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ABSTRACT

Neural network-based odometry using accelerometer and gyroscope readings from
a single IMU can achieve robust, and low-drift localization capabilities, through the
use of neural displacement priors (NDPs). These priors learn to produce denoised
displacement measurements but need to ignore data variations due to specific IMU
mount orientation and motion directions, hindering generalization. This work
introduces EqNIO, which addresses this challenge with canonical displacement
priors, i.e., priors that are invariant to the orientation of the gravity-aligned frame
in which the IMU data is expressed. We train such priors on IMU measurements,
that are mapped into a learnable canonical frame, which is uniquely defined via
three axes: the first is gravity, making the frame gravity aligned, while the second
and third are predicted from IMU data. The outputs (displacement and covariance)
are mapped back to the original gravity-aligned frame. To maximize generaliza-
tion, we find that these learnable frames must transform equivariantly with global
gravity-preserving roto-reflections from the subgroup Og(3) ⊂ O(3), acting on
the trajectory, rendering the NDP O(3)-subequivariant. We tailor specific linear,
convolutional, and non-linear layers that commute with the actions of the group.
Moreover, we introduce a bijective decomposition of angular rates into vectors that
transform similarly to accelerations, allowing us to leverage both measurement
types. Natively, angular rates would need to be inverted upon reflection, unlike
acceleration, which hinders their joint processing. We highlight EqNIO’s flexibility
and generalization capabilities by applying it to both filter-based (TLIO), and
end-to-end (RONIN) architectures, and outperforming existing methods that use
soft equivariance from auxiliary losses or data augmentation on various datasets.
We believe this work paves the way for low-drift and generalizable neural in-
ertial odometry on edge devices. The project details and code can be found at
https://github.com/RoyinaJayanth/EqNIO.
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Figure 1: Neural Displacement Priors (NDPs) that rely on data augmentation (TLIO, left) produce
a different trajectory for different reference frames while strictly equivariant approaches (EqNIO,
right) yield one trajectory independent of the reference frame. EqNIO achieves this by learning an
equivariant canonical frame aligned, per definition, with the predicted covariance (ellipsoids,right).
In test time, the gravity-aligned IMU orientation estimate of the Kalman filter is the reference frame.

∗denotes equal contribution, † denotes equal advising
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1 INTRODUCTION

Inertial Measurement Units (IMUs) are commodity sensors that measure the accelerations and angular
velocities of a body. Due to their low cost, they are widely used in diverse applications such as robot
navigation and Mixed Reality for precise and rapid tracking of body frames. However, since they
are differential sensors, relying only on IMUs invariably results in drift. Traditional Visual Inertial
Odometry (VIO) approaches can effectively mitigate this drift by combining IMU measurements with
features extracted from camera images. Still, these images are of limited use in high-speed scenarios
with challenging lighting conditions, since they can suffer from saturation, and blurring artifacts.

Recently, a novel class of methods has emerged that instead mitigates this drift with neural displace-
ment priors (NDPs), that are directly learned from IMU data alone (Liu et al., 2020; Herath et al.,
2020). These methods perform competitively with VIO methods despite using only a single IMU
sensor. However, learning generalizable priors proves challenging: while identifying specific motion
patterns, they must learn to ignore data differences due to particular IMU mount orientations, and
the direction of the motion patterns. However, they often fail to do so in practice (see Fig. 1, left
state-of-the-art method TLIO (Liu et al., 2020)), yielding large trajectory variations when observing
simply rotated input data. These variations persist, in spite of data augmentation strategies (TLIO Liu
et al. (2020), RONIN Herath et al. (2020)) that include random data rotations or the enforcement of
equivariance constraints via auxiliary consistency losses during training (RIO Cao et al. (2022)).

In this work, we simplify this task by introducing EqNIO, which leverages canonical displacement
priors (CDPs). CDPs are invariant to IMU orientation and, as a result, easier to learn, more robust, and
more generalizable than regular NDPs. EqNIO first maps the IMU data into a learnable, equivariant,
and gravity-aligned frame F , before passing them to the CDP, and mapping the outputs back to the
original frame. Our design can flexibly integrate arbitrary off-the-shelf methods such as TLIO (Liu
et al., 2020) and RONIN (Herath et al., 2020), provided that suitable change of basis maps are defined
for the network outputs (displacement and covariance of TLIO, and only linear velocity for RONIN).
The frame F is composed of two transformations: The first, gravity-alignment, aligns the z-axis with
the gravity direction, estimated from an off-the-shelf filter (Liu et al., 2020), and is traditionally used
in inertial odometry. The second is a learnable, gravity-preserving roto-reflection.

To be maximally generalizable, we show that this roto-reflection must generalize to arbitrary gravity-
preserving roto-reflections of the input data. We design a specific model that achieves this by
processing IMU data equivariantly, i.e., in a way that commutes with the action of gravity-preserving
roto-reflections on the input data. We identify these roto-reflections as elements of the group Og(3),
a subgroup of the orthogonal group O(3), which is isomorphic to O(2). Equivariance is ensured by a
preliminary, unique preprocessing step that maps accelerometer and gyroscope measurements into a
space that transforms consistently under the group action, and subsequent processing with equivariant
MLPs, convolutions, and non-linear layers. Due to the isomorphism with O(2) these layers are O(2)
equivariant, and, due to the subgroup property, also called O(3) subequivariant.

Contributions: (i) We apply a canonicalization scheme that maps IMU measurement, and NDP
outputs to and from a gravity-aligned, subequivariant, canonical frame. This procedure can be
flexibly applied to arbitrary off-the-shelf network architectures. NDPs trained on such canonical data
produce inherently more robust, and generalizable results than previous work. (ii) We formalize the
group actions of gravity-preserving roto-reflection from Og(3) on IMU measurements and derive
unique preprocessing steps that map both accelerometer and gyroscope measurements into a space
in which these actions are consistent. (iii) We tailor an O(2) equivariant network that regresses
canonical roto-reflections from 2D vector features, and 1D scalar derived from IMU data. It leverages
specialized O(2) equivariant MLPs and convolution, to process vector features, conventional layers
to process scalar features, and equivariant non-linearities to mix vector and scalar features.

We demonstrate the generality of our framework by applying it to two neural inertial odometry
methods, TLIO (Liu et al., 2020), and RONIN (Herath et al., 2020). Extensive qualitative and
quantitative results comparing EqNIO against previous works across diverse benchmarks establish a
new state-of-the-art in inertial-only odometry. EqNIO significantly enhances the accuracy, reliability,
and generalization of existing methods.

2 RELATED WORK

Neural inertial odometry is highly related to inertial navigation systems (INS) which can be broad
classified into estimation-based, multi-sensor data fusion-based (MSDF) techniques, and learning-
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based techniques. Recent works in inertial attitude estimation (Asgharpoor Golroudbari & Sabour,
2023; Ge et al., 2024), VIO (van Goor & Mahony, 2023), LIDAR odometry (Zheng et al., 2024) and
SLAM (Kim & Sukkarieh, 2003) are highly related and are hence discussed in App. A.1.

Model-based Inertial Odometry: Purely Inertial Odometry can be broadly classified into two
categories: kinematics-based and learning-based approaches. Kinematics-based approaches (Leish-
man et al., 2014; Titterton et al., 2004; Bortz, 1971) leverage analytical solutions based on double
integration that suffers from drift accumulation over time when applied to consumer-grade IMUs.
To mitigate this drift, loop closures (Solin et al., 2018), and other pseudo measurements derived
from IMU data that are drift-free have been explored (Groves, 2015; Hartley et al., 2020; Brajdic &
Harle, 2013). In the context of Pedestrian Dead Reckoning (Jimenez et al., 2009), these include step
counting (Ho et al., 2016; Brajdic & Harle, 2013), detection of the system being static (Foxlin, 2005;
Rajagopal, 2008) and gait estimation (Beaufils et al., 2019).

Learning-based Inertial Odometry: Recently, RIDI (Yan et al., 2018), PDRNet (Asraf et al., 2022)
and RONIN (Herath et al., 2020) proposed CNN, RNN, and TCN-based velocity regression. RIDI uses
these velocities to correct the IMU measurements, while RONIN directly integrates them while as-
suming given orientation information. Denoising networks either regress IMU biases (Brossard et al.,
2020b; Buchanan et al., 2023; Brossard et al., 2020a) denoised IMU measurements directly (Stein-
brener et al., 2022). While Buchanan et al. (2023) uses constant covariance, AI-IMU (Brossard
et al., 2020a) estimates the covariance for automotive applications. Displacement-based methods like
IONet (Chen et al., 2018a), TLIO (Liu et al., 2020), RNIN-VIO (Chen et al., 2021a), and IDOL (Sun
et al., 2021) directly estimate 2D/3D displacement. Unlike TLIO which regresses a diagonal covari-
ance matrix, Russell & Reale (2021) estimates the full covariance matrix parameterized via Pearson
correlations. RNIN-VIO extends TLIO to continuous human motion adding a loss function for
long-term accuracy. Unlike these methods, EqNIO learns canonical displacement priors and thus
generalizes better to arbitrary IMU orientation and motion directions.

Equivariant Inertial Odometry: The previous learning-based approaches (Liu et al., 2020; Chen
et al., 2021a) use SO(2) augmentation strategies to achieve approximate SO(2) equivariance. Mo-
tionTransformer (Chen et al., 2019) used GAN-based RNN encoder to transfer IMU data into
domain-invariant space by separating the domain-related constant. Recently, RIO (Cao et al., 2022)
demonstrated the benefits of approximate SO(2) equivariance with an auxiliary loss, introduced
Adaptive Test Time Training (TTT), and uncertainty estimation via ensemble of models (See Ap-
pendix A.4 for more details). We propose integrating strict equivariance by design directly into the
framework. Additionally, no prior work has addressed reflection equivariance, which requires specific
preprocessing of gyroscope data for it to adhere to the right-hand rule. Our novel O(2) equivariant
framework can be seamlessly integrated with existing learning-based inertial navigation systems.

Equivariant Networks: Group equivariant networks (Cohen & Welling, 2016) commute by design
with group actions on the input, and have been tailored to a variety of inputs and architecture designs.
These include point clouds (Thomas et al., 2018; Chen et al., 2021b; Deng et al., 2021), 2D (Worrall
et al., 2017; Weiler & Cesa, 2019), 3D (Weiler et al., 2018; Esteves et al., 2019), and spherical
images (Cohen et al., 2018; Esteves et al., 2018; 2020; 2023), graphs (Satorras et al., 2021) and
general manifolds (Cohen et al., 2019b;a; Weiler et al., 2021; Xu et al., 2024). Yet, equivariant
networks tailored to IMU data and their symmetries have not been studied, and are introduced in
the current work. Our method draws on general theories and methods developed for equivariance
to E(n) its subgroups. Cesa et al. (2021); Xu et al. (2022) use Fourier analysis to design steerable
CNN kernels on homogeneous space, while Finzi et al. (2021) proposed an algorithm for finding a
kernel by solving a linear equivariant map constraint. Villar et al. (2021) demonstrated that any O(n)
equivariant function can be represented using a set of scalars and vectors. However, applying these to
the neural integration of IMUs is not straightforward as gravity’s presence introduces subequivariance,
angular velocity in the input data follows the right-hand rule, and the input is a sequence with a
time dimension. Related approaches (Han et al., 2022; Chen et al., 2023) tackle subequivariance
using equivariant graph networks and calculating gram matrices achieving simple O(2) equivariance.
However, dealing with data that obey the right-hand rule (e.g. angular rates), has been underexplored,
and is addressed in the current work. Canonicalization is a prevalent approach to equivariance. Kaba
et al. (2023) first introduced learned canonicalization functions for equivariant networks, which we
adopt in our design. We discuss additional works on equivariant canonicalization in Appendix A.1.
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Figure 2: EqNIO (a) processes gravity-aligned IMU measurements, {(ai, ωi)}ni=1. An equivariant
network (blue) predicts a canonical equivariant frame F into which IMU measurements are mapped,
i.e. canonicalized, yielding invariant inputs {(a′i, ω′

i)}ni=1. A conventional neural network then
predicts invariant displacement (d′) and covariance (Σ′) which are mapped back yielding equivariant
displacement (d) and covariance (Σ). The equivariant network (b) takes as input n × Cs

0 scalars,
and n × Cv

0 vectors: Vectors are processed by equivariant layers (Eq-L, Eq-Conv, Eq-LN), while
scalars are separately processed with conventional layers. Eq-L (green) uses two weights W1,W2 for
SO(2) equivariance, and only W1 for O(2) equivariance. Eq-Conv (pink) uses Eq-L to perform 1-D
convolutions over time. The equivariant non-linear layer (orange) mixes vector and scalar features.

3 PROBLEM SETUP

This paper targets neural inertial odometry using data from a single IMU, comprised of an accelerom-
eter (giving linear accelerations ai ∈ R3) and gyroscope (giving angular velocity ωi ∈ R3). IMU’s
measure sequences of data {(ai, ωi)}ni=1, each expressed in the local IMU body frame, b, at time ti.
These are related to the true IMU acceleration āi and angular rates ω̄i via

ω̃i = ω̄i + bgi + ηg
i ãi = āi − w

bRi
T g + bai + ηa

i (1)

where g is gravity pointing downward in world frame w, wbRi is the transformation between b and w
at time ti, and bgi , b

a
i and ηgi , η

a
i are IMU biases and noises respectively. Naively integrating angular

rates and accelerations to get positions pi and orientations w
bRi leads to significant drift due to sensor

noise and unknown biases. We thus turn our attention to neural displacement priors Φ, which regress
accurate 2D linear velocities (Herath et al., 2020) or 3D displacement d ∈ R3 and covariances
Σ ∈ R3×3 (Liu et al., 2020) from sequences of bias-corrected and gravity aligned IMU measurements

ωi =
g
bRi(ω̃i − bg) ai =

g
bRi(ãi − ba) (2)

where g
bRi aligns the z-axis with gravity, and is defined as g

bRi = Rγ
w
bRi with some unobservable

yaw rotation Rγ . The neural displacement prior has the form

d,Σ = Φ({(ai, ωi)}ni=1) (3)

where d ∈ R3 denotes displacement on the time interval [t1, tn], and Σ ∈ R3×3 denotes associated
covariance prediction. For instance, Liu et al. (2020), uses these network predictions as measurements
and fuses them in an EKF estimating the IMU state in w, i.e. orientation, position, velocity, and IMU
biases. Preliminaries on terms used in inertial odometry are included in App. A.2.2 and details of
EKF and IMU measurement model are included in App. A.6.

We simplify the learning of informative priors by suitably canonicalizing the IMU measurements
in two steps: First, we gravity-align IMU measurements by rotating them into the frame g

bR, such
that the z-axis of the IMU frame and world frame coincide. We use the EKF orientation state
from (Liu et al., 2020) to find the gravity direction (see App. A.6). Later we empirically show
the robustness of our method to noise originating from this estimation. In what follows we thus
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Figure 3: Symmetries in neural inertial odometry. (a) An IMU undergoes three trajectories in xy-
plane, each related to a reference (blue) via rotation (purple) and/or reflection (orange) around gravity
(parallel to the z-axis). At a fixed time, IMU measurements on different trajectories, expressed in the
corresponding local gravity-aligned frame (red-green) differ only by an unknown yaw roto-reflection
R3×3. Mapping these measurements to a canonical frame (yellow-red) that transforms equivariantly
under roto-reflections of the trajectory eliminates this ambiguity enhancing the sample efficiency of
downstream neural networks. (b) Expressed in alternative roto-reflected frames, acceleration, and
angular rates transform as a′ = R3×3a and ω′ = det(R3×3)R3×3ω. Angular rate must follow the
right-hand-rule, and thus be also inverted when reflected. To ensure a similar transformation rule as
a, we decompose ω = v1 × v2 and process v1, v2 instead, which transform as v′1/2 = R3×3v1/2

assume accelerations and angular rates to be expressed in the gravity-aligned frame and illustrate
these frames in Fig. 3 (a) for three rotated trajectories. Gravity alignment reduces data variability
by two degrees of freedom. However, this frame is not unique, since simply rotating it around
z or reflecting it across planes parallel to z (applications of rotations or roto-reflections from the
groups SOg(3) = {R ∈ SO(3)|Rg = g} and Og(3) = {R ∈ O(3)|Rg = g}) result in new valid
gravity-aligned frames. Hence, secondly, we predict a canonical frame and map the IMU data into
this frame, which we later show to be subequivariant to roto-reflections. In what follows we will
restrict our discussion to the Og(3) case but note that, where not explicitly stated, this discussion
carries over to SOg(3) as well. Next, we will introduce our canonicalization procedure to ensure
better network generalization.

4 METHODOLOGY
Our goal is to predict a canonical yaw frame F = Ψ({(ai, ωi)}ni=1) ∈ Og(3) from data, which
generalizes across arbitrary yaw orientations. We use this frame to map IMU data into a canonical
frame before giving as input to the NN, and mapping the outputs back, (see Fig. 2 (a)),i.e.

d′,Σ′ = Φ({(a′
i, ω

′
i)}ni=1) with a′

i = ρa(F
−1)ai and ω′

i = ρω(F
−1)ωi, (4)

where a′, ω′ are expressed in the canonical frame. Finally, we map d′,Σ′ back to the original frame
via d = ρd(F )d′ and vec(Σ) = ρΣ(F )vec(Σ′). Here vec(.) stacks the columns of Σ into a single
vector, and ρ is a homomorphism that maps group elements F to corresponding matrices, called
matrix representations. These capture the transformation of a, ω, d and Σ under the action of F .

While ρa(F ) = ρd(F ) = F3×3, with F3×3 ∈ R3×3 being the rotation matrix corresponding to
element F , covariances transform as ρΣ(F ) = F3×3 ⊗ F3×3, where ⊗ is the Kronecker product.
Unfortunately, reflections (det(F3×3) = −1) induce a reflection and inversion of angular rates to
preserve the right-hand-rule (see Fig. 3 b), i.e. ρω(F ) = det(F3×3)F3×3, and for reflections. As
discussed later ρω(F ) ̸= ρa(F ) hinders joint processing of accelerations and angular rates. Next, we
will discuss the design of Ψ which ensures generalization across arbitrary yaw rotations.

4.1 EQUIVARIANT FRAME
Here we derive a property of the frame network Ψ such that it can generalize to arbitrary roto-
reflections of the IMU body frame. To generalize, canonical IMU measurement inputs a′i, ω

′
i to the

network must look identical under arbitrary roto-reflections R ∈ Og(3). Let ai, ωi, and a∗i , ω
∗
i denote

quantities before and after application of R. Then a∗i = ρa(R)ai and ω∗
i = ρω(R)ωi. Enforcing

identical inputs under both rotations, i.e. a∗′i = a′i we have

a∗′
i = ρa(F

∗−1
)a∗

i ω∗′
i = ρω(F

∗−1
)ω∗

i (5)

We see that choosing F ∗ = RF , i.e. that F transforms equivariantly leads to

a∗′
i = ρa(F

∗−1
)a∗

i = ρa(F
−1R−1)ρa(R)ai = ρa(F

−1R−1R)ai = a∗
i (6)
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where we have used the fact that ρa is a homomorphism. This shows the invariance of a′i and a
similar proof can be done for ω′

i. This equality puts a constraint on the NN that estimates F , namely

RF = Ψ({(ρa(R)ai, ρω(R)ωi)}ni=1) (7)

i.e. Ψ must be a function that is equivariant with respect to group actions by elements from Og(3).
Since this is a subgroup of O(3) we also say that Ψ must be subequivariant with respect to O(3).

In addition, this equivariance property of Ψ induces end-to-end equivariance to predicted displace-
ments d = ρd(F )d′ and covariances vec(Σ) = ρΣ(F )vec(Σ′). This is because

d∗ = ρd(F
∗)d∗

′
= ρd(RF )d′ = ρd(R)ρd(F )d′ = ρd(R)d (8)

vec(Σ∗) = ρΣ(F
∗)vec(Σ′∗) = ρΣ(RF )vec(Σ′) = ρΣ(R)ρΣ(F )vec(Σ′) = ρΣ(R)vec(Σ) (9)

using, again, the homomorphism of ρ and the fact that d′, vec(Σ′) are, by construction of equation 6,
invariant to rotations by R.

Diagonal Covariance: We show empirically in Sec. 6 that the diagonal parameterization of
Σ′ aids in stabilization and convergence of the network. Therefore, we assume the displacement
uncertainties Σd,xz = Σd,yz = 0 and without loss in generality choose Σ′ = diag(e2ux , e2uy , e2uz ),
where ux, uy, uz are learnable, as in TLIO (Liu et al., 2020). Since our network predicts vec(Σ) =
ρΣ(F )vec(Σ′), where both Σ′ and F are learned, the resulting covariance is Σ = FΣ′FT (in matrix
format). Via the transformation F we can learn arbitrarily rotated Σ in the xy-plane. We posit
that this forces the frame network Ψ to learn F that aligns with the principle axes of the statistical
uncertainty in displacement Σd. See App. A.2.3 for details on covariance parameterizations. Writing
the singular value decomposition (SVD) we see that Σd = Udiag(Σxx,Σyy,Σzz)U

T . By inspection,
this uncertainty is matched when F aligns with principle directions U and Σ′ aligns with the true
uncertainties in those directions.

In the next section, let us now discuss the specific issue that arises when designing an equivariant
frame network to process both ai and ωi, and the specific preprocessing step to remedy it.

4.2 DECOMPOSITION OF ANGULAR RATES
As previously discussed a and ω transform under different representations ρa ̸= ρω. This hinders
joint feature learning since this would entail forming linear combinations of a and ω, and these linear
combinations will not transform under ρa or ρω. We propose a preprocessing step that decomposes
ωi into perpendicular vectors v1,i, v2,i via a bijection F : R3 → R3 × R3:

F(ω) = (v1, v2) =

(√
∥ω∥ w1

∥w1∥
,
√

∥ω∥ w2

∥w2∥

)
F−1(v1, v2) = ω = v1 × v2 (10)

We define w1 = [−ωy ωx 0]
T and w2 = ω × w1. If ωx = ωy = 0, we use w1 = a× ω and if both

ωx = ωy = 0 and a× ω = 0, we use w1 = ω × [1 0 0]T .

Fig. 3 (b) shows that v1 and v2 transform with representation ρv1(F ) = ρv2(F ) = F3×3. Let variables
with ∗ denote transformed vectors according to rotation R. Their cross product has the desirable
property ω∗ = v∗1×v∗2 = (R3×3v1)×(R3×3v2) = det(R3×3)R3×3(v1×v2) = det(R3×3)R3×3ω =
ρω(R)ω, using the standard cross-product property (Ax)× (Ay) = det(A)A(x× y), and recalling
that R3×3 is the matrix representation of R. The group action on ω exactly coincides with what was
derived in Sec. 3. We only use this decomposition when with Og(3), where we process a, v1, v2 in a
unified way. For SOg(3), we process a, ω which transform similarly since det(R3×3) = 1.

4.3 TRANSITION TO O(2) EQUIVARIANCE AND BASIC NETWORK LAYERS

Expressed in the gravity-aligned frame, representations R3×3 of R ∈ Og leave the z-axis unchanged,
and can thus be decomposed into R3×3 = R2×2 ⊕ 1, where the direct sum ⊕ constructs a block-
diagonal matrix of its arguments. This decomposition motivates the decomposition ai = ai,xy ⊕ ai,z
and v1/2,i = v1/2,i,xy ⊕ v1/2,i,z , where ⊕ concatenates the xy-coordinates of each vector which
transform with representation R2×2 and its z component which transforms with representation 1, i.e.
z is invariant. This means that the xy-components transform according to representations of group
O(2) and implies that O(2) ∼= Og(3). Inspired by Villar et al. (2021), we design our frame network
to learn universally O(2) equivariant outputs from invariant features alongside 2D vector features.

We convert the sequence of n IMU measurements into n × Cs
0 rotation invariant scalar features

and n × 2 × Cv
0 vector features. As vector features we select the xy-components of each input
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vector (Cv
0 = 2 for SO(2) corresponding with ai,xy, ωi,xy and Cv

0 = 3 for O(2) corresponding with
ai,xy, v1,i,xy, v2,i,xy). Instead, as scalar features we select (i) the z-components of each vector, (ii) the
norm of the xy-components of each vector, and (iii) the pairwise dot-product of the xy-components
of each vector. For SO(2) we have Cs

0 = 2+2+1 = 5, while for O(2) we have Cs
0 = 3+3+3 = 9.

We process scalar features with MLPs and standard 1-D convolutions, vector features with specific
linear and convolution layers, and combine both with specialized non-linear layers.

Equivariant Linear Layer Following Villar et al. (2021), we design a 2D version of vector
neuron (Deng et al., 2021) to process the vector features, enhancing efficiency. Following Finzi et al.
(2021), we consider learnable linear mappings vout = Wvin, with input and output vector features
vin, vout ∈ R2 and seek a basis of weights W ∈ R2×2, which satisfy R2×2Wv = WR2×2v, i.e.,
equivariantly transform vector features v ∈ R2. This relation yields the constraint

(R2×2 ⊗R2×2)vec(W ) = vec(W ), (11)

Solving the above equation amounts to finding the eigenspace of the left-most matrix with eigenvalue
1. Such analysis for R2×2 ∈ SO(2) yields WSO(2) = w1I2×2 + w2R90, where R90 denotes a
90 degree counter-clockwise rotation in 2D, and w1, w2 ∈ R are learnable weights. Similarly, for
O(2) we find WO(2) = w1I2×2. Vectorizing this linear mapping to multiple input and output vector
features we have the following SO(2) and O(2) equivariant linear layers:

SO(2) : vout = vinW1 +R90v
inW2 O(2) : vout = vinW1 (12)

with vin ∈ R2×Cin , vout ∈ R2×Cout and W1,W2 ∈ RCin×Cout . Note that the SO(2) layer has twice as
many parameters as the O(2) layer. We stack the above linear components into a kernel to design
equivariant 1-D convolution layers. Since the IMU data forms a time sequence, we implement
convolutions across time. We visualize our Linear and Convolutional Layers in Fig. 2.

Nonlinear Layer Previous works (Weiler et al., 2018; Weiler & Cesa, 2019) propose various
nonlinearities such as norm-nonlinearity, tensor-product nonlinearity, and gated nonlinearity for
SO(3) and O(2) equivariance in an equivariant convolutional way; while Deng et al. (2021) applies
per-point nonlinearity for vector features only. Since we already apply convolutions over time we
simply apply a non-linearity pointwise. Unlike Deng et al. (2021), we need to mix scalar and
vector features and thus adapt the gated nonlinearity (Weiler et al., 2018) to pointwise nonlinearity.
Specifically, for n vector and scalar features vin ∈ Rn×2×C , sin ∈ Rn×C , we concatenate the norm
features ∥vin∥ ∈ Rn×C with sin. We run a single MLP with an output of size n × 2C, and split
it into new norm features γ ∈ Rn×C and new activations β ∈ Rn×C which we modulate with a
non-linearity sout = σ(β). Finally, we rescale the original vector features according to the new norm:

γ, β = mlp(∥vin∥ ⊕c s
in) vout = γvin sout = σ(β) (13)

where ⊕c concatenates along the feature dimension. See Fig. 2b for more details.

5 EXPERIMENTS

We apply our framework to two types of neural inertial navigation systems: (i) an end-to-end
deep learning approach (RONIN), and (ii) a filter-based approach with a learned prior (TLIO).
Both networks process IMU samples in a gravity-aligned frame without gravity compensation,
i.e., removing the gravity vector from the accelerometer reading. While RONIN regresses only a
2D velocity, TLIO estimates the orientation, position, velocity, and IMU biases using an EKF in
3D, which propagates states using raw IMU measurements and applies measurement updates with
predicted displacement and uncertainty from a NN. Sec. 6 presents extensive ablations.

Datasets: Our TLIO variant is trained on the TLIO Dataset (Liu et al., 2020) and tested on TLIO
and Aria Everyday Activities (Aria) Datasets (Lv et al., 2024). Our RONIN variant is trained on
RONIN Dataset (Herath et al., 2020). We train on the 50% open-sourced data. We test our RONIN
variant on three popular pedestrian datasets RONIN (Herath et al., 2020), RIDI (Yan et al., 2018) and
OxIOD (Chen et al., 2018b), which specifically target 2D trajectory tracking. RONIN-U (Unseen)
contains IMU measurements from people who did not participate in the training and validation data
collection. The people used to record RONIN-S (Seen) overlap with those from the training and
validation set, but their data is disjoint from these sets. See App.A.3 for more dataset details, and
App.A.5 and Fig. 2 for more details and visualizations of the equivariant network.

Baselines: We compare EqNIO with TLIO with yaw augmentation (Liu et al., 2020), on the 3D
benchmarks, and RONIN and RIO (Cao et al., 2022) on the 2D benchmarks. We also report the naive
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TLIO Dataset Aria Dataset

Model MSE* ATE ATE* RTE RTE* AYE MSE* ATE ATE* RTE RTE* AYE
(10−2m2) (m) (m) (m) (m) (deg) (10−2m2) (m) (m) (m) (m) (deg)

TLIO 3.333 1.722 3.079 0.521 0.542 2.366 15.248 1.969 4.560 0.834 0.977 2.309
+ rot. aug. 3.242 1.812 3.722 0.500 0.551 2.376 5.322 1.285 2.103 0.464 0.521 2.073
+ SO(2) Eq. Frame 3.194 1.480 2.401 0.490 0.501 2.428 2.457 1.178 1.864 0.449 0.484 2.084
+ O(2) Eq. Frame 2.982 1.433 2.382 0.458 0.479 2.389 2.304 1.118 1.850 0.416 0.465 2.059

Table 1: Trajectory errors, lower being better. + rot. aug. is trained with yaw augmentations. Lowest,
and second lowest values are marked in red and orange. * no EKF.
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Figure 4: Trajectory errors for EqNIO applied to TLIO compared to vanilla TLIO trained with and
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EqNIO (Red). Left and right have high, and the middle has medium difficulty.

IMU double integration (NDI) from Herath et al. (2020), and RONIN results trained on 100% of the
RONIN training dataset. All other methods use only the public 50% of this dataset. RIO extends
RONIN with two features: Joint optimization of an MSE loss on velocity predictions and cosine
similarities with an equivariance constraint modeled using an auxiliary loss (+J) and an Adaptive
Test-Time-Training strategy (+TTT ). Finally, +J + TTT combines both.

Metrics: The NN performance (indicated with ∗) is reported in terms of Mean Squared Error (MSE)
in 10−2m2, Absolute Translation Error (ATE) in m, and Relative Translation Error (RTE) in m, on
the cumulative sum of the displacements predicted by the network as done in prior work. For TLIO,
we also report the ATE in m, RTE in m, and Absolute Yaw Error (AYE) in degrees when running the
EKF. See App. A.7 for more metric details. In what follows, we abbreviate EqNIO with +Eq. Frame.

5.1 RESULTS USING THE TLIO ARCHITECTURE

Tab. 1 compares baseline TLIO, trained with yaw augmentations as in (Liu et al., 2020) (+ rot.aug.),
TLIO without augmentation (termed TLIO), and our two methods applied to TLIO without yaw
augmentations (termed +SO(2) and +O(2) Eq. Frame). As seen in Tab. 1, +O(2) Eq. Frame
outperforms TLIO on metrics that ignore the EKF (with *) by a large margin of 57%, 12%, and
11% on MSE*, ATE*, and RTE* respectively. The +SO(2) Eq. Frame model follows closely with
54%, 11%, and 7% respectively on the Aria Dataset. The performance of our methods is consistent
across TLIO and Aria Datasets illustrating our generalization ability. Tab. 1 and Fig. 4 show our
method surpasses the baseline on most metrics while remaining comparable in AYE. The superior
performance of our model as compared to baseline TLIO when the NN is combined with EKF
(i.e., performance on ATE, RTE, and AYE metrics) is attributed to its generalization ability when
the orientation estimate is not very accurate as well as the equivariant covariance predicted by the
network. See Fig. 5 and App. A.8 for trajectory plots from the TLIO test dataset.

5.2 RESULTS USING THE RONIN ARCHITECTURE

On the RONIN dataset, we compare against RONIN and RIO† (indicated with +J, +TTT, and
+J+TTT). RIO does not provide results for the RONIN Seen Dataset (RONIN-S) or RIDI Cross
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RONIN-U RONIN-S RIDI-T RIDI-C OxIOD

Model ATE* RTE* ATE* RTE* ATE* RTE* ATE* RTE* ATE* RTE*
(RONIN) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)

+ 100% data 5.14 4.37 3.54 2.67 1.63 1.91 1.67 1.62 3.46 4.39
+ 50% data † 5.57 4.38 - - 1.19 1.75 - - 3.52 4.42
+ 50% data + J † 5.02 4.23 - - 1.13 1.65 - - 3.59 4.43
+ 50% data + TTT † 5.05 4.14 - - 1.04 1.53 - - 2.92 3.67
+ 50% data + J +TTT † 5.07 4.17 - - 1.03 1.51 - - 2.96 3.74
+ 50% data + SO(2) Eq. Frame 5.18 4.35 3.67 2.72 0.86 1.59 0.63 1.39 1.22 2.39
+ 50% data + O(2) Eq. Frame 4.42 3.95 3.32 2.66 0.82 1.52 0.70 1.41 1.28 2.10
Naive Double Integration (NDI) 458.06 117.06 675.21 1.6948 31.06 37.53 32.01 38.04 1941.41 848.55

Table 2: Trajectory errors with the RONIN architecture (lower is better), on the RONIN Unseen (-U),
Seen (-S) (people used to record the test dataset are the same as train and validation), RIDI Test
(-T), Cross Subject (-C), and the Oxford Inertial Odometry Datasets (OxIOD). Red (lowest), orange
(second lowest). † results from Cao et al. (2022). * indicates no-EKF.

TLIO Dataset Aria Dataset

Model MSE* ATE ATE* RTE RTE* AYE MSE* ATE ATE* RTE RTE* AYE
(10−2m2) (m) (m) (m) (m) (deg) (10−2m2) (m) (m) (m) (m) (deg)

TLIO 3.333 1.722 3.079 0.521 0.542 2.366 15.248 1.969 4.560 0.834 0.977 2.309
+ rot. aug. 3.242 1.812 3.722 0.500 0.551 2.376 5.322 1.285 2.102 0.464 0.521 2.073
+ rot. aug. + more layers 3.047 1.613 2.766 0.524 0.519 2.397 2.403 1.189 2.541 0.472 0.540 2.081
+ rot. aug. + Non Eq. Frame 3.008 1.429 2.443 0.495 0.496 2.411 2.437 1.213 2.071 0.458 0.508 2.096
+ rot. aug. + PCA Frame 3.473 1.506 2.709 0.523 0.535 2.459 6.558 1.717 4.635 0.771 0.976 2.232
+ SO(2) Eq. Frame + S 3.331 1.626 2.796 0.524 0.536 2.440 2.591 1.146 2.067 0.466 0.517 2.089
+ SO(2) Eq. Frame + P 3.298 1.842 2.652 0.588 0.523 2.537 2.635 1.592 2.303 0.585 0.539 2.232
+ SO(2) Eq. Frame 3.194 1.480 2.401 0.490 0.501 2.428 2.457 1.178 1.864 0.449 0.484 2.084
+ O(2) Eq. Frame + S 3.061 1.484 2.474 0.462 0.481 2.390 2.421 1.175 1.804 0.421 0.458 2.043
+ O(2) Eq. Frame + P 2.990 1.827 2.316 0.578 0.478 2.534 2.373 1.755 1.859 0.564 0.468 2.223
+ O(2) Eq. Frame 2.982 1.433 2.382 0.458 0.479 2.389 2.304 1.118 1.849 0.416 0.465 2.059
Eq CNN 3.194 1.580 3.385 0.564 0.610 2.394 8.946 3.223 6.916 1.091 1.251 2.299

Table 3: Ablations with the TLIO architecture, lower is better. We test non-equivariant (+Non Eq.
Frame), PCA-based (+PCA Frame), SO(2) equivariant (+SO(2) Eq. Frame), and O(2) equivariant
(+O(2) Eq. Frame) frames, and yaw augmentation (+ rot. aug.). We also test xy-isotropic (+S) and
Pearson-based (+P) covariance parameterizations. Eq CNN is a fully equivariant CNN. Red (lowest),
orange (second lowest), and yellow (third lowest). * indicates no-EKF.

Subject Dataset (RIDI-C). As the RONIN base model does not use an EKF, we only report metrics
with ∗. As Seen in Tab. 2, our methods significantly outperform the original RONIN by a large
margin of 14% and 9% on ATE* and RTE* respectively even on the RONIN-U dataset. Our methods
have better generalization as seen on RIDI-T and OxIOD, outperforming even +J+TTT† by a margin
of 56% and 43% on ATE* and RTE* respectively on OxIOD Dataset. The +O(2) Eq. Frame model
converges at 38 epochs compared to over 100 in RONIN implying faster network convergence with
our framework as compared to data augmentation. This demonstrates superior generalization of our
strictly equivariant architecture. RIO’s approach, involving multiple data rotations, test optimization,
and deep ensemble at test time, would result in higher computational and memory costs as compared
to our method. Finally, the comparison with NDI highlights the need for a neural displacement prior.

6 ABLATION STUDY

Here, we show the necessity of incorporating equivariance in inertial odometry, the choice of
equivariant architecture, and covariance parameterization. We present all the ablations using the
TLIO base model in Tab. 3, both with and without integrating the EKF. App. A.9 further contains
the performance of all models above on a test dataset which is augmented with rotations and/or
reflections. App. A.12, A.13, A.15, A.14 present sensitivity studies on the input sequence length,
estimated gravity direction, IMU biases and IMU sampling rate.

Baseline Ablation: Is yaw augmentation needed when the input is in a local gravity-aligned
frame? We trained TLIO both with and without yaw augmentation using identical hyperparameters
and the results in Tab. 3 (rows 1 and 2) reveal that augmentation enhances the network’s generalization,
improving all metrics for the Aria dataset with the lowest margin of 10% on AYE and highest margin
of 65% for MSE*. This underscores the importance of equivariance for network generalization.
Does a Deeper TLIO with a comparable number of parameters match the performance of
equivariant methods? We enhanced the residual depth of the original TLIO architecture from 4
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Figure 6: Trajectories and frame basis vectors (red/blue) on the Aria Dataset.

residual blocks of depth 2 each to depth 3 each (row 3) to match the number of parameters with
our +SO(2) Eq. Frame model (row 8). Despite having fewer parameters due to the removal of the
orthogonal basis in SO(2) vector neuron-based architecture, +O(2) Eq. Frame model (row 11) still
outperformed the deeper TLIO. The data from Tab. 3 show that merely increasing the network’s size,
without integrating true equivariance, is insufficient for achieving precise inertial odometry.

Frame Ablation: Can a non-equivariant MLP predict meaningful frames? We trained TLIO
with yaw augmentation and identical hyperparameters alongside an additional MLP mirroring the
architecture of our method to predict a frame and term this baseline +Non Eq. Frame (row 4). We
observed that +Non Eq. Frame tends to overfit to the TLIO dataset, and thus produce worse results
on the Aria dataset. The predicted frames also poorly correlate with the underlying trajectory, as
illustrated in Fig. 6. Can frames predicted using PCA (handcrafted equivariant frame) achieve
the same performance? Using PCA to generate frames leads to underperformance on the Aria
dataset, and worse results than the original TLIO which is likely due to PCA’s noise sensitivity as
shown in Fig. 6. Additionally, PCA cannot distinguish between SO(2) and O(2) transformations.
Fig. 6 also shows that O(2) does not have frames as smooth as SO(2) as the reflected bends have
reflected frames. See App. A.16 for an additional ablation using frame-averaging for canonicalization.

Architecture Ablation: Are fully equivariant architectures better ? We trained a fully equivariant
1-D CNN using the layers in Sec. 4.3. Tab. 3 (row 12) shows our frame-based methods outperforming
the equivariant CNNs, likely by leveraging the power of scalars and conventional backbones. We
believe the fully equivariant architecture is overly restrictive, while also requiring a full network
redesign. By contrast, our method can flexibly integrate existing state-of-the-art displacement priors.

Covariance Ablation: Do we need equivariant covariance? We investigated the importance of
equivariant covariance for both SO(2) and O(2) groups, as described in Sec. 4.1(See App. A.2.3 for
covariance parameterizations). In Tab. 3, the models +S (rows 6 and 9) are trained with invariant
covariance parameterized as Σ = diag(e2ux , e2uy , e2uz ), that is unaffected by application of F . The
results show that the equivariant covariance yields better performance, especially when combined
with EKF, as it provides a more accurate estimate of the prediction covariance. Can a full covariance
matrix with Pearson parameterization improve performance? In Tab. 3, our model outperforms
+P (rows 7 and 10) in most cases indicating that by aligning the principal covariance axis into the basis
of the equivariant frame, we intrinsically force covariance in the equivariant frame to be diagonal,
which reduces ambiguity while training. Diagonal covariances improve convergence stability during
optimization as stated in Liu et al. (2020). App. A.11 visualizes the covariance consistency of EqNIO
and we conduct an analysis on the covariance parameterization in App. A.17.

7 CONCLUSION

We introduce a robust and generalizable neural displacement prior that combats drift in IMU-only
neural inertial odometry via equivariant canonicalization. Our canonicalization scheme is generally
applicable and eliminates the underlying yaw ambiguity in gravity-aligned frames which arise from
roto-reflections in the plane around gravity. We fully characterize actions from this group on all
relevant inputs and outputs of the prior and leverage this insight to design a network that produces
learned frames that are Og(3) equivariant to these actions. By reducing the data variability seen
by neural networks these frames boost the generalization of existing networks and enforce exact
equivariance, unlike existing strategies that use data augmentation or equivariant consistency losses to
enforce approximate equivariance. We demonstrate the generality of our framework through extensive
validation on various datasets and applications to two base architectures (TLIO and RONIN). We
believe this work paves the way for robust, and low-drift odometry running on edge devices.
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