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Abstract

There are limitations in learning language
from text alone. Therefore, recent focus has
been on developing multimodal models. How-
ever, few benchmarks exist that can measure
what language models learn about language
from multimodal training. We hypothesize
that training on a visual modality should im-
prove on the visual commonsense knowledge
in language models. Therefore, we intro-
duce two evaluation tasks for measuring visual
commonsense knowledge in language models'
and use them to evaluate different multimodal
models and unimodal baselines. Primarily, we
find that the visual commonsense knowledge
is not significantly different between the mul-
timodal models and unimodal baseline models
trained on visual text data.

1 Introduction

Language models (LMs) trained on large amounts
of textual data have shown great performance on
several textual tasks (Devlin et al., 2019; Brown
et al., 2020). However, recent work has illumi-
nated limitations with text-only training of LMs.
These limitations arise from a lack of meaning
(Bender and Koller, 2020) and experience (Bisk
et al., 2020), together with the problem of report-
ing bias (Gordon and Van Durme, 2013). Multi-
modal training has been identified as one way to
create models that do not suffer from the aforemen-
tioned limitations (Paik et al., 2021). While several
multimodal models have been developed (Tan and
Bansal, 2019; Li et al., 2019, 2020), few evaluation
methods exist that can tell us whether multimodal
training mitigates text-only training limits.

If we wish to successfully create multimodal
LMs that learn from more than text, we need a way
to evaluate them for what we expect them to have
learned from their multimodal training.

'A link to a GitHub repo with the evaluation tasks and

code necessary for reproducing our results will be placed here.
For reviewing purposes, we add it as supplementary material.

Memory Colors
The usual color of a banana is [MASK]. (yellow)

Visual Property Norms
A banana is [MASK]. (yellow)
A banana has [MASK]. (skin)

Memory Colors
What is the color of an elephant? [MASK]. (grey)

Visual Property Norms

An elephant usually has [MASK]. (ears)
An elephant usually has a [MASK]. (trunk)
An elephant usually is [MASK]. (big, grey)

Figure 1: We introduce the two evaluation tasks Mem-
ory Colors and Visual Property Norms for measuring
visual commonsense knowledge in a LM.

One hypothesis is that multimodal training
should aid LMs in learning commonsense knowl-
edge (Zhang et al., 2021). There are several text-
only evaluation tasks that aim to measure the com-
monsense knowledge in LMs (Zellers et al., 2019;
Zhou et al., 2020), but none of them focus explicitly
on the commonsense knowledge learned through
training on more than text.

We propose a simple method for measuring the
visual commonsense knowledge of a model using
two zero-shot masked language text-only tasks, de-
picted in Figure 1. The first task is the Memory Col-
ors evaluation task (Norlund et al., 2021) and the
second we create based on the visual features in the
Centre for Speech, Language and the Brain (CSLB)
concept property norms dataset (Devereux et al.,
2014). We refer to the latter task as the Visual Prop-
erty Norms evaluation task. We complement our
work with the results of four vision-and-language
models and four baselines on these two tasks.

2 Evaluation tasks

Our aim is to evaluate models for visual common-
sense knowledge. To do this we make use of the
existing Memory Colors evaluation task described
in section 2.1, and introduce a new evaluation task,
Visual Property Norms in section 2.2.



Common for both tasks is that they contain
queries in English relating to visual properties of
tangible concepts and that these queries are based
on the knowledge of multiple human participants.
Therefore, the tasks can be considered to evaluate
visual commonsense knowledge.

Also common for both tasks is that they use tex-
tual templates containing a [MASK] token to be
predicted by a model in a cloze-style fashion. The
advantages with querying the models in this fash-
ion is that most LMs? already have been exposed
to this type of query format, including most mul-
timodal models. We can then evaluate any model
in a masked language modelling fashion on these
tasks without additional training or having to make
model-specific adaptations, enabling easy evalu-
ation for researchers who may wish to use these
evaluation tasks.

2.1 Memory Colors

The Memory Colors evaluation task is a text-only
zero-shot cloze test that evaluates a model for its
knowledge of memory colors. It queries a model
for the color of 109 typical objects using 13 differ-
ent query templates. The task has been created with
the help of 11 human participants, so to some extent
it encodes human visual commonsense knowledge
limited to colors. Some examples of queries can be
seen in Figure 1.

We use the same evaluation metric as specified
by Norlund et al. (2021), i.e. the accuracy score
after masking the model output for the 11 possible
colors black, blue, brown, green, grey, orange, pink,
purple, red, white and yellow.

2.2 Visual Property Norms

We also introduce a new cloze task to evaluate
for visual commonsense knowledge, denoted Vi-
sual Property Norms. It is the largest query-based
pure-language evaluation task capable of evaluat-
ing LMs for visual commonsense knowledge, con-
taining 6,541 visual conceptual features produced
by human participants.

We base it on the CSLB concept property norms
dataset (Devereux et al., 2014) that contains the
conceptual knowledge of 30 human participants for
each of 541 concrete objects, with 123 participants
in total. This knowledge is represented as a set of
features per object, for which each feature is spec-
ified with a production frequency (PF)>. All fea-

?Excluding autoregressive LMs.
3I.e. how many of 30 participants produced that feature.

tures are also categorized as either encyclopaedic,
functional, other perceptual, taxonomic or visual
perceptual. Table 1 contains some examples of
visual perceptual features in the dataset.

Concept | Relation | Feature | PF
Cherry | hasa stalk 17
Fern is green 29
Hair is thin 22
Plum has flesh 9

Table 1: Some concepts and their visual perceptual fea-
tures in the concept property norms dataset.

We create our evaluation task from the concept
property norms dataset in a set of steps. Firstly,
since our goal is to measure visual commonsense
knowledge, we only make use of the visual percep-
tual features. Since we wish to perform cloze tests
through masked language modelling, only feature
alternatives describable by one wordpiece from the
BERT base uncased tokenizer are included.

Furthermore, we only include the four most com-
mon feature relations in the task. These are has,
has a, made of and is. We then part the data into
five different segments based on production fre-
quency. This is done by thresholding the features
for each concept such that only features with a PF
above the set threshold for a certain data segment
are included as gold labels in that segment. Fea-
tures with higher PFs can be considered to be more
apparent. The segments and their PF thresholds are
listed in Appendix B.

Lastly, we create queries from the concepts in
each data segment using 8 different query tem-
plates, seen in Appendix C. This is necessary to get
a robust estimate of the performance of the evalu-
ated LMs, since LMs are sensitive to query format
(Jiang et al., 2020). Some examples of Visual Prop-
erty Norms queries can be seen in Figure 1.

Similarly to Weir et al. (2020) we use the mean
average precision (mAP) as our evaluation metric,
since there may be multiple correct answers for
each query in our evaluation data. We calculate
this score for each concept and relation, per query
template and production frequency segment. We
then get a final score for each production frequency
segment by taking the average score over all query
templates and concepts per segment. This metric is
measured over a vocabulary that has been masked
to only contain the 614 possible answer alternatives
in the Visual Property Norms evaluation data.
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Figure 2: The model accuracy on Memory Colors and model scores on Visual Property Norms per production
frequency segment. The error bars indicate the standard deviation of the model performance over the different
query templates. The score has been calculated by masking the vocabulary of the models to only contain the

possible answers of the task.

3 Models

We evaluate four multimodal pre-trained models
for their visual commonsense knowledge. These
are CLIP-BERT both with and without imagina-
tion*(Norlund et al., 2021), a LXMERT base un-
cased (Tan and Bansal, 2019) and Visual BERT (Li
et al., 2019). We also evaluate four unimodal base-
line models. These are a BERT base uncased pre-
trained on English Wikipedia and BookCorpus, a
BERT base uncased further trained on the pure-text
part of the CLIP-BERT training data (BERT-CLIP-
BERT-train) and two BERT base uncased models
trained on the pure-text part of the LXMERT train-
ing data, one from scratch and one initialized from
pre-trained BERT weights (BERT-LXMERT-train-
scratch and BERT-LXMERT-train).

All models are to some extent based on the
BERT base architecture and consequently share
the same vocabulary and tokenizer. They are also

“The explicit version has the ability to “imagine” visual
features when queried with text.

of similar sizes with ~ 110M trainable weights, the
exception being LXMERT with ~ 230M trainable
weights. Additional information about the models
can be found in Appendix A.

Adapting the models for pure-text queries
The majority of current multimodal models have
not been developed to be queried only with text.
In this case, both CLIP-BERT and Visual BERT
should work well with only removing their visual
features input, since they are single-stream mod-
els. However, LXMERT is a dual-stream model
that requires a visual feature input. We handle the
removal of visual information by simply removing
the visual processing chain in LXMERT, making
the language input the only input given to the Cross-
Modality Encoder in the model. This would not
work if we still wanted to use the model in a multi-
modal fashion, but we can make this adaption since
we are only interested in querying the model for
visual commonsense knowledge via language.



4 Results

The results of the models on our two evaluation
tasks can be seen in Figure 2. We format the analy-
sis of the results around a set of questions.

Do the multimodal models display more
memory colors knowledge? The multimodal
CLIP-BERT-explicit model has the best perfor-
mance on this task. So to some extent, yes. But
it is worth noting that the unimodal BERT model
trained on LXMERT training data is second best on
the task, outperforming both LXMERT and Visual-
BERT, indicating a small multimodal advantage.

Is performance on Memory Colors indica-
tive of performance on Visual Property Norms?
The ranking visible in Figure 2a does not entirely
differ from that in Figure 2b. The main exception
being CLIP-BERT-explicit, which has the best per-
formance on Memory Colors, but is outperformed
by most other models on Visual Property Norms.
We perform a closer analysis of how these results
compare by extracting Visual Property Norm re-
sults for colors in Appendix C.

Do the models perform better when evalu-
ated on more apparent concept features? We
can observe how the model performance unani-
mously increases with increased production fre-
quency threshold in Figure 2b. Thus, it appears as
though the models agree more with concept fea-
tures that can be regarded as more apparent.

Do the multimodal models contain more vi-
sual commonsense knowledge? The results in
Figure 2b do not really indicate clear advantage of
either unimodal or multimodal models. The multi-
modal model CLIP-BERT-implicit may generally
have the best performance on the task, but the uni-
modal models trained on visual text data do not
differ much in performance. For example, the uni-
modal BERT-LXMERT-train performs almost on
par with CLIP-BERT-implicit.

However, we cannot exclude the possibility that
the multimodal models suffer in performance due
to a lack of visual feature input. Future work inves-
tigating this would be valuable.

Are the models sensitive to how they are
queried? Prevalent for all models is that their per-
formance varies greatly with how they are queried.
BERT-LXMERT-train may have the best perfor-
mance on Visual Property Norms if queried differ-
ently. We evaluate the model performances depend-
ing on query template in Appendix C.

Does fine-tuning on visual language develop

visual commonsense knowledge? In both Fig-
ures 2a and 2b it is visible that unimodal model
performance greatly improves with fine-tuning on
visual text corpora. Potential explanations for this
are that the models become more attuned to the
task with fine-tuning, or that corpora from VQA
and image captioning do not suffer as much from
reporting bias compared to more common corpora.

5 Related Work

Weir et al. (2020) also use the CSLB concept prop-
erty norms to probe LMs for commonsense knowl-
edge. Our work differs from theirs in that we focus
on visual commonsense knowledge and evaluate
several multimodal models for whether their multi-
modal training grants them additional visual com-
monsense knowledge.

Norlund et al. (2021) also query a multimodal
model for visual commonsense knowledge but with
a focus on memory colors. Paik et al. (2021)
present similar work but with more focus on prob-
ing and reporting bias. In our work, we include
general visual commonsense knowledge concepts
and evaluate several multimodal models.

6 Conclusions

We introduce new evaluation methods for measur-
ing the visual commonsense knowledge in LMs
and evaluate a number of multimodal LMs on these
benchmarks. We find that there are no significant
differences in performance between models trained
on pure-text and models trained on images and text.
Most prominently, we find that a unimodal LM
trained on image captions and VQA queries can at-
tain a visual commonsense knowledge on par with
that of a multimodal model.

We also confirm the results by Jiang et al. (2020),
that LMs are sensitive to query format even when
querying for commonsense knowledge. This casts
some doubts on what is really measured in a model
for a cloze task and if we can reason about LMs
as having knowledge. An interesting future step
would be to investigate this further and if it would
be more applicable to use e.g. probing or some
other evaluation method.

Nonetheless, this is a first step towards measur-
ing the visual commonsense knowledge in multi-
modal as well as unimodal LMs. We hope that
the evaluation tasks introduced here may aid other
researchers in their aim to create models that learn
from more than text.
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A Additional model information

Additional information about the models used in
our work can be found in Table 2. We can ob-
serve that VisualBERT has been trained on a data
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amount that is quite small compared to those of
CLIP-BERT and LXMERT.

It is also worth noting on the different backbones
of the models. CLIP-BERT is a single-stream
multimodal model with a CLIP backbone for vi-
sual processing. LXMERT is a dual-stream multi-
modal model with a Faster R-CNN detector back-
bone. While VisualBERT is a single-stream model
that also utilizes Faster R-CNN detector backbone.
Since CLIP has been trained on the immense WIT
dataset, the backbone data sizes differ greatly be-
tween CLIP-BERT and the other multimodal mod-
els.

B Additional information on Visual
Property Norms

Information about the different segments and num-
ber of entries per segment in the Visual Property
Norms can be seen in Table 3.

C Additional results on Visual Property
Norms

Additional model results on the Visual Property
Norms can be found here.

Figure 3 indicates model performance per fea-
ture relation across the production frequency seg-
ments. We can observe how the models show the
best performance for the is made of relation, which
arguably can be associated more with visual per-
ceptual properties.

Figure 4 shows model score per query template
across all production frequency segments, indicat-
ing that CLIP-BERT-implicit benefits from being
more robust to different query templates. Addition-
ally, these results indicate that BERT-LXMERT-
train would have the best overall score on Visual
Property Norms if the queries containing “q: a”
were to be removed.

Lastly, Figure 5 contains the results of the mod-
els on the color part of Visual Property Norms
which has been filtered to only contain queries with
gold labels describing colors. Here, we see some
indications of a better performance of CLIP-BERT-
explicit for colors. Potentially, the imagination
capacity of this model is more helpful for queries
with answers relating to more basic visual proper-
ties, such as color.



Model Text Visual text Images+Text | Backbone | Training objectives
BERT 80M MLM, NSP
CLIP-BERT-implicit 80M 4. TM 400M MLM
CLIP-BERT-explicit 80M 4.TM 400M MLM
BERT-CLIP-BERT-train 80M 4.7M MLM

LXMERT 9.2M 0.1M MLM, RFR, DLC,

IT™, IQA

BERT-LXMERT-train 80M 9.0M MLM
BERT-LXMERT-train-scratch 9.0M MLM

Visual BERT 80M 1.7M 0.1M MLM, ITM

Table 2: An overview of the pre-trained models, the sizes of their training datasets and their pre-training objectives.
The sizes are measured in number of training samples. The backbone column indicates the training data sizes for
the image processing backbones of the models. For the training objectives, ITM refers to Image-Text Matching,
RFR to Rol-Feature Regression, DLC to Detected Label Classification, MVM to Masked Visual Modeling and

IQA to image QA.
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Figure 3: The model scores on Visual Property Norms per feature relation. The error bars indicate the standard
deviation of the model performance over the different query templates. The score has been calculated by masking
the vocabulary of the models to only contain the possible answers of the task.



describe the properties of [DESCRIPTOR] [CONCEPT]
[DESCRIPTOR] [CONCEPT] usually [FEATURE_STARTER] [MASK].

describe the properties of [DESCRIPTOR] [CONCEPT]
[DESCRIPTOR] [CONCEPT] [FEATURE_STARTER] [MASK].

q: [DESCRIPTOR] [CONCEPT] [FEATURE_STARTER]? a: [MASK].

q: [DESCRIPTOR] [CONCEPT] usually [FEATURE_STARTER]? a: [MASK].

[DESCRIPTOR] [CONCEPT] [FEATURE_STARTER] [MASK].

Query template

[DESCRIPTOR] [CONCEPT] usually [FEATURE_STARTER] [MASK].

generally, [DESCRIPTOR] [CONCEPT] [FEATURE_STARTER] [MASK].

[DESCRIPTOR] [CONCEPT] generally [FEATURE_STARTER] [MASK].

everybody knows that [DESCRIPTOR] [CONCEPT] [FEATURE_STARTER] [MASK].
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Figure 4: The score for each model on Visual Property Norms per query template. The score has been calculated
by masking the vocabulary of the models to only contain the possible answers of the task.
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Figure 5: The score for each model per production frequency segment on Visual Property Norms that has been
filtered to only contain samples for which the correct answer is one or more out of 11 possible colors. The score
has been calculated by masking the vocabulary of the models to only contain the possible answers of the task.



PF | entries has hasa made of is

2| 6541 | 1,675 1,190 1,176 2,500

5 3641 | 1,016 642 760 1,223
10 | 2001 583 347 509 562
20 613 169 88 209 147
30 27 5 2 10 10

Table 3: The data segments segmented based on pro-
duction frequencies together with their number of en-
tries. The entries are calculated as the number of
feature-concept-label entries, where there can be sev-
eral features belonging to the same feature and con-
cept. The PF column indicates the production fre-
quency threshold for each segment, all features with a
production frequency higher or equal to this threshold
are included in the segment. We also list the number of
labels per feature relation type.



