SMT without word copy

Figure 2: Comparison between RT-SCOREssacreBLEUA⟳B

(FT) and FT-SCOREssacreBLEUA→B (RT) on en-de, based on
SMT varying by phrase probability thresholds.

systems on en-de translation. Two lines in Fig-241

ure 2.a provides negative correlation, while those242

two in Figure 2.b are clearly positively correlated.243

Now, we discuss the rationality of using RT244

evaluation for NMT systems, by comparing the245

reliance of copying mechanism in NMT and SMT.246

For NMT, we choose MBART50-M2M (Tang et al.,247

2020), which covers 50 languages of cross-lingual248

translation. Exactly matched words in outputs from249

the input words are considered copying, although250

the system may not intrinsically intend to copy251

them. In Table 2, we observe that copying fre-252

quency is about two times in SMT than NMT. Al-253

though NMT systems may copy some words during254

translation, most of them are unavoidable, e.g., we255

observe that most of these copies are proper nouns256

whose translation are actually the same words in257

target language. In contrast, the copied words in258

SMT are more diverse and many of them could be259

common nouns.260

4 Predicting FT-SCORE using RT-SCORE261

In this section, we validate whether FT-SCOREs262

could be predicted by RT-SCOREs. Then, we ex-263

amine the robustness of the predictor on unseen264

Lang. Pair Avg. Copy (%)
SMT NMT

de-en 17.39 9.28
en-de 21.47 9.54

Table 2: Comparison of word copy frequency between
SMT and NMT on two language pairs. We calculate
average percentage of copy (Avg. Copy) per sentence.
We use Moses with the phrase probability threshold of
0.4 for SMT.

language pairs and transferred MT models. 265

4.1 Regression on RT-SCORE 266

Here, we construct a linear regressor f to predict 267

FT-SCOREs of a target translation metric M by 268

corresponding RT-SCOREs, 269

FT-SCOREM
A→B ≈ fM(RT-SCOREM∗

A⟳B, 270

RT-SCOREM∗
B⟳A). (3) 271

M∗ indicates that multiple metrics could be used to 272

construct the input features. We utilize RT-SCORE 273

from both sides of a language pair as our primary 274

setting, as using more features usually provides 275

better prediction performance (Xia et al., 2020). 276

We introduce a linear regressor for predicting FT- 277

SCORE, 278

fM(S) = W1 · SM∗
A⟳B +W2 · SM∗

B⟳A + β (4) 279

where SM∗
A⟳B and SM∗

B⟳A are RT-SCORE features 280

used as inputs of the regressor2. W1, W2 and β are 281

the parameters of the prediction model optimized 282

by supervised training. 3 283

In addition, when organizing a new shared 284

task, say WMT, collecting a parallel corpus in 285

low-resource language could be challenging and 286

resource-intensive. Hence, we investigate another 287

setting that utilizes merely the monolingual corpora 288

in language A or B to predict FT-SCORE, 289

FT-SCOREM
A→B ≈ f ′

M(RT-SCOREM∗
A⟳B), 290

FT-SCOREM
A→B ≈ f ′

M(RT-SCOREM∗
B⟳A). (5) 291

We will compare and discuss this setting in our 292

experiments on WMT. 293

2We use M∗ = M as our primary setting, as it is the most
straightforward and effective method to construct features. In
addition, we discuss the possibility to improve the regressor
by involving more features, in Appendix F.3.

3Implementation details can be found in Appendix D.
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4.2 Experimental Setup294

4.2.1 Datasets295

We conduct experiments on the large-scale multi-296

lingual benchmark, FLORES-101, and WMT ma-297

chine translation shared tasks. FLORES-AE33 is298

for training and testing on languages and trans-299

ferred MT systems. WMT is for testing on real-300

world shared tasks in new domains.301

FLORES-AE33. We extract FLORES-AE33,302

which contains parallel data among 33 languages,303

covering 1,056 (33×32) language pairs, from a cu-304

rated subset of FLORES-101 (Goyal et al., 2022a).305

We select these languages based on two criteria: i)306

We rank languages given the scale of their bi-text307

corpora; ii) We prioritize the languages covered308

by WMT2020-News and WMT2020-Bio. As a309

result, FLORES-AE33 includes 7 high-resource310

languages, 16 medium-resource languages and 10311

low-resource languages, with more details in Ap-312

pendix A.313

Then, we partition these 33 languages into two314

sets, i) the languages that are utilized in training our315

models (TRAIN+TEST4) and ii) the others are em-316

ployed used for training the predictors but consid-317

ered for test purpose only (TEST). We include 20318

languages to TRAIN+TEST, with 7 high-resource,319

7 medium-resource and 6 low-resource. The rest 13320

languages fall into TEST, with 9 medium-resource321

and 4 low-resource. Combining these two cate-322

gories of languages, we obtain three types of lan-323

guage pairs in FLORES-AE33.324

Type I contains pairs of languages in325

TRAIN+TEST, where a train set and a test set are326

collected and utilized independently. For each lan-327

guage pairs, we collect 997 training samples and328

1,012 test samples. The test set of Type II is more329

challenging than that of Type I set, where the lan-330

guage pairs in this set are composed of one lan-331

guage from TRAIN+TEST set and the other lan-332

guage from TEST set. Type III’s test set is the most333

challenging one, as all its language pairs are de-334

rived from TEST languages. Type II and Type III335

sets are designed for test purpose, and they will not336

be used for training predictors. Overall, Type I,337

Type II and Type III sets contain 380, 520, and338

156 language pairs, respectively.339

WMT. We collect corpora from the translation340

track to evaluate multiple MT systems on the same341

4Both train and test sets of our corpus will have these
languages.

test sets. We consider their ranking based on 342

FT-SCORE with metric M as the ground truth. 343

We choose the competition tracks in WMT 2020 344

Translation Shared Tasks (Barrault et al., 2020), 345

namely news track WMT2020-News and biomed- 346

ical track WMT2020-Bio. We consider news and 347

bio as new domains, compared to our training data 348

FLORES-101 whose contents are mostly from 349

Wikipedia. 350

4.2.2 Neural Machine Translation Systems 351

We experiment with five MT systems which 352

support most of the languages appearing in 353

FLORES-AE33 and WMT. Except MBART50- 354

M2M, we adopt M2M-100-BASE and M2M-100- 355

LARGE (Fan et al., 2021), which are proposed to 356

conduct many-to-many MT without explicit pivot 357

languages, supporting 100 languages. GOOGLE- 358

TRANS (Wu et al., 2016; Bapna et al., 2022)5 is a 359

commercial translation API, which was considered 360

as a baseline translation systems in many previous 361

competitions (Barrault et al., 2020). Meanwhile, 362

we also include a family of bilingual MT mod- 363

els, OPUS-MT (Tiedemann and Thottingal, 2020), 364

sharing the same model architecture MARIAN- 365

NMT (Junczys-Dowmunt et al., 2018). We pro- 366

vide more details about these MT systems in Ap- 367

pendix C. 368

4.2.3 Automatic MT Evaluation Metrics 369

We consider sacreBLEU, spBLEU (Goyal 370

et al., 2022b), chrF (Popović, 2015) and 371

BERTScore (Zhang et al., 2020) as the primary 372

automatic evaluation metrics (Freitag et al., 2020). 373

All these metrics will be used and tested for 374

both input features and target FT-SCORE. The 375

first two metrics are differentiated by their tok- 376

enizers, where sacreBLEU uses Moses (Koehn 377

and Hoang, 2010) and spBLEU uses Sentence- 378

Piece (Kudo and Richardson, 2018). Both evalua- 379

tion metrics were officially used in WMT21 Large- 380

Scale Multilingual Machine Translation Shared 381

Task (Wenzek et al., 2021). While sacreBLEU 382

works for most language tokenizations, spBLEU 383

shows superior effectiveness on various language 384

tokenizations, especially the performance on low- 385

resource languages (Goyal et al., 2022a). More de- 386

tails of these metrics are described in Appendix B 387

5We queried GOOGLE-TRANS API in August, 2022.
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4.3 Experiments and Analysis388

Following our discussion in the last section on389

SMT, we conduct similar experiments using our390

new multilingual NMT systems on Type I test set391

of FLORES-AE33. We observe highly positives392

correlation between FT-SCOREs and RT-SCOREs,393

measured by Pearson’s r (Benesty et al., 2009).394

Please refer to Appendix F.1 for more details. Then,395

we train regressors on RT-SCOREs and conduct ex-396

periments to examine their performance on various397

challenging settings.398

MT System Trans. Metric Type I
MAE ↓ RMSE ↓ P. r ↑

MBART50-M2M

sacreBLEU 1.80 2.70 0.94
spBLEU 2.13 2.99 0.94
chrF 3.51 4.53 0.96

BERTScore 4.98 7.07 0.88

M2M-100-BASE

sacreBLEU 3.86 5.82 0.95
spBLEU 3.97 5.72 0.96
chrF 6.06 7.53 0.96

BERTScore 4.35 6.32 0.91

GOOGLE-TRANS

sacreBLEU 4.09 5.60 0.93
spBLEU 4.22 5.62 0.87
chrF 5.70 6.90 0.93

BERTScore 2.87 3.66 0.80

Table 3: The results of predicted FT-SCOREs of
MBART50-M2M, M2M-100-BASE and GOOGLE-
TRANS on Type I test set based on different transla-
tion evaluation metrics (Trans. Metric). *MAE: Mean
Absolute Error, RMSE: Root Mean Square Error, P. r:
Pearson’s r.

4.3.1 Transferability of Regressors399

We firstly investigate the transferability of our re-400

gressors from two different aspects, transferred MT401

systems and unseen language pairs. We also eval-402

uate the regressor on different scales of language403

resources, in Appendix F.2.404

Settings. We train our regressors on Type I train405

set of FLORES-AE33 based on the translation406

scores from MBART50-M2M. In order to as-407

sess system transferability, we test three models,408

MBART50-M2M, M2M-100-BASE and GOOGLE-409

TRANS, on Type I test set. In terms of the lan-410

guage transferability, we consider FT-SCOREs of411

MBART50-M2M (a seen MT system in training)412

and M2M-100-BASE (an unseen MT system in413

training) on Type II and Type III test sets in414

FLORES-AE33. Type II and Type III language415

pairs respectively include one and two unseen lan-416

guages for each pair. We vary our experiment on417

four metrics, sacreBLEU, spBLEU, chrF and418

BERTScore. Mean Absolute Error (MAE), Root419

Mean Square Error (RMSE) and Pearson’s r are420

calculated to evaluation the difference between the 421

predicted scores and the gold FT-SCOREs. 422

Discussion. In Table 3, we present the perfor- 423

mance of the regressor across various translation 424

systems and evaluation metrics. We first ana- 425

lyze the results on MBART50-M2M, which is 426

seen in training. The absolute errors between pre- 427

dicted scores and ground-truth FT-SCOREs are 428

relatively small with regard to MAE and RMSE. 429

Meanwhile, the correlation between prediction and 430

ground truth is strong, with all Pearson’s r above 431

or equal to 0.88. This indicates that ranking the 432

predicted scores is rational. The results of M2M- 433

100-BASE and GOOGLE-TRANS demonstrate the 434

performance of predictors on unseen systems. Al- 435

though the overall errors are higher than those of 436

MBART50-M2M without system transfer, Pear- 437

son’s r scores are at the competitive level, indi- 438

cating a similar ranking capability on unseen sys- 439

tems. Meanwhile, our model obtains adequate lan- 440

guage transferability results, as demonstrated in 441

Table 4. Notably, our regressor performs well on 442

low-resource translation (see Appendix F.2), which 443

corroborates our claim about the significance of RT 444

to FT for low-resource languages. 445

4.3.2 Predicting FT-SCOREs on WMT 446

With the basis of high transferabilities of the re- 447

gressors, we conduct experiments on WMT shared 448

tasks, namely WMT2020-News, which includes10 449

language pairs. 450

Settings. We have involved five MT systems, 451

MBART50-M2M, M2M-100-BASE, M2M-100- 452

LARGE, OPUS-MT and GOOGLE-TRANS.6 In ad- 453

dition to MAE, RMSE and Pearson’s r, we intro- 454

duce Kendall’s τ (Kendall, 1938) to measure the 455

rank correlation coefficient of the MT systems, via 456

comparing the ranking of our model predictions 457

and the actual ranking based on FT-SCORE. We are 458

aware of the cases that collecting corpora in target 459

languages for competitions might be significantly 460

complex, which means only a monolingual corpus 461

is available for evaluation. Thus, we train predic- 462

tors f ′ using single RT-SCOREs in Equation 5 on 463

Type I train set. Note that this experiment covers 464

several challenging settings, such as transferred 465

6We have contacted the competitors to WMT2020-News.
However, we have not received enough valid MT systems to
increase the number of competitors. We will show the robust-
ness of our method to a larger number of pseudo-competitors
in Appendix F.4.
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MT System Trans. Metric Type II Type III
MAE ↓ RMSE ↓ P. r ↑ MAE ↓ RMSE ↓ P. r ↑

MBART50-M2M

sacreBLEU 1.36 1.97 0.93 0.81 0.95 0.96
spBLEU 1.61 2.19 0.93 1.20 1.38 0.94
chrF 3.80 4.89 0.95 3.04 3.89 0.95

BERTScore 4.67 6.38 0.88 5.08 6.88 0.87

M2M-100-BASE

sacreBLEU 3.10 4.16 0.95 2.99 3.76 0.94
spBLEU 3.24 4.18 0.96 3.18 3.88 0.95
chrF 5.53 6.70 0.95 5.42 6.54 0.93

BERTScore 4.38 6.51 0.83 4.29 6.65 0.80

Table 4: The results of predicted FT-SCOREs of MBART50-M2M (a seen MT system) and M2M-100-BASE
(an unseen MT system) on Type II and Type III (with unseen languages) test sets based on different translation
evaluation metrics (Trans. Metric).

Lang. Pair A ⟳ B B ⟳ A A ⟳ B & B ⟳ A
MAE ↓ RMSE ↓ K. τ ↑ P. r ↑ MAE ↓ RMSE ↓ K. τ ↑ P. r ↑ MAE ↓ RMSE ↓ K. τ ↑ P. r ↑

cs-en 4.01 4.34 0.20 0.45 8.92 9.08 0.60 0.91 8.53 8.71 0.60 0.88
de-en 13.23 13.26 0.80 0.95 1.69 1.77 0.80 0.95 1.26 1.38 0.80 0.96
de-fr 10.45 10.53 1.00 0.99 1.72 2.05 0.80 0.97 1.59 1.93 1.00 0.97
en-cs 6.96 7.49 0.20 0.25 1.39 1.79 0.60 0.94 1.25 1.80 0.60 0.95
en-de 2.96 4.00 0.40 0.59 2.29 2.70 1.00 0.92 2.75 3.12 1.00 0.93
en-ru 1.98 2.40 0.20 0.40 7.41 7.53 0.40 0.85 7.48 7.60 0.60 0.86
en-zh 2.96 3.93 0.20 0.19 1.36 1.60 0.80 0.80 1.23 1.50 0.80 0.82
fr-de 2.89 3.70 0.80 0.90 2.99 3.56 1.00 0.94 2.59 3.17 1.00 0.93
ru-en 9.83 9.97 1.00 0.78 1.16 1.72 0.80 0.85 1.44 1.78 0.80 0.88
zh-en 12.44 12.77 0.00 0.26 3.04 3.55 0.20 0.50 2.62 3.56 0.20 0.50

Average 6.77 7.24 0.48 0.58 3.20 3.54 0.70 0.86 3.07 3.41 0.74 0.87

Table 5: The results of our predictors on ranking the selected MT systems on WMT2020-News shared tasks.

MT systems, unseen languages in training, sin-466

gle source features, and transferred application do-467

mains. Another set of results on WMT2020-Bio468

can be found in Appendix F.5.469

Discussion. In Table 5, we display the results on470

WMT2020-News.7 Although MAE and RMSE471

vary among experiments for different language472

pairs, the overall correlation scores are favorable.473

Pearson’s r values on all language pairs are above474

0.5, showing strong ranking correlations. While475

prediction performances on A ⟳ B have some476

variances among different language pairs, the re-477

sults of the experiments using B ⟳ A are com-478

petitive to those using both A ⟳ B and B ⟳ A479

features, showing the feasibility of predicting FT-480

SCORE using monolingual data. We conclude that481

our regression-based predictors can be practical in482

ranking MT systems in WMT-style shared tasks.483

5 Cross-system Round-trip Translation484

In this section, we first validate RT evaluation on485

WMT2020-News with A ⟳ B direction. One of486

the advantages of RT is that multiple MT systems487

could be used to verify the performance of other488

systems via checking the N×N combinational RT489

results from these N systems, coined X-Check.490

Finally, we demonstrate that the predicted auto-491

matic evaluation scores could be further improved492

via multi-system cross-check.493

7The results on WMT2020-Bio are reported in Ap-
pendix F.5

5.1 Cross-system Validation for Competitions 494

Given FT MT systems {Fi}Ni=1, BT MT systems 495

{Bi}Mi=1, and a regression model M on predicting 496

the target metric, we can estimate the translation 497

quality of i-th FT system on j-th BT system: 498

Si,j = fM(Bj(Fi(x)), x), 499

where S = {Si,j}N×M . The estimated translation
quality of Fi is the average score of the i-th col-
umn,

Si,: =
1

M

M∑
j=1

Si,j .

Note that the same number of FT and BT sys- 500

tems are considered for simplicity, i.e. N = M . 501

5.2 Experiments and Analysis 502

Settings. We conduct experiments on 503

WMT2020-News similar to Section 4.3.2. 504

We rank the system-level translation quality via 505

the regressor trained on RT-SCOREspBLEU. We 506

challenge the evaluation paradigm by introducing 507

some adversarial MT systems, e.g., SMT with 508

copying mechanism. Specifically, we introduce 509

basic competition scenarios with 3-5 competitors 510

to the shared task, and we consider different 511

numbers of adversarial systems, namely i) no 512

adversary; ii) one adversarial SMT with word 513

copy; iii) two adversarial SMT systems with word 514

copy. We provide details of two SMT systems in 515

Appendix F.6. The experiments with adversarial 516
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# Sys. Method No Adversary One adversarial SMT Two adversarial SMTs
K. τ ↑ P. r ↑ Hit@1 ↑ Avg. Rank ↓ K. τ ↑ P. r ↑ Hit@2 ↑ Avg. Rank ↓ K. τ ↑ P. r ↑

3 Sing-Check 0.07 0.17 0.50 2.00 0.33 0.51 0.00 4.75 -0.15 -0.30
X-Check 0.47 0.43 1.00 1.00 0.33 0.98 1.00 1.50 0.55 0.98

4 Sing-Check 0.33 0.37 0.25 2.75 0.40 0.39 0.00 5.75 -0.03 -0.33
X-Check 0.57 0.81 1.00 1.00 0.60 0.97 1.00 1.50 0.70 0.98

5 Sing-Check 0.48 0.58 0.25 3.25 0.30 0.25 0.00 6.75 -0.05 -0.40
X-Check 0.42 0.52 1.00 1.00 0.50 0.93 1.00 1.50 0.62 0.92

Table 6: Results of the competition between 3 to 5 honest competitors, with a combination of additional adversarial
competing systems (No Adversary, One adversarial SMT (X = 0.1) w/ copy, Two adversarial SMTs (X = 0.1 and
X = 0.5) w/ copy). We measure the identifiability of the adversarial MT systems by Hit@K, where K is decided
by the number of adversarial systems. We also report the average ranking (Avg. Rank.) of the adversarial systems,
and correlation scores, Kendall’s τ and Pearson’s r.

systems are conducted on four language pairs,517

cs-en, de-en, en-cs and en-de, as the518

corresponding adversarial systems were trained in519

Section 3.3.520

Discussion. We also observe that the overall sys-521

tem ranking could be severely affected by the ad-522

versarial systems, according to Pearson’s r and523

Kendall’s τ . The adversarial systems are stealthy524

among normal competitors, according to Hit@K525

and Avg. Rank. X-Check evidently successfully526

identifies these adversarial systems in all our ex-527

periments and manages to improve the correlation528

scores significantly.529

6 RT-SCOREs for Quality Estimation530

In this section, we demonstrate that the features531

acquired by round-trip translation benefit quality532

estimation (QE) models.533

Dataset. QE was firstly introduced in WMT11534

(Callison-Burch et al., 2011), focusing on auto-535

matic methods for estimating the quality of neural536

machine translation output at run-time. The esti-537

mated quality should align with the human judg-538

ment on the word and sentence level, without ac-539

cessing to the reference in the target language. In540

this experiment, we perform sentence-level QE,541

which aims to predict human direction assessment542

(DA) scores. We use DA dataset collected from543

2015 to 2021 by MT News Translation shared task544

coordinators. The train set contains 33 diverse545

language pairs and a total of 574,186 tuples with546

source, hypothesis, reference and direct assessment547

z-score. We construct the test set by collecting548

DA scores on zh-en (82,692 segments) and en-de549

(65,045 segments), as two unseen language pairs.550

Experimental Setup. Firstly, we extract RT551

features RT-sacreBLEU, RT-spBLEU and RT-552

chrF. Then, we examine whether QE scores could553

QE model zh-en en-de
K. τ ↑ P. r ↑ K. τ ↑ P. r ↑

RT-sacreBLEU 15.17 21.76 11.83 19.71
RT-spBLEU 13.55 18.30 11.49 19.00
RT-chrF 15.52 21.74 13.57 22.93
RT-ALL 15.53 21.74 13.52 22.87
COMET-QE-DA 32.83 46.91 42.71 64.36

+ RT-ALL 32.87 46.92 42.74 64.42

Table 7: Comparisons of RT-SCORE for QE. RT-ALL
refers to the combination of RT-sacreBLEU, RT-
spBLEU and RT-chrF. COMET-QE-DA + RT-ALL
incorporates both COMET-QE-DA and all RT-SCOREs.

be predicted by these RT features using linear re- 554

gression models. We train the regressors using 555

Equation 5 with only A ⟳ B features. Finally, 556

a combination of COMET-QE-DA scores and RT- 557

SCOREs are investigated to acquire a more compet- 558

itive QE scorer. 559

Discussion. Both Kendall’s τ and Pearson’s r 560

provide consistant results in Table 7. The models 561

merely using RT-SCOREs could be used to predict 562

DA scores. We also observe that RT-SCOREs can 563

further boost the performance of COMET-QE-DA. 564

We believe RT-SCOREs advances QE research and 565

urge more investigation in this direction. 566

7 Conclusion 567

This paper revisits the problem of estimating FT 568

quality using RT scores. The negative results 569

from previous literature are basically caused by the 570

heavy reliance of copy mechanism in traditional 571

statistical machine translation systems. Then, we 572

conduct comprehensive experiments to show the 573

corrected understanding on RT benefits several rel- 574

evant MT evaluation tasks, such as predicting FT 575

metrics using RT scores, filtering out unreliable MT 576

competitors for WMT shared tasks, and enhancing 577

state-of-the-art QE systems. We believe our work 578

will inspire research on reference-free evaluation 579

on low-resource machine translation and natural 580

language generation. 581
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Limitations582

Although we have observed positive correlation583

between FT-SCOREs and RT-SCOREs and con-584

duct experiments to predict FT-SCOREs using RT-585

SCOREs, their relation could be complicated and586

non-linear. We encourage future research to in-587

vestigate various RT-SCORE features and more588

complex machine learning models for better pre-589

diction models. Although we have examined the590

prediction models on low-resource languages in591

FLORES-101, we have not tested those very low-592

resource languages out of these 101 languages. We593

suggest auditing FT-SCORE prediction models on594

a small validation dataset for any new low-resource595

languages in future applications.596
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A Dataset Construction899

Resource Language Scale Usage

High

English - TRAIN+TEST

Spanish 315M TRAIN+TEST

French 289M TRAIN+TEST

German 216M TRAIN+TEST

Portuguese 137M TRAIN+TEST

Russian 127M TRAIN+TEST

Italian 116M TRAIN+TEST

Medium

Dutch 82.4M TRAIN+TEST

Turkish 41.2M TRAIN+TEST

Polish 40.9M TRAIN+TEST

Chinese 37.9M TRAIN+TEST

Romanian 31.9M TRAIN+TEST

Greek 23.7M TRAIN+TEST

Japanese 23.2M TRAIN+TEST

Czech 23.2M TEST

Finnish 15.2M TEST

Bulgarian 10.3M TEST

Lithuanian 6.69M TEST

Estonian 4.82M TEST

Latvian 4.8M TEST

Hindi 3.3M TEST

Javanese 1.49M TEST

Icelandic 1.17M TEST

Low

Tamil 992K TRAIN+TEST

Armenian 977K TEST

Azerbaijani 867K TEST

Kazakh 701K TRAIN+TEST

Urdu 630K TEST

Khmer 398K TRAIN+TEST

Hausa 335K TRAIN+TEST

Pashto 293K TRAIN+TEST

Burmese 283K TEST

Gujarati 160K TRAIN+TEST

Table 8: The statistics of FLORES-AE33. 20 languages
are used in both training and test (TRAIN+TEST), the
other 13 languages are used in test only (TEST).

We provide the statistics of all languages cov-900

ered by FLORES-AE33, categorised by different901

scale of the resource (high, medium and low) and902

usage purpose (TRAIN+TEST and TEST) in Table 8.903

Scale is counted by the amount of bi-text data to904

English in FLORES-101 (Goyal et al., 2022a).905

B Automatic Evaluation Metrics for906

Translation907

For BERTScore, Deberta-xlarge-mnli (He et al.,908

2021) is used as the backbone pre-trained language909

model, as it is reported to have a satisfactory cor-910

relation with human evaluation in WMT16. While911

sacreBLEU, spBLEU and chrF are string-based 912

metrics, BERTScore is model-based. The se- 913

lection of these metrics is on the basis that 914

they should directly reflect the translation qual- 915

ity. We calculate those scores via open-source 916

toolboxes, EASYNMT8, SACREBLEU-TOOLKIT9 917

and BERTSCORE10. We use word-level 4-gram 918

for sacreBLEU and spBLEU, character-level 6- 919

gram for chrF, and F1 score for BERTScore by 920

default. 921

C Machine Translation Systems 922

MBART50-M2M. MBART50-M2M (Tang 923

et al., 2020) is a multilingual translation model 924

with many-to-many encoders and decoders. The 925

model is trained on 50 publicly available language 926

corpora with English as a pivot language. 927

M2M-100-BASE & M2M-100-LARGE. These 928

two models are one of the first non-English- 929

centric multilingual machine translation systems, 930

which are trained on 100 languages covering high- 931

resource to low-resource languages. Different from 932

MBART50-M2M, M2M-100-BASE and M2M- 933

100-LARGE (Fan et al., 2021) are trained on paral- 934

lel multilingual corpora without an explicit center- 935

ing language. 936

OPUS-MT. OPUS-MT (Tiedemann and Thottin- 937

gal, 2020) is a collection of one-to-one machine 938

translation models which are trained on correspond- 939

ing parallel data from OPUS using MARIAN-NMT 940

as backbone (Junczys-Dowmunt et al., 2018). The 941

collection of MT models support 186 languages. 942

GOOGLE-TRANS. GOOGLE-TRANS (Wu et al., 943

2016; Bapna et al., 2022) is an online Transla- 944

tion service provided by Google Translation API, 945

which supports 133 languages. The system is 946

frequently involved as a baseline system by WMT 947

shared tasks (Barrault et al., 2020). 948

D Implementation Details 949

Regressor. We use the linear regression model 950

tool by Scikit-Learn11 with the default setting 951

for the API. 952

8https://github.com/UKPLab/EasyNMT.
9https://github.com/mjpost/sacrebleu.

10https://github.com/Tiiiger/bert_score.
11https://scikit-learn.org/stable/

modules/generated/sklearn.linear_model.
LinearRegression.html
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MT Systems. We adopt EasyNMT12 for loading953

MBART50-M2M, M2M-100-BASE, M2M-100-954

LARGE and OPUS-MT for translation.955

Computational Resource and Time. In our ex-956

periment, we collect the translation results and957

compute their FT-SCORE and RT-SCORE on mul-958

tiple single-GPU servers with Nvidia A40. Overall,959

it cost us about three GPU months for collecting960

translation results by all the aforementioned MT961

systems.962

E Measurement963

We evaluate the performance of our predictive964

model via the following measurements:965

Mean Absolute Error (MAE) is used for mea-966

suring the average magnitude of the errors in a set967

of predictions, indicating the accuracy for continu-968

ous variables.969

Root Mean Square Error (RMSE) measures970

the average magnitude of the error. Compared to971

MAE, RMSE gives relatively higher weights to972

larger error.973

Pearson’s r correlation (Benesty et al., 2009)974

is officially used in WMT to evaluate the agreement975

between the automatic evaluation metrics and hu-976

man judgement, emphasizing on the translation977

consistency. In our paper, the metric evaluates the978

agreement between the predicted automatic evalua-979

tion scores and the ground truth.980

Kendall’s τ correlation (Kendall, 1938) is an-981

other metric to evaluate the ordinal association be-982

tween two measured quantities.983

F Supplementary Experiments984

F.1 Correlation between FT-SCOREs and985

RT-SCOREs on FLORES-AE33986

Settings. We experiment with MBART50-987

M2M and M2M-100-BASE on Type I988

test set of FLORES-AE33 by comparing989

their RT-SCOREM
A⟳B , RT-SCOREM

B⟳A and990

FT-SCOREM
A→B using multiple translation met-991

rics M, sacreBLEU, spBLEU, chrF and992

BERTScore. We measure their correlations993

by computing Pearson’s r (Benesty et al.,994

2009) of (RT-SCOREM
A⟳B, FT-SCOREM

A→B) and995

(RT-SCOREM
B⟳A, FT-SCOREM

A→B). Note that996

12https://github.com/UKPLab/EasyNMT

our experiment is beyond English-centric, as all 997

languages are permuted and equally considered. 998

Discussion. The overall correlation scores are 999

reported in Table 9. Our results indicate at least 1000

moderately positive correlations between all pairs 1001

of RT-SCOREs and FT-SCOREs. Moreover, we 1002

observe that RT-SCOREB⟳A is generally more cor- 1003

related to FT-SCORE than RT-SCOREA⟳B , leading 1004

to strongly positive correlation scores. We attribute 1005

the advantage to the fact that TA→B serves as the 1006

last translation step in RT-SCOREB⟳A. We visu- 1007

alize more detailed results of correlation between 1008

FT-SCOREs and RT-SCOREs on Type I language 1009

pairs in FLORES-101, in Figure 3 (MBART50- 1010

M2M) and Figure 4 (M2M-100-BASE). 1011

F.2 Regressors on Language Resources 1012

In Tables 11 and 12, we provide detailed per- 1013

formance of our regressor on language pairs of 1014

different resources categories on FLORES-AE33, 1015

with RT-SCOREs of MBART50-M2M and M2M- 1016

100-BASE respectively. Specifically, we split the 1017

three categories based on Table 8, which are high, 1018

medium and low. The evaluated regressor is the 1019

same as the one tested in Sections 4.3.1 and 4.3.2. 1020

The results of two tables show that our regressor is 1021

able to predict FT-SCOREs with small errors, and 1022

reflect the relative orders among FT-SCOREs, with 1023

high transferability across language pairs and MT 1024

systems. 1025

F.3 Improve Prediction Performance Using 1026

More Features 1027

Settings. We introduce two extra features, MAX- 1028

4 COUNT and REF LENGTH,13 to enhance the pre- 1029

diction of spBLEU. MAX-4 COUNT is the counts 1030

of correct 4 grams, and REF LENGTH is the cu- 1031

mulative reference length. We follow the similar 1032

procedure in RQ2, using the same measurements to 1033

evaluate the predictor performance on MBART50- 1034

M2M and M2M-100-BASE across three types of 1035

test sets in FLORES-AE33. 1036

Results. Table 10 shows the results of those mod- 1037

els with additional features. Both features consis- 1038

tently improve our basic models, and the perfor- 1039

mance can be further boosted by incorporating both 1040

features. We believe that more carefully designed 1041

13MAX-4 COUNT and REF LENGTH are “counts”
and “ref_len” in https://github.com/mjpost/
sacrebleu/blob/master/sacrebleu/metrics/
bleu.py.
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Figure 3: The first row is the correlations between RT-SCOREM
A⟳B and FT-SCOREM

A→B on MBART50-M2M
using (a) sacreBLEU, (b) spBLEU, (c) chrF and (d) BERTScore. The second row is the correlations between
RT-SCOREM

B⟳A and FT-SCOREM
A→B on MBART50-M2M using (e) sacreBLEU, (f) spBLEU, (g) chrF and (h)

BERTScore. All experiments with overall Pearson’s r.
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Figure 4: The first row is the correlations between RT-SCOREM
A⟳B and FT-SCOREM

A→B on M2M-100-BASE using
(a) sacreBLEU, (b) spBLEU;, (c) chrF and (d) BERTScore. The second row is the correlations between
RT-SCOREM

B⟳A and FT-SCOREM
A→B on M2M-100-BASE using (e) sacreBLEU, (f) spBLEU, (g) chrF and (h)

BERTScore. All experiments with overall Pearson’s r.

MT System Comparison sacreBLEU spBLEU chrF BERTScore

MBART50-M2M
A → B vs. A ⟳ B 0.78 0.86 0.63 0.53
A → B vs. B ⟳ A 0.94 0.94 0.96 0.88

M2M-100-BASE
A → B vs. A ⟳ B 0.83 0.93 0.87 0.53
A → B vs. B ⟳ A 0.95 0.96 0.96 0.90

Table 9: Pearson’s r between FT-SCOREM
A→B and RT-SCOREM (both A ⟳ B and B ⟳ A) using different

automatic evaluation metrics M on Type I test set of FLORES-AE33.

MT System Self-Trans Feature Type I Type II Type III
MAE ↓ RMSE ↓ r ↑ MAE ↓ RMSE ↓ r ↑ MAE ↓ RMSE ↓ r ↑

MBART50-M2M

spBLEU (basic model) 2.13 2.99 0.94 1.61 2.19 0.93 1.20 1.38 0.94
+ MAX-4 COUNT 2.01 2.92 0.94 1.54 2.15 0.94 1.12 1.34 0.94
+ REF LENGTH 2.07 2.96 0.94 1.61 2.21 0.93 1.17 1.45 0.94
+ MAX-4 COUNT & REF LENGTH 2.00 2.92 0.94 1.53 2.16 0.94 1.08 1.33 0.95

M2M-100-BASE

spBLEU (basic model) 3.97 5.72 0.96 3.24 4.18 0.96 3.18 3.88 0.95
+ MAX-4 COUNT 2.95 4.00 0.96 2.74 3.67 0.95 2.82 3.62 0.93
+ REF LENGTH 3.61 5.32 0.96 2.93 3.92 0.96 2.90 3.67 0.94
+ MAX-4 COUNT & REF LENGTH 2.95 4.10 0.96 2.71 3.65 0.95 2.79 3.59 0.93

Table 10: The results of using auxiliary features to spBLEU for training predictors. We test the performance of
MBART50-M2M and M2M-100-BASE cross language pairs in Type I, Type II and Type III of FLORES-AE33.
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MAE RMSE P. r
H. M. L. H. M. L. H. M. L.

H. 3.17 2.90 2.70 4.02 3.74 4.07 0.94 0.94 0.77
M. 1.51 1.37 1.77 1.95 1.78 2.29 0.97 0.85 0.22
L 1.22 1.27 1.16 1.39 1.43 1.36 0.97 0.87 0.78

Table 11: The results of predicted FT-SCOREs of
MBART50-M2M on nine sets of language pairs, cate-
gorized by different scale of the resources, High (H.),
Medium (M.) and Low (L.). The three categories in
rows are source languages, and the ones in columns
are target languages. We report Mean Average Error
(MAE), Root Mean Square Error (RMSE) and Pearson’s
r.

MAE RMSE P. r
H. M. L. H. M. L. H. M. L.

H. 8.72 5.41 3.50 10.82 6.45 4.52 0.51 0.80 0.67
M. 4.86 4.01 2.93 4.71 1.78 4.09 0.86 0.90 0.69
L 1.70 1.67 1.24 1.39 1.86 1.51 0.98 0.97 0.80

Table 12: The results of predicted FT-SCOREs of M2M-
100-BASE on nine sets of language pairs, categorized
by different scale of the resources, High (H.), Medium
(M.) and Low (L.). The three categories in rows are
source languages, and the ones in columns are target
languages. We report Mean Average Error (MAE), Root
Mean Square Error (RMSE) and Pearson’s r.

features and regression models could potentially1042

boost the performance of our predictors.1043

F.4 WMT2020-News with Synthetic1044

Competitors1045

We increase the scale of competitors to1046

WMT2020-News by introducing pseudo competi-1047

tors. To mimic the number of a conventional WMT1048

task, we vary 17 forward translation systems by1049

randomly dropping 0% to 80% (with a step of1050

5%) tokens from the outputs of GOOGLE-TRANS.1051

Then, we utilize the vanilla GOOGLE-TRANS1052

to translate these synthetic forward translation1053

results back to the source language. We conduct1054

experiments on de-fr, en-ta and zh-en, representing1055

those non-En to non-En, En to non-En and non-En1056

to En language pairs.1057

The results in Table 13 demonstrate the predic-1058

tors’ performances on ranking the pseudo competi-1059

tors on WMT2020-News based on spBLEU fea-1060

tures. The overall ranking errors on 17 MT systems1061

are small on all three selected language pairs.1062

F.5 Ranking Experiments on WMT2020-Bio1063

We display the experimental results on1064

WMT2020-Bio in the Table 14. The over-1065

all performance is positive, while it is relatively1066

Langauge Pair MAE ↓ RMSE ↓ K. τ ↑ P. r ↑
de-fr 2.21 2.67 1.00 0.98
en-ta 0.88 0.98 1.00 0.99
zh-en 1.69 2.37 1.00 0.99

Average 1.59 2.01 1.00 0.99

Table 13: Results of prediction and ranking on trans-
lation quality of WMT2020-News synthetic data for
three language pairs.

worse than the results of WMT2020-News 1067

reported in Table 5. We attribute this to the fact 1068

that the M used on WMT2020-Bio are calculated 1069

on document, while our regression models rely on 1070

sentence-level translation metrics in training. The 1071

large granularity difference of text may result in a 1072

distribution shift.

Langauge Pair B ⟳ A A ⟳ B & B ⟳ A
MAE ↓ RMSE ↓ K. τ ↑ P. r ↑ MAE ↓ RMSE ↓ K.τ ↑ P. r ↑

de-en 10.96 11.06 0.80 0.75 10.15 10.21 0.80 0.76
en-de 5.41 5.69 0.80 0.63 5.94 6.06 0.80 0.63
en-es 6.42 7.95 0.80 0.82 6.31 7.42 0.80 0.83
en-fr 4.03 6.27 0.40 0.19 3.68 5.86 0.40 0.20
en-it 6.13 6.92 0.40 0.56 5.94 6.58 0.40 0.57
en-ru 4.16 5.62 0.20 0.46 4.20 5.18 0.20 0.49
en-zh 2.17 2.73 0.20 -0.04 2.21 2.59 0.00 0.02
es-en 6.58 8.17 0.60 0.75 6.23 7.48 0.80 0.79
fr-en 6.12 8.02 0.60 0.66 5.77 7.13 0.60 0.67
it-en 6.33 7.94 0.60 0.50 5.90 7.13 0.60 0.56
ru-en 5.94 8.51 0.40 0.18 5.51 7.81 0.20 0.23
zh-en 5.67 8.15 0.20 0.22 5.18 7.48 0.20 0.23

Average 5.83 7.25 0.50 0.47 5.59 6.74 0.48 0.50

Table 14: Results of our predictors on ranking the se-
lected MT systems on WMT2020-Bio shared tasks.

1073

F.6 Benign MT systems and Adversarial MT 1074

Systems for X-Check 1075

The selection of the benign systems is: 1076

• 3 Systems: OPUS-MT, M2M-100-LARGE 1077

and MBART50-M2M; 1078

• 4 Systems: OPUS-MT, M2M-100- 1079

LARGE,M2M-100-BASE and MBART50- 1080

M2M; 1081

• 5 Systems: GOOGLE-TRANS, OPUS- 1082

MT, M2M-100-LARGE,M2M-100-BASE 1083

and MBART50-M2M. 1084

SMT (X = 0.1). We train the SMT system on 1085

News-Commentary v8 with the max phrase 1086

length 4 and the phrase table probability thresh- 1087

old of 0.1. 1088

SMT (X = 0.5). We train the SMT system on 1089

News-Commentary v8 with the max phrase 1090

length 4 and the phrase table probability thresh- 1091

old of 0.5. 1092
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SMT(X = 0.1) tends to copy fewer words than1093

SMT(X = 0.5), due to the larger phrase table size1094

filtered by lower prebability threshold.1095

16


