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Abstract

Why do language models fail at multi-step reasoning despite encoding task-relevant struc-
ture? We investigate this question through graph traversal, uncovering a striking tem-
poral dissociation: models encode graph-theoretic structure with high fidelity (Spearman
p = 0.50-0.70) yet fail at autonomous multi-step execution (0% accuracy). Critically, con-
trol collapse precedes behavioral error—in 78% of failed trials, internal state drift
occurs before the first invalid output, while representations persist beyond failure, re-
maining structurally intact even as execution breaks down. When execution is externalized
to a symbolic planner, performance recovers to 50-100%, confirming preserved evaluative
competence. Using SearchEval, a diagnostic lens triangulating behavioral traces, represen-
tational geometry, and attention dynamics, we localize the bottleneck to attention-based
control mechanisms that progressively decouple from task-relevant state during generation.
Attention drifts from task-relevant tokens (65%—40%) even when hidden-state geometry
remains intact. Neither layer-time nor generation-time computation exhibits the state-
tracking signatures required for systematic search. These findings demonstrate that failure
arises from control instability rather than representational inadequacy, suggesting that ar-
chitectural innovations targeting state persistence—mnot merely scaling—may be necessary
for reliable algorithmic reasoning.

1 Introduction

Language models frequently fail at multi-step reasoning tasks, even when they appear to understand the
underlying problem structure. This paper investigates a fundamental question: why does execution fail when
representations appear intact?

We study this question through graph traversal—a domain where we can precisely measure both what models
represent internally and how they execute behaviorally. Our central finding is a temporal dissociation
between representation and control: models encode graph structure accurately in their hidden states, but
the control mechanisms required to act on this structure degrade progressively during generation. This
dissociation is not merely correlational—we demonstrate that control collapse precedes behavioral
error in 78% of failed trials, establishing a causal ordering that localizes failure to control mechanisms
rather than representational capacity.

This finding challenges two common interpretations of LLM reasoning failures. The first—that models fail
because they lack relevant knowledge—is contradicted by our observation that representations persist
beyond failure: hidden-state geometry maintains alignment with graph structure (Spearman p = 0.50-
0.70) even in trials where behavioral output is entirely invalid. The second interpretation—that failures
reflect fundamental limits of pattern-matching systems—is complicated by our finding that when execution
is externalized to a symbolic planner, models successfully evaluate candidate paths (50-100% accuracy),
demonstrating preserved evaluative competence despite failed autonomous execution.

This line of inquiry connects to two converging research trends. First, mechanistic interpretability has begun
revealing structure in transformer dynamics (Rauker et al., 2023)—induction heads (Olsson et al., [2022)),
causal circuits (Elhage et all [2020]), and geometric reasoning paths (Wang et al. 2024). Second, cognitive
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science has long emphasized the distinction between competence (what a system knows) and performance
(what it can reliably execute) (Chomskyl} [1965). Recent work shows LLMs struggle with systematic plan-
ning (Valmeekam et al.l |2022; |2023)), but the internal mechanisms underlying these failures remain poorly
understood.

To characterize this dissociation mechanistically, we develop SearchEval, a diagnostic lens that triangulates
evidence across behavioral traces (scratchpad outputs), representational geometry (dynamic RSA of hidden
states), and control dynamics (attention allocation across generation). Unlike prior approaches that examine
representations at a single timepoint, our dynamic analysis tracks how internal computation evolves during
multi-step reasoning, enabling us to establish temporal ordering between internal breakdown and behavioral
error.

Studying Phi-3 Mini (3.8B parameters) and Gemma (2B parameters)—models small enough for complete
mechanistic analysis yet capable enough to exhibit non-trivial reasoning—across three graph topologies
(linear, hierarchical, clustered), we establish four main findings:

1. Temporal dissociation between representation and control: Representational alignment with
graph structure remains stable (p = 0.55 — 0.62) across generation steps, while behavioral validity
collapses (80% — 20% valid transitions) and attention coherence degrades (65% — 40% on task-
relevant tokens).

2. Control collapse precedes behavioral error: In 78% of failed trials, internal state drift (cosine
similarity dropping below 0.6) occurs before the first invalid output, establishing temporal precedence
of control failure.

3. Representations persist beyond failure: Function vectors for graph relations achieve 71-89%
probe accuracy even in trials with 0% behavioral accuracy; RSA correlations remain strong (p > 0.5)
in completely failed trials.

4. Hybrid systems recover performance: When control is externalized to symbolic planners and
models only evaluate candidates, performance recovers to 50-100%, confirming preserved evaluative
competence.

These findings localize the bottleneck to attention-based control mechanisms. Attention provides moment-
to-moment relevance weighting sufficient for short-horizon decisions but cannot maintain stable bindings
between representations and actions over extended generation. The result is a system that “knows” the graph
structure but cannot “navigate” it reliably—a competence-execution gap arising from control instability
rather than representational inadequacy.

This diagnosis has direct implications for building more capable systems. If the bottleneck is control stability
rather than representational capacity, then scaling alone may be insufficient; architectural innovations tar-
geting state persistence—external memory, recurrent mechanisms, or hybrid neuro-symbolic designs—may
be necessary. Our results provide mechanistic grounding for such architectural choices by demonstrating
precisely where and why current systems fail.

2 Related Work

2.1 Planning and Reasoning in Language Models

Recent work has documented systematic failures of LLMs on planning tasks requiring multi-step state track-
ing (Valmeekam et al., [2022; 2023|). Large-scale benchmarks evaluate capabilities across diverse tasks (Sri-
vastava et al., [2022]), and cognitive-style test batteries probe reasoning abilities using classical paradigms
(Binz & Schulz, 2023; Webb et al.l [2023). Chain-of-thought prompting (Wei et all [2022) and scratchpad
methods (Nye et al., |2021)) elicit intermediate reasoning, improving both performance and interpretabil-
ity. Yet whether these traces reflect genuine computational procedures or post-hoc rationalizations remains
unclear (Turpin et al., [2023).
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These behavioral observations establish that models fail but leave open why. Is failure due to representational
limits, procedural deficits, or control instability? Our work addresses this gap through mechanistic analysis
that localizes failure to control mechanisms while demonstrating preserved representational competence.
The temporal ordering we establish—control collapse preceding behavioral error—provides causal evidence
beyond correlational observation.

2.2 Mechanistic Interpretability

A growing literature uses circuit-level analysis to identify specific attention heads and network subgraphs
responsible for particular computations. Studies have identified induction heads performing in-context pat-
tern completion (Olsson et al., 2022)), attention circuits for modular arithmetic (Nanda et al., 2023)), and
geometric structure in how models represent entities and relations (Li et al., |2024). Function vectors en-
code reusable mappings such as “antonym” or “capital-of” (Todd et al.| 2024). Representation engineering
provides tools for reading out and perturbing internal states (Zou et al., [2023; Belinkov,, [2022), while Rep-
resentational Similarity Analysis from neuroscience (Kriegeskorte et al., |2008) has been adapted to compare
model representations with symbolic or neural alternatives.

Most mechanistic work focuses on single operations (copying, arithmetic, retrieval) rather than multi-step
algorithmic procedures. Our contribution extends this agenda by tracking how representations and control
evolve across autoregressive generation, enabling temporal analysis that static probing cannot provide. The
dynamic approach reveals when internal breakdown occurs relative to behavioral error—a temporal ordering
that localizes failure mechanistically.

2.3 Algorithmic Learning and Expressivity

Theoretical work characterizes transformer expressivity relative to formal language hierarchies (Deletang
et all 2023), showing that while transformers can represent Turing machines in principle, length gener-
alization remains fragile in practice (Zhou et al., [2024; [Dziri et all 2023|). Neural algorithmic reasoning
benchmarks such as CLRS provide supervised training for classical algorithms (Velickovié et al.l 2022)).
Graph-CoT extends chain-of-thought to questions over real-world graphs (Zhang et al., [2024). Other work
analyzes reasoning capabilities on graph-based tasks (Fatemi et al., 2024 and studies how transformers
trained on formal algorithmic tasks generalize (Charton et al.| [2024).

Our contribution is mechanistic rather than behavioral or theoretical: we show that models possess repre-
sentational primitives for graph reasoning but fail to compose them into stable execution, and we localize
this failure temporally to control degradation that precedes behavioral error.

2.4 Neuro-Symbolic Integration

LLM-modulo frameworks propose combining neural and symbolic components for planning (Kambhampati
et al., [2024). Classical arguments emphasize structured representations, compositionality, and program-
like abstractions (Lake et al., |2017)), while others call for integrating deep learning with cognitive theories
(McClelland et al., [2020b)).

Our results provide empirical grounding for hybrid architectures: they succeed not because they compensate
for representational deficits but because they externalize the control functions that attention-based trans-
formers approximate poorly. The 100% accuracy our hybrid condition achieves on tree graphs (vs. 0%
autonomous) demonstrates this division of labor—a principled separation of semantic evaluation (neural)
from procedural execution (symbolic).

3 Research Questions

We investigate why language models fail at multi-step execution despite apparent representational compe-
tence, formulating three empirical questions:
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1. Temporal Dynamics: How do internal representations and control mechanisms evolve across
generation? Does failure arise from representational degradation or control instability?

2. Causal Ordering: Does control collapse precede behavioral error, or does error precede internal
breakdown? This temporal ordering distinguishes control-driven from representation-driven failure.

3. Dissociability: Can representational competence and execution be experimentally dissociated? If
models succeed at evaluation when execution is externalized, this localizes the deficit to control
mechanisms.

Answering these questions requires moving beyond output correctness to triangulate evidence across behav-
ioral traces, internal representations, and attention dynamics across the full trajectory of generation.

4 Methods: The SearchEval Diagnostic Lens

SearchEval is a diagnostic approach for characterizing why multi-step execution fails. Rather than testing
whether models implement specific algorithms, it triangulates evidence across behavioral, representational,
and control levels to localize failure and establish temporal ordering. We apply it to graph traversal as a
tractable domain where execution demands can be precisely characterized and ground truth is unambiguous.

4.1 Models and Implementation

We study two small open-weight language models providing full access to hidden states and attention weights:
Phi-3 Mini (3.8B parameters, 32 layers) and Gemma (2B parameters, 18 layers). These models are selected
for manageable computational requirements while maintaining competitive performance on reasoning bench-
marks. Both use standard transformer architectures with multi-head self-attention.

All experiments use greedy decoding (temperature = 0.0) for deterministic, reproducible outputs. Hidden
states (dimension 3072 for Phi-3, 2048 for Gemma) are extracted at every token generation step from all
layers, yielding approximately 1.2TB of activation data across all trials. Attention weights are extracted
layer-wise and head-wise at each step. All inference uses the Hugging Face Transformers library with custom
hooks for dynamic state extraction.

4.2 Scratchpad Method: Behavioral Traces

We employ the Scratchpad Method (Nye et al., [2021)) as controlled behavioral elicitation. The model exter-
nalizes intermediate reasoning at each step:

You are navigating a graph. At each step, output:
- Current node

- Visited nodes so far

- Available next nodes (frontier)

- Your chosen next node and why

Continue until you reach [goal condition].

These traces impose falsifiable behavioral constraints: claimed state must match actual graph connectivity,
and transitions must be admissible given the graph structure. This allows us to identify exactly when and
how execution breaks down, providing temporal markers that can be aligned with internal dynamics.

4.3 Dynamic Representational Similarity Analysis

To examine how internal representations evolve during traversal, we perform Dynamic RSA (Kriegeskorte
et al., [2008]) across autoregressive generation. At each generation step t, we extract the final-layer hidden

state hEL) € R? corresponding to the last generated token. For a traversal of T" steps, this yields a temporal
se h{ NS
quence {h;”,... hy”'}
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We construct a representational similarity matrix (RSM) via pairwise cosine similarities:

NS
RSM{i, j] = ——2— 1)
) L L
[ "
To test alignment with graph structure, we compute a ground-truth topological distance matrix D where
DJi, j] is the shortest-path distance between nodes ¢ and j. Alignment is measured via Spearman rank
correlation between the flattened upper triangles of RSM and D. High positive correlation indicates that
nodes closer in the graph are represented more similarly in latent space.

Unlike static analysis examining hidden states only after prompt ingestion, this dynamic approach tracks how
the model’s internal “cognitive map” evolves as reasoning unfolds. Comparing these structures across gen-
eration steps reveals whether representational alignment degrades, remains stable, or improves as execution
proceeds.

4.4 Attention Analysis: Control Dynamics

While hidden states reveal representational structure, attention weights provide a window into control
dynamics—how the model allocates computational resources during traversal. For each generation step
t, we extract attention weights A; € R¥XTXT across all heads H and layers.

We analyze two key patterns:

1. State-relevant attention: Fraction of attention mass allocated to tokens encoding current node,
visited nodes, and frontier versus generic structural tokens (punctuation, formatting).

2. Temporal stability: Whether attention remains anchored to task-relevant state or drifts toward
recently generated text over the course of generation.

We compute attention allocation across functionally defined token classes:

Ziestate At[z] ZiEfrontier At [Z}

ARstate =
v S Al iy Adlj]

y ARfrontier (t) = (2)

Tracking these ratios across generation reveals whether control remains focused on task-relevant information
or progressively decouples from the computational demands of the task.

4.5 State Drift: Measuring Control Collapse

To establish temporal ordering between control collapse and behavioral error, we compute state drift—
cosine similarity between the hidden state at generation step ¢ and the hidden-state representation of the
task-relevant position:

StateDrift(t) = cos(hy, hiask state) (3)

We record when state drift crosses a threshold (0.6) and compare this to when the first behavioral error
occurs. If state drift precedes error in the majority of trials, this establishes control collapse as temporally
prior to behavioral failure—evidence for a causal relationship rather than mere correlation.

4.6 Diagnostic Criteria for Structured Execution
Beyond aggregate measures, we evaluate specific criteria that structured execution should satisfy:
Goal Representation. We measure goal salience via cosine similarity between goal node and other node

representations across layers. Decreasing similarity (increasing distinctiveness) indicates progressive goal
differentiation.
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State Tracking. We train linear probes to classify whether a given node has been visited based on hidden-
state activations at each generation step. High accuracy that persists across steps indicates stable state
tracking; rapid degradation indicates transient encoding.

Frontier Management. We measure attention depth profiles—whether attention concentrates on bound-
ary nodes at the edge of explored regions:

1
DepthAttention; ; = Vil Z A;(v) (4)
veVy

where V; denotes nodes at depth d from start.

Transition Evaluation. We examine entropy of attention distributions over neighbor nodes at decision
points. High entropy followed by reduction indicates progressive elimination of alternatives; persistent high
or low entropy suggests different computational strategies.

Backtracking Signatures. We test whether attention to ancestor nodes increases after attention to
descendants—a pattern consistent with returning to earlier decision points.

Systematic Exploration. We measure graph coverage (fraction of reachable nodes visited before termi-
nation) and trajectory alignment (edit distance from structured traversal orderings).

4.7 Function Vector Extraction

Following (Todd et al.| (2024}, we extract function vectors encoding graph-theoretic relations by computing
mean activation differences:

Vrelation = ]E[htrue] - E[hfalse} (5)
We extract vectors for: adjacency (1-hop connectivity), multi-hop distance (2-hop, 3-hop), path membership
(nodes on optimal trajectory), goal proximity (nodes near goal), and same-branch (shared ancestry in trees).

Linear probe accuracy measures whether these relations are encoded in a form accessible to downstream
computation. High probe accuracy coupled with behavioral failure indicates that information is present but
unused—a signature of control rather than representational failure.

4.8 Hybrid Symbolic-Neural Evaluation

To test whether evaluative competence persists when execution is externalized, we construct a hybrid con-
dition. A classical planner (NetworkX (Hagberg et al. [2008)) computes optimal solutions and generates
candidate paths including:

e The optimal path

A locally greedy path (highest immediate reward)
e A random valid path

e A near-optimal path (optimal + 1-2 extra steps)
The LLM evaluates and selects among candidates:
“Given these paths through the graph, which best achieves [goal]? Explain your reasoning.”

If models succeed at evaluation but fail at generation, this dissociates representational competence from exe-
cution competence and localizes the deficit to control mechanisms that must sustain state across generation.
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Figure 1: Representative examples from each graph family. Left: Linear chain (n=7) with sequential
structure. Center: Hierarchical tree (n=7) with branching factor 2. Right: Clustered graph (n=9) with
two dense regions connected by bridge edges. These topologies induce increasing demands on control:
sequential traversal, branching management, and dense frontier competition.

Clustered/Dense Graph
(Binary Tree, N=16, Diameter~3)

4.9 Graph Families and Experimental Design

We construct three graph families imposing systematically different demands on control (Figure :

Linear chain graphs (n=5, 10 nodes). Sequential structure with minimal frontier management. Each
node connects to exactly one successor, creating deterministic path structure. These test whether models
can maintain state over sequential steps without branching complexity—a lower bound on control capacity.

Hierarchical tree graphs (n=7, 15 nodes). Branching factor 2-3 per level, depth 3—4. Trees require
selective expansion of competing subtrees and enable principled comparison of breadth-first versus depth-first
patterns. These test frontier management under controlled branching.

Clustered dense graphs (n=8, 12 nodes). High local connectivity (average degree 3—4) with 2-3 tightly
connected clusters and sparse inter-cluster edges. Multiple equally-short paths create ambiguity where local
heuristics compete with systematic exploration. These impose the strongest demands on control.

Task Objectives. Each graph is paired with multiple objectives: shortest-path (minimal-length path
from A to B), reward-maximizing (maximize cumulative node rewards), and fixed-horizon (best path within
exactly k steps).

Statistical Power. With 240 trials across conditions (40 graph-task pairs X 2 models x 3 evaluation
regimes), we have >95% power to detect medium effect sizes (d > 0.5) at o = 0.05. RSA correlations use
bootstrap confidence intervals (10,000 resamples) and permutation tests (10,000 permutations).

4.10 Evaluation Regimes and Metrics

For each (graph x task) instance, models are evaluated under three complementary regimes:

Autonomous Generation. Natural-language graph description with scratchpad prompting. We generate
3 independent samples per graph instance (greedy decoding ensures determinism; we vary prompt phrasing
to test robustness). Behavioral metrics include:

o Traversal accuracy: Does the final path satisfy the objective (shortest/highest-reward/within-
horizon)?

o State validity: At each step, is the transition admissible given graph connectivity? Invalid transi-
tions indicate failures of basic state tracking.

o Edit distance: Levenshtein distance between generated path and optimal symbolic solution, pro-
viding a continuous measure of deviation.
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Dynamic Internal Analysis. Hidden states and attention at each generation step. Representational
metrics include:

e RSA correlation: Spearman rank correlation between hidden-state similarity and graph distance
matrix. Tests whether internal geometry reflects external topology.

o Temporal stability: Does RSA correlation remain stable across generation steps, or degrade over
time? Stability indicates robust state representation; degradation suggests drift.

Control-level metrics include:

e State-relevant attention: Fraction of attention mass allocated to current state, visited nodes,
and frontier tokens. High allocation indicates working-memory-like control.

o Attention drift: Rate at which attention shifts away from task-relevant tokens toward recently
generated text. Drift indicates loss of algorithmic control.

o Entropy dynamics: Does attention become more focused (entropy decrease, consistent with nar-
rowing) or more diffuse (entropy increase, indicating control loss)?

Hybrid Symbolic-Neural. Symbolic planner generates 3-4 candidates; LLM evaluates. Metrics include:

e Selection accuracy: Does the model choose the optimal path when presented in a candidate set?
High accuracy coupled with low autonomous accuracy indicates competence dissociation.

o Error type: When the model fails, does it select an invalid path (structural error) or suboptimal
valid path (value-preference error)? This distinguishes graph comprehension failures from optimality
reasoning failures.

Joint convergence across measures indicates genuine execution; systematic dissociations reveal imitation
strategies:

o High autonomous + high RSA + algorithmic attention = genuine procedural execution
o High autonomous + low RSA + non-algorithmic attention = learned heuristics
e Low autonomous + high selection accuracy = competence-execution gap

e Low autonomous + low selection accuracy = fundamental incompetence

4.11 Epistemic Role of the Framework

SearchEval is explicitly diagnostic rather than affirmative. It does not presuppose that models implement
any particular procedure. Instead, it triangulates evidence across behavior (scratchpads), representation
(RSA, function vectors), and control (attention dynamics, entropy). Only when these layers jointly satisfy
structural and temporal constraints do we interpret evidence as consistent with procedural execution. When
they diverge, we characterize behavior as heuristic or pattern-based.

This multi-layered approach reflects a fundamental epistemic commitment: algorithmic behavior cannot be
inferred from outputs alone. The same behavioral trajectory can arise from radically different mechanisms—
systematic search, learned shortcuts, or associative completion. Only by examining internal geometry, tem-
poral dynamics, and causal contrasts can we distinguish these alternatives.

The temporal ordering analysis is particularly critical. Establishing that control collapse precedes behavioral
error (rather than accompanying or following it) provides evidence for a causal relationship—control failure
causes behavioral failure—beyond mere correlation. This temporal ordering distinguishes our account from
explanations attributing failure to representational limits.
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5 Results

5.1 Behavioral Results: Complete Execution Failure Despite Hybrid Success

Neither model successfully executed valid multi-step traversal under autonomous generation. Across all
topologies and both models, scratchpad traversal accuracy was 0.0%—uniform failure to sustain state-exact
planning over multiple dependent steps. Failures reflected breakdowns in core procedural requirements:
maintaining valid state, selecting admissible transitions, updating visited and frontier sets.

Three recurring failure classes emerged:

o Validity failures: Transitions violating graph connectivity or paths inconsistent with provided
topology.

e Control failures: Local coherence for 1-3 steps followed by premature halting, skipped state
updates, or malformed scratchpad structure.

e Serialization failures: Syntactically well-formed but procedurally ungrounded outputs, suggesting
shift from state-based simulation toward pattern completion.

In contrast, when execution was externalized to a symbolic planner and models evaluated candidate paths,
performance increased sharply (Table . On tree graphs, both models selected the optimal path in 100% of
trials; on line and clustered graphs, both achieved 50%. Critically, errors in the hybrid condition were value-
preference errors—favoring locally high-reward but globally suboptimal trajectories—rather than structural
errors violating graph constraints.

Table 1: Traversal accuracy reveals competence-execution dissociation. Autonomous generation fails uni-
formly (0%) while hybrid evaluation succeeds (50-100%), indicating that failure reflects control instability
rather than representational inadequacy.

Condition Line Tree  Clustered
Phi-3 Mini (Autonomous)  0.0%  0.0% 0.0%
Gemma (Autonomous) 0.0%  0.0% 0.0%
Phi-3 Mini (Hybrid) 50.0% 100.0%  50.0%
Gemma (Hybrid) 50.0% 100.0%  50.0%

The accuracy gap yields effect size d = oo for tree graphs (ceiling performance) and d = 1.15 (95% CI:
[0.82, 1.48]) for line/clustered graphs—a categorical difference in computational mode. This dissociation
establishes the empirical foundation for mechanistic analysis: if later results reveal strong internal align-
ment and topology-dependent control signatures, failure is best explained by control instability rather than
representational inadequacy.

5.2 Representations Persist Beyond Failure: Dynamic RSA

If models fail because they lack graph knowledge, we would expect weak alignment between internal rep-
resentations and graph structure. Using Dynamic RSA, we find the opposite: representations remain
structurally intact even when behavior fails completely.

Statistical Validation. Mean RSA correlation p = 0.60 (95% BCI: [0.52, 0.68]) significantly exceeds
chance (permutation test: p < 0.001, 10,000 permutations). The dissociation index D = pgrsa —
Thehavior = 0.71 quantifies the separation between representational competence and behavioral execution—
representations remain intact (p > 0.5) when behavior has completely collapsed (accuracy = 0%).

Across all conditions, Spearman correlations between hidden-state similarity and graph distance are reliably
positive (p = 0.50-0.70). Critically, this alignment persists across generation steps and remains present even
in trials where behavioral traversal is entirely invalid. Figure 2] visualizes this phenomenon: representational
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Figure 2: Mechanistic analysis of the competence-execution gap. (a) Task setup and attention flow: given
room connectivity, the model determines reachability from lobby to goal node W. Attention from node W
flows to predecessor tokens. (b) Attention allocation across layers shows correct-path attention emerging in
layers 15-25. (c¢) t-SNE visualization of room representations across transformer layers. Goal-branch nodes
(W, O) separate from non-goal branch nodes (G, V, M) in later layers, demonstrating that models encode
graph structure even when execution fails.

similarity matrices exhibit clear distance-sensitive organization, with nearby nodes occupying more similar
regions of latent space.

Phi-3 Mini exhibits sharper geometric structure than Gemma, particularly in line and tree graphs, whereas
Gemma shows greater variability as graph connectivity increases. Nevertheless, both models maintain rela-
tional structure in latent space even under clustered topologies that reliably induce behavioral failure.

This dissociation constitutes a central finding: models do not fail because they lack graph represen-
tation. Hidden states function as relational maps preserving structural distance, yet this map is not coupled
to control mechanisms capable of advancing reliably from one state to the next. Representational integrity
is maintained longer than procedural control.

5.3 Control Collapse Precedes Error: Temporal Dynamics

The critical question is whether control collapse causes behavioral failure or merely accompanies it. We
establish temporal ordering by tracking when state drift crosses threshold versus when errors first appear.

State Drift Precedes Error. In 78% of failed trials, state drift below 0.6 occurs before the first
behavioral error (Figure[3)). This temporal precedence establishes that internal decoherence drives behavioral
breakdown—the model’s tracking of task-relevant state degrades before execution becomes invalid.

Representational Stability Despite Control Collapse. RSA alignment remains stable or improves
across generation steps (p = 0.55 — 0.62 for Phi-3 on trees; p = 0.51 — 0.57 for Gemma) even as valid tran-
sitions collapse (80% — 20%) and attention coherence degrades (65% — 40%). This temporal dissociation
between representation and control definitively rules out representational failure as the primary cause.

Entropy Dynamics. Attention entropy rises across generation (1.9 — 2.8 bits for Phi-3; 2.1 — 3.1 bits
for Gemma), opposite to successful search which would show entropy decrease as alternatives are eliminated.
Entropy increase correlates with earlier error onset (r = 0.64, p < 0.001), suggesting attention diffusion
contributes to control failure.

10
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Figure 3: Temporal dissociation between representational alignment and behavioral validity. (A) RSA
correlation with graph structure (blue, left axis) remains stable while valid transitions (green, right axis)
collapse rapidly after step 4. Shaded regions indicate +1 standard error (n=240). (B) State coherence
degrades over generation steps. In 78% of failed trials, state drift below 0.6 occurs before the first behavioral
error, establishing temporal precedence of control collapse over behavioral failure.
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Figure 4: Attention entropy increases across generation steps, indicating progressive loss of focused control.
Higher entropy correlates with earlier onset of behavioral errors (r = 0.64). Successful multi-step execution
would show entropy decrease as alternatives are eliminated.

Layer-Time vs. Generation-Time. Graph-theoretic structure emerges early in layer-time (RSA p > 0.4
by layer 8-12) and remains stable through subsequent layers. But neither layer-time nor generation-time
computation exhibits the state-tracking, frontier expansion, or backtracking signatures of systematic search.
Alignment with structured traversal orderings is marginally higher for generation steps (34%) than layers
(28%), though both remain far below expected values (>90%) for true algorithmic execution.

5.4 Attention Dynamics: Drift from Task-Relevant State

Attention patterns exhibit strong local coherence but poor temporal stability. Early generation steps show
focused attention on current node and neighbors (60-70% on task-relevant tokens). As generation proceeds,
attention becomes increasingly diffuse, dropping to 35-45% by step 6.

This drift occurs even when RSA indicates relational structure remains intact—attention decouples from rep-
resentation before representation itself degrades. Critically, the drift is topology-sensitive: line graphs show
slowest degradation (state/frontier attention above 50% through step 6), tree graphs intermediate, clustered
graphs fastest (dropping below 40% by step 4). This ordering mirrors behavioral difficulty, supporting the
hypothesis that control demands rather than representational complexity drive failure.
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Figure 5: Attention allocation across generation steps for Phi-3 Mini on a tree graph. Attention drifts from
task-relevant tokens (current state, frontier) toward recently generated text and structural tokens. Early
coherence gives way to progressive control degradation, even when representational geometry remains intact.

A) Observed: Phi-3 Mini on Tree Graphs B) Observed vs. BFS Prediction
0.45 \
—e— Depth 0 (Start) \ ~e— Observed: Start
0.40 Early goal ~#= Depth 1 0.5 1 N —o— Observed: Goal
bias (2.3x) Goal-depth attentic=#= Depth 2 \ BFS Prediction: Start

from earliest —g— Depth 3 (Goal) rediction: Goal

e e

w oW

S &
o
S

e

i

@
e
w

e
N
S

e e
S @
Attention to Depth Level
e o
p o
\
\

BFS: gradual depth-by-depth}-. __
expansion (not observed) b

Attention to Depth Level (DepthAttentiony, 4)
g

=4
o
S

é lIO lIS 2'0 2'5 3'0 00 é lIO lIS 2'0 2'5 3’0
Transformer Layer Transformer Layer

Figure 6: Attention depth profile across layers for Phi-3 Mini on tree graphs. Instead of progressive depth-

by-depth expansion or focused single-branch descent, attention concentrates on goal-depth nodes from early

layers, suggesting direct pattern matching rather than procedural search.

Rather than systematic depth-by-depth expansion (expected under breadth-first processing) or focused
single-branch descent (expected under depth-first processing), attention concentrates on goal-depth nodes
from early layers (Figure @ Phi-3 shows 2.3x higher attention to goal-depth nodes than start-depth nodes
even in layer 4, before any systematic exploration could have reached that depth. This suggests direct
goal-oriented pattern matching rather than procedural frontier expansion.

5.5 Diagnostic Criteria: Selective Execution Signatures

To characterize which aspects of structured execution are present versus absent, we evaluate the diagnostic
criteria from Section Table Pl summarizes results.

Goal Representation. Both models show progressive goal differentiation across layers (Phi-3: r = —0.72,
p < 0.001; Gemma: r = —0.58, p < 0.01). Goal nodes become increasingly distinct in representational
space—evidence of task-directed focus at the representational level.

State Tracking. Linear probes achieve 75-85% accuracy classifying visited nodes in early steps (1-3) but
degrade to chance (55-60%) by step 6. On tree and clustered graphs, accuracy never exceeds 65% and
degrades earlier. Models encode visited-state information transiently but cannot maintain it reliably over
extended traversals.

12
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Table 2: Diagnostic criteria for structured execution. Models satisfy criteria requiring representational
encoding (goal representation, transient state tracking) but fail criteria requiring sustained procedural control
(frontier management, backtracking, systematic exploration).

Criterion Line Tree Clust. Quantitative Evidence

Goal Representation v v ~ r = —0.72*** (Phi-3), —0.58**
(Gemma)

State Tracking ~ X X Probe: 75-85% — 55-60% after
step 4

Frontier Management X X X Within-depth ratio: 0.71 < 1.0

Transition Evaluation ~ ~ X Entropy: 1.8 — 0.9 bits (grad-
ual)

Backtracking X X X Backtrack score: r = 0.02, n.s.

Systematic Exploration X X X Coverage: 30-45%; edit dist: 60—
80%

Table 3: Probe accuracy for graph relation classification from hidden states. High accuracy indicates relations
are encoded in linearly accessible form, yet this information is not utilized during generation (correlation
with attention: 7 < 0.25; variance explained: R? = 0.08).

Relation Accuracy (%) Peak Layer
Adjacency (1-hop) 89.2 + 3.1 12-16
2-hop distance 81.3 £ 4.2 14-18
3-hop distance 71.2 £ 5.8 16-20
Path membership 84.7 £ 3.9 18-24
Goal proximity 79.8 £ 4.5 20-26
Same branch (trees) 76.3 £ 5.1 14-20

Frontier Management. Within-depth attention ratios are consistently below 1.0 (mean = 0.71), in-
dicating attention flows more readily across depth levels than within them—contradicting breadth-first
predictions. Attention to frontier nodes starts at 40-50% but declines to 20-30% by step 5.

Backtracking. Correlation between descendant attention and subsequent ancestor attention is indistin-
guishable from zero (r = 0.02, p = 0.84). Zero instances of explicit backtracking appear in scratchpad
outputs.

Systematic Exploration. Coverage averages only 30-45% of reachable nodes before termination. Edit
distance from structured orderings is 60-80% of maximum, indicating no systematic exploration pattern.

Summary. Models satisfy criteria that can be met through representational encoding (goal salience, tran-
sient state tracking) but fail criteria requiring sustained procedural control. This pattern supports our central
claim: failure arises from control instability rather than representational inadequacy.

5.6 Function Vectors: Encoded but Unused

Function vector analysis provides direct evidence that graph relations are encoded in model representations
with high fidelity yet remain systematically underutilized during execution. This tests a specific hypothesis:
if models fail because they lack relevant knowledge, function vectors should show low discriminability; if they
fail despite having relevant knowledge, function vectors should be discriminable but unused.

Linear probes achieve high accuracy classifying graph relations (Table|3): adjacency 89.2%, path membership
84.7%, 2-hop distance 81.3%, goal proximity 79.8%. Even 3-hop distance achieves 71.2%, well above chance.
These accuracies indicate models possess explicit, linearly accessible representations of graph-theoretic prim-
itives.

13
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Layer Dynamics. Relation discriminability follows a characteristic inverted-U pattern across layers: low
in early layers, rising through middle layers, peaking in layers 12-26 depending on complexity, then declining
in final layers. Simple adjacency peaks earliest (layers 12-16); path membership peaks later (layers 18-24).
This ordering reflects computational depth required for each relation.

Topology-Invariant Encoding. Probe accuracy remains stable across all graph families (+5%), indi-
cating general rather than topology-specific encoding. Models construct reusable relational primitives that
generalize across structural regimes.

Dissociation from Behavior. Despite high discriminability, probe accuracy does not predict behavioral
success. Path membership accuracy shows no correlation with traversal accuracy (r = 0.03, p = 0.78).
Trials in the top quartile of probe accuracy show no improvement over bottom quartile—both remain at 0%.
Information required for traversal is present but not utilized.

Unused During Traversal. If models used connectivity information, attention should correlate with
function vector projections. Observed correlations are weak (r = 0.15-0.25) and inconsistent. Function
vectors explain <10% of variance in attention allocation (R? = 0.08)—far below expected if attention
consulted relational information.

Geometric Structure. Function vectors exhibit interpretable geometry: adjacency and 2-hop distance
are orthogonal (cos# = 0.12); goal proximity and path membership show moderate alignment (cosd = 0.47).
This structure suggests models organize relations into a coherent semantic space—yet this organization does
not translate into systematic use during execution.

5.7 Unified Account: Localizing Failure to Control

Results converge on a coherent account: behavioral collapse does not reflect absence of structural knowledge
but emerges from instability in control mechanisms that must bind representations to actions.

Ruling Out Alternative Explanations. Cognitive map failure would predict: weak RSA alignment, low
probe accuracy, representational degradation concurrent with behavioral breakdown. Our findings contradict
all predictions: RSA p = 0.50-0.70, probe accuracy 71-89%, representations stable beyond failure.

Algorithmic implementation failure would predict: attention patterns conforming to some coherent strategy,
systematic trajectory structure. Our findings contradict this: attention matches no consistent algorithm
(KL divergence >2 nats from both BFS and DFS), trajectories show 60-80% edit distance from structured
orderings.

Control mechanism failure would predict: intact representations persisting beyond behavioral breakdown,
progressive degradation of control signals, temporal precedence of control collapse. This is precisely what
we observe.

The Three-Way Dissociation. The pattern—intact representations, partial execution signatures, failed
behavioral output, with control collapse preceding error in 78% of trials—uniquely identifies control failure.
Models possess the representational substrate for multi-step reasoning but lack mechanisms for reliably
binding that substrate to sustained action.

6 Discussion

Our results establish a temporal dissociation between representation and control: models encode task-relevant
structure accurately, but control mechanisms degrade progressively during generation, with control collapse
preceding behavioral error in the majority of failed trials.
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6.1 Why Control Fails While Representations Persist

The temporal dissociation raises a question: why do representations remain intact when execution fails?
Three non-exclusive explanations emerge:

Separation of encoding and decoding. Graph structure may be encoded through mechanisms partially
independent of those that decode into outputs. This “dark knowledge” would persist because it was never
causally connected to execution—the information exists in a form that supports high probe accuracy but is
not accessed by the generation pathway.

Robustness of pretrained embeddings. Relational knowledge acquired during pretraining may be robust
to task-specific failures but not flexibly accessible for novel procedural tasks. Models acquire extensive
knowledge of graphs and relations from diverse corpora (Gurnee & Tegmark] [2023), but this knowledge may
not be compositionally recombineable for novel procedures.

Attention as lossy compression. Attention must allocate a limited budget (summing to 1.0) over an ever-
growing context. As generation proceeds, task-relevant signals may be diluted even when representations
remain intact. Our observation that attention entropy increases (1.9 — 2.8 bits) and state/frontier attention
decreases (65% — 40%) supports this interpretation.

Each explanation suggests different interventions: training objectives enforcing causal connection between
representations and outputs, fine-tuning on procedural traces, or architectural modifications providing ded-
icated pathways for state information.

6.2 Parallels to Working Memory

The temporal pattern of control degradation (reliable for 3-5 steps, then collapse) parallels classic working
memory limitations in human cognition (Miller, |1956; |Cowan, [2001). This parallel suggests attention-based
control in transformers may face analogous capacity constraints—not because of shared mechanisms, but
because both systems attempt to maintain multiple items through sustained activation without explicit
storage.

The competence-execution dissociation also maps onto the distinction between declarative and procedu-
ral knowledge in cognitive architectures (?). Models demonstrate declarative competence (“knowing that”
the graph has certain structure) but fail at procedural execution (“knowing how” to navigate it). This
dissociation is well-documented in cognitive neuroscience, where hippocampal systems support relational
representation while prefrontal systems coordinate sequential control (Behrens et al., [2018)).

6.3 Implications for Scaling

Our findings suggest that scaling model size may be insufficient for reliable multi-step execution. The
representational capacity required for graph reasoning is already present at 2-4B parameters (p = 0.50-0.70,
probe accuracy 71-89%). What fails is not representation but control stability.

If the limitation is architectural—attention-based control cannot maintain stable state bindings over ex-
tended generation—then larger models sharing this architecture may exhibit the same control instability at
higher representational quality. Recent evidence that even frontier models struggle with systematic planning
(Valmeekam et all 2023) is consistent with this interpretation.

Effective solutions may require mechanisms that explicitly stabilize control: external memory modules pro-
viding persistent state storage (Graves et al., |2014), recurrent connections maintaining information across
generation steps, or hybrid designs externalizing control to symbolic systems.

6.4 Feedforward Computation vs. Generation-Time Search

A critical distinction is between feedforward computation (within a single forward pass) and generation-time
computation (across autoregressive token productions). Classical algorithms maintain explicit state across
iterations; transformers lack such mechanisms, relying entirely on attention over context.
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Layer-time computation encodes structure (RSA emerging by layer 8-12) but lacks sequential, state-
dependent organization. Generation-time computation has sequential structure but lacks stability (attention
drifting, state tracking failing after 3-5 steps). Neither substrate supports reliable execution because both
lack explicit mechanisms for state persistence.

This has implications for inference-time scaling approaches that generate extended reasoning traces (Wei
et al.l 2022} |Snell et al., [2024). Our findings suggest such approaches face fundamental challenges: entropy
increase and state drift indicate longer generation may amplify control instability rather than enable deeper
reasoning. Effective inference-time scaling likely requires explicit state tracking, process supervision, or
hybrid architectures.

6.5 Hybrid Systems as Principled Architecture

The success of the hybrid condition (50-100% accuracy vs. 0% autonomous) demonstrates that evaluative
competence remains intact when execution demands are removed. Models can recognize valid paths, assess
their properties, and apply goal-directed reasoning—they cannot generate such paths reliably from scratch.

LLMs as Semantic Evaluators. From a systems perspective, these findings suggest small language mod-
els are better characterized as semantic evaluators over structured state spaces than autonomous planners.

They excel at:

o Assessing whether proposed trajectories satisfy constraints

Interpreting goal specifications and reward structures

o Providing natural language explanations for evaluations

Integrating contextual information not formally encoded in the graph
They struggle at:

o Maintaining explicit state across multiple generation steps
o Systematically exploring alternatives without heuristic shortcuts

o Guaranteeing correctness or optimality

Division of Labor. This functional profile suggests a natural division of labor: symbolic search provides
stability of explicit state transitions, guaranteed validity, and provable optimality; the model contributes
contextual valuation, reward interpretation, and semantic constraint checking that may be difficult to encode
symbolically.

Principled Architecture. Rather than treating hybrid systems as temporary scaffolding until models
“get good enough,” our findings suggest they represent principled architectural choices aligning component
capabilities with task demands. The LLM handles semantic evaluation, contextual reasoning, and relational
assessment; symbolic modules handle exact state tracking and provable correctness.

This mirrors classical arguments for hybrid cognitive architectures where symbolic and subsymbolic processes
are complementary (McClelland et al 2020a; [Lake et all 2017). Our empirical results provide mechanistic
grounding: we show not only that hybrid designs work better behaviorally (100% vs. 0% on trees), but
why—because they externalize control functions that attention-based transformers approximate poorly while
preserving functions they perform well.

6.6 Topology and the Geometry of Failure

Failure patterns vary systematically with graph topology:
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Linear graphs: Minimal control demands; slowest degradation. Sequential structure reduces the task to
local next-step prediction, which transformers handle well through causal attention.

Tree graphs: Branching without interference; intermediate degradation. Failures concentrate at branch
points where competing siblings must be evaluated.

Clustered graphs: Dense interference; fastest collapse. High local connectivity overwhelms selective at-
tention capacity, with attention diffusing across dense neighborhoods.

RSA correlations for clustered graphs (p = 0.50-0.65) are only slightly lower than trees (p = 0.55-0.70),
indicating representational quality does not account for behavioral differences. Failure scales with control
demands (branching factor, local connectivity) rather than representational complexity.

6.7 Why Representations Persist When Execution Fails

The temporal dissociation raises a fundamental question: why do representations remain structurally in-
tact when behavioral execution has completely collapsed? We consider several explanations with distinct
implications.

Separation of Encoding and Decoding. Transformer representations may encode information through
mechanisms partially independent of those that decode into outputs. Graph structure could be encoded in
attention patterns and residual stream directions that support high probe accuracy (71-89%) while being
inaccessible to the output projection layer or insufficiently weighted during generation. This “dark knowl-
edge” would persist because it was never causally connected to execution—existing as latent structure that
correlates with the task but does not drive token predictions.

This interpretation aligns with findings that language models encode extensive knowledge not reliably ac-
cessed during generation (Gurnee & Tegmarkl 2023). The disconnect may reflect pretraining objectives:
next-token prediction rewards representations supporting local predictions rather than global procedural
coherence.

Robustness of Pretrained Embeddings. The graph representations we measure may reflect pretrained
knowledge about spatial and relational concepts that is robust to task-specific failures. Language models
acquire extensive knowledge of graphs, maps, and relations from diverse corpora. This knowledge is encoded
in ways that generalize across contexts but may not be flexibly accessible for novel procedural tasks requiring
compositional recombination.

The stability of representations across generation steps (p = 0.55 — 0.62) despite behavioral degradation
suggests these representations are maintained through mechanisms decoupled from those guiding sequential
generation. Pretrained relational embeddings may persist in the residual stream even as attention drifts
toward surface-level cues.

Attention as Lossy Compression. The transition from representation to execution requires compressing
high-dimensional hidden states (3072-4096 dimensions) into discrete token predictions through attention and
output projection. This compression may be lossy in ways that preserve correlational structure (measured
by RSA) while discarding procedural information required for execution.

Specifically, attention must allocate a limited budget (summing to 1.0) over an ever-growing context. As
generation proceeds, tokens competing for attention increase, potentially diluting task-relevant signals. Our
observation that attention entropy increases (1.9 — 2.8 bits) and state/frontier attention decreases (65% —
40%) supports this interpretation: the readout mechanism becomes increasingly lossy as context expands.

Implications for Intervention. These explanations suggest different intervention strategies:

e If encoding and decoding are disconnected, training objectives should explicitly reward causal con-
nection between representations and outputs—auxiliary losses penalizing high probe accuracy with
low behavioral accuracy.
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o If pretrained knowledge is inflexible, fine-tuning on procedural traces with diverse topologies may
bridge the gap between static embeddings and dynamic execution.

o If attention is a lossy bottleneck, architectural modifications to the output pathway may be required:
dedicated attention heads for state tracking, explicit memory slots maintaining task-relevant infor-
mation, or retrieval mechanisms querying representation space.

6.8 Implications for Trustworthy Deployment

These results underscore a conceptual distinction often blurred in LLM evaluation: encoding algorithm-
relevant structure is not equivalent to reliably executing algorithms under autoregressive generation. For
deployment in safety-critical domains—cybersecurity, medical decision support, autonomous systems—this
distinction matters enormously.

A model that “understands” a security protocol (encodes its structure with high RSA correlation) but
cannot reliably execute its steps (fails at sustained state tracking) is a liability. A system appearing to follow
diagnostic procedures through pattern completion but lacking systematic verification may fail unpredictably
on adversarial inputs or distribution shift.

Our findings suggest verification must go beyond output correctness to include analysis of internal dynam-
ics. A model producing correct outputs on 90% of test cases may fail catastrophically on adversarially
constructed inputs if apparent competence arises from heuristic shortcuts rather than robust procedural ex-
ecution. Mechanistic analysis—probing representations, tracking attention dynamics, evaluating diagnostic
criteria—provides a window into when and why such failures might occur.

Hybrid architectures combining neural semantic reasoning with symbolic verification offer a path toward
systems that are both flexible and auditable. The symbolic component provides formal guarantees and
transparent inspection; the neural component contributes semantic understanding and contextual reasoning.
Our hybrid results (100% on trees vs. 0% autonomous) provide existence proof that such designs are tractable
even for small models.

6.9 Limitations

Model size. We study small models (2-4B parameters) for tractable mechanistic analysis. Whether larger
models overcome control limitations remains open, though our analysis suggests the limitation is architectural
rather than capacity-based. The presence of high-fidelity representations at 2-4B parameters indicates
representational capacity is not the bottleneck; control instability may persist at larger scales if architectural
mechanisms remain unchanged.

Task complexity. Our tasks are simplified (small graphs, full observability, deterministic dynamics). Real-
world planning involves larger state spaces, partial observability, and richer semantic context. Whether the
temporal dissociation generalizes to more complex domains requires further investigation, though failure on
simple tasks suggests difficulty on harder variants without architectural support.

Prompting. We use zero-shot and minimal few-shot prompting. More sophisticated strategies (algorithm-
conditioned few-shot learning, tree-of-thought, self-consistency) may improve performance. However, our
findings suggest limits: attention drift and state degradation are architectural limitations that prompting
cannot fundamentally alter.

Representational Analysis. Dynamic RSA measures correlations but does not reveal specific compu-
tations performed by individual attention heads. Probe-based methods measure whether information is
linearly accessible but not whether it is causally utilized. Future work using causal interventions could
provide finer-grained mechanistic accounts.
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7 Related Empirical Patterns

7.1 Two Failure Modes

We observe qualitatively distinct failure patterns suggesting different computational strategies:

Simulation collapse (Phi-3): Attempts stepwise simulation with local coherence before control degrades.
Attention trajectories show partial alignment with valid paths early (67% overlap for steps 1-3); probe
accuracy remains high initially (75-85%) before degrading. State drift accumulates monotonically; errors
emerge probabilistically with high variance in onset (SD = 3.2 steps). The model possesses machinery for
stepwise execution but cannot sustain it.

Retrieval dominance (Gemma): Abandons state-based traversal for pattern retrieval, generating code-
like fragments (e.g., def bfs(graph):) rather than engaging with specific instances. Attention concentrates
on formatting tokens and generic algorithmic keywords rather than instance-specific graph nodes. The model
activates generic “graph problem” representations without instantiating them for the specific instance.

Both fail—suggesting the limitation reflects architectural constraints on sustained control rather than a single
computational strategy. This distinction has practical implications: systems exhibiting simulation collapse
may benefit from interventions reducing working memory load; systems exhibiting retrieval dominance may
require interventions encouraging instance-specific computation.

7.2 Attention as Fragile Control Interface

Our analysis reveals that models do not fail due to inability to identify task-relevant tokens initially. Early in
generation (steps 1-3), attention is appropriately focused (60-70% on task-relevant state). Failure emerges
as attention progressively drifts toward recently generated text, generic structural tokens, and formatting
elements.

This temporal pattern suggests attention functions as a short-term relevance filter rather than durable state-
tracking mechanism. It can identify and prioritize task-relevant information over short horizons but cannot
maintain this prioritization under accumulating demands of extended generation.

This has implications for chain-of-thought and scratchpad methods: they can externalize intermediate states
and improve local coherence (valid transitions for 3-5 steps vs. 1-2 without), but they do not automatically
stabilize long-horizon control. Models “write down” state information but fail to consistently “read back”
and utilize it in subsequent decisions.

8 Future Directions

Our findings expose a structural dissociation between representation and control that motivates a focused
research agenda.

8.1 Architectural Interventions for Control Stability

The competence-execution gap suggests architectural innovations targeting control mechanisms specifically:

Explicit State Buffers. Classical search algorithms maintain explicit data structures (frontier queues,
visited sets) persisting across computation steps. Transformers lack such mechanisms, relying entirely on
attention over context. Future architectures could incorporate external memory modules—differentiable
analogues of frontier buffers and visited sets—that models learn to read from and write to during genera-
tion. Neural Turing Machines (Graves et al., 2014) and Memory Networks (Weston et al., |2015) provide
architectural precedents.

Recurrent and Hybrid-State Transformers. All models in this study operate under strictly feedfor-
ward constraints: each token is generated without persistent latent state beyond the context window. Recent
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architectures reintroducing recurrent connections (RetNet, RWKV, Mamba-style state-space models) offer
potential by providing state persisting across positions. The key question is whether recurrent state can be
structured to support algorithmic control.

Scratchpad Attention Mechanisms. A lighter-weight intervention is architectural mechanisms forcing
models to attend to generated scratchpad tokens when making decisions, counteracting attention drift.
Implementation strategies include attention masking requiring minimum allocation to scratchpad state,
auxiliary attention losses penalizing low state attention, and dedicated attention heads constrained to attend
only to scratchpad tokens.

8.2 Training Innovations

Algorithm-Conditioned Learning. Standard scratchpad prompting failed uniformly in our experiments
(0% accuracy), suggesting generic instructions are insufficient. A targeted approach is algorithm-conditioned
few-shot learning where exemplars explicitly encode procedural dynamics: state initialization, frontier man-
agement, visited-set updates, termination conditions. This reframes prompting as procedural induction
rather than pattern elicitation.

Process-Based Supervision. Developing objectives that explicitly reward state coherence across gener-
ation steps: auxiliary losses on probe accuracy that persists throughout generation, consistency penalties
on state drift, or intermediate supervision on algorithmic state variables (visited sets, frontier membership).
This moves beyond outcome-based training to process-based supervision directly targeting control stability.

8.3 Scaling and Generalization Studies

Scaling Laws for Control. Current scaling laws characterize how loss decreases with model size and data
but do not address how control capacity scales. Future work should systematically vary model depth and
width while measuring diagnostic criteria satisfaction, testing whether control stability scales with depth,
width, or some interaction.

Broader Task Domains. Applying the diagnostic approach to other domains requiring multi-step execu-
tion (code generation, mathematical reasoning, constraint satisfaction, dialogue planning) to test generality
of the temporal dissociation. If the pattern—representations persisting while control fails—generalizes, this
would suggest a fundamental architectural limitation rather than task-specific phenomenon.

8.4 Causal Mechanisms

Activation Patching. Using causal intervention techniques to test necessity of specific representations
for execution. If patching attention weights from successful trials recovers performance in failing trials,
this would establish causal rather than merely correlational relationships between attention patterns and
behavioral outcomes.

Steering Vectors. Testing whether function vectors can be used to steer execution by adding them to
activations during generation. If adding the “path membership” vector improves traversal accuracy, this
would indicate that the information is present but requires amplification to influence behavior.

9 Conclusion

Why do language models fail at multi-step execution despite apparent understanding? Our findings reveal a
temporal dissociation: models encode task-relevant structure accurately (Spearman p = 0.50-0.70), but
control mechanisms degrade progressively during generation. The critical finding is that control collapse
precedes behavioral error in 78% of failed trials, establishing temporal precedence that localizes failure
to control mechanisms. Representations persist beyond failure—remaining structurally intact (RSA
correlations stable at p > 0.5) even when execution breaks down completely (0% accuracy).
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When control is externalized to symbolic planners, performance recovers (50-100%), confirming pre-
served evaluative competence. Models can assess paths accurately but cannot generate them reliably—a
competence-execution gap arising from control instability rather than representational inadequacy.

Our mechanistic analysis localizes the bottleneck precisely: attention drifts from task-relevant tokens (65%
— 40%), entropy increases rather than decreases (1.9 — 2.8 bits), and state tracking degrades after 3-5
steps even when representations remain intact. Function vectors for graph relations achieve 71-89% probe
accuracy but are not utilized during generation (R? = 0.08 explaining attention variance). Neither layer-time
nor generation-time computation exhibits signatures of systematic search.

These findings have three main implications:

For Scaling. If the limitation is control stability rather than representational capacity, then scaling alone
may be insufficient. The representational substrate for graph reasoning is already present at 2-4B parameters;
what fails is the control architecture. Larger models sharing attention-based control mechanisms may exhibit
the same instability at higher representational quality.

For Architecture. Architectural innovations targeting state persistence—external memory, recurrent
mechanisms, dedicated state-tracking attention heads—may be necessary for reliable multi-step reasoning.
Our results provide mechanistic grounding for such choices by demonstrating precisely where current systems
fail.

For Hybrid Systems. Neuro-symbolic architectures succeed not by compensating for representational
deficits but by externalizing control functions that transformers approximate poorly. This positions hybrid
systems as principled designs aligning component capabilities with task demands, not temporary scaffolding.

The temporal dissociation between representation and control reveals a fundamental principle: having the
right knowledge is necessary but not sufficient for reliable execution. Systems that know the structure but
cannot navigate it reliably require mechanisms maintaining stable bindings between representations and ac-
tions over time—mechanisms that current attention-based architectures approximate poorly. Understanding
this dissociation, and designing systems that address it directly, is the path toward language models that
not only appear to reason algorithmically but can do so reliably.
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A Example Trial Walkthrough

This appendix provides a concrete walkthrough of a single representative trial to illustrate how the three
evaluation regimes—autonomous generation, internal analysis, and hybrid evaluation—operate on the same
problem instance.

A.1 Sample Graph and Task

We consider a hierarchical tree graph (n=7, branching factor 2, depth 3) under a value-based planning
objective. The task is to identify the path from Node 1 to the highest-reward leaf. The optimal path is:
Node 1 — Node 2 — Node 5 — Node 11 (cumulative reward 37). Alternative paths exist with slightly lower
rewards, creating ambiguity testing whether the model systematically explores alternatives.

Graph with Symbolic Optimal Path

Room 4

Ra\um r/”"Jn g

Symbolic optimal path:
Room 6 —+ Room 3 - Room 7

Graph saved to: phi-3-mini-4k-instruct_n7tree_DynamicRSA_Room &_to_Room 7.png
<IPython.core.display.Image object>

=== Running Method ==
Method: Dynamic RSA
Generating with activations (may take time)...

Hidden state layers: 33
Attention layers: 32

=== (ompleted Successfully ==
Figure 7: Example hierarchical graph (n=7) with optimal path highlighted. Node labels indicate identity;
reward values are assigned to leaf nodes (Nodes 8-14). This figure provides a shared visual reference for
behavioral, representational, and attention analyses.

A.2 Scratchpad Generation (Autonomous Condition)

Figure [§] shows representative scratchpad output. The model exhibits the characteristic pattern observed
across experiments:

o Steps 1-2: Model correctly identifies Node 1 as start, lists adjacent nodes (2, 3) as frontier, selects
Node 2 with plausible justification.

o Steps 3—4: Maintains valid state tracking (Visited: {1, 2}, Frontier: {3, 4, 5}) and makes admissible
transitions.
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e Step 5: Control degrades—model lists Node 3 in frontier despite it being a sibling of current path,
indicating confusion between tree structure and frontier membership.

e Step 6+: Scratchpad structure becomes malformed; visited set not updated; premature termination

without exploring higher-reward alternatives.

This pattern—short-horizon coherence followed by control failure—aligns with temporal dynamics: attention
coherence degrading (65% — 40%), state drift accumulating (0.82 — 0.54), behavioral validity collapsing
(80% — 20%).

Sample Output Log: Step 1: Current Room is Room 1. Choices: Room 2, Room 3.
Rationale: Both branches (2 and 3) have rewards deeper in their path. Arbitrarily choose
Room 3.

Figure 8: Representative Scratchpad trace showing local coherence (Steps 1-4) followed by control failure
(Steps 5+). Degradation manifests as frontier confusion, premature termination, and loss of scratchpad
structure—illustrating simulation collapse.

A.3 Hybrid Symbolic Validation
Figure [9] shows hybrid validation. Candidate paths are:
1. Optimal: Node 1 — 2 — 5 — 11 (reward 37)

Locally greedy: Node 1 — 2 — 4 (reward 28)

Near-optimal: Node 1 — 3 — 7 (reward 32)

> W

Random valid: Node 1 — 3 — 6 (reward 19)

The model correctly selects Path 1 as optimal: “Path 1 reaches Node 11 with cumulative reward 37, higher
than alternatives.” This demonstrates preserved evaluative capacity despite failed autonomous generation.

Hybrid Symbolic Planner:

To test the LLM's capacity for contextual validation and repair over deterministic results.
Workflow: A symbolic planner provides the LLM with paths: P1 (Optimal: 12327), P2 (Sub-
optimal: 12225), and P3 (Loop: 122>1-3). LLM Validator must choose P1.

Analysis: Tests if the LLM can correctly evaluate and select the highest-value path,
confirming its reward reasoning capability even when candidates are pre-generated.

Figure 9: Hybrid validation: model correctly selects optimal path when presented as candidate, demon-
strating evaluative competence. Errors in hybrid condition are value-preference (selecting suboptimal valid
paths), not structural (selecting invalid paths).

A.4 Internal Dynamics

For this trial:

e Dynamic RSA: p = 0.61 with graph distance, indicating preserved topological representation
despite invalid output.

o Attention dynamics: State/frontier attention starts at 68% (step 1), declines to 42% (step 6).

o Function vectors: Path membership probe accuracy 83% at step 3—model represents which nodes
lie on optimal path but fails to use this information.

e State drift: Below 0.6 at step 4, before first behavioral error at step 5—confirming temporal
precedence.
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B Additional Visualizations

Figures [L0) show RSA and attention pairing for a representative trial, illustrating that representational
alignment (p = 0.64) persists even when behavioral execution fails.

Graph with Symbolic Optimal Path
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=== Running Method ===
Method: Dynamic RSA
Generating with activations (may take time)...

Hidden state layers: 33
Attention layers: 32

=== Completed Successfully ===
Figure 10: Dynamic RSM at generation step ¢ = 4. Each cell (4, 7) shows cosine similarity between hidden

states of nodes ¢ and j. Block structure reflects graph topology. Spearman correlation with graph distance
p = 0.64 indicates preserved structure despite invalid behavioral output by step 5.
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=== Running Method ==
Method: Attention Analysis
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Figure 11: Attention heatmap showing early focus on task-relevant tokens (dark bands at graph-state posi-
tions) followed by diffusion across structural tokens and recent scratchpad text. Control degradation occurs
while representations (Figure remain intact.

C Supplementary Statistical Tables
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Table 4: RSA correlations by model, topology, and generation step. Standard deviations in parentheses.
Correlations remain stable or improve across steps even as behavioral validity collapses.

Model Topology Step 1-3 Step 46  Step 7+
Phi-3 Mini Line 0.58 (0.05) 0.61 (0.06) 0.60 (0.07)
Phi-3 Mini  Tree 0.60 (0.06) 0.64 (0.05) 0.62 (0.08)
Phi-3 Mini  Clustered  0.54 (0.08) 0.58 (0.07) 0.55 (0.09)
Gemma Line 0.52 (0.06) 0.55 (0.07) 0.53 (0.08)
Gemma Tree 0.54 (0.07) 0.57 (0.06) 0.55 (0.09)
Gemma Clustered  0.48 (0.09) 0.52 (0.08) 0.49 (0.10)

Table 5: Attention allocation to task-relevant tokens by generation step. Attention drifts from state/frontier
tokens toward recent output and structural tokens.

Token Class Step 1 Step3 Step5 Step7 Step 9

Current state 0.28 0.24 0.19 0.15 0.12
Frontier 0.25 0.21 0.17 0.14 0.11
Visited 0.12 0.11 0.09 0.08 0.07
Recent output 0.15 0.22 0.29 0.35 0.42
Structural 0.20 0.22 0.26 0.28 0.28
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