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ABSTRACT

Large Language Models (LLMs) have achieved impressive performance on
reasoning-intensive tasks, yet optimizing their reasoning efficiency remains an
open challenge. While Test-Time Scaling (TTS) improves reasoning quality, it
often leads to overthinking—wasting tokens on redundant computations. This
work investigates how to efficiently and adaptively guide LLM TTS without ad-
ditional training. Inspired by the concept of momentum in physics, we propose
Momentum Uncertainty-guided Reasoning (MUR ), which dynamically allocates
thinking budgets to critical reasoning steps by tracking and aggregating step-wise
uncertainty over time. To support flexible inference-time control, we introduce
γ-control, a simple mechanism that tunes the reasoning budget via a single hyper-
parameter. We provide theoretical intuition to support the superiority of MUR as
a low-pass filter. MUR is comprehensively evaluated against various TTS meth-
ods across four challenging benchmarks (MATH-500, AIME24, AIME25, and
GPQA-diamond) using different sizes of recent Qwen3 models (1.7B, 4B, and
8B). Results demonstrate that MUR reduces computation by over 45% on aver-
age while improving accuracy by 0.33–3.46%.

1 INTRODUCTION
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Figure 1: Comparisons between average accuracy
and token usage. Per-Step Scale refers to test-time
scaling methods that optimize every step without
compute-saving mechanisms. MUR is a compu-
tationally efficient approach that selectively scales
only key steps. The percentage in this figure is cal-
culated based on CoT budget without TTS.

Large Language Models (LLMs) (Brown et al.,
2020; Grattafiori et al., 2024) demonstrate re-
markable performance in reasoning-intensive
scenarios, including logic, mathematics, and
game-playing tasks. A critical advancement
in optimizing their reasoning quality is Test-
Time Scaling (TTS). Existing methods either
incentivize long thinking patterns through re-
inforcement learning with verifiable rewards
(RLVR) (Ye et al., 2025; Jaech et al., 2024;
Guo et al., 2025), or employ stepwise optimiza-
tion via parallel sampling (Yao et al., 2023;
Lightman et al., 2023; Wang et al., 2024b; Ma
et al., 2024; Xu et al., 2025) and sequential cri-
tique (Lan et al., 2024; Li et al., 2025).

While effective, the issue of overthinking (Chen
et al., 2024b; Sui et al., 2025) is widely ob-
served that degrades the inference efficiency.
As shown in Figure 1, the performance can
even be slightly improved, despite >45% reduction in thinking tokens against Per-Step Scale. This
demonstrates that there is significant room for improvement in making long thinking concise.

Intuitively, LLMs should spend more token budgets on complex steps to deliberately enhance output
quality, while generating simple steps directly to avoid overthinking. However, it still remains chal-
lenging to identify key steps and dynamically allocate computes. Recent works (Xia et al., 2025a;
Jiang et al., 2025; Yang et al., 2025d; Yu et al., 2025; Yang et al., 2025c) explore training methods to
adaptively allocate token usage on different steps, which introduce additional training costs and lack
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generalization. Off-the-shelf training-free methods (Kim et al., 2025; Xu et al., 2025; Wang et al.,
2025) scale thinking tokens in a fixed manner, failing to adapt to problem complexity or on-going
reasoning process.

Therefore, the pursuit of efficiently and adaptively guiding LLM test-time scaling without extra-
training is both intriguing and understudied. To answer this question, we are the first to model
LLM reasoning with the concept of momentum. In physics, momentum accumulates historical in-
formation over time and resists sudden changes. Based on this and the successful application of
Gradient Descent with Momentum (Qian, 1999), we propose Momentum Uncertainty guided Rea-
soning (MUR ), a novel approach that dynamically evaluates the overall uncertainty of a reasoning
path by aggregating historical step-level uncertainties, mirroring the smooth and consistent evo-
lution observed in physical dynamics. Without requiring any training, MUR selectively allocates
computation only to critical steps during inference. Based on the approach, we introduce the con-
cept of γ-control, where we can flexibly control the thinking budget and the performance, with only
one hyperparameter γ. Further, this work proves that MUR is theoretically grounded in terms of
discounted credit assignment and stability while maintaining compatibility with existing TTS meth-
ods. Extensive experiments across four challenging benchmarks and three backbone model sizes
demonstrate that MUR reduces the thinking budget by over 45% on average while even improving
accuracy by 0.33–3.46%.

The key contributions include:

(1) Adaptive Scaling Technique. We propose the novel concept of momentum uncertainty and
offer a training-free solution MUR to dynamically allocate thinking budgets to key reasoning steps
guided by momentum uncertainty, which is compatible with various TTS methods.

(2) Efficiency and Performance Gains: MUR reduces the thinking costs by 45% even with obvious
performance gains, across a wide range of benchmarks and model sizes. The proposed γ-control
offers flexible solution to balance performance and efficiency.

(3) Theoretical Support: MUR is theoretically grounded in terms of discounted credit assignment,
stability, and convergence, which support its practical superiority.

2 RELATED WORK

2.1 TEST-TIME SCALING

Test-Time scaling (TTS) methods allocate additional token usage during inference, revealing a scal-
ing law (Brown et al., 2024; Wu et al., 2024) that more computes lead to better performance.
Training-based methods elicit long thinking patterns through reinforcement learning with verifiable
rewards (RLVR) (Ye et al., 2025; Jaech et al., 2024; Guo et al., 2025). Training-free methods can be
categorized into parallel scaling and sequential scaling. Parallel scaling (Yao et al., 2023; Ma et al.,
2024; Xu et al., 2025) samples several answers for the same input, followed by selecting the best one.
Sequential scaling (Lan et al., 2024; Li et al., 2025) utilizes feedback from self-evaluation or external
models to optimize current answer. Although these researches show remarkable achievements, they
allocate unnecessary computes for simple steps. Our work MUR , as an orthogonal method to these
researches, optimizing these methods by guiding them to scale only key steps, reducing unnecessary
computes largely.

2.2 OVERTHINKING

Although LLMs demonstrate significant performance gains through test-time scaling methods, they
are likely to introduce computational overhead and reasoning latency (Chen et al., 2024b; Sui et al.,
2025). One line of mitigating overthinking is to shorten reasoning length through post-training (Xia
et al., 2025a; Jiang et al., 2025; Yang et al., 2025d; Yu et al., 2025; Yang et al., 2025c), which intro-
duces training overhead and limits their generalization. Another line is training-free methods (Kim
et al., 2025; Xu et al., 2025; Wang et al., 2025), reducing token usage in a fixed manner, which
lacks adaptation to on-going reasoning process. Our work MUR , without training, adaptively saves
unnecessary computes during the whole reasoning process.
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2.3 UNCERTAINTY ESTIMATION

The reasoning path of LLM often contains reliability issues, like hallucinations or biased re-
sponses (Xia et al., 2025b). One line of uncertainty estimation is scaling more computes, including
verbalizing methods (Tian et al., 2023; Tanneru et al., 2024), consistency-based methods (Hou et al.,
2024; Chen & Mueller, 2024; Gao et al., 2024), and semantic clustering methods (Kuhn et al., 2023;
Farquhar et al., 2024; Nikitin et al., 2024). Another line of uncertainty estimation is utilizing the
internal information during decoding (Ahdritz et al., 2024; Chen et al., 2024a; Sriramanan et al.,
2024), which estimates the uncertainty of generated path through aggregating token-level probabil-
ities, lacking the adaptation to different reasoning steps. Our method MUR , assigns more attention
to recent steps, while reducing the impact of early steps.

3 METHOD

In this section, we first formulate the stepwise test-time scaling, adaptive scaling and step-level
uncertainty (Sec. 3.1). Then we formally propose momentum uncertainty, followed by theoretical
proof of its superiority (Sec. 3.2). Based on the momentum uncertainty, we introduce γ-control
mechanism to flexibly scale inference-time scaling (Sec. 3.3). The overview of MUR is presented
in Figure 2.

Q Step 1 Step 2

(c) Momentum Uncertainty guided Reasoning

Step 3 Step 4

Q Step 1 Step 2 Step 3 Step 4

Q Step 1 Step 2 Step 3 Step 4

Scale

(a) Vanilla CoT

(b) Per-Step Scale
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Momentum Uncertainty
Update Update Update UpdateTrigger

Normal
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Step

Step
Uncertainty
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Uncertainty

Figure 2: Comparison of reasoning methods. (a) Vanilla CoT: Standard stepwise reasoning without
test-time scaling. (b) Per-Step Scale: scales computes per reasoning step. (c) MUR : Adaptive test-
time scaling framework (ours).

3.1 PRELIMINARY

Stepwise test-time scaling LLM reasoning can be formulated as auto-regressively generating step
at at each timestamp t, based on the inputs and previous steps:

at ∼ pθ(·|x,a<t), (1)

where x is the concatenation of input question and instruction. a<t represents previous steps . θ
denotes the parameters of pre-trained LLM, and pθ is the probability distribution.

To optimize the quality of the reasoning path, current methods apply test-time scaling at each step,
which can be formulated as follows:

ât ∼ Q(·|x,a<t), (2)

where ât is the optimized step. Q denotes the specific test-time scaling method, such as Best-of-
N (Brown et al., 2024).

Adaptive Scaling Conventional test-time scaling methods typically apply optimization at every
decoding step, leading to excessive token usage and computational overhead. However, not all steps
require such enhancement, and current research on adaptive compute allocation remains limited,
often overlooking this inefficiency. We therefore pose the central question: When should compute
be scaled during inference? To address this, we model this research question with a binary detector
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D that selectively activates test-time scaling based on contextual reasoning dynamics:

ât =

{
Q(·|x,a<t) , D(t) = True

at , D(t) = False
. (3)

Here, D determines whether to invoke a test-time scaling method at each step based on historical
information. Our work focuses exclusively on designing the detector D to assess the reasoning
trajectory and adaptively decide whether to allocate additional compute to the current step at.

Step-level Uncertainty Uncertainty estimation quantifies an LLM’s confidence in its output,
where higher uncertainty implies lower confidence. For step at consisting of N tokens, we com-
pute the step-level uncertainty based on token-wise probabilities. Specifically, we define the average
negative log-likelihood of the tokens as:

mt =
1

N

N∑
j=1

−logpθ(a
(j)
t |x,a<t, a

(<j)
t ), (4)

where mt is the uncertainty of step t. a
(j)
t is j-th token of step at. And a

(<j)
t denotes the prefix

token sequence a
(1)
t , a

(2)
t , ..., a

(j−1)
t .

3.2 MOMENTUM UNCERTAINTY

LLM can maintain an uncertainty estimation M for the reasoning process, reflecting the global
assessment of both input x and generated steps a≤t. Ideally, this uncertainty should evolve smoothly,
adapting to new steps as they are generated, while preserving a calibrated estimate of earlier steps.
Inspired by the concept of momentum in physics, which retains and updates an object’s motion
by accumulating past forces while resisting abrupt changes. We propose momentum uncertainty, a
recursive formulation of M that dynamically tracks overall uncertainty during reasoning:

Mt = αMt−1 + (1− α)mt, (5)

where Mt is the momentum uncertainty at timestamp t, with initial value M0 = 0. And α ∈ (0, 1)
is a hyper-parameter controlling the momentum changing.

With a recursive definition, momentum uncertainty aggregates all generated step-level uncertainties
to represent the overall estimation of the reasoning process. Further, we introduce the excellent
property of momentum uncertainty with theoretical and experimental analysis.

Proposition 1: Momentum uncertainty is an exponentially weighted sum of step-level uncertain-
ties, emphasizing recent steps and fading earlier ones.

Proof. We provide a detailed derivation in Appendix A.1. It transforms Equation 5 into the expo-
nential weighting of step-level uncertainties as follows:

Mt = (1− α)

t∑
i=1

αt−imi. (6)

Through Equation 6, Mt assigns different weights αt−i to historical step-level uncertainty mi, em-
phasizing recent uncertainties while smoothing early fluctuations, balancing the attention among
different steps. This aligns with the intuition that recent steps can better represent the reasoning
uncertainty, so that momentum uncertainty can well track the evolving of uncertainty change.

Notably, We focus solely on the internal uncertainty signals of the model, disregarding the specific
logical information of the output content. This is because the uncertainty signal inherently reflects
the accuracy of the model’s reasoning (Xu et al., 2025; Yang et al., 2025b).

Proposition 2: Acting as a low-pass filter, momentum uncertainty Mt attenuates high-frequency
components while preserving low-frequency signals, leading to more stable estimates.
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Proof. LLM decoding contains unavoidable noise (Wang et al., 2024a; Zhou et al., 2024), introduc-
ing variance to uncertainty estimation. Assume each step-level uncertainty mt contains two parts:

mt = µt + ϵt, (7)

where µt is the pure step-level uncertainty, and ϵt is a noise originating from training or randomly
sampling, etc.

Leveraging the frequency-domain framework of Li et al. (2024) and the convergence theory of Liu
et al. (2020), we can treat the momentum uncertainty as a low-pass filter as follows:

H(ω) =
1− α

1− αe−jω
, (8)

where ω ∈ [0, π] denotes the normalized signal angular frequency. And the derivative of the magni-
tude response is as follows:

d|H(ω)|
dω

= − (1− α)α sinω

(1− 2α cosω + α2)3/2
< 0, (9)

so the magnitude response |H(ω)| decreases monotonically from 1 to 1−α
1+α as ω increases from 0 to

π, demonstrating low-pass filter behavior, which can effectively attenuate high-frequency compo-
nents ϵt. The high-frequency signal contains noise and sudden fluctuation of reasoning uncertainty,
both of which will be filtered to smooth the estimation process of reasoning uncertainty µt. Detailed
proof is attached in Appendix A.2.

While the auto-regressive nature of LLMs leads to a theoretical expectation of temporal correlation
in the noise signal, our empirical findings justify the validity of independent modeling. We ana-
lyze the autocorrelation function (ACF) of the noise signal using real data sampled from several
LLMs, and results demonstrate that, we have confidence over 95% to consider real noise signal
ϵt is not temporally correlated. Based on this critical finding, we provide further theoretical intu-
ition and experimental analysis that momentum uncertainty is superior to naive average uncertainty
method (Ren et al., 2022; Manakul et al., 2023; Dobriban et al., 2024). More details can be found in
A.3. Moreover, experimental comparison is in Sec. 4.2.

3.3 SCALABLE THINKING WITH γ-CONTROL

Since momentum uncertainty captures the overall confidence in the reasoning trajectory, we propose
a γ-control mechanism to identify whether the current step is incompatible with prior reasoning.
This mechanism balances reasoning performance against computational cost.

Scale High-uncertainty Steps At each step, the step-level uncertainty mt reflects the model’s
confidence in the current generation at, while Mt−1 aggregates uncertainty over previous steps. If
mt > Mt−1, the current step is more uncertain than the reasoning history, suggesting it may be
erroneous. To address this, we introduce a checking mechanism that selectively scales uncertain
steps.

To tolerate minor fluctuations while flagging significant deviations, we apply a γ-control threshold.
Specifically, we define a detector D in Equation 3 as:

ât =

{
Q(·|x,a<t) , exp(mt) > exp(Mt−1)/γ

at , others
, (10)

where γ is the controllable scaling rate, ranging from (0,1) in practice. The scaling factor 1
γ ef-

fectively raises the detection boundary, allowing slight uncertainty increases while catching large
deviations. Smaller γ values result in fewer steps being scaled, enabling flexible control over the
computational budget. More details can be found in Appendix.
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The inequality in Equation 10 flags when a step diverges significantly from the previous reasoning, a
corrective test-time scaling is triggered to improve output quality. A theoretical analysis of γ-control
is provided in Appendix A.4 and empirical results of γ-control is presented in Sec. 5.1.

Orthogonal to Test-Time Scaling Methods Our momentum uncertainty-based detector D is or-
thogonal and complementary to current test-time scaling methods, such as best-of-N and thinking
model. It identifies uncertain steps and selectively triggers compute-intensive optimization, main-
taining or even improving overall performance while reducing redundancy.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks We evaluate our proposed method MUR on three widely adopted math reasoning
benchmarks MATH-500 (Hendrycks et al., 2021), AIME24, and AIME25. In addition, we include
GPQA-diamond (Rein et al., 2024) to validate the generalization to the science domain.

Metrics We adopt pass@1 rate as our Acc. metric. We also report the average token usage of
backbone model as #Token for each solution, providing an aspect of efficiency evaluation. For
AIME24 and AIME25, to reduce the infection of randomness, we sample 16 times for each query
and report the average accuracy and token usage.

Test-Time Scaling Settings We adopt four test-time scaling methods as the basic setting.
1) Guided Search. It can be viewed as step-level Best-of-N (Brown et al., 2024), where N can-
didate steps are sampled in parallel at each timestep, and the optimal one is selected. We adopt
GenPRM (Zhao et al., 2025) as an external reward model for candidate selection. 2) LLM As a
Critic. The LLM receives feedback after generating each step and iteratively refines its output based
on the critique (Lan et al., 2024; Li et al., 2025). We also adopt GenPRM for stepwise feedback
generation. 3) ϕ-Decoding (Xu et al., 2025). It does not require external models but selects the
best step from several candidates using the foresight sampling strategy. 4) Thinking Mode (Yang
et al., 2025a) Models with thinking mode generates longer reasoning path, introducing deliberate
optimization to each step.

Baselines We adopt four baselines. 1) CoT (Wei et al., 2022). Standard stepwise reasoning with-
out scaling. 2) Per-Step Scale. Test-time scaling methods that scale the computation for each step.
3) Avg. uncertainty. Average the uncertainty across all generated steps (Ren et al., 2022; Manakul
et al., 2023; Dobriban et al., 2024) to represent the overall uncertainty of the reasoning process,
then scale steps with uncertainty higher than this average. 4) SMART. Following the original work
by Kim et al. (2025), the backbone model generates reasoning steps autonomously. If the token-level
confidence (TLC) falls below a predefined threshold, we apply TTS methods.

Implementation Details We conduct all experiments on different models from Qwen3-
series (Yang et al., 2025a), including Qwen3-1.7B, Qwen3-4B, and Qwen3-8B. The hyper-
parameter α and γ are both set to 0.9 as default if no additional explanation is provided. For more
implementation details, please refer to Appendix B.

4.2 MAIN RESULTS

Table 1 and Table 2 report four widely adopted reasoning benchmarks across 3 sizes of models.

MUR consistently outperforms strong baselines. The main results demonstrate the superior
token saving capacity of MUR in most scenarios, and consistently improves the accuracy against
Per-Step Scale methods (from 0.33% to 3.46%). This benefits from reducing overthinking on simple
steps, while keeping optimization for difficult steps.

MUR outperforms average uncertainty and SMART on both token usage and accuracy (1.66%,
1.62% for average, respectively). Although the two baselines generate fewer tokens than MUR in
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Table 1: Main results. The best results are highlighted in bold. Acc. denotes pass@1 rate and #To-
kens denotes the backbone model’s average token usage for each query, more details concerning
external model token usage is in Appendix C.1. We also report the delta compared to Per-Step Scale
baseline, including the accuracy difference and the percentage of saved tokens. Red indicates worse
performance, while green indicates better performance against Per-Step Scale. Here, ↑ denotes that
higher values are better, whereas ↓ means lower values are preferable.

MATH-500 AIME24 AIME25 GPQA-diamond Avg.
Acc.↑ #Tokens ↓ Acc.↑ #Tokens↓ Acc.↑ #Tokens↓ Acc.↑ #Tokens↓ Acc.↑ ∆ ↑ #Tokens↓ ∆ ↓

Qwen3-1.7B

Vanilla CoT 69.20 1,047 17.92 4,243 9.58 4,273 26.26 1,086 30.74 - 2,662 -

Guided search
+ Per-Step Scale 70.80 3,460 17.92 17,463 10.42 16,680 27.27 6,739 31.60 - 11,086 -
+ Avg uncertainty 70.20 2,398 18.33 7,850 9.58 8,883 25.76 3,404 30.97 (-0.63) 5,634 (-49.18%)
+ SMART 70.80 3.128 17.50 8,955 8.96 10,091 24.74 3,825 30.50 (-1.10) 6,500 (-41.37%)
+ MUR (ours) 71.20 1,321 18.33 4,712 10.63 5,179 32.83 2,005 33.25 (+1.65) 3,304 (-70.19%)

LLM as a critic
+ Per-Step Scale 70.20 1,098 16.04 3,362 10.00 3,160 28.28 892 31.13 - 2,128 -
+ Avg uncertainty 68.60 1,019 17.92 4,176 9.17 3,174 26.77 1,417 30.62 (-0.51) 2,447 (+14.97%)
+ SMART 70.40 878 18.96 3,976 8.96 3,600 28.28 1,446 31.65 (+0.52) 2,475 (+16.31%)
+ MUR (ours) 71.20 902 19.38 3,892 10.21 4,011 32.32 1,693 33.28 (+2.15) 2,625 (+26.25%)

ϕ-Decoding
+ Per-Step Scale 68.00 5,501 17.50 19,612 8.96 18,550 25.76 9,261 30.06 - 13,231 -
+ Avg uncertainty 69.00 2,844 19.17 13,743 8.33 15,785 25.25 2,431 30.44 (+0.38) 8,701 (-34.24%)
+ SMART 70.20 3,848 21.04 19,437 8.13 24,113 23.23 3,338 30.65 (+0.59) 12,684 (-4.13%)
+ MUR (ours) 69.80 2,520 20.21 13,711 9.58 16,088 27.27 1,827 31.72 (+1.66) 8,537 (-35.48%)

Qwen3-4B

Vanilla CoT 79.40 772 24.08 3,111 16.46 2,577 39.90 612 39.96 - 1,768 -

Guided search
+ Per-Step Scale 79.80 3,048 29.38 13,761 19.17 10,663 42.42 3,517 42.69 - 7,747 -
+ Avg uncertainty 79.80 1,911 28.33 7,012 18.54 7,719 39.90 1,354 41.64 (-1.05) 4,499 (-41.93%)
+ SMART 81.60 2,476 24.58 8,515 15.42 9,375 43.43 2,116 41.26 (-1.43) 5,621 (-27.45%)
+ MUR (ours) 81.40 824 29.58 4,265 19.17 7,162 41.92 929 43.02 (+0.33) 3,295 (-57.47%)

LLM as a critic
+ Per-Step Scale 80.80 777 25.21 3,334 17.92 3,260 40.91 737 41.21 - 2,027 -
+ Avg uncertainty 81.40 741 25.63 3,217 20.00 3,120 39.90 804 41.73 (+0.52) 1,971 (-2.79%)
+ SMART 80.60 813 26.04 3,203 17.50 3,201 43.43 724 41.89 (+0.68) 1,985 (-2.06%)
+ MUR (ours) 81.60 745 26.04 3,309 20.21 3,113 40.91 699 42.19 (+0.98) 1,967 (-2.98%)

ϕ-Decoding
+ Per-Step Scale 76.80 4,690 27.08 14,394 16.46 14,109 41.41 4,263 40.44 - 9,364 -
+ Avg uncertainty 80.60 1,866 26.67 14,361 18.54 14,836 39.90 1,511 41.43 (+0.99) 8,144 (-13.03%)
+ SMART 79.40 2,776 26.25 19,327 17.71 22,807 40.40 2,195 40.94 (+0.50) 11,776 (+25.76%)
+ MUR (ours) 79.60 1,796 27.29 8,563 18.13 8,845 41.92 944 41.74 (+1.30) 5,037 (-46.21%)

Qwen3-8B

Vanilla CoT 81.40 1,131 34.17 4,077 18.75 4,746 39.90 859 43.56 - 2,703 -

Guided search
+ Per-Step Scale 83.20 4,069 35.83 19,805 21.67 21,586 46.46 4,252 46.79 - 12,428 -
+ Avg uncertainty 82.80 2,427 35.21 11,223 22.08 12,193 43.94 2,213 46.01 (-0.78) 7,014 (-43.56%)
+ SMART 82.60 3,502 31.04 17,055 20.00 17,705 46.97 3,797 45.15 (-1.64) 10,515 (-15.39%)
+ MUR (ours) 83.20 2,607 38.13 7,959 24.38 7,582 46.97 3,122 48.17 (+1.38) 5,318 (-57.21%)

LLM as a critic
+ Per-Step Scale 83.40 1,022 33.13 4,846 21.04 4,818 44.44 1,172 45.50 - 2,965 -
+ Avg uncertainty 82.40 1,086 31.67 5,326 21.88 4,705 41.92 1,375 44.47 (-1.03) 3,123 (+5.35%)
+ SMART 83.20 1,167 32.92 4,737 21.46 4,780 44.95 1,069 45.63 (+0.13) 2,938 (-0.89%)
+ MUR (ours) 83.80 1,132 34.17 4,846 22.50 4,913 44.95 1,007 46.36 (+0.84) 2,975 (+0.34%)

ϕ-Decoding
+ Per-Step Scale 84.20 5,841 31.88 43,212 19.58 36,669 43.43 4,726 44.77 - 22,612 -
+ Avg uncertainty 81.80 3,222 34.17 17,807 21.46 20,151 45.45 2,087 45.72 (+0.95) 10,817 (-52.16%)
+ SMART 83.20 4,782 33.13 31,942 22.08 33,123 44.44 4,167 45.71 (+0.94) 18,504 (-18.17%)
+ MUR (ours) 84.40 2,854 36.67 20,969 24.38 22,296 47.47 2,359 48.23 (+3.46) 12,120 (-46.40%)

few cases, the accuracy drops even lower than Per-Step Scale. This indicates that they can’t well
evaluate the reasoning process, which laterally proves the superiority of MUR .

External critic reduces backbone token usage. For LLM as a critic setting, we observe that
the token usage saving of the backbone model is not as significant as other test-time scaling meth-
ods. MUR generates 26.25% more tokens than Per-Step Scale method when using the backbone
model Qwen3-1.7B, and the Per-Step Scale method even generates fewer tokens than CoT based on
Qwen3-1.7B. This token usage reverse origins from the critic of external models, which contains
hints for generating the next step, so it is easier for the backbone model to reach the answer with
fewer tokens. Table 1 only records the tokens generated by the backbone. To further demonstrate
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Table 2: Results of Thinking Switch. Vanilla CoT represents the non-thinking mode. Per-Step Scale
here denotes the thinking mode of Qwen3 models. Red indicates worse performance against Per-
Step Scale, while green indicates better performance. Here, ↑ denotes that higher values are better,
whereas ↓ means lower values are preferable.

MATH-500 AIME24 AIME25 GPQA-diamond Avg.
Acc.↑ #Tokens↓ Acc.↑ #Tokens↓ Acc.↑ #Tokens↓ Acc.↑ #Tokens↓ Acc.↑ ∆ ↑ #Tokens↓ ∆ ↓

Qwen3-1.7B

Vanilla CoT 69.20 1,047 17.92 4,243 9.58 4,273 26.26 1,086 30.74 - 2,662 -

Thinking Mode
+ Per-Step Scale 87.60 5,841 41.46 16,392 29.17 17,880 38.89 6,032 49.28 - 11,536 -
+ Avg uncertainty 88.80 4,528 47.29 16,472 30.63 16,948 39.39 5,819 51.53 (+2.25) 10,942 (-5.15%)
+ SMART 89.60 5,214 47.50 17,032 29.17 17,316 38.38 7,678 51.16 (+1.88) 11,810 (+2.37%)
+ MUR (ours) 89.20 5,041 47.71 15,264 31.25 16,146 39.90 5,231 52.02 (+2.74) 10,421 (-9.67%)

Qwen3-4B

Non-Thinking Mode 79.40 772 25.83 3,111 15.00 2,577 39.90 612 40.03 - 1,768 -

Thinking Mode
+ Per-Step Scale 89.20 4,598 68.33 13,648 59.38 17,256 51.01 6,547 66.98 - 10,512 -
+ Avg uncertainty 93.80 3,846 68.75 14,832 59.79 18,131 52.53 5,561 68.72 (+1.74) 10,593 (+0.76%)
+ SMART 94.00 4,932 68.33 15,131 58.96 18,104 53.53 8,024 68.71 (+1.72) 11,548 (+9.85%)
+ MUR (ours) 94.00 3,607 68.13 13,009 60.21 16,156 54.04 4,801 69.10 (+2.12) 9,393 (-10.64%)

Qwen3-8B

Non-Thinking Mode 81.40 1,131 34.17 4,077 18.75 4,746 39.90 859 43.56 - 2,212 -

Thinking Mode
+ Per-Step Scale 94.60 5,227 72.29 13,793 61.46 17,138 56.06 6,910 71.10 - 10,767 -
+ Avg uncertainty 90.60 4,385 70.42 15,463 60.83 18,608 55.05 6,579 69.23 (-1.87) 11,259 (+4.57%)
+ SMART 93.00 5,482 68.33 16,926 55.42 20,000 54.04 8,726 67.70 (-3.40) 12,784 (+18.73%)
+ MUR (ours) 93.80 5,328 73.33 14,416 61.25 17,779 57.58 6,147 71.49 (+0.39) 10,918 (+1.40%)

the token usage saving capacity of MUR , we report the token usage of both the backbone and the
external model in Appendix C.1, from which we can observe that MUR is still more efficient than
all baselines.
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Figure 3: The scaling law of hyperparameter γ.
We analyze MATH-500 based on Qwen3-1.7B.
The X axis stands for different values of γ. (a)
reports the average of Guided search, LLM as a
critic and ϕ-Decoding. (b) reports the scaling law
of thinking switch.

Mur can generalize to LRMs. Large reason-
ing models (LRMs) optimize performance by
generating overlong reasoning path, leading to
excessive token usage. To overcome this, we di-
rectly output steps detected as needing no com-
putes scaling by MUR , avoiding heavy com-
putes introduced by thinking process. More
implementation details can be found in Ap-
pendix B. Results in Table 2 demonstrate that
MUR outperforms all three baselines, improv-
ing accuracy from 0.39% to 2.74% against Per-
Step Scale baseline, which indicates that MUR
adaptively identifies key steps during reason-
ing. Furthermore, effectiveness on both reason-
ing models (Table 2) and non-reasoning models
(Table 1) validates the generality of MUR .

5 ANALYSIS

In this section, we firstly present scaling law of γ-control (Sec. 5.1), through which we can well
control performance and budget balance. Then we analysis the number of reasoning steps and token
usage (Sec. 5.2), reveling that MUR only scales a minor portion of steps. Finally, we randomly
scale some steps (Sec. 5.3), laterally demonstrating that MUR can identify crucial steps. Additional
analysis of the impact of hyperparameter α and case study can be found in Appendix C.

5.1 SCALING LAW OF γ-CONTROL

γ-control well balance performance and budget. The hyperparameter γ adjusts the detection
process in Equation 10, with a lower γ leading to stricter detection boundary condition, then we

8
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Figure 4: The Y ticks stand for accuracy. X ticks stand for different sizes of Qwen3-series models.
For each dataset, we average the three test-time scaling reasoning methods (Guided search, LLM as
a critic, ϕ-decoding).

apply less scaling and less token usage. We report this in Figure 3. The accuracy improves with
more token usage, indicating that we can well control the reasoning performance by only adjusting
a single hyperparameter γ. It is worth noting that γ = ∞ equivalents to Per-Step Scale reasoning,
whose accuracy drops lower with excessive token usage. More details can be found in Appendix C.2.

5.2 STEP AND TOKEN USAGE ANALYSIS
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Figure 5: Average steps and token usage for
each query. X ticks represent the sizes of dif-
ferent Qwen3-series models. For MUR , we
report both scaled steps and not scaled steps.

MUR only scale a minor portion of steps. We re-
port the number of reasoning steps and correspond-
ing token usage under different settings in Figure 5.
Under each setting, the result is the average across
all the four benchmarks and the three test-time scal-
ing reasoning methods (Guided search, LLM as a
critic, ϕ-decoding). With the guidance of MUR ,
the backbone generates 4.38-6.49 steps for average,
scaling only 0.45-0.90 steps for each query. This in-
dicates that for some simple questions, the backbone
directly outputs the whole reasoning process, with-
out any scaling, which is equivalent to CoT.

MUR exhibits superior token efficiency. MUR significantly reduces Per-Step Scale’s token us-
age over 45% for average. Qwen3-4B generates the least tokens, while Qwen3-8B generates the
most tokens, indicating that the former is more efficient and suitable for real-world scenarios.

Scaling reduces total number of steps. Interestingly, the number of steps is the exact opposite to
the token usage, showing that more scaling leads to fewer steps. For example, Per-Step Scale meth-
ods allocates the most token usage, while generating the fewest steps for average. This origins from
that the backbone model gets closer to the final answer after scaling, which reduces the future steps.
Detailed statistics is reported in Appendix C.3, from which we can infer that harder benchmark leads
to higher percentage of scaled steps, indicating the backbone is easier to be uncertain.

5.3 RANDOM SCALE RESULT

MUR identifies crucial steps to scale. We randomly scale several steps, keeping the same number
of scaled steps as experiments of MUR in Table 1, whose details can be found in Appendix C.3.
Results in Figure 4 demonstrates the average accuracy across three TTS settings (Guided Search,
LLM as a critic and ϕ−decoding). Random scaling performs worse than Per-Step Scale, indicating
that the absence of scaling key steps leads to performance drop. However, MUR , which has the
same number of scaled steps as random scaling, performs better than both random and Per-Step
Scale (1.72% and 1.53% for average), revealing that MUR identifies key steps during reasoning.
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6 CONCLUSION

In this paper, we emphasize the key insight that off-the-shelf test-time scaling methods allocate
excessive token usage, leading to degradation of both effectiveness and efficiency. To address this,
we propose MUR , a training-free reasoning framework, which can be orthogonally combined with
other test-time scaling methods. We only scale key steps detected by MUR . Theoretical analysis
and extensive experiments on both LLMs and LRMs demonstrate the superiority of MUR .
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REPRODUCIBILITY STATEMENT

We provide the data and source code in the Supplementary Material. More implementation detail
can be found in Appendix B.

LARGE LANGUAGE MODEL USAGE

In this submission, we employed LLMs to polish grammar usage.
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A MORE ANALYSIS

A.1 THE FORMULATION OF MOMENTUM UNCERTAINTY

Proposition 1: Momentum uncertainty is an exponentially weighted sum of step-level uncertain-
ties, emphasizing recent steps and fading earlier ones.

Proof. Recursive expansion of Mt:

Mt = αMt−1 + (1− α)mt

= α (αMt−2 + (1− α)mt−1) + (1− α)mt

= α2Mt−2 + α(1− α)mt−1 + (1− α)mt

...

= αtM0 + (1− α)

t∑
i=1

αt−imi. (11)

Substituting M0 = 0, we obtain:

Mt = (1− α)

t∑
i=1

αt−imi. (12)

This shows Mt assigns weights αt−i to historical mi, emphasizing recent uncertainties while
smoothing early fluctuations.

Let the average probability of the model’s output at step t, mt follow mt = mt−1 − ηgt, where gt
denotes the custom update term at step t. The momentum mechanism implicitly applies decayed
weights 1− αt−i to historical updates.

Define cumulative updates mt = m−
∑t−1

i=1 gi. Substituting into Equation 5:

Mt = αMt−1 + (1− α)mt

= αtm1 + (1− α)

t∑
i=1

αt−imi (from Equation 11)

= m1 −
t−1∑
i=1

(
1− αt−i

)
gi. (13)

Compared to the baseline update mt = m1 −
∑t−1

i=1 gi, the momentum term introduces weights
1− αt−i that decay exponentially with step distance t− i.

From the above proof, we can easily derive the following two properties:

Property 1: Momentum Uncertainty is the Exponential Weighting of Historical Uncertainties.

Property 2: Momentum Uncertainty has Gradient Descent Equivalence with Decaying Weights.

A.2 THEORETIC INTUITION OF STABLE ESTIMATION

Proposition 2: Acting as a low-pass filter, the momentum uncertainty Mt attenuates high-
frequency components while preserving low-frequency signals, resulting in more stable estimates.

Proof. The momentum uncertainty Mt is defined by Equation 5 as:

Mt = αMt−1 + (1− α)mt, α ∈ (0, 1).

Leveraging the frequency-domain framework of Li et al. (2024) and the convergence theory of Liu
et al. (2020), we proceed to analyze the low-pass filtering characteristics of momentum.
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Applying the Z-transform to Equation 5 yields:

M(z) = αz−1M(z) + (1− α)m(z), (14)

where M(z) and m(z) are Z-transforms of Mt and mt respectively, and z−1 denotes the unit delay
operator. Rearranging terms gives the transfer function:

H(z) =
M(z)

m(z)
=

1− α

1− αz−1
. (15)

The spectral characteristics are examined through evaluation of the transfer function on the unit
circle via the mapping z = ejω, where ω ∈ [0, π] denotes normalized angular frequency. This
procedure yields the following frequency response.

H(ω) =
1− α

1− αe−jω
. (16)

It quantifies the system’s amplitude and phase variation with frequency.

The magnitude response |H(ω)| characterizes gain versus frequency:

|H(ω)| =
∣∣∣∣ 1− α

1− αe−jω

∣∣∣∣
=

1− α√
(1− α cosω)2 + (α sinω)2

=
1− α√

1− 2α cosω + α2
. (17)

For ω ∈ (0, π), the derivative of |H(ω)| with respect to ω is negative, confirming monotonic de-
crease:

d|H(ω)|
dω

= − (1− α)α sinω

(1− 2α cosω + α2)3/2
< 0, ω ∈ (0, π). (18)

Thus, |H(ω)| decrease monotonically from 1 to 1−α
1+α as ω increases from 0 to π, demonstrating low-

pass filter behavior according to Li et al. (2024), which can effectively attenuate high-frequency
components ϵt.

For example, at the low frequency where ω = 0:

|H(0)| = 1− α√
1− 2α+ α2

=
1− α

|1− α|
= 1.

At the high frequency where ω = π:

|H(π)| = 1− α√
1 + 2α+ α2

=
1− α

1 + α
< 1.

As α → 1, |H(π)| → 0, indicating complete attenuation of high-frequency components when the
smoothing factor approaches 1.

In our work, momentum uncertainty tracks the change of µt smoothly; we prefer low-frequency
signal to a high-frequency signal, which often contains noise and sudden fluctuation of µt (Kingma,
2014; Li et al., 2024). Notably, when the sudden fluctuation of µt occurs, our scaling boundary
condition will be triggered to optimize the current step, which results in a more confident step and
higher accuracy (Xu et al., 2025). This process indicates that our momentum uncertainty only needs
to maintain the low-frequency part of µt, filtering both the noise and the sudden fluctuation.

A.3 MOMENTUM PERFORMS BETTER THAN NAIVE AVERAGE UNCERTAINTY

Proposition 3: Momentum uncertainty can suppress the reasoning noise and well track the evolv-
ing of µt, resulting in better reasoning performance than average uncertainty.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9
Lag k

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

AC
F(

k)

(a) Qwen3-4B

95% CI (±0.196)

0 1 2 3 4 5 6 7 8 9
Lag k

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

AC
F(

k)

(b) Qwen3-8B

95% CI (±0.196)

Figure 6: Autocorrelation function (ACF) of signal ϵ̂t. We conduct this on both Qwen3-4B and
Qwen3-8B. The max step length is set to 100 to better represent the temporal process of LLM’s
reasoning.

Proof. To establish this proposition, it is necessary to impose a theoretical assumption on the dis-
tribution of the noise. Owing to the autoregressive nature of large language models, an intuitive
expectation is that the noise across different reasoning steps exhibits temporal dependence, which
substantially complicates the theoretical analysis. Consequently, we adopt an approximate assump-
tion that the noise terms are independent and identically distributed. In the following, we demon-
strate the plausibility of this assumption through empirical analysis.

Proposition 3.1: Noise terms from different steps are weak correlated.

We conduct experiments on real data collected from Qwen3 series. For each reasoning trajectory,
we can get uncertainty mt form each timestamp t. As in Equation 7, the step uncertainty contains
pure uncertainty µt and noise ϵt:

mt = µt + ϵt.

We employ an exponential moving average (EMA) to estimate the step-wise pure signal µt, using
a deliberately large smoothing coefficient αsmooth = 0.999. It is worth noting that this constitutes
a separate EMA procedure from our momentum uncertainty update used for Mt, and in particular
relies on a different choice of αsmooth. The estimation process is as follows:

µ̂t = αsmoothµ̂t−1 + (1− αsmooth)mt. (19)

Notably, µ̂t is only the estimation of µt. Due to the low-pass capacity of EMA described in A.2, an
extremely large smoothing coefficient α′ only maintains the extremely low frequency signal from
mt. The filtered signal contains ϵ̂t two parts: 1) high frequency noise ϵt 2) part of µt that is not
confined to the ultra–low-frequency regime.

ϵ̂t = ϵt + (µt − µ̂t). (20)

Here, (µt − µ̂t) is part of the signal µt, which exhibits pronounced autocorrelation due to the auto-
regressive nature of LLMs. In other words, (µt − µ̂t) is highly temporally correlated with (µt−1 −
µ̂t−1).

This yields a stronger form of hypothesis testing: if ϵ̂t, a sequence contaminated by the highly
correlated signal (µt−µ̂t), still exhibits weak autocorrelation in a statistical sense, then it necessarily
implies that the original signal ϵt possesses a weak autocorrelation.

In Figure 6, we analyze the autocorrelation function (ACF) of signal ϵ̂t, showing that for all lags
k ≥ 1, the values of ACF(k) immediately and persistently fall within the 95% confidence interval
(CI). The rapid decay and statistical insignificance jointly provide strong evidence that the sequence
ϵ̂t lacks any substantial long-term or persistent serial correlation. As shown in Equation 20, we can
assert with 95% confidence that ϵ̂t, the sum of ϵt and (µt−µ̂t), is not temporally correlated. Besides,
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due to the temporally correlated nature of (µt − µ̂t), real noise signal ϵt is not temporally correlated
with confidence over 95%. This finding is also aligned with recent research (Liu et al., 2025).

Building on Proposition 3.1, we posit an approximate assumption that each noise signal is white-
noise. Notably, this analysis only provides theoretical intuition on why momentum uncertainty is
better, rather than rigorous derivation. Moreover, we will provide experimental results to support
our proposition.

Theoretical Intuition on the Superior of Momentum Uncertainty than Average Uncertainty.
The momentum uncertainty Mt is defined by Equation 12 as:

Mt = (1− α)

t∑
i=1

αt−imi, α ∈ (0, 1).

As our approximate assumption, historical uncertainties mt contain independent noise:

mt = µt + ϵt,Var(ϵt) = σ2, (21)

where σ2
t is a bounded constant and µ is the ideal value without variance and bias that can represent

the current reasoning and overall reasoning path status. However, it is impractical to get µ, and we
can only get step-level uncertainty m which contains noise. Therefore, in our method, we aggre-
gate each step-level uncertainty m as momentum uncertainty M to represent the overall reasoning
process.

Var(Mt) = (1− α)2
t∑

i=1

α2(t−i)σ2

= (1− α)2σ2

t∑
i=1

α2(t−i). (22)

Let j = t− i. The summation becomes a finite geometric series:

t∑
i=1

α2(t−i) =

t−1∑
j=0

α2j

=
1− α2t

1− α2
. (23)

Substituting Equation 23 into Equation 22:

Var(Mt) = (1− α)
1− α2t

1 + α
σ2. (24)

The vast majority of inference steps are less than twenty (as illustrated in Table 4), so t is set to
t ≤ 20. For t ≤ 20 and α ∈ (0, 1), α2t ≈ 0. Thus:

Var(Mt) ≈ σ2 (1− α)2

1− α2
= σ2 1− α

1 + α
. (25)

From Equation 25, we can observe that that variance of Mt is lower than the variance of step uncer-
tainty, which is caused by noise ϵ. We establish Mt’s superiority through the following analysis.

Let the simple average be:

M̃t =
1

t

t∑
i=1

mi. (26)

For M̃t:

Var(M̃t) =
1

t2

t∑
i=1

σ2 =
σ2

t
. (27)
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When α → 1 :
1− α

1 + α
<

1

t
for t ≤ 20, (28)

which implies Var(Mt) < Var(M̃t). Momentum achieves superior noise suppression through ex-
ponentially decaying weights. Besides, our main results in Table 1 and Table 2 laterally proves the
better detection performance of momentum uncertainty.

Empirical Analysis on the Superior of Momentum Uncertainty than Average Uncertainty.
As described in A.1, momentum uncertainty Mt implements an exponentially decaying weight-
ing scheme that assigns larger weights to recent steps and progressively smaller weights to earlier
ones, thereby enabling adaptive tracking of temporal variations in the latent signal µt. In contrast,
simple averaging assigns equal weights to all steps, which induces substantial tracking lag when the
underlying signal µt changes, failing to adequately reflect the model’s current state.

This contrast yields a stronger form of empirical validation: if momentum uncertainty can more
accurately track a slowly evolving signal than average uncertainty, it is expected to exhibit even
greater relative advantages in regimes where µt displays a mixture of slowly and rapidly varying
temporal dynamics.

We provide an experimental analysis from real data to compare between momentum uncertainty
and average uncertainty. Our core objective is to demonstrate that Mt provides a more stable and
accurate estimation of µt when the it evolves slowly.

We use extremely large αsmooth and slow-evolving estimation µ̂ defined in Equation 19. Besides,
we define variance reduction rate as follows:

∆V =
Var(M̃t)−Var(Mt)

Var(M̃t)
× 100%, (29)

where ∆V stands for variance reduction rate. A higher ∆V means that momentum uncertainty is
better than average uncertainty.
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Figure 7: Variance comparison between momentum uncertainty and average. We conduct this on
both Qwen3-4B and Qwen3-8B. Each point is one real reasoning path generated from LLM. Points
above the red diagonal line represent that momentum uncertainty is better than average uncertainty.

We perform this analysis on Qwen3-series. As shown in Figure 7, in both settings, most points are
above the red diagonal line, which indicates that momentum uncertainty performs much better than
average uncertainty in tracking µt.

Under the approximate white-noise assumption, we conduct theoretical analysis on the superiority
of momentum uncertainty over average uncertainty. In addition, our experiments serve as empirical
evidence that supports this proposition.
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A.4 PROOF OF DYNAMIC COMPUTE SCALING

Proposition 4: Optimization should be triggered with high confidence when the step-level uncer-
tainty exhibits a significant deviation from the momentum-based uncertainty.

Problem Formulation and Notation Let mt denote the uncertainty of the model’s output at step
t + 1, and Mt−1 represent the momentum uncertainty defined as an exponentially weighted sum,
and α ∈ (0, 1) be the momentum rate. The decision rule for computes scaling is formulated as:

exp(mt) > exp(Mt−1)/γ.

A boundary violation is flagged when this inequality holds, triggering corrective test-time scaling.
We formalize the robustness guarantee below.

Based on the following two lemmas, we establish that the misjudgment probability of historical mo-
mentum uncertainty Mt−1 exceeding the threshold τt = mt + ln γ approaches zero, demonstrating:
When the scaling condition exp(mt) > exp(Mt−1)/γ holds, the model identifies abnormal eleva-
tion in current uncertainty mt with near-certain confidence, thereby efficiently triggering resource
scaling.

We now provide a theoretical bound on the probability that a stable reasoning step is mistakenly
flagged as uncertain.

Lemma 1: Chernoff Bound for Single Random Variable. By using the distribution of random vari-
ables, a more precise boundary is provided for the large deviation probability of random variables.

Let X be a real-valued random variable with moment generating function ϕ(s) = E[esX ]. For any
threshold τ ∈ R, the upper tail probability satisfies:

P(X ≥ τ) ≤ inf
s>0

e−sτϕ(s).

X has variance parameter σ̂t, ϕ(s) ≤ esν+
s2σ̂2

t
2 , then:

P(X ≥ τ) ≤ exp

(
− (τ − ν)2

2σ̂2

)
,

where ν = E[X].
τt = mt + ln(γ), γ ∈ (0, 1).

Lemma 2: Hoeffding’s inequality. Hoffding’s inequality provides the upper limit of the probability
that the sum of a random variable deviates from its expected value.

Assume that for each i, Xi ∈ [ai, bi]. Consider the sum of these random variables:

Sn =

n∑
i=1

Xi = X1 +X2 +X3 + · · ·+Xn−1 +Xn.

Then Hoeffding’s inequality states that for all t > 0:

• P(Sn − E[Sn] ≥ t) ≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

• P(|Sn − E[Sn]| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Here E[Sn] denotes the expectation of Sn.

Let the momentum uncertainty sequence Mt−1 be an exponentially weighted sum of historical step-
level uncertainties {mi}t−1

i=1:

Mt−1 =

t−1∑
i=1

ωimi, ωi = αt−1−i(1− α),

t−1∑
i=1

ωi = 1,
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where mi ∈ [0, 1] are bounded random variables. The threshold has been defined above, which is:

τt = mt + ln γ.

When the scaling condition exp(mt) > exp(Mt−1)/γ holds, applying Lemma 1, we have:

P(Mt−1 ≥ τt) ≤ exp

(
− (τt − ν̂t−1)

2

2σ̂t−1

)
,

where ν̂t−1 = E[Mt−1] , and the decay rate is controlled by α.

Proof. By the exponential smoothing definition:

Mt−1 =

t−1∑
i=1

ωimi, ωi = (1− α)αt−1−i,

where mi ∈ [0, 1] are independent or weakly dependent random variables. Define Xi = ωimi,
which satisfies:

• Xi ∈ [0, ωi].

• bi − ai = ωi − 0 = ωi.

Applying Lemma 2:

P [exp (Mt−1 − E[Mt−1] ≥ ζ)] ≤ exp

(
− 2ζ2∑t−1

i=1(bi − ai)2

)

= exp

(
− 2ζ2∑t−1

i=1 ω
2
i

)
.

Mt−1 is sub-Gaussian with parameter: σ̂2
t−1 = 1

4

∑t−1
i=1 ω

2
i . Thus:

P(Mt−1 − ν̂t−1 ≥ ζ) ≤ exp

(
− ζ2

2σ̂2
t−1

)
. (30)

Substitute ζ = τt − ν̂t−1:

P(Mt−1 ≥ τt) ≤ exp

(
− (τt − ν̂t−1)

2

2 · 1
4

∑t−1
i=1 ω

2
i

)

= exp

(
− (τt − ν̂t−1)

2

2 · 1
4 ((1− α)2

∑t−2
j=0(α

2)j)

)

= exp

(
− (τt − ν̂t−1)

2

2 · 1
4 ((1− α)2 · 1−α2(t−1)

1−α2 )

)

= exp

(
−2(τt − ν̂t−1)

2(1 + α)

(1− α)(1− α2(t−1))

)
= exp

(
−2(mt + ln γ − ν̂t−1)

2(1 + α)

(1− α)(1− α2(t−1))

)
. (31)

Since 1− α2 = (1− α)(1 + α), α ∈ (0, 1):
t−1∑
i=1

ω2
i = (1− α) · 1− α2(t−1)

1 + α
≤ 1− α

1 + α
.

Substituting the weight sum upper bound:

P(Mt−1 ≥ τt) ≤ exp

(
−2(mt + ln γ − ν̂t−1)

2(1 + α)

1− α

)
. (32)
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As those in practice, we set α = 0.9 in the probability bound here:

P(Mt−1 ≥ τt) ≤ exp

(
−2(mt + ln γ − ν̂t−1)

2(1 + α)

1− α

)
= exp

(
−38(mt + ln γ − ν̂t−1)

2
)
→ 0.

Define the confidence parameter ε as:

ε = exp

(
−2(ln γ +mt − ν̂t−1)

2(1 + α)

1− α

)
.

This exponential decay ensures that deviations above τt = ln γ+mt are asymptotically improbable.
With α = 0.9, the bound becomes: ε = exp

(
−38(ln γ +mt − ν̂t−1)

2
)
→ 0,

P(Mt−1 ≥ τt) = ε → 0,

P(Mt−1 < τt) = P
(
exp(mt) >

exp(Mt−1)

γ

)
= 1− ε.

This validates the scaling decision: The scaling condition exp(mt) > exp(Mt−1)/γ holds with
confidence 1 − ε. This result establishes generalization error control for exponential smoothing:
The weighted average Mt−1 converges to the expected uncertainty level, while the scaling condition
controls abrupt deviations via tail probability analysis.

B IMPLEMENTATION DETAILS

Implementation of Main Experiments Hyper-parameter α and γ are set to 0.9 as default without
specific claim. The temperature is set to 0.6 for all experiments. We set top-p to 0.8, top-k to 20.
We set presence penalty to 1.5 and max output length to 16,384 tokens.

For Guided Search setting, we generate four candidates and only one verification path for each
candidate. Notably, each verification contains a evaluation path and a final answer token Yes or No,
indicating whether the current step is correct or not. If there is no Yes token in all verifications, we
select the candidate with lowest probability of No token. Otherwise, we select the candidate with
the highest probability of Yes token.

For LLM As a Critic setting, we prompt the critic to output whether current step is correct and the
exact reason. For incorrect steps, we feed the reason path to the backbone model for better output.
Specifically, we first prompt the external LLM to generate a reasoning path to judge the correctness
of the generated step from the backbone model and then output token Yes or No. If the judgment
token is Yes, we do nothing, or we will put the evaluation reasoning path to the backbone model,
followed by generating an optimized reasoning step.

For ϕ-Decoding setting, we use TF-IDF metric to cluster, and we do not add the advantage term be-
cause we will not scale every step in MUR , which leads to the infeasibility of calculating advantage
between adjacent steps. We follow the idea of foresight sampling proposed in ϕ-Decoding to use the
foresight texts. In the original, the calculation of advantage is implemented by (foresight score of
stept minus foresight score of stept−1). However, as explained in MUR, we do not need foresight
at each step. This foresight score is not available at each step in MUR, thus we do not include it.
Notably, the remained part is also effective (Xu et al., 2025).

In practice, we do not scale the first step. Because there is no valid momentum uncertainty when
identifying the first step. To achieve smoother estimation in early steps, we introduce a bias cor-
rection term following Adam (Kingma, 2014). We set the max step to 20 as default, which is well
aligned with the proof in AppendixA.3.

We use General Reasoner (Ma et al., 2025) for math problem evaluation, including MATH, AIME24,
AIME25. For GPQA-diamond evaluation process, we provide a python code to parse the final an-
swer an compare it to ground truth. We adopt GenPRM (Zhao et al., 2025) as the external model for
candidate selection and critic generation. We conduct all of our experiments based on vLLM (Kwon
et al., 2023) reasoning tool.
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Implementation of Generating One Step For generating one step, we prompt the backbone LLM
to automatically define one step. Specifically, we add Always end your solution with the phrase “the
answer is” followed by your final answer. Start your solution with “Step {stepidx}:” to the end
of each input query. For the update of momentum uncertainty, we use the step-level uncertainty of
optimized step. The max of each step’s length is set to 2,048 tokens.

Implementation of Thinking Switch Based on the switch interface between non-thinking mode
and thinking mode provided by Qwen3-series, we propose to reduce token usage for large reasoning
models with MUR . Specifically, we use non-thinking mode as default reasoning method, and switch
to thinking mode when current step is detected as needing scaling by MUR . We set γ to 0.9, 0.8, 0.7
for MATH, AIME, GPQA-diamond, respectively. To avoid overthinking in each step, we limit the
max thinking length to 2,048 tokens and extract all the completed sentences. Additionally, we add
“Okay, so I need to” to the beginning of each prompt to correctly elicit thinking in thinking mode.

Prompt used in our experiments 1) User prompt for all settings. 2) System prompt for different
datasets. We use empty system prompt for MATH-500 dataset. 3) External model prompt, in which
para represents each step’s answer from the backbone model. 4) Evaluation prompt for MATH-500,
AIME24 and AIME25 datasets.

User Prompt for All Settings

INPUT QUESTION + ”Always end your solution with the phrase ’the answer is’ followed
by your final answer. Start your solution with ’Stepstep idx:’”

System Prompt for AIME24 and AIME25 Datasets

You are a helpful math assistant.

System Prompt for GPQA-diamond Dataset

You are a helpful assistant. Please answer ”A”, ”B”, ”C”, or ”D”.

External Model Prompt for Guided Search and LLM As a Critic

You are a teacher. Your task is to review and critique the paragraphs in solution directly.
Output your judgment in the format of ”\\boxed{Yes}” if the paragraph is correct, or
”\\boxed{No}” if the paragraph is incorrect.

[Math Problem]
{problem}

[Solution]
{solution}

<paragraph i>
{step output}
</paragraph i>
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Evaluation Prompt for MATH-500, AIME24 and AIME25 Datasets

Question: {question}

Ground Truth Answer: {ground truth}

Student Answer: {student answer}

For the above question, please verify if the student’s answer is equivalent to the ground truth
answer. Do not solve the question by yourself; just check if the student’s answer is equivalent
to the ground truth answer. If the student’s answer is correct, output Final Decision: Yes. If
the student’s answer is incorrect, output Final Decision: No.

Implementation of Detector The detector plays a vital rule in identifying which step to scale,
we implement this by maintaining and updating two python variables: 1) Step uncertainty, which
is generated along with the reasoning text. 2) Momentum uncertainty, which is updated using step
uncertainty based on Equation 5. After generating each step, we will check these two variables sat-
isfy boundary condition in Equation 10, and trigger scaling if current step’s uncertainty is relatively
higher than momentum uncertainty.

C MORE EXPERIMENT RESULTS

C.1 TOKEN USAGE

We report the token usage of both the backbone and the external model in Table 3. There is no
external model under ϕ-Decoding setting, so we only report the token usage under Guided Search
and LLM As a Critic settings. In Table 1, MUR generates more tokens in some cases. This is
because we only record the backbone token usage in Table 1. However, in Table 3, by adding up
both backbone token usage and external model token usage, we can observe in the last column that
MUR consistently generates fewer tokens than Per-Step Scale method, validating the token saving
capacity of MUR . Furthermore, the trend of token usage of the Guided Search setting in Table 3 is
compatible with those in Table 1.
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Figure 8: Detail scaling law of γ. The X axis stands for different values of γ. The Y axis stands for
accuracy. Due to the reason described in Appendix C.1, we additionally report the external model
token usage (denoted as Critic Tokens) under LLM as a critic setting to comprehensively reflect the
overall computes.
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Table 3: Token usage of both backbone and external model. Bac stands for backbone model, Ext
stands for external model, and the sum of them is denoted as Sum. ↓ means better for lower values.

MATH-500 AIME24 AIME25 GPQA-diamond Avg.
Bac↓ Ext↓ Sum↓ Bac↓ Ext↓ Sum↓ Bac↓ Ext↓ Sum↓ Bac↓ Ext↓ Sum↓ Bac↓ Ext↓ Sum↓ ∆ ↓

Qwen3-1.7B

CoT 1,047 - 1,047 4,243 - 4,243 4,273 - 4,273 1,086 - 1,086 2,662 - 2,662 -

Guided search
+ Per-Step Scale 3,460 3,186 6,646 17,463 21,607 39,070 16,680 18,212 34,892 6,739 9,258 15,997 11,086 13,066 24,151 -
+ Avg uncertainty 2,398 1,565 3,963 7,850 3,262 11,112 8,883 3,320 12,203 3,404 3,512 6,916 5,634 2,915 8,549 (-64.60%)
+ SMART 3,128 2.049 5,177 8,955 15,6062 24,561 10,091 20,398 30,489 3,825 5753 9,578 6,500 10,952 17,451 (-27.74%)
+ MUR (ours) 1,321 320 1,641 4,712 1,513 6,225 5,179 2,074 7,253 2,005 1,502 3,507 3,304 1,352 4,657 (-80.72%)

LLM as a critic
+ Per-Step Scale 1,098 1,271 2,369 3,362 1,914 5,276 3,160 1,931 5,091 892 2,249 3,141 2,128 1,841 3,969
+ Avg uncertainty 1,019 1,075 2,094 4,176 542 4,718 3,174 769 3,943 1,417 2,001 3,418 2,447 1,097 3,543 (-10.73%)
+ SMART 878 670 1,548 3,976 1,241 5,217 3,600 1,486 5,086 1,446 763 2,209 2,475 1,040 3,515 (-11.44%)
+ MUR (ours) 902 337 1,239 3,892 853 4,745 4,011 828 4,839 1,693 1,282 2,975 2,625 825 3,450 (-13.09%)

Qwen3-4B

CoT 772 - 772 3,111 - 3,111 2,577 - 2,577 612 - 612 1,768 - 1,768 -

Guided search
+ Per-Step Scale 3,048 3,346 6,394 13,761 18,422 32,183 10,663 24,678 35,341 3,517 6,437 9,954 7,747 13,221 20,968 -
+ Avg uncertainty 1,911 1,845 3,756 7,012 4,422 11,434 7,719 4,076 11,795 1,354 2,483 3,837 4,499 3,207 7,706 (-63.25%)
+ SMART 2,476 2,212 4,688 8,515 15,623 24,138 9,375 14,199 23,574 2,116 3409 5,525 5,621 8,861 14,481 (-30.94%)
+ MUR (ours) 824 265 1,089 4,265 2,042 6,307 7,162 13,985 21,147 929 641 1,570 3,295 4,233 7,528 (-64.10%)

LLM as a critic
+ Per-Step Scale 777 1,373 2,150 3,334 2,040 5,374 3,260 1,885 5,145 737 2,462 3,199 2,027 1,940 3,967 -
+ Avg uncertainty 741 957 1,698 3,217 1,052 4,269 3,120 1002 4,122 804 1,795 2,599 1,971 1,202 3,172 (-20.04%)
+ SMART 813 855 1,668 3,203 1,315 4,518 3,201 1,485 4,686 724 320 1,044 1,985 994 2,979 (-24.91%)
+ MUR (ours) 745 443 1,188 3,309 895 4,204 3,113 980 4,093 699 266 965 1,967 646 2,613 (-34.14%)

Qwen3-8B

CoT 1,131 - 1,131 4,077 - 4,077 4,746 - 4,746 859 - 859 2,703 - 2,703 -

Guided search
+ Per-Step Scale 4,069 3,688 7,757 19,805 23,308 43,113 21,586 23,227 44,813 4,252 7,468 11,720 12,428 14,423 26,851 -
+ Avg uncertainty 2,427 2,037 4,464 11,223 5,358 16,581 12,193 6,449 18,642 2,213 3,382 5,595 7,014 4,307 11,321 (-57.84%)
+ SMART 3,502 3,287 6,789 17,055 24,194 41,249 17,705 24,403 42,108 3,797 6,135 9,932 10,515 14,505 25,020 (-6.82%)
+ MUR (ours) 2,607 1,986 4,593 7,959 4,196 12,155 7,582 4,603 12,185 3,122 4,524 7,646 5,318 3,827 9,145 (-65.94%)

LLM as a critic
+ Per-Step Scale 1,022 2,025 3,047 4,846 2,258 7,104 4,818 2,381 7,199 1,172 3,102 4,274 2,965 2,442 5,406 -
+ Avg uncertainty 1,086 842 1,928 5,326 1,105 6,431 4,705 1,205 5,910 1,375 1,588 2,963 3,123 1,185 4,308 (-20.31%)
+ SMART 1,167 1,160 2,327 4,737 1,547 6,284 4,780 1,945 6,725 1,069 2,366 3,435 2,938 1,755 4,693 (-13.19%)
+ MUR (ours) 1,132 783 1,915 4,846 1,014 5,860 4,913 1,237 6,150 1,007 2,211 3,218 2,975 1,311 4,286 (-20.72%)
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Figure 9: Impact of changing α. The X axis stands for different values of α. The Y axis stands for
accuracy.

C.2 FLEXIBLE CONTROL WITH HYPERPARAMETER γ

To further demonstrate the flexible control using hyperparameter γ, we report the detailed informa-
tion concerning three model sizes and four test-time scaling methods (Guided Search, LLM As a
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Table 4: Total number of steps generated by the backbone and the number of scaled steps with
MUR .

Datasets MATH-500 AIME24 AIME25 GPQA-diamond Avg
Total Scaled Total Scaled Total Scaled Total Scaled Total Scaled

Qwen3-1.7B

CoT 5.33 - 8.93 - 8.40 - 6.41 - 7.27 -

Guided search
+ Per-Step Scale 2.89 2.89 4.20 4.20 3.37 3.37 4.55 4.55 3.75 3.75
+ MUR (ours) 5.31 0.35 6.93 0.70 7.13 0.80 7.02 0.82 6.60 0.67

LLM as a critic
+ Per-Step Scale 4.35 4.35 3.63 3.63 3.60 3.60 3.93 3.93 3.88 3.88
+ MUR (ours) 5.86 0.40 7.57 0.60 6.87 0.83 5.77 0.81 6.52 0.66

ϕ-Decoding
+ Per-Step Scale 2.97 2.97 5.33 5.33 2.90 2.90 3.91 3.91 3.78 3.78
+ MUR (ours) 5.80 0.39 7.47 0.93 6.57 0.60 5.59 0.76 6.35 0.67

Qwen3-4B

CoT 5.84 - 5.70 - 5.00 - 5.57 - 5.53 -

Guided search
+ Per-Step Scale 2.73 2.73 3.17 3.17 3.07 3.07 2.71 2.71 2.92 2.92
+ MUR (ours) 4.31 0.17 5.97 0.63 4.43 0.53 3.59 0.30 4.57 0.41

LLM as a critic
+ Per-Step Scale 3.83 3.83 4.23 4.23 3.77 3.77 2.47 2.47 3.58 3.58
+ MUR (ours) 4.36 0.18 5.03 0.47 3.63 0.63 3.31 0.35 4.08 0.41

ϕ-Decoding
+ Per-Step Scale 2.77 2.77 3.97 3.97 4.23 4.23 3.10 3.10 3.52 3.52
+ MUR (ours) 4.38 0.19 5.40 0.47 4.30 0.43 3.89 1.02 4.49 0.53

Qwen3-8B

CoT 7.45 - 10.00 - 12.33 - 6.90 - 9.17 -

Guided search
+ Per-Step Scale 3.27 3.27 4.80 4.80 4.73 4.73 3.83 3.83 4.16 4.16
+ MUR (ours) 5.32 0.40 7.80 0.80 6.13 0.97 5.20 0.69 6.11 0.71

LLM as a critic
+ Per-Step Scale 5.01 5.01 5.13 5.13 6.10 6.10 3.92 3.92 5.04 5.04
+ MUR (ours) 5.93 0.55 7.30 0.87 7.13 0.80 5.17 0.67 6.38 0.72

ϕ-Decoding
+ Per-Step Scale 3.20 3.20 4.33 4.33 5.33 5.33 3.45 3.45 4.08 4.08
+ MUR (ours) 4.45 1.20 8.33 0.77 6.60 1.03 4.32 2.11 5.93 1.28

Critic, ϕ-Decoding, thinking switch) on MATH-500 in Figure 8. It can be observed that by increas-
ing γ, the reasoning accuracy would improve along with the token usage.

It is worth noting that in some scenarios, we observe performance degradation when we set γ to 0.9.
This is consistent with our main findings: the reasoning performance drops with excessive reasoning
token usage. In other words, we scale abundant steps in these scenarios. And the accuracy of Per-
Step Scale method drops even lower with more token usage. Additionally, we observe that MUR
outperforms Per-Step Scale in most scenarios. In practice, we set γ to 0.9 as the default.

C.3 NUMBER OF STEPS

We report the number of steps generated by the backbone model and the number of scaled steps
with MUR in Table 4. Additionally, we calculate the percentage of scaled steps on each benchmark.
For MATH-500, AIME24, AIME25, GPQA-diamond, the percentage is 8.38%, 9.34%, 12.54%,
13.75%, respectively. We can infer that among the same domain, more difficult benchmark leads to
higher percentage of scaled steps. For example, AIME25 has higher scale percentage than AIME24
and MATH-500.
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C.4 IMPACT OF α

The hyperparameter α controls the update of momentum uncertainty, with a lower α leading to more
intense updates. We report the impact of changing α in Figure 9. We can observe that MUR out-
performs vanilla in most cases, which demonstrates the insensitivity and effectiveness of MUR . For
α = 0.1 setting, the momentum uncertainty changes too fast to well represent the overall estimation
of query and generated steps, so the accuracy is relatively lower than other settings. In practice, we
set α = 0.9 as default.

C.5 CASE STUDY

In Figure 10, we conduct a case study based on the thinking mode of Qwen3-1.7B. We analyze
AIME24 and show the comparison between MUR and Per-Step Scale. We can observe that when
MUR faces high uncertainty step, it triggers the thinking process, allocating more computes to
optimize current step’s quality. For simple steps showing low uncertainty, MUR directly output it
without thinking. On the contrary, Per-Step Scale thinks for every step, regardless of whether the
backbone is confident with the current step or not.
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Question: Eight circles of radius 34 are sequentially tangent, and two of the circles are tangent to 
AB and BC of triangle ABC, respectively. 2024 circles of radius 1 can be arranged in the same 
manner. The inradius of triangle ABC can be expressed as m/n, where m and n are relatively prime 
positive integers. Find m+n.

Ground Truth: 197

Step1: Okay, so I need to find the inradius of 
triangle ABC...

Step2(Before Scale): First, I need to visualize the 
problem ... But they are tangent to AB and BC. 
Hmm.

Step2(After Scale): <think>
Alternatively, maybe they are arranged in a way 
similar to the incircle and excircle? But with 
circles of radius 34 ... Therefore, maybe the 
circles are tangent to AB or BC, and the other 
side?
</think>

Step3: The problem says "eight circles of radius 
34 are sequentially tangent, and two of the circles 
are tangent to AB and BC of triangle ABC, 
respectively...

Step8(Before Scale): But I don't know theta, so 
this seems stuck.

Step1(Before Scale): Okay, so I need to find the 
inradius of triangle ABC...

Step1(After Scale): <think>
First, let me try to visualize the problem. There's 
triangle ABC ... Because in the right triangle 
formed by B, the center, and the foot of the 
perpendicular from the center to AB, we have 
sin(theta/2) = opposite / hypotenuse = 34 / d.
</think>

Step2(Before Scale): So d = 34 / sin(theta/2).
Step2(After Scale): <think>
If there are two circles tangent to AB and BC, and 
they are tangent to each other ... if the circles are 
arranged in a triangle with inradius R, then 
maybe R = r * k, where k is the scaling factor. If 
we can find k, then we can compute R.
</think>

Step3(Before Scale): But how?
Step3(After Scale): <think>
Alternatively, think of the problem as similar to a 
triangle with inradius R, and circles of radius r 
arranged inside it ... But since the last circle is 
also tangent to AB and BC, its distance from B is 
d_n = 34 / sin(theta/2).
</think>

Step5(Before Scale): Think of the triangle as 
having a certain inradius R, and each circle of 
radius r is placed such that it touches two sides 
and the inradius...

Step5(After Scale): <think>
But this is too vague ... Therefore, this is not 
possible.Given that I'm stuck, and the only 
possible answer I can think of is 34/253, leading 
to m + n = 287, I will go with that.
Final Answer
287
</think>
To solve this problem, we are given two sets of 
circles...Thus,
m + n = 34 + 253 = 287

MUR Per-Step Scale

Step8(After Scale): <think>
But if we have two different arrangements ... 
Therefore, the inradius is 192/5, so m + n = 192 + 
5 = 197.Therefore, the inradius is 192/5, so m + n 
= 192 + 5 = 197.
Final Answer
197
</think>
To determine the inradius of triangle ABC, we 
analyze the geometric arrangement of circles of 
two different radii ... Final Answer
m = 192,  n = 5 ,  m + n = 197

...
[omit some intermediate steps]
...

...
[omit some intermediate steps]
...

NEED SCALING!!!
[exp(m)=1.32, exp(M)/γ=1.26]

NEED SCALING!!!
[exp(m)=1.56, exp(M)/γ=1.37]

Figure 10: Case study. Red denotes the backbone faces high uncertain step. Green denotes key
words of reflecting.
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