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Abstract

Automatic evaluation on low-resource lan-
guage translation suffers from a deficiency of
parallel corpora. Round-trip translation could
be served as a clever and straightforward tech-
nique to alleviate the requirement of the paral-
lel evaluation corpus. However, there was an
observation of negative correlations between
the evaluation scores by forward and round-
trip translations in the era of statistical machine
translation (SMT). In this paper, we first re-
visit the round-trip translation evaluation and
unveil its long-standing misunderstanding is es-
sentially caused by copying mechanism. After
removing copying mechanism in SMT, round-
trip translation scores can reflect the forward
translation performance. Then, we demonstrate
the rectification is overdue as round-trip transla-
tion could benefit multiple machine translation
evaluation tasks. To be more specific, round-
trip translation could be used i) to predict corre-
sponding forward translation scores; ii) to iden-
tify adversarial competitors in shared tasks via
cross-system verification; and iii) to improve
the performance of the recently advanced qual-
ity estimation model.

1 Introduction

Thanks to the recent progress of neural machine
translation (NMT) and large-scale multilingual
corpora, machine translation (MT) systems have
achieved remarkable performances on high- to
medium-resource languages (Fan et al., 2021; Pan
et al., 2021; Goyal et al., 2022a). However, the
development of MT technology on low-resource
language pairs still suffers from insufficient data
for training and evaluation (Aji et al., 2022; Sid-
dhant et al., 2022). Recent advanced multilingual
pre-trained language model explores the methods
trained on monolingual data, using data augmen-
tation and denoising auto-encoding method (Xia
et al., 2019; Liu et al., 2020). However, high-
quality parallel corpora are still required for eval-
uating translation quality. Such requirement is

especially resource-consuming when working on
i) hundreds of underrepresented low-resource lan-
guages (Bird and Chiang, 2012; Joshi et al., 2019;
Aji et al., 2022) and ii) translations for specific
domains (Li et al., 2020; Miiller et al., 2020).

In order to mitigate the deficiency of parallel
corpora, conducting Round-trip Translation (RT)
could be a promising method for training data aug-
mentation and evaluation solely on the monolingual
corpus. RT entails two components, one forward
translation (FT), and the other backward transla-
tion (BT). FT translates a given sentence in the
source language A to a sentence in target language
B, then the output sentence from FT are trans-
lated back to language A via a back translation
system. However, the existing literature demon-
strates that the automatic evaluation score on RT
(RT-SCORE) unfortunately fails to reflect the score
of FT quality (FT-SCORE) on statistical machine
translation (SMT) and rule-based machine transla-
tion (RMT) systems (Huang, 1990; Koehn, 2005;
Somers, 2005; Zaanen and Zwarts, 2006). This un-
derstanding impedes the usage of RT for MT eval-
uation on monolingual data, until some recent em-
pirical discovery of RT could be helpful for quality
estimation (QE) using sentence embeddings (Moon
et al., 2020; Crone et al., 2021). In this work, we
revisit the dispute on the usefulness of RT-SCORE
in the era of SMT versus NMT. The main reason
is due to the fact that SMT (and RMT) usually
incorporate implicitly reversible rules in their trans-
lation. For example, copying unrecognized tokens
forward to target languages is sometimes penalized
by FT evaluation while it is usually awarded by RT
evaluation. Extensive experiments are conducted
to demonstrate the effect of copying mechanism
on SMT. Later, we illustrate strong correlations
between FT-SCOREs and RT-SCORES on various
MT systems, including NMT and SMT without the
copying mechanism.

The finding sets the basis of using RT-SCORE



for MT evaluation. Three application scenarios in
MT evaluation have been investigated to show the
effectiveness of RT-SCORE. Firstly, RT-SCORESs
can be used to predict FT-SCOREs via training
a simple but effective linear regression model on
several hundred languages pairs. The prediction
performance is robust in evaluating transferred MT
systems and unseen language pairs including low-
resource languages. Then, a cross-system check
(X—Check) mechanism is introduced to RT evalua-
tion for real-world MT shared tasks. By leveraging
the estimation from multiple translation systems,
X-Check manages to identify those adversarial
competitors, which rely heavily on the copy strat-
egy. Finally, RT-SCOREs are proved effective in
improving the performance of a recently advanced
quality estimation model.

2 Related Work

Reference-based Machine Translation Evalua-
tion Metric. Designing high-quality automatic
evaluation metric for translation is one of the fun-
damental challenges in MT research. Most existing
metrics largely rely on parallel corpora to provide
aligned texts as references (Papineni et al., 2002;
Lin, 2004). One can compare translated outputs
against references to estimate the performance of
MT systems. The string-based metrics incorporate
lexical matching rate for translation quality, such
as BLEU (Papineni et al., 2002), ChrF (Popovié,
2015) and TER (Snover et al., 2006). In addi-
tion, metrics using pre-trained language models
to estimate the semantic relevance of texts, such as
BERTScore (Zhang et al., 2020) and BLEURT (Sel-
lam et al., 2020), are demonstrated to match human
evaluation (Kocmi et al., 2021). Some reference-
based evaluation metrics require supervised train-
ing to work well (Mathur et al., 2019; Rei et al.,
2020). While these automatic evaluation metrics
are widely applied in MT evaluation, they fail
in the low-resource language translation scenar-
ios where there are no ground-truth parallel refer-
ences (Mathur et al., 2020). Our work paves the
way towards reference-free evaluation for MT.

Reference-free Quality Estimation. In recent
years, there has been a surge of interest in de-
signing QE metrics, which aims to predict transla-
tion quality from human expert judgement with-
out the access to parallel reference translations
in the run-time (Specia et al., 2010, 2013; Bo-
jar et al., 2014; Zhao et al., 2020). Recent focus

on QE is mainly based on human evaluation ap-
proaches, direct assessment (DA) and post-editing
(PE), where researchers intend to train models on
numerous human evaluation score features to esti-
mate MT quality. Despite few unsuccessful early
QE works towards predicting automatic evalua-
tion metric (Blatz et al., 2004), current QE met-
rics generally require human-annotated DA and PE
data at sentence level for training on the target lan-
guages pairs. Recent progresses, YiSi-2 (Lo, 2019),
COMET-QE-MQM (Rei et al., 2021), to name a
few, demonstrate their effectiveness on WMT shared
tasks. Our work follows a zero-shot setting for
low-resource translation quality evaluation, mean-
ing there is no need for data in the tested language
pairs to train our predictors.

3 Revisiting Round-trip Translation

3.1 Evaluation on Round-trip Translation

Given machine translation systems, 74_.p and
TB_s A, between two languages (L 4 and L), and a
monolingual corpus D4 = {a;}¥,, FT transforms
a; to b, = Ta_,p(a;) and BT translates it back to
A, al = Tp—a(Ta—p(a;)). FT and BT constitute
a round-trip translation (RT).

The evaluation scores on round-trip translation
(RT-SCORE) with regard to an automatic evalua-
tion metric M is

N
1
RT-ScorEY! = ~ Z M(Tp=a(Tasp(ai)), ai)

i=1
(D
where sacreBLEU, spBLEU, chrF and
BERTScore are target metrics M in our
discussion.
On the other hand, traditional MT evaluation on
parallel corpus is

N
1
FT-scorey’, = N 'Z;M<7j4—>3(ai)a bi) (2)
1=
given a (virtual) parallel corpus Dy p =
{(ai,b;)}Y.;. The main research question is
whether FT-SCOREs are correlated to therefore
could be predicted by RT-SCOREs.

3.2 RT Evaluation on Statistical Machine
Translation

The previous analysis on the automatic evalua-
tion scores from RT and FT shows that they are
negatively correlated. Such a long-established un-
derstanding started from the era of RMT (Huang,



Source Language Forward Translation (FT) Round-trip Translation (RT)
[En] [En-De] FT-BLEU [En-De-En] RT-BLEU
SyStem ‘Warum Viren wie Herpes und Why viruses like Herpes and
. . Zika sein reclassified: Biotech  31.82# Zika need to be reclassified: 78.82*
[Test Sample] Why viruses like Auswirkungen Biotech impact
Herpes and Zika will need to be S )
reclassified: Biotech impact ystem Warum Viren wie Herpes und . Why viruses like Herpes and
Zika neu klassifiziert werden 69,31 - T 61.63"

miissen: Auswirkungen der

Biotechnologie

[FT]: System1 < System2

Effects of Biotechnology

[RT]: System1 > System2

Figure 1: The comparison of the forward translation (FT) and round-trip translation (RT) performance of two
translation systems, System 1 and System 2 are based on Statistical Machine Translation (SMT) and Neural Machine
Translation (NMT), respectively. The conflict conclusions by FT Scores (System 1 < System 2) and RT Scores
(System 1 > System 2) are attributed to the translation of the underlined words, ‘reclassified” and ‘Biotech’.

1990) and lasted through SMT (Koehn, 2005;
Somers, 2005) and prevented the usage of RT to
MT evaluation. We argue that the negative observa-
tions are probably due to the selected SMT models
involve some reversible transformation rules, e.g.,
copying unrecognized tokens in translation. As an
example illustrated in Figure 1, the MT System 1
works worse than its competing System 2, as Sys-
tem 1 fails to translate ‘reclassified’ and ‘Biotech’.
Instead, it decides to copy the words in source lan-
guage (En) directly to the target outputs. During
BT, System 1 manages to perfectly translate them
back without any difficulty. For System 2, although
translating ‘Biotechnologie’ (De) to ‘Biotechnol-
ogy’ (En) is adequate, it is not appreciated by the
original reference in this case. Consequently, the
rankings of these two MT systems are flipped ac-
cording to their FT and RT scores. Previous error
analysis study on SMT (Vilar et al., 2006) also
mentioned that the unknown word copy strategy
is one of the major causes resulting in the transla-
tion errors. We therefore argue that the reversible
transformation like word copy could have intro-
duced significant bias to the previous experiments
on SMT (and RMT). Then, we conduct experi-
ments to replicate the negative conclusion. Interest-
ingly, removing the copying mechanism can almost
perfectly resolve the negation in our experiments.

3.3 Experiments and Analysis

We compare RT and FT on SMT following
the protocol by Somers (2005); Koehn (2005).
Moses (Koehn and Hoang, 2009) is utilized to
train phrase-based MT systems (Koehn et al.,
2003), which were popular in the SMT era.! We
train SMT systems on News—-Commentary v8

"We follow the baseline setup in the Moses’ tutorial in
http://www2.statmt.org/moses/?n=Moses.Baseline.

(Tiedemann, 2012), as suggested by WMT organiz-
ers (Koehn and Monz, 2006). We test our sys-
tems on four language pairs (de-en, en-de, cs-
en, and en-cs) in the competition track of WMT
2020 Translation Shared Tasks (Barrault et al.,
2020), namely news track WMT2020-News. RT-
ScoREs and FT-SCOREs are calculated based
on sacreBLEU in this section. Then, we use
Kendall’s 7 to verify the correlation of RT-SCOREs
and FT-SCOREs (Kendall, 1938). We train five sys-
tems using different phrase dictionary by varying
phrase probability threshold from 0.1, to 0.5. The
higher threshold indicates the smaller phrase table
and hence a better chance of processing unknown
words by the corresponding MT systems. During
translation inference, we consider two settings for
comparison, one drops the unknown words and the
other one copies these tokens to the outputs. Hence,
we end up having two groups of five outputs from
various SMT systems.

Lang. Pair W7 c;(. Tv;r/o o Improv.
de-en -1.00 1.00 2.00
en-de -1.00 1.00 2.00
cs-en -1.00 1.00 2.00
en-cs -1.00 1.00 2.00

Table 1: Comparison between RT-SCORE and FT-
SCORE on two groups of systems with copying (w/
cp) and without copying (w/o cp) unknown words using
Kendall’s 7 on four language pairs.

In Table 1, we examine whether the relevance
between RT-SCOREs and FT-SCOREs on five
SMT systems. The performance is measured by
Kendall’s 7. The correlation is essentially decided
by the copying mechanism. Specifically, their cor-
relation turns to perfectly positive for those systems
not allowed copying. In Figure 2, we further vi-
sualize RT-SCOREs and FT-SCOREs of five SMT
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(a) FT vs RT on SMT with word copy.
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Figure 2: Comparison between RT-SCOREs %55 "

(FT) and FT-SCOREs% S 5""*Y (RT) on en-de, based on
SMT varying by phrase probability thresholds.

systems on en-de translation. Two lines in Fig-
ure 2.a provides negative correlation, while those
two in Figure 2.b are clearly positively correlated.

Now, we discuss the rationality of using RT
evaluation for NMT systems, by comparing the
reliance of copying mechanism in NMT and SMT.
For NMT, we choose MBART50-M2M (Tang et al.,
2020), which covers 50 languages of cross-lingual
translation. Exactly matched words in outputs from
the input words are considered copying, although
the system may not intrinsically intend to copy
them. In Table 2, we observe that copying fre-
quency is about two times in SMT than NMT. Al-
though NMT systems may copy some words during
translation, most of them are unavoidable, e.g., we
observe that most of these copies are proper nouns
whose translation are actually the same words in
target language. In contrast, the copied words in
SMT are more diverse and many of them could be
common nouns.

4 Predicting FT-SCORE using RT-SCORE

In this section, we validate whether FT-SCORES
could be predicted by RT-SCOREs. Then, we ex-
amine the robustness of the predictor on unseen

.| Avg. Copy (%)

Lang. Pair TSMT  NMT
de-en 17.39  9.28
en-de 2147 954

Table 2: Comparison of word copy frequency between
SMT and NMT on two language pairs. We calculate
average percentage of copy (Avg. Copy) per sentence.
We use Moses with the phrase probability threshold of
0.4 for SMT.

language pairs and transferred MT models.

4.1 Regression on RT-SCORE

Here, we construct a linear regressor f to predict
FT-SCOREs of a target translation metric M by
corresponding RT-SCOREs,

FT-SCOREXY, 5 ~ far(RT-SCOREY! 1,
RT-SCORERL 4).  (3)

M* indicates that multiple metrics could be used to
construct the input features. We utilize RT-SCORE
from both sides of a language pair as our primary
setting, as using more features usually provides
better prediction performance (Xia et al., 2020).
We introduce a linear regressor for predicting FT-
SCORE,

m(S) =Wy ST, + Wy S50, +8 @

where Sﬁ’g p and S/gg 4 are RT-SCORE features
used as inputs of the regressor>. W1, Wy and 3 are
the parameters of the prediction model optimized
by supervised training. 3

In addition, when organizing a new shared
task, say WMT, collecting a parallel corpus in
low-resource language could be challenging and
resource-intensive. Hence, we investigate another
setting that utilizes merely the monolingual corpora
in language A or B to predict FT-SCORE,

FT-SCOREXY, 5 ~ f((RT-SCOREX! ),

FT-SCOREYL, 5 ~ fi((RT-SCOREX! 4). (5)

We will compare and discuss this setting in our
experiments on WMT.

*We use M* = M as our primary setting, as it is the most
straightforward and effective method to construct features. In
addition, we discuss the possibility to improve the regressor
by involving more features, in Appendix F.3.

3Implementation details can be found in Appendix D.



4.2 Experimental Setup
4.2.1 Datasets

We conduct experiments on the large-scale multi-
lingual benchmark, FLORES-101, and WMT ma-
chine translation shared tasks. FLORES-AE33 is
for training and testing on languages and trans-
ferred MT systems. WMT is for testing on real-
world shared tasks in new domains.

FLORES-AE33. We extract FLORES-AE33,
which contains parallel data among 33 languages,
covering 1,056 (33 x 32) language pairs, from a cu-
rated subset of FLORES-101 (Goyal et al., 2022a).
We select these languages based on two criteria: i)
We rank languages given the scale of their bi-text
corpora; ii) We prioritize the languages covered
by WMT2020-News and WMT2020-Bio. As a
result, FLORES—AE33 includes 7 high-resource
languages, 16 medium-resource languages and 10
low-resource languages, with more details in Ap-
pendix A.

Then, we partition these 33 languages into two
sets, i) the languages that are utilized in training our
models (TRAIN+TEST?*) and ii) the others are em-
ployed used for training the predictors but consid-
ered for test purpose only (TEST). We include 20
languages to TRAIN+TEST, with 7 high-resource,
7 medium-resource and 6 low-resource. The rest 13
languages fall into TEST, with 9 medium-resource
and 4 low-resource. Combining these two cate-
gories of languages, we obtain three types of lan-
guage pairs in FLORES—-AE33.

Type 1 contains pairs of languages in
TRAIN+TEST, where a train set and a test set are
collected and utilized independently. For each lan-
guage pairs, we collect 997 training samples and
1,012 test samples. The test set of Type II is more
challenging than that of Type I set, where the lan-
guage pairs in this set are composed of one lan-
guage from TRAIN+TEST set and the other lan-
guage from TEST set. Type III’s test set is the most
challenging one, as all its language pairs are de-
rived from TEST languages. Type II and Type I1I
sets are designed for test purpose, and they will not
be used for training predictors. Overall, Type I,
Type II and Type III sets contain 380, 520, and
156 language pairs, respectively.

WMT. We collect corpora from the translation
track to evaluate multiple MT systems on the same

“Both train and test sets of our corpus will have these
languages.

test sets. We consider their ranking based on
FT-SCORE with metric M as the ground truth.
We choose the competition tracks in WMT 2020
Translation Shared Tasks (Barrault et al., 2020),
namely news track WMT2020-News and biomed-
ical track WMT2020-Bio. We consider news and
bio as new domains, compared to our training data
FLORES-101 whose contents are mostly from
Wikipedia.

4.2.2 Neural Machine Translation Systems

We experiment with five MT systems which
support most of the languages appearing in
FLORES-AE33 and WMT. Except MBARTS50-
M2M, we adopt M2M-100-BASE and M2M-100-
LARGE (Fan et al., 2021), which are proposed to
conduct many-to-many MT without explicit pivot
languages, supporting 100 languages. GOOGLE-
TRANS (Wu et al., 2016; Bapna et al., 2022) is a
commercial translation API, which was considered
as a baseline translation systems in many previous
competitions (Barrault et al., 2020). Meanwhile,
we also include a family of bilingual MT mod-
els, OPUS-MT (Tiedemann and Thottingal, 2020),
sharing the same model architecture MARIAN-
NMT (Junczys-Dowmunt et al., 2018). We pro-
vide more details about these MT systems in Ap-
pendix C.

4.2.3 Automatic MT Evaluation Metrics

We consider sacreBLEU, spBLEU (Goyal
et al., 2022b), chrF (Popovié¢, 2015) and
BERTScore (Zhang et al., 2020) as the primary
automatic evaluation metrics (Freitag et al., 2020).
All these metrics will be used and tested for
both input features and target FT-SCORE. The
first two metrics are differentiated by their tok-
enizers, where sacreBLEU uses Moses (Koehn
and Hoang, 2010) and spBLEU uses Sentence-
Piece (Kudo and Richardson, 2018). Both evalua-
tion metrics were officially used in WMT21 Large-
Scale Multilingual Machine Translation Shared
Task (Wenzek et al., 2021). While sacreBLEU
works for most language tokenizations, spBLEU
shows superior effectiveness on various language
tokenizations, especially the performance on low-
resource languages (Goyal et al., 2022a). More de-
tails of these metrics are described in Appendix B

SWe queried GOOGLE-TRANS API in August, 2022.



4.3 Experiments and Analysis

Following our discussion in the last section on
SMT, we conduct similar experiments using our
new multilingual NMT systems on Type I test set
of FLORES-AE33. We observe highly positives
correlation between FT-SCOREs and RT-SCOREs,
measured by Pearson’s r (Benesty et al., 2009).
Please refer to Appendix F.1 for more details. Then,
we train regressors on RT-SCOREs and conduct ex-
periments to examine their performance on various
challenging settings.

. Type I

MT System Trans. Metric MAE] RMSE] P.r7
sacreBLEU 1.80 2.70 0.94

SpBLEU 2.13 2.99 0.94

MBARTS0-M2M chrF 3.51 453 096
BERTScore 4.98 7.07 0.88

sacreBLEU 3.86 5.82 0.95

SpBLEU 3.97 5.72 0.96

M2M-100-BASE chrF 6.06 753 0.96
BERTScore 4.35 6.32 0.91

sacreBLEU 4.09 5.60 0.93

SpBLEU 4.22 5.62 0.87

GOOGLE-TRANS chrF 570 690 093
BERTScore 2.87 3.66 0.80

Table 3: The results of predicted FT-SCOREs of
MBARTS50-M2M, M2M-100-BASE and GOOGLE-
TRANS on Type I test set based on different transla-
tion evaluation metrics (Trans. Metric). *MAE: Mean
Absolute Error, RMSE: Root Mean Square Error, P. r:
Pearson’s 7.

4.3.1 Transferability of Regressors

We firstly investigate the transferability of our re-
gressors from two different aspects, transferred MT
systems and unseen language pairs. We also eval-
uate the regressor on different scales of language
resources, in Appendix F.2.

Settings. We train our regressors on Type I train
set of FLORES-AE33 based on the translation
scores from MBARTS50-M2M. In order to as-
sess system transferability, we test three models,
MBART50-M2M, M2M-100-BASE and GOOGLE-
TRANS, on Type I test set. In terms of the lan-
guage transferability, we consider FT-SCOREs of
MBARTS50-M2M (a seen MT system in training)
and M2M-100-BASE (an unseen MT system in
training) on Type II and Type III test sets in
FLORES—-AE33. Type II and Type III language
pairs respectively include one and two unseen lan-
guages for each pair. We vary our experiment on
four metrics, sacreBLEU, spBLEU, chrF and
BERTScore. Mean Absolute Error (MAE), Root
Mean Square Error (RMSE) and Pearson’s r are

calculated to evaluation the difference between the
predicted scores and the gold FT-SCOREs.

Discussion. In Table 3, we present the perfor-
mance of the regressor across various translation
systems and evaluation metrics. We first ana-
lyze the results on MBARTS50-M2M, which is
seen in training. The absolute errors between pre-
dicted scores and ground-truth FT-SCOREs are
relatively small with regard to MAE and RMSE.
Meanwhile, the correlation between prediction and
ground truth is strong, with all Pearson’s r above
or equal to 0.88. This indicates that ranking the
predicted scores is rational. The results of M2M-
100-BASE and GOOGLE-TRANS demonstrate the
performance of predictors on unseen systems. Al-
though the overall errors are higher than those of
MBARTS50-M2M without system transfer, Pear-
son’s r scores are at the competitive level, indi-
cating a similar ranking capability on unseen sys-
tems. Meanwhile, our model obtains adequate lan-
guage transferability results, as demonstrated in
Table 4. Notably, our regressor performs well on
low-resource translation (see Appendix F.2), which
corroborates our claim about the significance of RT
to FT for low-resource languages.

4.3.2 Predicting FT-SCOREs on WMT

With the basis of high transferabilities of the re-
gressors, we conduct experiments on WMT shared
tasks, namely WMT2 02 0-News, which includes10
language pairs.

Settings. We have involved five MT systems,
MBARTS50-M2M, M2M-100-BASE, M2M-100-
LARGE, OPUS-MT and GOOGLE-TRANS.® In ad-
dition to MAE, RMSE and Pearson’s r, we intro-
duce Kendall’s 7 (Kendall, 1938) to measure the
rank correlation coefficient of the MT systems, via
comparing the ranking of our model predictions
and the actual ranking based on FT-SCORE. We are
aware of the cases that collecting corpora in target
languages for competitions might be significantly
complex, which means only a monolingual corpus
is available for evaluation. Thus, we train predic-
tors f’ using single RT-SCORES in Equation 5 on
Type I train set. Note that this experiment covers
several challenging settings, such as transferred

®We have contacted the competitors to WMT2020-News.
However, we have not received enough valid MT systems to
increase the number of competitors. We will show the robust-
ness of our method to a larger number of pseudo-competitors
in Appendix F4.



. Type I1 Type 11T
MT System Trans. Metric |—yrip—RMSE] P.rf | MAE] RMSE]| Pr7
sacreBLEU | 136 1.97 093 | 081 095 0.96
SPBLEU 1.61 2.19 093 | 120 1.38 0.94
MBARTS0-M2M chrF 3.80 4.89 095 | 3.04 3.89 0.95
BERTScore | 4.67 6.38 088 | 5.08 6.88 0.87
sacreBLEU | 3.10 7.16 095 | 2.99 376 094
o SPBLEU 3.4 4.18 096 | 3.18 3.88 0.95
M2M-100-BASE chrF 5.53 670 095 | 542 654 093
BERTScore | 438 6.51 083 | 429 6.65 0.80

Table 4: The results of predicted FT-SCOREs of MBARTS50-M2M (a seen MT system) and M2M-100-BASE
(an unseen MT system) on Type II and Type III (with unseen languages) test sets based on different translation

evaluation metrics (Trans. Metric).

Lang, Pair AOB BOA A0B&BOA
- MAE] RMSE] K. P.r7| MAE] RMSE] K.77 Prf | MAE] RMSE] K.v1 P.r{
cs-en 401 434 020 045 | 892 9.08 060 001 853 871 060 058
de-en 13.23 13.26 0.80 095 1.69 1.77 0.80 095 1.26 1.38 0.80  0.96
de-fr 10.45 10.53 1.00  0.99 1.72 2.05 080 097 1.59 1.93 .00 097
en-cs 6.96 7.49 020 025 1.39 1.79 060 094 1.25 1.80 060 095
en-de 2.96 4.00 040 059 | 229 2.70 .00 092 | 275 3.12 100 093
en-ru 1.98 2.40 020 040 | 7.4l 7.53 040 085 | 748 7.60 060  0.86
en-zh 2.96 3.93 020  0.19 1.36 1.60 0.80  0.80 1.23 1.50 0.80  0.82
fr-de 2.89 3.70 0.80 090 | 299 3.56 100 094 | 259 3.17 100 093
ru-en 9.83 9.97 .00 0.78 1.16 1.72 080 085 1.44 178 080  0.88
zh-en 12.44 12.77 000 026 | 3.04 3.55 020 050 | 2.62 3.56 020  0.50
Average 6.77 724 048 058 | 320 354 070 086 | 3.07 341 074 087

Table 5: The results of our predictors on ranking the selected MT systems on WMT2020-News shared tasks.

MT systems, unseen languages in training, sin-
gle source features, and transferred application do-
mains. Another set of results on WMT2020-Bio
can be found in Appendix E.5.

Discussion. In Table 5, we display the results on
WMT2020-News.” Although MAE and RMSE
vary among experiments for different language
pairs, the overall correlation scores are favorable.
Pearson’s r values on all language pairs are above
0.5, showing strong ranking correlations. While
prediction performances on A O B have some
variances among different language pairs, the re-
sults of the experiments using B O A are com-
petitive to those using both A © Band B O A
features, showing the feasibility of predicting FT-
SCORE using monolingual data. We conclude that
our regression-based predictors can be practical in
ranking MT systems in WMT-style shared tasks.

5 Cross-system Round-trip Translation

In this section, we first validate RT evaluation on
WMT2020-News with A O B direction. One of
the advantages of RT is that multiple MT systems
could be used to verify the performance of other
systems via checking the N x N combinational RT
results from these N systems, coined X—Check.
Finally, we demonstrate that the predicted auto-
matic evaluation scores could be further improved
via multi-system cross-check.

"The results on WMT2020-Bio are reported in Ap-
pendix E.5

5.1 Cross-system Validation for Competitions

Given FT MT systems {F;}¥ |, BT MT systems
{B;}M,, and a regression model M on predicting
the target metric, we can estimate the translation
quality of ¢-th FT system on j-th BT system:

Sz‘,j = fM(BJ('FL(x))v .’L‘),

where S = {S; ;} nxar. The estimated translation
quality of F; is the average score of the i-th col-

umn,
1 M

Si,s = M z;Si,j‘
j:

Note that the same number of FT and BT sys-
tems are considered for simplicity, i.e. N = M.

5.2 Experiments and Analysis

Settings. We  conduct experiments on
WMT2020-News similar to Section 4.3.2.
We rank the system-level translation quality via
the regressor trained on RT-SCORESPPLEY We
challenge the evaluation paradigm by introducing
some adversarial MT systems, e.g., SMT with
copying mechanism. Specifically, we introduce
basic competition scenarios with 3-5 competitors
to the shared task, and we consider different
numbers of adversarial systems, namely i) no
adversary; ii) one adversarial SMT with word
copys; Zii) two adversarial SMT systems with word
copy. We provide details of two SMT systems in
Appendix F.6. The experiments with adversarial



#Sys Method No Adversary One adversarial SMT Two adversarial SMTs

K.71 P.r1 | Hit@elt Avg.Rank|] K.77 Pr T | Hit@27T Avg.Rank] K.71 P.r?T
3 Sing-Check 0.07 0.17 0.50 2.00 0.33 0.51 0.00 4775 -0.15  -0.30
X-Check 0.47 0.43 1.00 1.00 0.33 0.98 1.00 1.50 0.55 0.98

o ; © " 'sing-Check | 0.33° 037 | 025 275 040 039 | 000 575 0 -003 033
X-Check 0.57 0.81 1.00 1.00 0.60 0.97 1.00 1.50 0.70 0.98

o ;. © " 'sing-Check | 048 ~ 058 | 025 325 030 025 | 000 675 005 @ -040
X-Check 0.42 0.52 1.00 1.00 0.50 0.93 1.00 1.50 0.62 0.92

Table 6: Results of the competition between 3 to 5 honest competitors, with a combination of additional adversarial
competing systems (No Adversary, One adversarial SMT (X = 0.1) w/ copy, Two adversarial SMTs (X = 0.1 and
X = 0.5) w/ copy). We measure the identifiability of the adversarial MT systems by Hit@ K, where K is decided
by the number of adversarial systems. We also report the average ranking (Avg. Rank.) of the adversarial systems,

and correlation scores, Kendall’s 7 and Pearson’s r.

systems are conducted on four language pairs,
cs—en, de-en, en-cs and en-de, as the
corresponding adversarial systems were trained in
Section 3.3.

Discussion. We also observe that the overall sys-
tem ranking could be severely affected by the ad-
versarial systems, according to Pearson’s r and
Kendall’s 7. The adversarial systems are stealthy
among normal competitors, according to Hit@K
and Avg. Rank. X—Check evidently successfully
identifies these adversarial systems in all our ex-
periments and manages to improve the correlation
scores significantly.

6 RT-SCOREs for Quality Estimation

In this section, we demonstrate that the features
acquired by round-trip translation benefit quality
estimation (QE) models.

Dataset. QE was firstly introduced in WMT11
(Callison-Burch et al., 2011), focusing on auto-
matic methods for estimating the quality of neural
machine translation output at run-time. The esti-
mated quality should align with the human judg-
ment on the word and sentence level, without ac-
cessing to the reference in the target language. In
this experiment, we perform sentence-level QE,
which aims to predict human direction assessment
(DA) scores. We use DA dataset collected from
2015 to 2021 by MT News Translation shared task
coordinators. The train set contains 33 diverse
language pairs and a total of 574,186 tuples with
source, hypothesis, reference and direct assessment
z-score. We construct the fest set by collecting
DA scores on zh-en (82,692 segments) and en-de
(65,045 segments), as two unseen language pairs.

Experimental Setup. Firstly, we extract RT
features RT-sacreBLEU, RT-spBLEU and RT-
chrF. Then, we examine whether QE scores could

zh-en en-de

QE model K+1 Pri [K+T Prf
RT-sacreBLEU | 15.07 2176 | 11.83 19.71
RT-spBLEU 1355 1830 | 1149  19.00
RT-chrF 1552 2174 | 1357 22.93
RT-ALL 1553 2174 | 1352 2287
COMET_QE-DA | 3283 4601 | 4271 6436

+RT-ALL 32.87 4692 | 4274 64.42

Table 7: Comparisons of RT-SCORE for QE. RT-ALL
refers to the combination of RT-sacreBLEU, RT-
spBLEU and RT-chrF. COMET-QE-DA + RT-ALL
incorporates both COMET-QE-DA and all RT-SCOREs.

be predicted by these RT features using linear re-
gression models. We train the regressors using
Equation 5 with only A O B features. Finally,
a combination of COMET—-QE~-DA scores and RT-
SCORES are investigated to acquire a more compet-
itive QE scorer.

Discussion. Both Kendall’s 7 and Pearson’s r
provide consistant results in Table 7. The models
merely using RT-SCOREs could be used to predict
DA scores. We also observe that RT-SCOREs can
further boost the performance of COMET-QE-DA.
We believe RT-SCOREs advances QE research and
urge more investigation in this direction.

7 Conclusion

This paper revisits the problem of estimating FT
quality using RT scores. The negative results
from previous literature are basically caused by the
heavy reliance of copy mechanism in traditional
statistical machine translation systems. Then, we
conduct comprehensive experiments to show the
corrected understanding on RT benefits several rel-
evant MT evaluation tasks, such as predicting FT
metrics using RT scores, filtering out unreliable MT
competitors for WMT shared tasks, and enhancing
state-of-the-art QE systems. We believe our work
will inspire research on reference-free evaluation
on low-resource machine translation and natural
language generation.



Limitations

Although we have observed positive correlation
between FT-SCOREs and RT-SCOREs and con-
duct experiments to predict FT-SCOREs using RT-
SCORESs, their relation could be complicated and
non-linear. We encourage future research to in-
vestigate various RT-SCORE features and more
complex machine learning models for better pre-
diction models. Although we have examined the
prediction models on low-resource languages in
FLORES-101, we have not tested those very low-
resource languages out of these 101 languages. We
suggest auditing FT-SCORE prediction models on
a small validation dataset for any new low-resource
languages in future applications.
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A Dataset Construction

Resource | Language Scale Usage
English - TRAIN+TEST
Spanish 315M TRAIN+TEST
French 289M  TRAIN+TEST
High German 216M  TRAIN+TEST
Portuguese  137M  TRAIN+TEST
Russian 127M  TRAIN+TEST
Italian 116M TRAIN+TEST
Dutch 82.4M TRAIN+TEST
Turkish 41.2M TRAIN+TEST
Polish 409M TRAIN+TEST
Chinese 37.9M TRAIN+TEST
Romanian 31.9M TRAIN+TEST
Greek 23.7M  TRAIN+TEST
Japanese  23.2M TRAIN+TEST
Medium Czech 23.2M TEST
Finnish 15.2M TEST
Bulgarian  10.3M TEST
Lithuanian 6.69M TEST
Estonian 4.82M TEST
Latvian 4.8M TEST
Hindi 3.3M TEST
Javanese 1.49M TEST
Icelandic 1.17”M TEST
Tamil 992K  TRAIN+TEST
Armenian 977K TEST
Azerbaijani 867K TEST
Kazakh 701K TRAIN+TEST
Low Urdu 630K TEST
Khmer 398K TRAIN+TEST
Hausa 335K TRAIN+TEST
Pashto 293K  TRAIN+TEST
Burmese 283K TEST
Gujarati 160K  TRAIN+TEST

Table 8: The statistics of FLORES-AE33. 20 languages
are used in both training and test (TRAIN+TEST), the
other 13 languages are used in test only (TEST).

We provide the statistics of all languages cov-
ered by FLORES—-AE33, categorised by different
scale of the resource (high, medium and low) and
usage purpose (TRAIN+TEST and TEST) in Table 8.
Scale is counted by the amount of bi-text data to
English in FLORES-101 (Goyal et al., 2022a).

B Automatic Evaluation Metrics for
Translation

For BERTScore, Deberta-xlarge-mnli (He et al.,
2021) is used as the backbone pre-trained language
model, as it is reported to have a satisfactory cor-
relation with human evaluation in WMT16. While

12

sacreBLEU, spBLEU and chrF are string-based
metrics, BERTScore is model-based. The se-
lection of these metrics is on the basis that
they should directly reflect the translation qual-
ity. We calculate those scores via open-source
toolboxes, EASYNMT®, SACREBLEU-TOOLKIT’
and BERTSCORE'?. We use word-level 4-gram
for sacreBLEU and spBLEU, character-level 6-
gram for chrF, and Fj score for BERTScore by
default.

C Machine Translation Systems

MBARTS50-mM2M. MBARTS50-M2M  (Tang
et al., 2020) is a multilingual translation model
with many-to-many encoders and decoders. The
model is trained on 50 publicly available language
corpora with English as a pivot language.

M2M-100-BASE & M2M-100-LARGE. These
two models are one of the first non-English-
centric multilingual machine translation systems,
which are trained on 100 languages covering high-
resource to low-resource languages. Different from
MBARTS50-M2M, M2M-100-BASE and M2M-
100-LARGE (Fan et al., 2021) are trained on paral-
lel multilingual corpora without an explicit center-
ing language.

OpPUS-MT. OprUS-MT (Tiedemann and Thottin-
gal, 2020) is a collection of one-to-one machine
translation models which are trained on correspond-
ing parallel data from OPUS using MARIAN-NMT
as backbone (Junczys-Dowmunt et al., 2018). The
collection of MT models support 186 languages.

GOOGLE-TRANS. GOOGLE-TRANS (Wu et al.,
2016; Bapna et al., 2022) is an online Transla-
tion service provided by Google Translation API,
which supports 133 languages. The system is
frequently involved as a baseline system by WMT
shared tasks (Barrault et al., 2020).

D Implementation Details

Regressor. We use the linear regression model
tool by Scikit-Learn!'! with the default setting
for the APL

8https
‘https

://github.com/UKPLab/EasyNMT.
://github.com/mjpost/sacrebleu.
1Ohttps://github.com/Tiiiger/bert_score.
Uhttps://scikit-learn.org/stable/
modules/generated/sklearn.linear_model.
LinearRegression.html
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MT Systems. We adopt EasyNMT!? for loading
MBART50-M2M, M2M-100-BASE, M2M-100-
LARGE and OPUS-MT for translation.

Computational Resource and Time. In our ex-
periment, we collect the translation results and
compute their FT-SCORE and RT-SCORE on mul-
tiple single-GPU servers with Nvidia A40. Overall,
it cost us about three GPU months for collecting
translation results by all the aforementioned MT
systems.

E Measurement

We evaluate the performance of our predictive
model via the following measurements:

Mean Absolute Error (MAE) is used for mea-
suring the average magnitude of the errors in a set
of predictions, indicating the accuracy for continu-
ous variables.

Root Mean Square Error (RMSE) measures
the average magnitude of the error. Compared to
MAE, RMSE gives relatively higher weights to
larger error.

Pearson’s r correlation (Benesty et al., 2009)
is officially used in WMT to evaluate the agreement
between the automatic evaluation metrics and hu-
man judgement, emphasizing on the translation
consistency. In our paper, the metric evaluates the
agreement between the predicted automatic evalua-
tion scores and the ground truth.

Kendall’s 7 correlation (Kendall, 1938) is an-
other metric to evaluate the ordinal association be-
tween two measured quantities.

F Supplementary Experiments

F.1 Correlation between FT-SCORESs and
RT-SCORES on FLORES-AE33

Settings. We experiment with MBARTS50-
M2M and M2M-100-BASE on Type 1
test set of FLORES-AE33 by comparing
their RT-ScOREY! 5, RT-SCORE%L, and
FT-SCORE}!, 5 using multiple translation met-
rics M, sacreBLEU, spBLEU, chrF and
BERTScore. We measure their correlations
by computing Pearson’s r (Benesty et al.,
2009) of (RT-SCORE’! p, FT-SCORE}Y, ;) and
(RT-ScorREZ! 4, FT-SCORE}!, ;). Note that

Phttps://github.com/UKPLab/EasyNMT
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our experiment is beyond English-centric, as all
languages are permuted and equally considered.

Discussion. The overall correlation scores are
reported in Table 9. Our results indicate at least
moderately positive correlations between all pairs
of RT-SCOREs and FT-SCOREs. Moreover, we
observe that RT-SCOREp, 4 is generally more cor-
related to FT-SCORE than RT-SCORE 4,5, leading
to strongly positive correlation scores. We attribute
the advantage to the fact that 74, p serves as the
last translation step in RT-SCOREp 4. We visu-
alize more detailed results of correlation between
FT-ScOREs and RT-SCOREs on Type I language
pairs in FLORES-101, in Figure 3 (MBARTS50-
M2M) and Figure 4 (M2M-100-BASE).

F.2 Regressors on Language Resources

In Tables 11 and 12, we provide detailed per-
formance of our regressor on language pairs of
different resources categories on FLORES—-AE33,
with RT-SCOREs of MBARTS50-M2M and M2M-
100-BASE respectively. Specifically, we split the
three categories based on Table 8, which are high,
medium and low. The evaluated regressor is the
same as the one tested in Sections 4.3.1 and 4.3.2.
The results of two tables show that our regressor is
able to predict FT-SCOREs with small errors, and
reflect the relative orders among FT-SCOREs, with
high transferability across language pairs and MT
systems.

F.3 Improve Prediction Performance Using
More Features

Settings. We introduce two extra features, MAX-
4 CoUNT and REF LENGTH,? to enhance the pre-
diction of spBLEU. MAX-4 COUNT is the counts
of correct 4 grams, and REF LENGTH is the cu-
mulative reference length. We follow the similar
procedure in RQ2, using the same measurements to
evaluate the predictor performance on MBARTS50-
M2M and M2M-100-BASE across three types of
test sets in FLORES-AE33.

Results. Table 10 shows the results of those mod-
els with additional features. Both features consis-
tently improve our basic models, and the perfor-
mance can be further boosted by incorporating both
features. We believe that more carefully designed

BMAX-4 COUNT and REF LENGTH are “counts”
and “ref len” in https://github.com/mjpost/
sacrebleu/blob/master/sacrebleu/metrics/
bleu.py.


https://github.com/UKPLab/EasyNMT
https://github.com/mjpost/sacrebleu/blob/master/sacrebleu/metrics/bleu.py
https://github.com/mjpost/sacrebleu/blob/master/sacrebleu/metrics/bleu.py
https://github.com/mjpost/sacrebleu/blob/master/sacrebleu/metrics/bleu.py
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Figure 3: The first row is the correlations between RT-SCOREQAO 5 and FT—SCORE% _,p on MBARTS50-M2M
using (a) sacreBLEU, (b) spBLEU, (¢) chrF and (d) BERTScore. The second row is the correlations between
RT-SCORE}, 4 and FT-SCORELY, ; on MBART50-M2M using (¢) sacreBLEU, (f) spBLEU, (g) chrF and (h)
BERTScore. All experiments with overall Pearson’s r.
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Figure 4: The first row is the correlations between RT—SCORE%OB and FT—SCOREQ@B on M2M-100-BASE using
(a) sacreBLEU, (b) spBLEU;, (¢) chrF and (d) BERTScore. The second row is the correlations between
RT-SCORE}, 4 and FT-SCORELY, ; on M2M-100-BASE using (e) sacreBLEU, (f) spBLEU, (g) chrF and (h)
BERTScore. All experiments with overall Pearson’s r.

MT System Comparison sacreBLEU spBLEU chrF BERTScore
A5 Bvs ADB 0.78 086 063 053

MBARTS0-M2M ) By Bo A 0.94 094 096 0.88
A5 Bvs ADB 0.83 093 087 053

M2M-100-BASE ) By B A 0.95 096 096 0.90

Table 9: Pearson’s r between FT-SCOREY", 5 and RT-SCORE™ (both A & B and B ) A) using different
automatic evaluation metrics M on Type I test set of FLORES—-AE33.

Type I Type 11 Type 111

MT System Self-Trans Feature MAE] RMSE| 7 |[MAE] RMSE| 1 |MAE], RMSE] 1
SPBLEU (basic model) 2.13 299 094 | 161 219 093] 120 138 094

VBARTSO.oy  * MAX-4 COUNT 2.01 292 094 | 154 215 094 | 112 134 094
+ REF LENGTH 2.07 296 094 | 161 221 093 | 117 145 094

+ MAX-4 COUNT & REF LENGTH 2.00 2.92 0.94 1.53 2.16 0.94 1.08 1.33 0.95

SPBLEU (basic model) 3.97 572 096 | 324 418 096 | 3.18 388 095

VOM-100-pAss  + MAX-4 COUNT 2.95 400 096 | 274 367  095| 282 362 093
+ REF LENGTH 3.61 532 096 | 293 392 096 | 290 367 0.94

+ MAX-4 COUNT & REF LENGTH | 2.95 410 096 | 271 365  095| 279 359 093

Table 10: The results of using auxiliary features to spBLEU for training predictors. We test the performance of
MBARTS50-M2M and M2M-100-BASE cross language pairs in Type I, Type IT and Type III of FLORES-AE33.
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MAE

H M
3.17 290
151 1.37
122 1.27

RMSE
H. M. L.
4.02 3.74 4.07
195 1.78 229
1.39 143 1.36

P.r
M.
0.94
0.85
0.87

H.
0.94
0.97
0.97

L.
0.77
0.22
0.78

L.
2.70
1.77
1.16

CEE

Table 11: The results of predicted FT-SCOREs of
MBARTS50-M2M on nine sets of language pairs, cate-
gorized by different scale of the resources, High (H.),
Medium (M.) and Low (L.). The three categories in
rows are source languages, and the ones in columns
are target languages. We report Mean Average Error
(MAE), Root Mean Square Error (RMSE) and Pearson’s
T.

MAE RMSE P.r
H. M. L. H. M. L. H. M. L.
H. | 872 541 3501082 645 452|051 080 0.67
M. | 486 401 293 | 471 178 4.09 | 0.86 090 0.69
L [170 1.67 124 | 139 186 151|098 097 0.80

Table 12: The results of predicted FT-SCOREs of M2M-
100-BASE on nine sets of language pairs, categorized
by different scale of the resources, High (H.), Medium
(M.) and Low (L.). The three categories in rows are
source languages, and the ones in columns are target
languages. We report Mean Average Error (MAE), Root
Mean Square Error (RMSE) and Pearson’s 7.

features and regression models could potentially
boost the performance of our predictors.

F4 WMT2020-News with Synthetic
Competitors

We increase the scale of competitors to
WMT2020-News by introducing pseudo competi-
tors. To mimic the number of a conventional WMT
task, we vary 17 forward translation systems by
randomly dropping 0% to 80% (with a step of
5%) tokens from the outputs of GOOGLE-TRANS.
Then, we utilize the vanilla GOOGLE-TRANS
to translate these synthetic forward translation
results back to the source language. We conduct
experiments on de-fr, en-ta and zh-en, representing
those non-En to non-En, En to non-En and non-En
to En language pairs.

The results in Table 13 demonstrate the predic-
tors’ performances on ranking the pseudo competi-
tors on WMT2020—-News based on spBLEU fea-
tures. The overall ranking errors on 17 MT systems
are small on all three selected language pairs.

F.5 Ranking Experiments on WMT2020-Bio

We display the experimental results on
WMT2020-Bio in the Table 14. The over-
all performance is positive, while it is relatively
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Langauge Pair MAE| RMSE| K. 71 Pr?¢

de-fr 2.21 2.67 1.00 0.98
en-ta 0.88 0.98 1.00 0.99
zh-en 1.69 2.37 1.00 0.99
Average 1.59 2.01 1.00 0.99

Table 13: Results of prediction and ranking on trans-
lation quality of WMT2020-News synthetic data for
three language pairs.

worse than the results of WMT2020-News
reported in Table 5. We attribute this to the fact
that the M used on WMT2020-Bio are calculated
on document, while our regression models rely on
sentence-level translation metrics in training. The
large granularity difference of text may result in a
distribution shift.

L Pair BOA AOB&BOA

MAE] RMSE] K.71 P.r{|MAE| RMSE| K71 P71

de-en 1096 1106 080 075 | 10.15 1021 080 0.76
en-de 541 5.69 080 063 | 594 606 080 0.63
en-es 6.42 7.95 080 082 | 631 742 080 083
en-fr 4.03 6.27 040 019 | 3.68 586 040 0.0
en-it 6.13 6.92 040 056 | 594 658 040  0.57
en-ru 4.16 562 020 046 | 420 518 020 049
en-zh 2.17 273 020 -004 | 221 259 000 002
es-en 6.58 8.17 060 075 | 623 748 080 079
fr-en 6.12 8.02 060 066 | 577 713 060 067
it-en 6.33 7.94 0.60 050 | 590 713 060 056
ru-en 5.94 8.51 040 0.8 | 551 7.81 020 023
zh-en 5.67 8.15 020 022 | 518 748 020 023
Average 583 7.25 050 047 | 559 674 048 050

Table 14: Results of our predictors on ranking the se-
lected MT systems on WMT2020-B1io shared tasks.

F.6 Benign MT systems and Adversarial MT
Systems for X—-Check

The selection of the benign systems is:

* 3 Systems: OPUS-MT, M2M-100-LARGE
and MBARTS50-M2M;

* 4 Systems: OpPUS-MT, M2M-100-
LARGE,M2M-100-BASE and MBARTS50-
M2M;

* 5 Systems: GOOGLE-TRANS, OPUS-
MT, M2M-100-LARGE,M2M-100-BASE
and MBARTS50-M2M.

SMT (X = 0.1). We train the SMT system on
News—-Commentary v8 with the max phrase
length 4 and the phrase table probability thresh-
old of 0.1.

SMT (X = 0.5). We train the SMT system on
News-Commentary v8 with the max phrase
length 4 and the phrase table probability thresh-
old of 0.5.



SMT(X = 0.1) tends to copy fewer words than
SMT(X = 0.5), due to the larger phrase table size
filtered by lower prebability threshold.
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