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Abstract

Multimodal large language models (MLLM) face challenges in leveraging their rich
knowledge since spanning different modalities is nontrivial and their contextual
ambiguity arises from lack of paired data. In the context of audio generation
based on MLLM, the annotation of audio-text paired datasets demands significant
human resources due to the complexity of audio data, making such datasets much
scarcer and harder to access compared to image-text paired datasets. To address
these issues, we propose a novel technique called efficient generative multimodal
integration (EGMI), which enables audio generation tasks leveraging only image-
text data. Based on pretrained LLM’s powerful knowledge on text comprehension,
EGMI successfully leverages image-text paired datasets for cross-modal alignment,
enabling interactions between audio and image information. We also introduce
an efficient mapping network, called the EGMI mapper, and utilize it to attend
to image information when generating audio data. Therefore, we have extended
the limits of existing methods in terms of scalability and flexibility. Also, we
have demonstrated that EGMI maximizes the interaction between cross-modal
knowledge, improving alignment, and sample quality.

1 Introduction

Recently, large language models (LLMs) have demonstrated significant ability in natural lan-
guage comprehension and generation. Despite recent advances, fully understanding multimodal
data—including audio, visual, and language—remains challenging. This is largely due to difficulties
in cross-modal alignment and integration, compounded by the scarcity of high-quality datasets.
Therefore, the newly emerging multimodal large language models (MLLMs) have primarily focused
on text-image interactions, while giving relatively little attention to audio data.

While recent studies have explored generating audio with various generative models, they often face
difficulties in effectively capturing and integrating relationships between different modalities. They
often depend on extra encoders, adapters, or complex objectives, making the fine-tuning process
cumbersome. Furthermore, one of the major challenges for MLLMs is the scarcity of paired datasets,
especially in the audio domain, where audio-text pairs are much rarer than image-text pairs due to the
significant effort required for annotation.

To address these challenges, we propose a novel MLLM-based audio generative model, dubbed
efficient generative multimodal integration (EGMI). It leverages image-text paired datasets and
pretrained audio models while minimizing the use of learnable layers. The newly designed EGMI
mapper enhances cross-modal understanding between images and audio by fusing and aligning
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features. This helps address the challenge of limited paired audio-text data. Experimental results
show that the proposed method significantly improves both the degree of multimodal alignment and
the quality of generated samples.

2 Related Work

2.1 End-to-End MLLMs for Both Comprehension and Generation

Research on MLLMs has made significant progress in the text and image domains, with comparatively
less emphasis on audio. Early works such as BLIP-2 [Li et al., 2023], Flamingo [Alayrac et al., 2022],
and LLaVA [Liu et al., 2024] advanced MLLM’s understanding of image data by leveraging high-
quality image-text paired datasets, which are easily accessible. SALMONN [Tang et al., 2023]
enhances multimodal comprehension by incorporating Whisper [Radford et al., 2023] and BEATs
[Chen et al., 2022] encoders into LLM training. While this design improves audio processing, the
LLM training procedure requires significant computational resources and large amounts of data.
Similarly, Macaw-LLM [Lyu et al., 2023] utilizes separate encoders for images, audio, and video,
which also demands extensive training time and large datasets to construct a joint embedding space
for all modalities. In contrast, PandaGPT [Su et al., 2023] and ImageBind-LLM [Han et al., 2023]
can process various modalities in an unified manner by utilizing image-text paired data, however,
but they have not yet extended their capabilities to high-quality generation. To address the issue,
there are many recent studies focusing on incorporating MLLM with audio generative models, such
as, TANGO [Majumder et al., 2024] and AudioPaLM [Rubenstein et al., 2023]. While NExT-GPT
[Wu et al., 2023] can generate across various modalities, but still relies heavily on modality-specific
encoders and paired datasets. Additionally, their interaction between modalities during the generation
process is insufficient, which can lead to consistency issues and possibly limit the scalability of
MLLM.

2.2 Models Using Multimodal Paired Datasets

In multimodal tasks, well-constructed paired datasets are crucial for learning interactions between
different modalities. However, high-quality audio-text paired data are limited, creating significant
challenges for audio generation tasks. Models like LLaVA [Liu et al., 2024] and GILL [Koh et al.,
2024] utilize text-image paired data, while SALMONN [Tang et al., 2023], Macaw-LLM [Lyu et al.,
2023], and AudioPaLM [Rubenstein et al., 2023] rely on text-audio paired datasets. Similarly, NExT-
GPT [Wu et al., 2023] requires paired data for each modality it generates, which demands substantial
resources. But in general, high-quality audio-text paired data is insufficient due to the complexity
of describing time-based audio, and the labor-intensive annotation process [Agostinelli et al., 2023].
To address these challenges, EGMI introduces a novel technique that extends the use of image-text
paired data for audio generation. Experimental results demonstrate that this approach effectively
mitigates the issue of dataset scarcity while improving the model’s efficiency and scalability.

3 EGMI

3.1 Model Architecture

The proposed EGMI efficiently bridges the gap between disparate modalities by leveraging a pre-
trained MLLM. Here, we utilized PandaGPT [Su et al., 2023] as our baseline model. To map
cross-modal embeddings into a unified representation space, we introduce a learnable projection layer
that facilitates seamless interactions between the two models. For image embedding and generation,
we employ the visual encoder from ImageBind [Girdhar et al., 2023] and Stable Diffusion [Rom-
bach et al., 2022], respectively, while AudioLDM-L [Liu et al., 2023] is used for audio generation.
The core module, the EGMI mapper, adopts a simplified transformer encoder-decoder structure to
capture cross-modal interactions between visual and audio token embeddings (i.e., [IMG1-8] and
[AUD1-8]). EGMI mapper grounds these interactions within the LLM and aligns them with the
text/image generation space. An overview of the entire framework is shown in 1, with a detailed
description of the EGMI mapper provided in Section 3.3
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Figure 1: The overall framework of EGMI involves feeding encoded images and text into the LLM,
which generates [IMG1-8] and [AUD1-8] tokens. The EGMI mapper grounds these embeddings
onto the representations of text encoders within the image and audio generators. EGMI integrates
cross-modal data and optimizes alignment for enhanced multimodal performance.

3.2 Training Pipeline

The objective of training EGMI is to generate multimodal outputs using only text-image paired data by
effectively learning cross-modal alignment between images and audio, without relying on audio data.
The input image is encoded by the ImageBind visual encoder [Girdhar et al., 2023] and subsequently
projected for input into the LLM. The special tokens [IMG1-8] and [AUD1-8], which encapsulate
visual and potential audio information, are then fused with the text input. The LLM integrates
all tokens through the attention mechanism and generates output embeddings. In the generated
sequence, the [IMG1-8] and [AUD1-8] tokens appear at the end, following the LLM’s autoregressive
training mechanism, and serve as embeddings containing both text and image information. Only the
embeddings corresponding to these tokens are passed to the EGMI mapper for further processing.The
EGMI mapper, built on a transformer encoder-decoder structure, aligns and integrates information by
modeling the interaction between audio and image embeddings. This process is primarily used to
learn the conditions necessary for audio generation based on image data. To align the EGMI mapper’s
output with the text encoders of Stable Diffusion [Rombach et al., 2022] and AudioLDM [Liu et al.,
2023], we prepend the prefix ‘The image of’ to the image captions in the training data, allowing
pre-extraction of embeddings from the CLIP encoder [Radford et al., 2021]. Similarly, for audio
generation, we use the prefix ‘The sound of’ to extract embeddings from the CLAP encoder [Elizalde
et al., 2023]. The entire output embeddings of the EGMI mapper are then aligned to minimize the
MSE loss. During the training process, only the special tokens, [IMG1-8] and [AUD1-8], and the
EGMI mapper are trained, allowing the model to align with audio generation models.

3.3 EGMI Mapper

As shown in Figure 2, the EGMI mapper is a transformer-based structure designed to map relevant
multimodal information by aligning the representations embedded in images and audio, functioning
as both an image and audio mapper. We employ learnable queries to capture representative features
and generate a fixed-size output from [IMG1-8] and [AUD1-8], similar to the approaches used in
GILL [Koh et al., 2024], BLIP-2 [Li et al., 2023], and DETR [Carion et al., 2020]. In this setup, except
for the image and audio mappers, the transformer encoder/decoder and learnable query parameters
are shared. This configuration effectively facilitates information exchange and alignment between
modalities. Here, it is noteworthy that the EGMI mapper learns by processing [IMG] and [AUD]
representations in distinct ways. For operations involving CLIP [Radford et al., 2021], the text encoder
of Stable Diffusion [Rombach et al., 2022] is utilized. In this case, [IMG] serves as the query in
the transformer encoder, while [AUD] functions as the key and value. Conversely, for operations
involving CLAP [Elizalde et al., 2023], the AudioLDM [Liu et al., 2023] text encoder is used. Here,
[AUD] acts as the query, while [IMG] is treated as the key and value for attention. The EGMI mapper
is designed to align multimodal information with the CLIP and CLAP text encoders, aiming to
capture interactions across differently configured latent spaces. The loss signals from these encoders
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Figure 2: The architecture of the EGMI mapper: the left side aligns with CLIP, while the right
side aligns with CLAP. The transformer encoder attends to [IMG] and [AUD] embeddings distinctly,
using them as query, key, and value depending on the target space. Learnable queries are used to
extract meaningful information for alignment with the transformer decoder’s output in a fixed-size.
Image and audio mappers retrieve the integrated visual and audio representations embedded in the
transformer decoder’s outputs.

are backpropagated to train the transformer and learnable queries, facilitating the effective integration
of disparate modalities.

3.4 Generation Process
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Figure 3: Generation Process. Input images, audio, and text are converted into joint embeddings
via ImageBind and then fed into the LLM. The LLM generates [IMG1-8] and [AUD1-8] tokens
containing visual and audio information, along with text outputs. Based on these tokens, the EGMI
mapper extracts information as an alternative to the original text encoders of the generative models,
passing the conditions to the Stable Diffusion Decoder and AudioLDM Decoder, ultimately generating
images and audio.

In Figure 3, the generative process of EGMI, input image, audio, and other modality data are encoded
by ImageBind [Girdhar et al., 2023] Encoder to generate joint embeddings. These embeddings are
then encoded into modality tokens through a Projection Layer and fed into the LLM. The LLM
processes these tokens, which are postfixed with [IMG] and [AUD], using its attention mechanism
to handle interactions. Based on the input embeddings, the LLM comprehensively understands the
multimodal data and generates representations for text, image, and audio outputs. The generated
[IMG] and [AUD] embeddings are then fed into the Transformer Encoder of the EGMI mapper, which
extracts integrated information. The extracted embeddings are utilized differently depending on the
task: for image generation, [IMG] serves as the query, and [AUD] as the key and value, while the
roles are reversed for audio generation. Each output embedding is processed through the image and
audio components of the EGMI mapper, respectively, and then conditioned into Stable Diffusion
[Rombach et al., 2022] and AudioLDM [Liu et al., 2023].
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4 Experiments

4.1 Text-to-Audio Generation

We compared various models on Text-to-Audio tasks using AudioCaps dataset [Kim et al., 2019],
evaluating their performance with FAD (Fréchet Audio Distance) and IS (Inception Score). In Table
1, EGMI achieved FAD of 26.51 and IS of 7.23. Despite not being trained on an audio-paired dataset,
EGMI delivered scores comparable to models like AudioLDM-L [Liu et al., 2023]. Although EGMI
and NEXT-GPT share the same embedding space, only EGMI is able to process tasks without
audio-text paired data, highlighting its significant advantage in data-limited environments.

4.2 Audio-to-Audio Generation

We compared various models on text-based audio editing tasks using VCTK dataset [Yamagishi
et al., 2019], evaluating their performance with MCD (Mel Cepstral Distortion) metric. In Table
2, EGMI achieved MCD of 0.361, demonstrating performance comparable to AudioLDM-L [Liu
et al., 2023]. Remarkably, this result was achieved by utilizing only the CoCo [Lin et al., 2014]
image captioning dataset, without any English speech data. This highlights the robust text editing
capabilities of the well-trained MLLM, which can handle more complex alignment without additional
LLM training. Unlike other models relying on large paired datasets, EGMI proves that effective
cross-modal alignment can be achieved with limited data.

Table 1: Text-to-Audio Performances

Models FAD(↓) IS(↑)
DiffSound [Yang et al.] 47.68 4.01
AudioLDM-S [Liu et al., 2023] 49.48 6.90
AudioLDM-L [Liu et al., 2023] 23.31 8.13
CoDI [Tang et al., 2024] 22.90 8.77
NExT-GPT [Wu et al., 2023] 23.58 8.35
EGMI(ours) 26.51 7.23

Table 2: Text+Audio-to-Audio Performances

Models MCD(↓)
CampNet [Wang et al., 2022] 0.380
MakeAudio [Huang et al., 2023] 0.375
AudioLDM-L [Liu et al., 2023] 0.349
NExT-GPT [Wu et al., 2023] 0.300
EGMI(ours) 0.361

4.3 Ablations on EGMI mapper

In Table 3, by evaluating various mapper designs that incorporate both image and audio features, we
identified the most efficient design for multimodal alignment. The Separated mapper uses distinct
Transformers for image and audio, while the Cross mapper adds a cross-attention module to the last
layer of the separate Transformers to facilitate information sharing. Experimental results revealed
that the EGMI mapper outperforms the others in terms of cross-modal alignment.

Table 3: Comparison of mapper designs: Similarity was measured using CLIP for text-image and
CLAP for text-audio evaluations. Text-image similarity was assessed on the CoCo dataset [Lin et al.,
2014], while text-audio similarity was evaluated on the AudioCaps dataset [Kim et al., 2019].

Models CLIP (text-image) similarity CLAP (text-audio) similarity
Separated mapper 0.611 0.385
Cross mapper 0.582 0.312
EGMI mapper 0.688 0.401

5 Conclusion

EGMI presents a novel perspective on MLLMs through its innovative approach to audio generation.
By aligning cross-modal data using only a text-image paired dataset, EGMI has extended multimodal
understanding and generation to the audio domain, pushing the limits of efficiency and flexibility. The
EGMI mapper module further demonstrates the model’s capability to produce consistent and high-
quality multimodal outputs through effective feature fusion. Looking ahead, EGMI shows promise for
further advancements, particularly in enhancing scalability for large datasets and improving metrics
for evaluating the perceptual quality and diversity of generated outputs.
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