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Abstract
There are limitations in learning language001
from text alone. Therefore, recent focus has002
been on developing multimodal models. How-003
ever, few benchmarks exist that can measure004
what language models learn about language005
from multimodal training. We hypothesize006
that training on a visual modality should im-007
prove on the visual commonsense knowledge008
in language models. Therefore, we intro-009
duce two evaluation tasks for measuring visual010
commonsense knowledge in language models1011
and use them to evaluate different multimodal012
models and unimodal baselines. Primarily, we013
find that the visual commonsense knowledge014
is not significantly different between the mul-015
timodal models and unimodal baseline models016
trained on visual text data.017

1 Introduction018

Language models (LMs) trained on large amounts019

of textual data have shown great performance on020

several textual tasks (Devlin et al., 2019; Brown021

et al., 2020). However, recent work has illumi-022

nated limitations with text-only training of LMs.023

These limitations arise from a lack of meaning024

(Bender and Koller, 2020) and experience (Bisk025

et al., 2020), together with the problem of report-026

ing bias (Gordon and Van Durme, 2013). Multi-027

modal training has been identified as one way to028

create models that do not suffer from the aforemen-029

tioned limitations (Paik et al., 2021). While several030

multimodal models have been developed (Tan and031

Bansal, 2019; Li et al., 2019, 2020), few evaluation032

methods exist that can tell us whether multimodal033

training mitigates text-only training limits.034

If we wish to successfully create multimodal035

LMs that learn from more than text, we need a way036

to evaluate them for what we expect them to have037

learned from their multimodal training.038

1A link to a GitHub repo with the evaluation tasks and
code necessary for reproducing our results will be placed here.
For reviewing purposes, we add it as supplementary material.

Figure 1: We introduce the two evaluation tasks Mem-
ory Colors and Visual Property Norms for measuring
visual commonsense knowledge in a LM.

One hypothesis is that multimodal training 039

should aid LMs in learning commonsense knowl- 040

edge (Zhang et al., 2021). There are several text- 041

only evaluation tasks that aim to measure the com- 042

monsense knowledge in LMs (Zellers et al., 2019; 043

Zhou et al., 2020), but none of them focus explicitly 044

on the commonsense knowledge learned through 045

training on more than text. 046

We propose a simple method for measuring the 047

visual commonsense knowledge of a model using 048

two zero-shot masked language text-only tasks, de- 049

picted in Figure 1. The first task is the Memory Col- 050

ors evaluation task (Norlund et al., 2021) and the 051

second we create based on the visual features in the 052

Centre for Speech, Language and the Brain (CSLB) 053

concept property norms dataset (Devereux et al., 054

2014). We refer to the latter task as the Visual Prop- 055

erty Norms evaluation task. We complement our 056

work with the results of four vision-and-language 057

models and four baselines on these two tasks. 058

2 Evaluation tasks 059

Our aim is to evaluate models for visual common- 060

sense knowledge. To do this we make use of the 061

existing Memory Colors evaluation task described 062

in section 2.1, and introduce a new evaluation task, 063

Visual Property Norms in section 2.2. 064
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Common for both tasks is that they contain065

queries in English relating to visual properties of066

tangible concepts and that these queries are based067

on the knowledge of multiple human participants.068

Therefore, the tasks can be considered to evaluate069

visual commonsense knowledge.070

Also common for both tasks is that they use tex-071

tual templates containing a [MASK] token to be072

predicted by a model in a cloze-style fashion. The073

advantages with querying the models in this fash-074

ion is that most LMs2 already have been exposed075

to this type of query format, including most mul-076

timodal models. We can then evaluate any model077

in a masked language modelling fashion on these078

tasks without additional training or having to make079

model-specific adaptations, enabling easy evalu-080

ation for researchers who may wish to use these081

evaluation tasks.082

2.1 Memory Colors083

The Memory Colors evaluation task is a text-only084

zero-shot cloze test that evaluates a model for its085

knowledge of memory colors. It queries a model086

for the color of 109 typical objects using 13 differ-087

ent query templates. The task has been created with088

the help of 11 human participants, so to some extent089

it encodes human visual commonsense knowledge090

limited to colors. Some examples of queries can be091

seen in Figure 1.092

We use the same evaluation metric as specified093

by Norlund et al. (2021), i.e. the accuracy score094

after masking the model output for the 11 possible095

colors black, blue, brown, green, grey, orange, pink,096

purple, red, white and yellow.097

2.2 Visual Property Norms098

We also introduce a new cloze task to evaluate099

for visual commonsense knowledge, denoted Vi-100

sual Property Norms. It is the largest query-based101

pure-language evaluation task capable of evaluat-102

ing LMs for visual commonsense knowledge, con-103

taining 6,541 visual conceptual features produced104

by human participants.105

We base it on the CSLB concept property norms106

dataset (Devereux et al., 2014) that contains the107

conceptual knowledge of 30 human participants for108

each of 541 concrete objects, with 123 participants109

in total. This knowledge is represented as a set of110

features per object, for which each feature is spec-111

ified with a production frequency (PF)3. All fea-112

2Excluding autoregressive LMs.
3I.e. how many of 30 participants produced that feature.

tures are also categorized as either encyclopaedic, 113

functional, other perceptual, taxonomic or visual 114

perceptual. Table 1 contains some examples of 115

visual perceptual features in the dataset.

Concept Relation Feature PF
Cherry has a stalk 17
Fern is green 29
Hair is thin 22
Plum has flesh 9

Table 1: Some concepts and their visual perceptual fea-
tures in the concept property norms dataset.

116
We create our evaluation task from the concept 117

property norms dataset in a set of steps. Firstly, 118

since our goal is to measure visual commonsense 119

knowledge, we only make use of the visual percep- 120

tual features. Since we wish to perform cloze tests 121

through masked language modelling, only feature 122

alternatives describable by one wordpiece from the 123

BERT base uncased tokenizer are included. 124

Furthermore, we only include the four most com- 125

mon feature relations in the task. These are has, 126

has a, made of and is. We then part the data into 127

five different segments based on production fre- 128

quency. This is done by thresholding the features 129

for each concept such that only features with a PF 130

above the set threshold for a certain data segment 131

are included as gold labels in that segment. Fea- 132

tures with higher PFs can be considered to be more 133

apparent. The segments and their PF thresholds are 134

listed in Appendix B. 135

Lastly, we create queries from the concepts in 136

each data segment using 8 different query tem- 137

plates, seen in Appendix C. This is necessary to get 138

a robust estimate of the performance of the evalu- 139

ated LMs, since LMs are sensitive to query format 140

(Jiang et al., 2020). Some examples of Visual Prop- 141

erty Norms queries can be seen in Figure 1. 142

Similarly to Weir et al. (2020) we use the mean 143

average precision (mAP) as our evaluation metric, 144

since there may be multiple correct answers for 145

each query in our evaluation data. We calculate 146

this score for each concept and relation, per query 147

template and production frequency segment. We 148

then get a final score for each production frequency 149

segment by taking the average score over all query 150

templates and concepts per segment. This metric is 151

measured over a vocabulary that has been masked 152

to only contain the 614 possible answer alternatives 153

in the Visual Property Norms evaluation data. 154
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Figure 2: The model accuracy on Memory Colors and model scores on Visual Property Norms per production
frequency segment. The error bars indicate the standard deviation of the model performance over the different
query templates. The score has been calculated by masking the vocabulary of the models to only contain the
possible answers of the task.

3 Models155

We evaluate four multimodal pre-trained models156

for their visual commonsense knowledge. These157

are CLIP-BERT both with and without imagina-158

tion4(Norlund et al., 2021), a LXMERT base un-159

cased (Tan and Bansal, 2019) and VisualBERT (Li160

et al., 2019). We also evaluate four unimodal base-161

line models. These are a BERT base uncased pre-162

trained on English Wikipedia and BookCorpus, a163

BERT base uncased further trained on the pure-text164

part of the CLIP-BERT training data (BERT-CLIP-165

BERT-train) and two BERT base uncased models166

trained on the pure-text part of the LXMERT train-167

ing data, one from scratch and one initialized from168

pre-trained BERT weights (BERT-LXMERT-train-169

scratch and BERT-LXMERT-train).170

All models are to some extent based on the171

BERT base architecture and consequently share172

the same vocabulary and tokenizer. They are also173

4The explicit version has the ability to “imagine” visual
features when queried with text.

of similar sizes with ∼ 110M trainable weights, the 174

exception being LXMERT with ∼ 230M trainable 175

weights. Additional information about the models 176

can be found in Appendix A. 177

Adapting the models for pure-text queries 178

The majority of current multimodal models have 179

not been developed to be queried only with text. 180

In this case, both CLIP-BERT and VisualBERT 181

should work well with only removing their visual 182

features input, since they are single-stream mod- 183

els. However, LXMERT is a dual-stream model 184

that requires a visual feature input. We handle the 185

removal of visual information by simply removing 186

the visual processing chain in LXMERT, making 187

the language input the only input given to the Cross- 188

Modality Encoder in the model. This would not 189

work if we still wanted to use the model in a multi- 190

modal fashion, but we can make this adaption since 191

we are only interested in querying the model for 192

visual commonsense knowledge via language. 193
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4 Results194

The results of the models on our two evaluation195

tasks can be seen in Figure 2. We format the analy-196

sis of the results around a set of questions.197

Do the multimodal models display more198

memory colors knowledge? The multimodal199

CLIP-BERT-explicit model has the best perfor-200

mance on this task. So to some extent, yes. But201

it is worth noting that the unimodal BERT model202

trained on LXMERT training data is second best on203

the task, outperforming both LXMERT and Visual-204

BERT, indicating a small multimodal advantage.205

Is performance on Memory Colors indica-206

tive of performance on Visual Property Norms?207

The ranking visible in Figure 2a does not entirely208

differ from that in Figure 2b. The main exception209

being CLIP-BERT-explicit, which has the best per-210

formance on Memory Colors, but is outperformed211

by most other models on Visual Property Norms.212

We perform a closer analysis of how these results213

compare by extracting Visual Property Norm re-214

sults for colors in Appendix C.215

Do the models perform better when evalu-216

ated on more apparent concept features? We217

can observe how the model performance unani-218

mously increases with increased production fre-219

quency threshold in Figure 2b. Thus, it appears as220

though the models agree more with concept fea-221

tures that can be regarded as more apparent.222

Do the multimodal models contain more vi-223

sual commonsense knowledge? The results in224

Figure 2b do not really indicate clear advantage of225

either unimodal or multimodal models. The multi-226

modal model CLIP-BERT-implicit may generally227

have the best performance on the task, but the uni-228

modal models trained on visual text data do not229

differ much in performance. For example, the uni-230

modal BERT-LXMERT-train performs almost on231

par with CLIP-BERT-implicit.232

However, we cannot exclude the possibility that233

the multimodal models suffer in performance due234

to a lack of visual feature input. Future work inves-235

tigating this would be valuable.236

Are the models sensitive to how they are237

queried? Prevalent for all models is that their per-238

formance varies greatly with how they are queried.239

BERT-LXMERT-train may have the best perfor-240

mance on Visual Property Norms if queried differ-241

ently. We evaluate the model performances depend-242

ing on query template in Appendix C.243

Does fine-tuning on visual language develop244

visual commonsense knowledge? In both Fig- 245

ures 2a and 2b it is visible that unimodal model 246

performance greatly improves with fine-tuning on 247

visual text corpora. Potential explanations for this 248

are that the models become more attuned to the 249

task with fine-tuning, or that corpora from VQA 250

and image captioning do not suffer as much from 251

reporting bias compared to more common corpora. 252

5 Related Work 253

Weir et al. (2020) also use the CSLB concept prop- 254

erty norms to probe LMs for commonsense knowl- 255

edge. Our work differs from theirs in that we focus 256

on visual commonsense knowledge and evaluate 257

several multimodal models for whether their multi- 258

modal training grants them additional visual com- 259

monsense knowledge. 260

Norlund et al. (2021) also query a multimodal 261

model for visual commonsense knowledge but with 262

a focus on memory colors. Paik et al. (2021) 263

present similar work but with more focus on prob- 264

ing and reporting bias. In our work, we include 265

general visual commonsense knowledge concepts 266

and evaluate several multimodal models. 267

6 Conclusions 268

We introduce new evaluation methods for measur- 269

ing the visual commonsense knowledge in LMs 270

and evaluate a number of multimodal LMs on these 271

benchmarks. We find that there are no significant 272

differences in performance between models trained 273

on pure-text and models trained on images and text. 274

Most prominently, we find that a unimodal LM 275

trained on image captions and VQA queries can at- 276

tain a visual commonsense knowledge on par with 277

that of a multimodal model. 278

We also confirm the results by Jiang et al. (2020), 279

that LMs are sensitive to query format even when 280

querying for commonsense knowledge. This casts 281

some doubts on what is really measured in a model 282

for a cloze task and if we can reason about LMs 283

as having knowledge. An interesting future step 284

would be to investigate this further and if it would 285

be more applicable to use e.g. probing or some 286

other evaluation method. 287

Nonetheless, this is a first step towards measur- 288

ing the visual commonsense knowledge in multi- 289

modal as well as unimodal LMs. We hope that 290

the evaluation tasks introduced here may aid other 291

researchers in their aim to create models that learn 292

from more than text. 293
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amount that is quite small compared to those of408

CLIP-BERT and LXMERT.409

It is also worth noting on the different backbones410

of the models. CLIP-BERT is a single-stream411

multimodal model with a CLIP backbone for vi-412

sual processing. LXMERT is a dual-stream multi-413

modal model with a Faster R-CNN detector back-414

bone. While VisualBERT is a single-stream model415

that also utilizes Faster R-CNN detector backbone.416

Since CLIP has been trained on the immense WIT417

dataset, the backbone data sizes differ greatly be-418

tween CLIP-BERT and the other multimodal mod-419

els.420

B Additional information on Visual421

Property Norms422

Information about the different segments and num-423

ber of entries per segment in the Visual Property424

Norms can be seen in Table 3.425

C Additional results on Visual Property426

Norms427

Additional model results on the Visual Property428

Norms can be found here.429

Figure 3 indicates model performance per fea-430

ture relation across the production frequency seg-431

ments. We can observe how the models show the432

best performance for the is made of relation, which433

arguably can be associated more with visual per-434

ceptual properties.435

Figure 4 shows model score per query template436

across all production frequency segments, indicat-437

ing that CLIP-BERT-implicit benefits from being438

more robust to different query templates. Addition-439

ally, these results indicate that BERT-LXMERT-440

train would have the best overall score on Visual441

Property Norms if the queries containing “q: a”442

were to be removed.443

Lastly, Figure 5 contains the results of the mod-444

els on the color part of Visual Property Norms445

which has been filtered to only contain queries with446

gold labels describing colors. Here, we see some447

indications of a better performance of CLIP-BERT-448

explicit for colors. Potentially, the imagination449

capacity of this model is more helpful for queries450

with answers relating to more basic visual proper-451

ties, such as color.452
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Model Text Visual text Images+Text Backbone Training objectives
BERT 80M MLM, NSP
CLIP-BERT-implicit 80M 4.7M 400M MLM
CLIP-BERT-explicit 80M 4.7M 400M MLM
BERT-CLIP-BERT-train 80M 4.7M MLM
LXMERT 9.2M 0.1M MLM, RFR, DLC,

ITM, IQA
BERT-LXMERT-train 80M 9.0M MLM
BERT-LXMERT-train-scratch 9.0M MLM
VisualBERT 80M 1.7M 0.1M MLM, ITM

Table 2: An overview of the pre-trained models, the sizes of their training datasets and their pre-training objectives.
The sizes are measured in number of training samples. The backbone column indicates the training data sizes for
the image processing backbones of the models. For the training objectives, ITM refers to Image-Text Matching,
RFR to RoI-Feature Regression, DLC to Detected Label Classification, MVM to Masked Visual Modeling and
IQA to image QA.

has has a is is made of
Feature relation

0.0

0.2

0.4

0.6

0.8

Sc
or

e

BERT-base
CLIP-BERT-implicit
CLIP-BERT-explicit
BERT-CLIP-BERT-train
LXMERT-base
BERT-LXMERT-train
BERT-LXMERT-train-scratch
VisualBERT
Random

Figure 3: The model scores on Visual Property Norms per feature relation. The error bars indicate the standard
deviation of the model performance over the different query templates. The score has been calculated by masking
the vocabulary of the models to only contain the possible answers of the task.
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[DESCRIPTOR] [CONCEPT] [FEATURE_STARTER] [MASK].

[DESCRIPTOR] [CONCEPT] usually [FEATURE_STARTER] [MASK].

generally, [DESCRIPTOR] [CONCEPT] [FEATURE_STARTER] [MASK].

[DESCRIPTOR] [CONCEPT] generally [FEATURE_STARTER] [MASK].

everybody knows that [DESCRIPTOR] [CONCEPT] [FEATURE_STARTER] [MASK].
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Figure 4: The score for each model on Visual Property Norms per query template. The score has been calculated
by masking the vocabulary of the models to only contain the possible answers of the task.
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Figure 5: The score for each model per production frequency segment on Visual Property Norms that has been
filtered to only contain samples for which the correct answer is one or more out of 11 possible colors. The score
has been calculated by masking the vocabulary of the models to only contain the possible answers of the task.
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PF entries has has a made of is
2 6,541 1,675 1,190 1,176 2,500
5 3641 1,016 642 760 1,223

10 2001 583 347 509 562
20 613 169 88 209 147
30 27 5 2 10 10

Table 3: The data segments segmented based on pro-
duction frequencies together with their number of en-
tries. The entries are calculated as the number of
feature-concept-label entries, where there can be sev-
eral features belonging to the same feature and con-
cept. The PF column indicates the production fre-
quency threshold for each segment, all features with a
production frequency higher or equal to this threshold
are included in the segment. We also list the number of
labels per feature relation type.
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