
A Clean Slate for Offline RL

A Clean Slate for Offline RL

Matthew T. Jackson* Uljad Berdica* Jarek Liesen*

Shimon Whiteson Jakob N. Foerster

University of Oxford

Abstract

Progress in offline reinforcement learning (RL) has been impeded by ambiguous prob-
lem definitions and entangled algorithmic designs, resulting in inconsistent implemen-
tations, insufficient ablations, and unfair evaluations. Although offline RL explicitly
avoids environment interaction, prior methods frequently employ extensive, undoc-
umented online evaluation for hyperparameter tuning, complicating method compar-
isons. Moreover, existing reference implementations differ significantly in boilerplate
code, obscuring their core algorithmic contributions. We address these challenges by
first introducing a rigorous taxonomy and a transparent evaluation procedure that explic-
itly quantifies online tuning budgets. To resolve opaque algorithmic design, we provide
clean, minimalistic, single-file implementations of various model-free and model-based
offline RL methods, significantly enhancing clarity and achieving substantial speed-
ups. Leveraging these streamlined implementations, we propose Unifloral, a unified
algorithm that encapsulates diverse prior approaches within a single, comprehensive
hyperparameter space, enabling algorithm development in a shared hyperparameter
space. Using Unifloral with our rigorous evaluation procedure, we develop two novel
algorithms—TD3-AWR (model-free) and MoBRAC (model-based)—which substan-
tially outperform established baselines. All code for this project can be found in our
public codebase.

1 Introduction

Offline reinforcement learning (RL)—the task of learning effective policies from pre-collected,
static datasets—is critical for applying RL in real-world settings where online experimentation is
expensive or risky. Despite significant interest (Levine et al., 2020; Yu et al., 2020; Fujimoto & Gu,
2021; Paine et al., 2020; Tarasov et al., 2023), the field has struggled to converge on clear, action-
able insights. Algorithms and methods proliferate rapidly but no broadly agreed-upon conclusions
or standardized benchmarks have emerged (Prudencio et al., 2023). This undermines both practical
application and theoretical progress. In this work, we identify and address two primary problems
that contribute to stagnation and confusion in offline RL research: an ambiguous problem setting
and opaque algorithmic design.

Problem 1: Ambiguous Problem Setting Recent work in offline RL has lacked a rigorously
articulated definition or standardized evaluation procedure. The broad mission statement, learn-
ing from a static dataset without direct environment interaction, is prone to misinterpretation that
skews proposed methods towards impractical evaluation practices. Existing literature implicitly re-
laxes various definitions concerning critical details such as hyperparameter tuning allowances (Paine
et al., 2020; Konyushova et al., 2021), the extent of post-deployment policy adaptation (Matsushima
et al., 2020), and the specifics of evaluation procedures (Kurenkov & Kolesnikov, 2022). Conse-
quently, comparisons between methods are confounded as each study might assume fundamentally
different experimental conditions. While some approaches restrict tuning based on related dataset

*Equal contribution. Correspondence to {jackson,uljadb,jarek}@robots.ox.ac.uk

https://anonymous.4open.science/r/Unifloral-NeurIPS-D1A2

Reinforcement Learning Journal 2025

performance (Smith et al., 2023), most approaches extensively tune hyperparameters on the target
environment (Kidambi et al., 2021; Tarasov et al., 2023; Kumar et al., 2020). Using the target en-
vironment to tune hyperparameters needs a large number of online evaluations, which is in conflict
with the basic premise of offline RL.

Solution 1: A Novel Taxonomy and Evaluation Procedure We first introduce a rigorous and
explicit taxonomy of offline RL evaluation variants (subsection 3.1) and specify the one we find to
be implicitly adopted by most prior research. To facilitate consistent and transparent evaluation, we
propose a rigorous procedure for this setting (subsection 3.2) that evaluates algorithmic performance
using a fixed hyperparameter range across multiple datasets. This procedure explicitly quantifies
performance at various permissible levels of online hyperparameter tuning, i.e., interactions with
the target environment, thus providing clarity about the practical deployment requirements of each
method. To ensure ease of adoption and reproducibility, we release a straightforward software inter-
face for performing this evaluation procedure, thereby empowering future work to evaluate offline
RL algorithms robustly and transparently.

Problem 2: Opaque Algorithmic Design Offline RL methods are typically presented as intricate
bundles with intertwining algorithmic components, implementation-specific details, and unclear tun-
ing procedures. Researchers typically compare proposed methods to baseline performance quoted
directly from prior publications (Prudencio et al., 2023), inadvertently propagating these method-
ological issues. As a result, it is difficult to isolate the impact of individual methodological choices.
Thus, the state-of-the-art remains ambiguous, with no method demonstrating uniformly strong per-
formance across all datasets (An et al., 2021; Yu et al., 2022; Lu et al., 2022b).

Solution 2: Consistent Reimplementations and a Unified Algorithm We first dissect the novel
components of prior algorithms by defining a phylogenetic tree based on their compositional struc-
ture (subsection 4.1). We use this representation to provide single-file reimplementations of a wide
range of offline RL methods. These minimal implementations eliminate extraneous code differences
and highlight fundamental components, as well as achieving average training speedups of 131.5×
and 74.8× against OfflineRL-Kit (Sun, 2023) and CORL (Tarasov et al., 2022), two leading offline
RL libraries. Furthermore, we propose a unified offline RL algorithm (Unifloral, subsection I.1)
that integrates core components from various prior methods into one coherent framework. Crucially,
Unifloral provides a single, unified hyperparameter space containing all of these algorithms.

Leveraging Unifloral with our evaluation procedure, we introduce two novel offline RL methods:
a model-free approach (TD3-AWR, subsection 5.1) and a model-based one (MoBRAC, subsec-
tion 5.2). These methods demonstrate substantial performance improvements over established base-
lines, validating both our unified methodology and rigorous evaluation framework.

Offline Training Pre-deployment Post-deployment

1. Zero-shot
Example: Autonomous search and rescue

Setting

2a. Pre-deployment policy selection
Example: Autonomous vehicles with safety driver testing

2b. Post-deployment policy selection
Example: Autonomous search and rescue

3. Offline-to-online
Example: Multi-step language reasoning models

Figure 1: Formalizing the variants of offline RL—we define a range of offline RL variants (sub-
section 3.1), with policy performance being measured post-deployment. Pre-deployment policy
selection (2a) and post-deployment policy selection (2b) use a policy-selection bandit after offline
training, whilst (3) uses unrestricted policy updates.

A Clean Slate for Offline RL

2 Preliminaries

2.1 Reinforcement Learning

We apply RL to a finite-horizon Markov Decision Process (MDP) defined by the tuple
⟨S0,S,A, T,R,H⟩. Here S is the state space, A is the action space, and H is the horizon.
T : S × A → ∆(S) is the transition dynamics, defining how the state changes given a state
and the action taken on that state. ∆(S) is the set of all possible distributions over s. The scalar
reward function is R : S × A → R. The environments in this paper are all fully observable as the
Markov state is directly observed at each timestep.

A policy π maps a state in S to an action distribution over A. The policy is trained to maximize the
expected return Jπ

M for a given MDP M with trajectory length H:

Jπ
M := Ea0:H∼π,s0∼S0,s1:H∼H

[
T∑

t=0

rt

]
. (1)

2.2 Offline Reinforcement Learning

Offline RL methods use a pre-collected dataset D to optimize a target policy to maximize Jπ without
online interactions in the environment. This dataset consists of transitions (si, ai, ri, si+1, ai+1) for
i = 0, . . . , N , where si, si+1 ∈ S, ai ∈ A, ri ∈ R are the current and next states, action, and
reward, respectively. Here, initial states are drawn from the distribution s0 ∼ S0 and trajectories
are gathered through a behaviour policy πb interacting with the environment. Since πb may be
suboptimal, the resulting dataset D might not contain sufficient coverage of the environment’s state
space to learn an effective policy.

An effective offline RL method must learn policies that generalize from this limited dataset to per-
form reliably when deployed in their environment. Typically, these methods require significant
regularization to avoid overestimation bias. For model-free methods, this is commonly done with
critic ensembles, where the minimum state value estimated by the ensemble is used for policy opti-
mization. Model-based methods generalize by training a dynamics model T̂ (s, a) to predict future
states and rewards. This can be used to generate synthetic rollouts from the target policy, allowing
for direct optimization of its performance.

3 Refining Evaluation in Offline RL

This section describes our taxonomy of offline RL, illustrated in Figure 1, which motivates our
evaluation procedure in Figure 2. We also outline the procedure in detail and use it to analyze the
performance of a set of model-free and model-based algorithms in multiple environments.

3.1 Variants of Offline RL

The goal of offline RL is to train an agent using solely offline data, with the objective of maxi-
mizing performance from deployment, i.e., the point where the agent is evaluated online. In this
setting, deployment marks a strict separation between the offline training phase and the online eval-
uation phase. However, some methods relax this strict separation by allowing limited interaction
with the environment—either through pre-deployment interaction, which incurs no cost and occurs
before evaluation, or through post-deployment adaptation, where performance includes the return
during these additional interactions. Examples include dataset aggregation from multiple deploy-
ments (Ross et al., 2011), selection from a set of policies trained offline (Konyushova et al., 2021;
Kurenkov & Kolesnikov, 2022), and fine-tuning a single policy (Matsushima et al., 2020), all of
which can be performed both before and after deployment. While any combination of these is pos-
sible, we identify four key settings.

Reinforcement Learning Journal 2025

Figure 2: Overview of our evaluation procedure. Left: We sample hyperparameters, train the cor-
responding policies, and collect their final evaluation scores. Right: We simulate hyperparameter
tuning using the collected scores by subsampling K policy scores and recording the best-arm per-
formance of a UCB tuning bandit operating over them.

Many offline RL papers implicitly perform pre-deployment policy selection (Setting 2a in Figure 1),
as they report final performance after extensive hyperparameter tuning involving online evalua-
tion (Kidambi et al., 2021; Tarasov et al., 2023). However, due to differences in the number of
hyperparameters or computational resources, this tuning process varies in scope across studies. As
a result, reported performances are often not directly comparable since they reflect not only al-
gorithmic quality but also differences in tuning budgets. Furthermore, these procedures typically
assume low-variance estimates of each policy’s performance, determined by an indefinite number
of online evaluations. This is rarely made explicit as hyperparameter tuning is often considered
a technical detail and not part of the method, even though it can dramatically affect performance
(subsection 3.3).

Finally, much prior work has blurred the line between algorithms and hyperparameters in offline
RL, proposing different hyperparameter values or ranges for each task. This ambiguity enables the
same “method” to have dramatically different behaviour across tasks, undermining the assumption
of limited interactions by essentially proposing a different method for each task. To resolve this, we
define an offline RL method to include a fixed hyperparameter range, which remains constant across
datasets (see A Definition of Offline RL Methods).

3.2 Proposed Evaluation Procedure

We now propose a rigorous and practical evaluation procedure for offline RL with pre-deployment
policy selection (Setting 2a), as it implicitly is the standard setting for evaluating offline RL meth-
ods (see subsection 3.1). Our goal is to evaluate offline RL algorithms under a fixed budget of N
pre-deployment environment interactions used for tuning. We measure this budget in terms of the
number of evaluation episodes, reflecting practical deployment constraints where each online inter-
action can be costly. Whilst the tuning algorithm may be defined as part of the method, most research
focuses on offline policy optimization prior to tuning. Therefore, we provide an upper confidence
bound (UCB) bandit (Auer et al., 2002) in our implementation as the default tuning algorithm.

Furthermore, to reflect real-world limitations, we assume that the expected return of each policy is
not directly observable, with each pull from the bandit sampling a single episodic return from that
policy’s return distribution. This models the high-variance, sample-limited setting typical in real
deployments, where evaluating a policy’s performance requires interacting with the environment
and yields only noisy, episodic feedback. The importance of this is demonstrated by the emergence
of distractor policies, as discussed in subsection 3.3.

In essence, our evaluation procedure repeatedly simulates hyperparameter tuning with a fixed online
budget, using a bandit to select a single policy for final deployment. This procedure (Figure 2) has
two steps: score collection and bandit evaluation.

A Clean Slate for Offline RL

100 101 102
0

20

40

60

80

100
hopper-medium-v2

100 101 102

20

40

60

80

100

halfcheetah-medium-expert-v2

100 101 102

20

40

60

80

walker2d-medium-replay-v2

100 101 102

0

20

40

60

pen-human-v1

100 101 102

0

20

40

60

pen-cloned-v1

100 101 102
0

50

100

pen-expert-v1

100 101 102
0

50

100

150

200

maze2d-large-v1

100 101 102
0

10

20

30

40

50

kitchen-mixed-v0

0.0 0.2 0.4 0.6 0.8 1.0
Number of policy evaluations

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
sc

or
e

Algorithm
BC
COMBO

CQL
EDAC

IQL
MOPO

MoReL
ReBRAC

SAC-N
TD3-BC

Figure 3: Evaluation of prior algorithms—mean and 95% CI over 500 bandit rollouts, with K = 8
policy arms subsampled from 20 trained policies each rollout. The x-axis denotes the number of
bandit pulls, whilst the y-axis denotes the true expected score of the estimated best arm after x
pulls. The full evaluation results in Appendix B.

Step 1: Train Policies and Collect Scores Firstly, we collect a dataset of episodic evaluation
scores from policies trained by the target algorithm. To do this, we sample P hyperparameter set-
tings (with replacement and random seeds) from the range defined by the method, and then train P
corresponding policies. These policies are evaluated online for a large number of episodes R and
their episodic scores recorded. Following this, the policies may be discarded as only their episodic
scores are required for bandit evaluation.

Step 2: Run Bootstrapped Tuning Bandit Using our collected episodic evaluation dataset, we
then repeatedly simulate hyperparameter tuning to measure algorithm performance at different tun-
ing budgets. This is performed by subsampling K policies* (i.e., their corresponding episodic
scores) and running a multi-armed bandit over them. In this bandit, each arm corresponds to a
policy, with each pull sampling one episode’s return from the corresponding policy. At each number
of pulls N , we evaluate the performance of the algorithm by selecting the policy estimated to have
the highest return by the bandit, and taking its true average return. We repeat this process B times
to obtain a bootstrapped estimate of algorithm performance.

Recommended Datasets It is essential to evaluate methods on a diverse distribution of tasks to
ensure generality. Alarmingly, the majority of offline RL methods considered in this work were
evaluated only on MuJoCo and Adroit tasks from the D4RL suite (Fu et al., 2020). While com-
putational budgets may be limited, we argue that they would be better spent considering a wider
range of tasks and behaviour policies. In order to make environment selection consistent, we rec-
ommend starting with the following environments, where algorithms currently obtain non-trivial
performance: hopper-medium, halfcheetah-medium-expert, and walker2d-medium-replay, as
a representative subset of MuJoCo locomotion; pen-human, pen-cloned, and pen-expert, as al-
gorithms often achieve zero or perfect performance on other Adroit environments; kitchen-mixed,
maze2d-large, and antmaze-large-diverse, to provide diversity in the evaluated environments.

3.3 Results

In Figure 3, we evaluate a range of prior algorithms (list in Appendix A). For this, we uniformly
sample from the hyperparameter tuning ranges specified in each algorithm’s original paper or the

*We fix K = 8 in our experiments but encourage future evaluation under other values.

Reinforcement Learning Journal 2025

union of ranges when multiple are provided. Generally, an algorithm performs better if its curve is
closer to the top left corner of a plot, representing strong performance after few online interactions.
Prior work has typically reported performance after unlimited online tuning, which is the limit of
the score with an increasing number of policy evaluations, i.e., the top right corner.

Inconsistent Algorithm Performance No algorithm consistently performs well across all datasets.
However, ReBRAC and IQL are competitive for the overall best performing algorithm, with Re-
BRAC achieving top performance at some number of evaluations on 5 out of 9 datasets and IQL on
4 out of 9 datasets. Even though both of these algorithms are worse than competing baselines on
other datasets, we believe them to be the clearest baselines for future method development, as done
in subsection 5.1.

Overfit Model-Based Methods The model-based algorithms we evaluate—MOPO, MOReL, and
COMBO (subsection A.2)—achieve notably poor performance on all non-locomotion datasets,
ranking no higher than 6th out of the 10 evaluated algorithms (and failing to beat BC) at any num-
ber of policy evaluations. While these results are surprising, we emphasize that our implementa-
tion successfully reproduces reference results with the specialized hyperparameters for each dataset
(Appendix G). Instead, these results suggest that these methods are deeply overfit to the locomotion
datasets they were originally evaluated on (Appendix C), providing a sobering reflection of the field.

Distractor Policy Phenomenon While performance typically improves as more bandit arms are
pulled, certain performance curves exhibit distinctive dips—temporary decreases in measured per-
formance despite additional policy evaluations. To better understand this, we examine the ranked
performance distribution of numerous ReBRAC policies trained on hopper-medium (Figure 7). This
analysis reveals a notable cluster of policies that exhibit suboptimal average performance but pos-
sess a higher maximum performance compared to consistently better-performing policies. We refer
to these anomalous policies as distractor policies.

To demonstrate their impact on evaluation, we simulate the initial phase of a bandit rollout over
these policies, i.e., when the bandit enumerates all arms (Figure 8a). Over this phase, we observe
a clear increase in the probability of preferring a distractor policy, explaining the initial decrease
in evaluation performance. This phenomenon runs counter to the expectation that increasing pol-
icy evaluations would monotonically reduce estimator variance and underscores the need to directly
consider environment interactions in evaluation, a crucial distinction from prior evaluation method-
ologies (Kurenkov & Kolesnikov, 2022). Further analysis of distractor policies is provided in Ap-
pendix D.

4 Elucidating Algorithm Design in Offline RL

In this section, we seek to simplify algorithm design in offline RL. Firstly, we present a genealogy
of prior algorithms, using it to propose and implement a set of compositional reimplementations.
Following this, we propose a unified algorithm, Unifloral, capable of expressing these methods—as
well as any combination of their components—in a single hyperparameter space.

4.1 Disentangling Prior Methods

New offline RL methods are typically derived from preceding ones by adding or editing individual
components of the agent’s objective or architecture. Despite this, methods typically suffer from a
range of unnecessary implementation differences, making it difficult for researchers to identify their
contribution or fairly compare methods. Even in popular single-file implementations, we observe
significant code differences between “parent” and “child” algorithms, which should require only the
individual components to be edited. This encourages researchers to compare entire algorithms rather
than ablating components. We discuss this and how it informs our code philosophy in Appendix E.

As a solution, we provide single-file reimplementations of a range of existing model-free (BC,
TD3-BC, ReBRAC, IQL, SAC-N, LB-SAC, EDAC, CQL, DT) and model-based (MOPO, MOReL,

A Clean Slate for Offline RL

COMBO) methods. Our implementation has a number of advantages. Firstly, we focus on code clar-
ity and minimal code edits between algorithms, leading to a dramatic reduction in code differences
between algorithms. Secondly, we implement our algorithms in end-to-end compiled JAX, leading
to major speed-ups against competing implementations (more in Appendix F). We believe these im-
plementations will lead to better algorithm understanding and fairer evaluation, as well as enabling
powerful experiments on low compute budgets. We verify the correctness of our reimplementations
in Appendix G.

5 Research with Unifloral

Our unified algorithm and hyperparameter space enable researchers to combine different compo-
nents and search through algorithm designs by only modifying the configuration of the unified im-
plementation. To demonstrate the avenues our work opens up and encourage further research, we
provide two “mini-papers” completed entirely by specifying configurations of the unified implemen-
tation, without any code changes. We examine a model-free and a model-based improvement.

5.1 TD3 with Advantage Weighted Regression

Hypothesis In subsection 3.3, we show that one of two methods consistently outperformed exist-
ing baselines: ReBRAC (Tarasov et al., 2023) and IQL (Kostrikov et al., 2021). ReBRAC is derived
from TD3-BC, meaning it optimizes its actor using TD3 value loss in combination with a BC loss
term for regularization. In contrast, IQL uses only a BC loss but performs advantage weighted
regression (AWR) by weighting the BC loss of each action by its estimated advantage. We hypoth-
esise that substituting the BC term in ReBRAC with AWR, a method we name TD3-AWR, would
combine the strengths of these methods and lead to improved performance overall.

Evaluation We define TD3-AWR in Unifloral by using the AWR hyperparameters from IQL and
the ReBRAC hyperparameters elsewhere. In Figure 4, we show that TD3-AWR’s performance
curve strictly dominates ReBRAC on 6 out of 9 datasets and is dominated by ReBRAC in only 1.
Interestingly, TD3-AWR achieves superior performance to ReBRAC under few policy evaluations—
such as in halfcheetah-medium-expert and pen-expert—despite searching over a wider range of
hyperparameters. Similarly, TD3-AWR strictly dominates IQL on 7 datasets, thereby outperforming
both of its source algorithms.

100 101 102
85

90

95

100

105

halfcheetah-medium-expert-v2

100 101 102

30

40

50

60

70
pen-human-v1

100 101 102

50

100

150

200
maze2d-large-v1

100 101 102

10

20

30

40

50

kitchen-mixed-v0

0.0 0.2 0.4 0.6 0.8 1.0
Number of policy evaluations

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
sc

or
e

Algorithm
IQL ReBRAC TD3-AWR

Figure 4: TD3-AWR evaluation against ReBRAC and IQL (full results in Appendix J).

5.2 Improving Policy Optimization for Model-Based Offline RL

Hypothesis In subsection 3.3, we demonstrate the poor performance of model-based methods on
non-locomotion environments. Whilst this is partially due to overfit hyperparameters, the design
space of policy optimizers in model-based methods is underexplored, with all considered methods
using SAC-N or CQL (Appendix F). Given the performance improvements from recent methods,
we posit that these methods would be more competitive with an alternative policy optimizer. We

Reinforcement Learning Journal 2025

therefore propose using ReBRAC with synthetic rollouts generated from a MOPO world model,
which we name Model-based Behaviour Regularized Actor-Critic, or MoBRAC.

Evaluation We implement MoBRAC in Unifloral, using the MOPO hyperparameters for dynam-
ics model training and sampling, then using the ReBRAC hyperparameters elsewhere. Figure 5
shows how MoBRAC outperforms other model-based methods for all datasets, except for MOPO
in maze2d-large-v1. Under a transparent evaluation budget, we find that MoBRAC outper-
forms the other model-based methods in 6 out of 9 datasets and is tied with MOPO for 3 others
(Appendix K).

100 101 102

25

50

75

100
halfcheetah-medium-expert-v2

100 101 102

0

20

40

pen-human-v1

100 101 102

0

10

20

30

maze2d-large-v1

100 101 102
0

5

10

15

kitchen-mixed-v0

0.0 0.2 0.4 0.6 0.8 1.0
Number of policy evaluations

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
sc

or
e

Algorithm
COMBO MOPO MoReL MoBRAC

Figure 5: MoBRAC evaluation against prior model-based algorithms (full results in Appendix K).

6 Related Work

Our work builds upon several foundational aspects of offline RL, including evaluation strategies,
open-source implementations, and algorithmic unification. Existing evaluation regimes primarily
address hyperparameter tuning either through limited online interactions (Matsushima et al., 2020;
Kurenkov & Kolesnikov, 2022) or by estimating policy performance offline (Paine et al., 2020;
Smith et al., 2023). In contrast, our approach introduces an evaluation procedure that requires neither
reference policies nor additional hyperparameters, offering broader applicability across the entire
D4RL benchmark suite. Furthermore, our single-file implementations draw inspiration from projects
such as CORL (Tarasov et al., 2022; Nishimori, 2024) and CleanRL (Huang et al., 2022), whilst our
unified algorithm, Unifloral, is informed by prior unification attempts (Hessel et al., 2018; 2021; Lu
et al., 2022b; Sikchi et al., 2023). For a comprehensive review, see Appendix L.

7 Conclusion

In this work, we addressed critical challenges in problem formulation, evaluation, and algorithm
unification in offline RL. We introduced a taxonomy that clearly distinguishes between offline RL
variants—spanning zero-shot deployment to approaches with limited pre-deployment tuning or post-
deployment adaptation. This categorization exposes the hidden online interactions, such as hyper-
parameter tuning, that have long confounded fair evaluation and reproducibility. To overcome these
issues, we proposed a rigorous evaluation procedure that transparently quantifies the cost of online
interactions via noisy, single-episode feedback. Additionally, by dissecting components of existing
offline RL algorithms, we developed Unifloral, a novel unified offline RL algorithm that combines
improvements of many previous methods, enabling seamless ablation of algorithmic components.
We demonstrate this with two novel algorithms inside Unifloral, TD3-AWR and MoBRAC, which
integrate the strengths of existing methods to achieve superior performance over a wide range of
tasks. Collectively, our contributions set a new standard for addressing ambiguity in offline RL,
promoting rigorous evaluation, and driving reproducible, impactful research in the field.

A Clean Slate for Offline RL

References
Joshua Achiam. Spinning Up in Deep Reinforcement Learning, 2018. URL https://
spinningup.openai.com/en/latest/index.html.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-Based Offline Rein-
forcement Learning with Diversified Q-Ensemble, October 2021. URL http://arxiv.org/
abs/2110.01548. arXiv:2110.01548 [cs].

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47:235–256, 2002.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A Minimalist Approach to Offline Reinforcement Learning,
December 2021. URL http://arxiv.org/abs/2106.06860. arXiv:2106.06860 [cs,
stat].

Scott Fujimoto, Herke Hoof, and David Meger. Addressing Function Approximation Error in
Actor-Critic Methods. In Proceedings of the 35th International Conference on Machine Learn-
ing, pp. 1587–1596. PMLR, July 2018. URL https://proceedings.mlr.press/v80/
fujimoto18a.html. ISSN: 2640-3498.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. Pmlr, 2018.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Matteo Hessel, Ivo Danihelka, Fabio Viola, Arthur Guez, Simon Schmitt, Laurent Sifre, Theophane
Weber, David Silver, and Hado Van Hasselt. Muesli: Combining improvements in policy opti-
mization. In International conference on machine learning, pp. 4214–4226. PMLR, 2021.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
nal Mehta, and JoÃG, o GM AraÃšjo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. MOReL :
Model-Based Offline Reinforcement Learning, March 2021. URL http://arxiv.org/
abs/2005.05951. arXiv:2005.05951 [cs, stat].

Ksenia Konyushova, Yutian Chen, Thomas Paine, Caglar Gulcehre, Cosmin Paduraru, Daniel J
Mankowitz, Misha Denil, and Nando de Freitas. Active offline policy selection. Advances in
Neural Information Processing Systems, 34:24631–24644, 2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline Reinforcement Learning with Implicit Q-
Learning, October 2021. URL http://arxiv.org/abs/2110.06169. arXiv:2110.06169
[cs].

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-Learning for
Offline Reinforcement Learning, August 2020. URL http://arxiv.org/abs/2006.
04779. arXiv:2006.04779 [cs, stat].

https://spinningup.openai.com/en/latest/index.html
https://spinningup.openai.com/en/latest/index.html
http://arxiv.org/abs/2110.01548
http://arxiv.org/abs/2110.01548
http://arxiv.org/abs/2106.06860
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
http://arxiv.org/abs/2005.05951
http://arxiv.org/abs/2005.05951
http://arxiv.org/abs/2110.06169
http://arxiv.org/abs/2006.04779
http://arxiv.org/abs/2006.04779

Reinforcement Learning Journal 2025

Vladislav Kurenkov and Sergey Kolesnikov. Showing Your Offline Reinforcement Learning Work:
Online Evaluation Budget Matters, June 2022. URL http://arxiv.org/abs/2110.
04156. arXiv:2110.04156 [cs].

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline Reinforcement Learning:
Tutorial, Review, and Perspectives on Open Problems, November 2020. URL http://arxiv.
org/abs/2005.01643. arXiv:2005.01643 [cs, stat].

Jarek Liesen, Chris Lu, and Robert Lange. rejax, 2024. URL https://github.com/
keraJLi/rejax.

Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt, and Jakob Foerster.
Discovered policy optimisation. Advances in Neural Information Processing Systems, 35:16455–
16468, 2022a.

Cong Lu, Philip J. Ball, Jack Parker-Holder, Michael A. Osborne, and Stephen J. Roberts. Revisiting
Design Choices in Offline Model-Based Reinforcement Learning, March 2022b. URL http:
//arxiv.org/abs/2110.04135. arXiv:2110.04135 [cs].

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-
efficient reinforcement learning via model-based offline optimization. arXiv preprint
arXiv:2006.03647, 2020.

Ishita Mediratta, Qingfei You, Minqi Jiang, and Roberta Raileanu. The Generalization Gap in Of-
fline Reinforcement Learning, March 2024. URL http://arxiv.org/abs/2312.05742.
arXiv:2312.05742 [cs].

Soichiro Nishimori. Jax-corl: Clean sigle-file implementations of offline rl algorithms in jax. 2024.
URL https://github.com/nissymori/JAX-CORL.

Tom Le Paine, Cosmin Paduraru, Andrea Michi, Caglar Gulcehre, Konrad Zolna, Alexander
Novikov, Ziyu Wang, and Nando de Freitas. Hyperparameter Selection for Offline Reinforcement
Learning, July 2020. URL http://arxiv.org/abs/2007.09055. arXiv:2007.09055
[cs].

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on
offline reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on
Neural Networks and Learning Systems, 2023.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of machine
learning research, 22(268):1–8, 2021.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference
Proceedings, 2011.

Takuma Seno. d3rlpy: An offline deep reinforcement library. https://github.com/
takuseno/d3rlpy, 2020.

Harshit Sikchi, Qinqing Zheng, Amy Zhang, and Scott Niekum. Dual rl: Unification and new
methods for reinforcement and imitation learning. arXiv preprint arXiv:2302.08560, 2023.

http://arxiv.org/abs/2110.04156
http://arxiv.org/abs/2110.04156
http://arxiv.org/abs/2005.01643
http://arxiv.org/abs/2005.01643
https://github.com/keraJLi/rejax
https://github.com/keraJLi/rejax
http://arxiv.org/abs/2110.04135
http://arxiv.org/abs/2110.04135
http://arxiv.org/abs/2312.05742
https://github.com/nissymori/JAX-CORL
http://arxiv.org/abs/2007.09055
https://github.com/takuseno/d3rlpy
https://github.com/takuseno/d3rlpy

A Clean Slate for Offline RL

Matthew Smith, Lucas Maystre, Zhenwen Dai, and Kamil Ciosek. A strong baseline for batch
imitation learning. arXiv preprint arXiv:2302.02788, 2023.

Yihao Sun. Offlinerl-kit: An elegant pytorch offline reinforcement learning library. https://
github.com/yihaosun1124/OfflineRL-Kit, 2023.

Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov.
CORL: Research-oriented deep offline reinforcement learning library. In 3rd Offline RL Work-
shop: Offline RL as a ”Launchpad”, 2022. URL https://openreview.net/forum?id=
SyAS49bBcv.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the Min-
imalist Approach to Offline Reinforcement Learning, October 2023. URL http://arxiv.
org/abs/2305.09836. arXiv:2305.09836 [cs].

Han Wang, Archit Sakhadeo, Adam White, James Bell, Vincent Liu, Xutong Zhao, Puer Liu,
Tadashi Kozuno, Alona Fyshe, and Martha White. No more pesky hyperparameters: Offline
hyperparameter tuning for rl. arXiv preprint arXiv:2205.08716, 2022.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. MOPO: Model-based Offline Policy Optimization, November 2020. URL
http://arxiv.org/abs/2005.13239. arXiv:2005.13239 [cs, stat].

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
COMBO: Conservative Offline Model-Based Policy Optimization, January 2022. URL http:
//arxiv.org/abs/2102.08363. arXiv:2102.08363 [cs].

https://github.com/yihaosun1124/OfflineRL-Kit
https://github.com/yihaosun1124/OfflineRL-Kit
https://openreview.net/forum?id=SyAS49bBcv
https://openreview.net/forum?id=SyAS49bBcv
http://arxiv.org/abs/2305.09836
http://arxiv.org/abs/2305.09836
http://arxiv.org/abs/2005.13239
http://arxiv.org/abs/2102.08363
http://arxiv.org/abs/2102.08363

Reinforcement Learning Journal 2025

A Algorithm Implementations in Unifloral

A.1 Model-Free Offline RL

SAC Soft Actor-Critic (SAC) by Haarnoja et al. (2018) is a Q-learning method with a stochastic
actor. The authors use two independently optimized Q-functions and take their minimum for the
value function gradient to reduce positive bias in the policy improvements. SAC uses function
approximators for both the policy and value functions.

EDAC Function approximators do not operate well out-of-distribution (OOD), which poses a sig-
nificant challenge for offline RL methods that rely on a fixed dataset of logged trajectories. An
et al. (2021) propose increasing the size of the Q-function ensemble. They find that SAC requires
a large ensemble to avoid optimistic value estimations for OOD actions as the cosine similarity
of the gradients increases. To minimize this similarity within the ensemble, the authors propose
the Ensemble-Diversified Actor-Critic (EDAC), which adds an ensemble similarity penalty to the
Q-function loss in SAC. We refer to SAC with more than two members in the ensemble as SAC-N.

CQL Optimistic value estimations when bootstrapping from OOD actions is a persisting issue in
offline RL. Kumar et al. (2020) propose learning a conservative Q-function that lower bounds the
true value. They perform SAC updates to the Q-function with an additional minimization term that
uses the value of randomly sampled actions. Their Conservative Q-Learning (CQL) algorithm is
also implemented on top of a SAC-N policy update similar to EDAC.

TD3-BC Fujimoto et al. (2018) formulate the Twin-Delayed Policy Deep Deterministic policy
gradient algorithm (TD3) to address the value estimation pathology in online RL where the ensemble
of Q-networks is updated at a higher frequency than the actor. TD3 also takes the minimum over
the critics ensemble as in CQL, SAC-N, and EDAC. Follow-up work by Fujimoto & Gu (2021)
adapts the method for the offline paradigm by adding a behaviour cloning (BC) regularization term
to the actor’s updates. This augmented algorithm is commonly referred to as TD3-BC. Not having
to update two networks in every training step brings significant speed-ups while still matching the
highest scores across all D4RL (Fu et al., 2020) locomotion tasks at an increased stability.

IQL Implicit Q-learning by Kostrikov et al. (2021) is a computationally efficient algorithm that
avoids querying out-of-sample actions altogether by using expectile regression. The Q-function is
updated using a mean squared error loss on state-action pairs from the dataset. This approximation
of the optimal Q-function is used to extract the policy through advantage-weighted regression (Peng
et al., 2019), where each action is weighted according to the exponentiated advantage with an inverse
temperature hyperparameter that directs the policy towards higher Q-values when increased and
approximates behavior cloning (Pomerleau, 1988) when decreased.

ReBRAC Tarasov et al. (2023) use the Behavior Regularized Actor-Critic (BRAC) frame-
work (Wu et al., 2019) and the behavior cloning term from TD3-BC (Fujimoto & Gu, 2021) to
propose the Revisited BRAC algorithm (ReBRAC). Specifically, they decouple the BC penalty co-
efficient in the critic and the actor objectives, thus requiring additional hyperameteres to the benefit
of higher scores and faster convergence on D4RL. In addition, ReBRAC (Tarasov et al., 2023) pro-
poses several improvements, like using deeper networks, training with larger batches, adding layer
norms to the critic network, and changing the γ hyperparameter for tasks with different reward spar-
sity. However, these design decisions add new hyperparameters with tuning overheads since they
are reportedly different for each D4RL dataset.

A.2 Model-Based Offline RL

MOPO In Model-Based Offline Policy Optimization (MOPO), Yu et al. (2020) argue that of-
fline RL algorithms should be able to go beyond the behaviors in the data manifold to avert sub-

A Clean Slate for Offline RL

optimalities in the dataset and generalize to new tasks to deliver on the promises of real-world
deployment. MOPO provides several bounds and theoretical guarantees on behavior policy im-
provement. The model is implemented through an ensemble of multiple dynamics models trained
via maximum likelihood. For every policy step during training, the maximum standard deviation
of the learned models’ prediction at that step is subtracted from the reward. The highest results are
obtained on short truncated rollouts that are 0.5% to 1% of the real environment’s episode length.
The model predictions are used to form the batch for the SAC (Haarnoja et al., 2018) policy update
step.

MOReL The model-based offline RL algorithm (MOReL) by Kidambi et al. (2021) claims to not
require severely truncated rollouts due to learning a pessimistic MDP (P-MDP) that is implemented
in a similar way to the MOPO dynamics model with an additional early termination condition in
the event of high ensemble disagreement. This scalar halting threshold is calculated by taking the
maximum distance between the predictions of any two models of the ensemble for every state and
action pair in the dataset. Even for academic demonstration datasets like D4RL, this poses a major
overhead in addition to model and policy training. The reported rollout length approximating 50% of
the original episode length is only achievable through extensive tuning of the pessimism coefficient
that scales the discrepancy threshold.

COMBO Conservative Offline Model-Based Policy Optimization (COMBO) by Yu et al. (2022)
is implemented on top of MOPO (Yu et al., 2020) with more policy improvement guarantees. They
use a CQL (Kumar et al., 2020) policy update step with an added loss term using transitions from
the dataset to penalize Q-values on likely out-of-support state-actions while increasing Q-values
on trustworthy pairs. There are many similarities across model-based methods, and many of their
algorithmic contributions like the P-MDP from MOReL, uncertainty penalties from MOPO, and the
policy update from COMBO can be combined through our framework.

A.3 Imitation Learning

This section examines methods that operate outside traditional RL paradigms. These methods use
identical offline RL datasets and have achieved scores comparable to other offline RL methods when
evaluated under the same conditions.

BC Behavioral cloning (BC), originally formalized by Pomerleau (1988), directly optimizes the
actor by learning the transitions from the dataset in a supervised manner, thus making the final online
performance fully reliant on the quality of the dataset. Recent work by Kurenkov & Kolesnikov
(2022) further points out the effectiveness of BC under restricted budgets.

DT Introduced by Chen et al. (2021), Decision Transformers (DT) have shown remarkable gener-
alization (Mediratta et al., 2024) in ORL. DT bypasses the need for traditional RL algorithms to use
discounted rewards and bootstrapping for long-term credit assignment by using the logged environ-
ment interactions as a sequence modelling objective. Instead of sampling from a policy conditioned
on the current states, the trained transformer autoregressively generates the next action based on a
fixed intra-episode context of previous interaction and a target cumulative return. This target return
can be a hyperparameter that significantly increases the tuning overhead if its value is unknown or a
way to obtain optimal performance results when the target return is known.

The reward at each step is decremented from the target return, which is referred to as return-to-
go at time t. Formally, R̂t =

∑T
t′=t rt′ where rt′ are the observed rewards. Rather than directly

modelling the reward function R, the model is conditioned on the return-to-go values to enable
generation based on desired future returns.

The trajectory representation τ is structured as an ordered sequence of return-to-go values, states,
and actions:

τ = (R̂1, s1, a1, R̂2, s2, a2, ..., R̂T , sT , aT), (2)

Reinforcement Learning Journal 2025

where (st, at) ∈ S ×A for all timesteps t.

During online evaluation, the model is initialized with a desired target return and an initial state s0 ∼
S0. After executing action at, the received reward is subtracted from the target: R̂t+1 = R̂t − rt.

A Clean Slate for Offline RL

B Full Results from the Proposed Evaluation Procedure

100 101 102
0

20

40

60

80

100
hopper-medium-v2

100 101 102

20

40

60

80

100

halfcheetah-medium-expert-v2

100 101 102

20

40

60

80

walker2d-medium-replay-v2

100 101 102

0

20

40

60

pen-human-v1

100 101 102

0

20

40

60

pen-cloned-v1

100 101 102

0

50

100

pen-expert-v1

100 101 102
0

5

10

15

20

antmaze-large-diverse-v2

100 101 102
0

50

100

150

200

maze2d-large-v1

100 101 102
0

10

20

30

40

50

kitchen-mixed-v0

0.0 0.2 0.4 0.6 0.8 1.0
Number of policy evaluations

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
sc

or
e

Algorithm
BC
COMBO

CQL
EDAC

IQL
MOPO

MoReL
REBRAC

SAC-N
TD3-BC

Figure 6: Evaluation of prior algorithms—mean and 95% CI over 500 bandit rollouts, with K = 8
policy arms subsampled from 20 trained policies each rollout. The x-axis denotes the number of
bandit pulls, whilst the y-axis denotes the true expected score of the estimated best arm after x
pulls.

Reinforcement Learning Journal 2025

C Evaluation Benchmarks in Prior Work

Table 1: Evaluations performed in the papers introducing the offline RL algorithms we consider.
A "✓" indicates complete evaluation, "∼" indicates a partial evaluation, and "−" indicates that the
domain was not evaluated. MuJoCo locomotion is the most widely studied domain, although random
and expert datasets are often omitted. Atari experiments are limited to only 5 datasets (Breakout,
Qbert, Pong, Seaquest, and Asterix). Notably, the model-based offline RL works referenced here
only evaluate on locomotion tasks, which may explain their dramatic performance collapse on non-
locomotion tasks.

D4RL Fu et al. (2020)
Algorithm Locomotion Adroit Kitchen Maze2d AntMaze Minigrid Carla Flow Atari

CQL (Kumar et al., 2020) ∼ ✓ ✓ − ✓ − − − ∼
DT (Chen et al., 2021) ∼ − − − − − − − ∼
EDAC (An et al., 2021) ✓ ✓ − − − − − − −
IQL (Kostrikov et al., 2021) ∼ ✓ ✓ − ✓ − − − −
ReBRAC (Tarasov et al., 2023) ✓ ✓ ✓ ✓ ✓ − − − −
SAC-N (An et al., 2021) ✓ ✓ − − − − − − −
TD3-BC (Fujimoto & Gu, 2021) ✓ − − − ∼ − − − −

COMBO (Yu et al., 2022) ∼ − − − − − − − −
MOPO (Yu et al., 2020) ∼ − − − − − − − −
MOReL (Kidambi et al., 2021) ∼ − − − − − − − −

D Distractor Policy Phenomenon

Here, we show additional observations from the analysis of distractor policies in subsection 3.3.

0 20 40 60 80 100 120
Policy index

0

20

40

60

80

100

Sc
or

e

Distractor policies can achieve higher scores

Figure 7: Ranked ReBRAC performance—blue shaded area, solid and dashed lines representing the
standard deviation, mean, min, and max episodic return, respectively.

A Clean Slate for Offline RL

0 20 40 60 80 100 120
Number of pulls

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Pr
ob

ab
ili

ty
 o

f p
re

fe
rr

in
g

a
di

st
ra

ct
or

 p
ol

ic
y

Bandit overestimates values of distractor policies

(a) Probability of preferring a distractor policy (inside
dashed orange lines in Figure 7) against the number
of pulls (mean over 100K random policy orderings).
The probability of preferring an unstable policy in-
creases over time.

100 101 102

Number of policy evaluations

70

75

80

85

90

95

100

105

M
ea

n
sc

or
e

Number of
subsampled policies

4
8
16

32
64

(b) The number of subsampled policies influences
evaluation behaviour—as the number of policies in-
creases, we observe a greater dip in selected-policy
performance from our UCB bandit. This is due to
the presence of distractor policies (Figure 7), which
achieve higher peak performance with a lower mean.

Reinforcement Learning Journal 2025

E Code Philosophy

E.1 Single-file

We follow the community’s preference for single-file algorithm implementations with integrated
loggers and evaluations (Tarasov et al., 2022; Nishimori, 2024; Lu et al., 2022a; Huang et al., 2022).
All of our model-free algorithm implementations are self-contained, with every object necessary to
set the hyperparameters, run the training loop, and evaluate the policy included in a single file. As
model-based methods typically run sequential dynamics and policy training phases, we implement a
single-file dynamics training script that saves trained model checkpoints. These can then be imported
by any of the policy training scripts for the model-based algorithms.

E.2 Consistent

Even within the same library, algorithm implementations often differ in boilerplate code. We change
the minimum number of lines between implementations to control for implementation differences
and help developers. Guided by the design genealogy illustrated in Figure 9a, we first ensure the
single file implementation of the base algorithms like BC and SAC-N is clear and concise (Figure 9b)
and then make minimal differences from their algorithmic ancestors (Figure 9c).

Figure 10a shows the minimal differences between clean implementations of each algorithm, and
Figure 10b shows the line differences from CQL. We acknowledge that prior implementations do
not directly seek to minimize the differences between single-file implementations, but we believe it
to be a beneficial feature for research. See Figure 11 and Figure 12 for a more complete illustration
of the full code.

(a) Genealogy of algorithms. (b) Length of root algorithms. (c) Length of diff from parent.

Figure 9: We provide clean and consistent single-file implementations, as demonstrated by compact
implementations and minimal differences between algorithms.

A Clean Slate for Offline RL

(a) Using command line tool diff on our implementa-
tions of SAC-N and EDAC.

(b) Implementation length difference of each al-
gorithm from CQL in their respective reposi-
tory.

Figure 10: Analysis of algorithmic differences between offline RL implementations.

Figure 11: All code edits across implementations, from left to right: SAC-N, CQL, and EDAC.

Reinforcement Learning Journal 2025

Figure 12: Full code difference for SAC-N, EDAC, and CQL from left to right. The code for the
final evaluation loop is omitted to illustrate the consistency of the algorithm implementations.

A Clean Slate for Offline RL

F Reimplementation Training Time

Algorithm OfflineRL-Kit CORL JAX-CORL Unifloral

BC 19.8 15.0 — 1.7
TD3-BC 56.1 42.5 6.9 3.1
IQL 79.7 65.0 5.2 4.0
ReBRAC — 8.7 — 6.8
SAC-N 107.5 98.8 — 7.7
CQL 203.9 180.3 20.7 9.8
EDAC 127.1 113.0 — 20.8

MOPO 168.1 — — 14.0
MOReL — — — 14.0
COMBO 289.6 — — 22.0

(a) Training time in minutes.
(b) Training time speed-up.

Figure 13: Speed up from our JAX reimplementations—algorithms trained for 1M update steps on
HalfCheetah−medium−expert using a single L40S GPU. Our library, Unifloral, is the fastest
across the board.

G Results Reproduction

Table 2: Performance of our algorithm reimplementations over 5 training seeds, Mean±Std.

Env. Dataset BC COMBO CQL EDAC IQL MOPO MOREL ReBRAC SAC-N TD3-BC

H
al

fC
he

et
ah

Expert 93.0 ± 0.4 89.5 ± 9.3 3.3 ± 1.3 2.3 ± 0.0 96.3 ± 0.3 62.7 ± 19.1 43.0 ± 27.2 106.3 ± 0.9 98.8 ± 2.8 98.0 ± 0.8
Medium 42.5 ± 0.2 72.2 ± 1.5 63.9 ± 1.1 52.2 ± 28.0 48.5 ± 0.4 72.8 ± 0.9 72.1 ± 1.6 65.6 ± 1.3 65.2 ± 1.4 48.6 ± 0.3
Medium-Expert 59.4 ± 10.9 93.6 ± 4.7 66.1 ± 8.3 102.8 ± 1.1 92.3 ± 3.1 80.9 ± 19.2 63.2 ± 6.8 104.5 ± 2.3 103.4 ± 5.6 92.9 ± 3.5
Medium-Replay 37.3 ± 2.0 54.4 ± 13.6 55.2 ± 1.1 55.8 ± 1.0 43.8 ± 0.5 69.0 ± 1.5 65.4 ± 3.5 49.1 ± 0.8 57.4 ± 1.3 44.8 ± 0.5
Random 2.2 ± 0.0 34.1 ± 1.6 30.7 ± 1.1 16.8 ± 13.3 12.5 ± 3.0 30.5 ± 1.0 31.8 ± 3.0 16.9 ± 17.8 26.6 ± 1.0 12.0 ± 1.6

H
op

pe
r

Expert 109.5 ± 3.3 12.5 ± 15.3 1.4 ± 0.3 4.9 ± 0.2 105.5 ± 4.5 2.2 ± 0.8 10.6 ± 6.8 108.2 ± 4.3 93.8 ± 12.2 109.4 ± 3.1
Medium 55.7 ± 4.8 3.1 ± 0.4 7.6 ± 0.4 100.8 ± 1.7 64.7 ± 5.6 46.6 ± 51.1 27.0 ± 10.4 101.8 ± 0.8 75.2 ± 36.0 62.3 ± 4.9
Medium-Expert 53.6 ± 4.4 2.8 ± 0.5 12.2 ± 3.0 109.9 ± 0.3 108.4 ± 4.9 25.2 ± 47.2 77.0 ± 44.4 108.0 ± 3.4 90.5 ± 22.1 105.2 ± 9.3
Medium-Replay 25.0 ± 5.3 28.1 ± 26.7 103.0 ± 0.3 101.2 ± 0.4 73.5 ± 7.5 86.3 ± 28.4 47.4 ± 13.8 84.4 ± 26.8 101.9 ± 0.4 51.1 ± 24.0
Random 4.9 ± 4.8 27.0 ± 8.6 22.0 ± 12.8 22.6 ± 15.2 7.3 ± 0.1 31.4 ± 0.0 21.9 ± 13.0 7.8 ± 1.2 26.6 ± 10.5 8.4 ± 0.7

W
al

ke
r2

d

Expert 108.5 ± 0.2 22.6 ± 24.0 2.4 ± 2.4 79.0 ± 45.3 112.7 ± 0.5 55.5 ± 10.7 19.4 ± 21.3 112.4 ± 0.1 3.2 ± 2.2 110.3 ± 0.3
Medium 63.8 ± 9.8 84.5 ± 0.4 87.9 ± 0.6 75.1 ± 40.9 84.0 ± 2.0 81.3 ± 2.6 16.4 ± 36.9 84.3 ± 2.3 87.9 ± 0.6 84.5 ± 0.7
Medium-Expert 108.1 ± 0.4 101.2 ± 0.9 88.9 ± 36.3 112.9 ± 0.7 111.8 ± 0.3 110.0 ± 1.5 21.7 ± 48.8 111.6 ± 0.5 114.8 ± 0.7 110.1 ± 0.5
Medium-Replay 23.8 ± 11.3 76.5 ± 2.0 79.1 ± 1.6 86.9 ± 1.5 82.8 ± 3.9 11.7 ± 3.3 -0.2 ± 0.0 82.7 ± 5.3 82.3 ± 1.6 78.4 ± 4.0
Random 0.9 ± 0.4 3.4 ± 2.6 9.1 ± 4.9 2.0 ± 0.0 4.4 ± 0.8 4.3 ± 6.3 0.3 ± 0.3 17.8 ± 8.9 20.7 ± 1.2 0.3 ± 0.4

Table 2 presents the results achieved by our method reimplementations on locomotion datasets,
matching the performance of prior implementations (Tarasov et al., 2022).

Reinforcement Learning Journal 2025

H Unifloral Hyperparameters

Table 3: Hyperparameters of prior algorithms in Unifloral—light gray values indicate inactive set-
tings.

Hyperparameter IQL SAC-N EDAC TD3-BC ReBRAC

Batch size 256 256 256 256 1024
Actor learning rate 3e-4 3e-4 3e-4 3e-4 1e-3
Critic learning rate 3e-4 3e-4 3e-4 3e-4 1e-3
Learning rate schedule cosine constant constant constant constant
Discount factor γ 0.99 0.99 0.99 0.99 0.99
Polyak step size 0.005 0.005 0.005 0.005 0.005
Normalize observations True False False True False

Actor layers 2 3 3 2 3
Actor hidden size 256 256 256 256 256
Actor layer normalization False False False False True
Deterministic policy False False False True True
Deterministic eval True False False False False
Apply tanh to mean True False False True True
Learn action std True False False False False
Log std min -20.0 -5.0 -5.0 -5.0 -5.0
Log std max 2.0 2.0 2.0 2.0 2.0

of critics 2 [5–200] [10–50] 2 2
Critic layers 2 3 3 2 3
Critic hidden size 256 256 256 256 256
Critic layer normalization False False False False True

Actor BC coefficient 1.0 0.0 0.0 1.0 [5e-4–1.0]
Actor Q coefficient 0.0 1.0 1.0 [1.0–4.0] 1.0
Use Q target in actor False False False False False
Normalize Q loss False False False True True
Q aggregation method min min min first min

Use AWR True False False False False
AWR temperature [0.5–10.0] 1.0 1.0 1.0 1.0
AWR advantage clip 100.0 100.0 100.0 100.0 100.0

Critic BC coefficient 0.0 0.0 0.0 0.0 [0–0.1]
of critic updates per step 1 1 1 2 2
Diversity coefficient 0.0 0.0 [0.0–1e3] 0.0 0.0
Policy noise 0.0 0.0 0.0 0.2 0.2
Noise clip 0.0 0.0 0.0 0.5 0.5
Use target actor False False False True True

Use entropy loss False True True False False
Actor entropy coefficient 0.0 1.0 1.0 0.0 0.0
Critic entropy coefficient 0.0 1.0 1.0 0.0 0.0
Use value target False False False False False
Value expectile [0.5–0.9] 0.8 0.8 0.8 0.8

A Clean Slate for Offline RL

I Unified Algorithm Details

In this section we write out the different design decisions in a unified notation.

I.1 A Unified Hyperparameter Space for Offline RL

Implementation inconsistency and missing ablations are common flaws of offline RL research.
The plethora of design decisions in each algorithm obfuscates evaluating how each feature con-
tributes to the performance. To address this, we combine all components from a range of model-free
and model-based algorithms (Appendix A) into a unified algorithm and single-file implementation,
which we name Unifloral. We start by compiling a minimal subspace of components covering the
model-free and model-based offline RL algorithms examined in this work (Appendix H). This has a
range of hyperparameters in each of four broad design categories, which we identify from prior al-
gorithms: model design, critic objective, actor objective, and dynamics modelling. A more detailed
description of design category is in Appendix I.

Model Design The choice of neural network architecture and optimizer is consistent across most
offline RL research, with proposed algorithms commonly using multi-layer perceptrons and the
Adam optimizer. However, the hyperparameters of these components commonly vary between al-
gorithms. Regarding the model architecture, this includes the number of layers, layer width, and
usage of observation and layer normalization. Similarly, for optimization, this includes the learning
rate (shared and actor-specific), learning rate schedule, discount factor, batch size, and Polyak aver-
aging step size. The actor and critic networks can also have different structures, such as the number
of critics N in the critic ensemble q⃗ and whether the policy π is deterministic or stochastic.

Critic Objective The core contribution of offline RL research is often a novel critic objective (Ku-
mar et al., 2020; An et al., 2021). However, many of the components in the proposed objectives are
shared with prior work. We define the critic objective as the weighted sum of those components, or
a selection between them if mutually exclusive, in order to include all referenced methods (except
CQL†). First, we compute the value target using one of two methods, selectable via the method
configuration:

vt+1 =

{
v(st+1)

minNn=1 q
′
n(st+1, clip(ât+1 + clip(ϵ, ϵmin, ϵmax), amin, amax))

, (3)

where v is a value function trained with expectile regression (as in IQL (Kostrikov et al., 2021)),
ât+1 ∼ π(at+1|st+1) is an action sampled from π (or a Polyak averaged target policy), ϵ ∼
N (0, σ2) is random action noise with standard deviation σ, and ϵmin, ϵmax, amin, and amax are
clipping ranges. The value target is then augmented with behaviour cloning and entropy terms (co-
efficients αBC and αH), defined as

v̂t+1 = vt+1 + αBC · (ãt+1 − at+1) + αH · H(π(·|st+1)), (4)

which is then used to compute the value loss,

Lv =

N∑
n=1

(qn(st, at)− (r + (1− d) · γ · v̂t+1))
2. (5)

Finally, we add the critic diversity loss term from EDAC (An et al., 2021) with coefficient αdiv,
giving the final critic loss

Lcritic = Lv +
αdiv

N − 1
·

∑
1≤i ̸=j≤N

⟨∇atqi(st, at),∇atqj(st, at)⟩. (6)

†We omit CQL on the grounds that its substandard performance does not justify its complexity.

Reinforcement Learning Journal 2025

Actor Objective We define the unified actor loss as the weighted sum of three terms:

Lactor = βq · Lq + βBC · LBC − βH · H(π(·|st)). (7)

This consists of q loss Lq , behaviour cloning loss LBC, and policy entropy H(·), with coefficients
βq, βBC, βH ∈ R controlling the weight of these terms.

The first term, Lq is defined simply by a selectable aggregation function over the q-network ensem-
ble, with the minimum being the most common choice,

Lq =


−minNn=1(qn(st, at))

− 1
N

∑N
n=1 qn(st, at)

−q0(st, at)

. (8)

This term may also be normalized across the batch in order to stabilize learning. The second term,
LBC, is most commonly defined as the distance d between the target policy and dataset action, being
the mean squared error for deterministic policies or log-probability for stochastic policies. However,
some methods use advantage weighted regularization (AWR), which further weights this loss by the
clipped and exponentiated advantage of the behaviour policy action in order to clone only positive
actions within the dataset. Therefore, this term has the following variants:

d =

{
(at − ât)

2

− log π(at|st)
, LBC =

{
d

d ·min
(
Amax, e

η·(q(st,at)−V (st))
) , (9)

where η and Amax are the temperature and maximum value for exponential advantage.

Dynamics Modelling We include optional dynamics model training and sampling, increasing Uni-
floral’s coverage to include model-based methods. As is standard, we use an ensemble of dynamics
models T̂ θ = {T̂ 1

θ , T̂
2
θ , ..., T̂

M
θ }, where each T̂ i

θ is trained to predict state transitions and rewards
(??). Following MOPO, we quantify prediction uncertainty in the ensemble, which can be used to
penalize the reward during policy optimization with a pessimism coefficient η,

R̂(st, at) =
1

M

M∑
m=1

Rm
θ (st, at)− η · σ(T̂

∆s

θ (st, at)), (10)

where σ(T̂
∆s

θ (st, at)) represents the standard deviation across the models’ state-change predictions
and Rm

θ (st, at) is reward prediction of the m-th ensemble member.

J Complete TD3-AWR Results

A Clean Slate for Offline RL

100 101 102

60

70

80

90

100

hopper-medium-v2

100 101 102
85

90

95

100

105

halfcheetah-medium-expert-v2

100 101 102

40

60

80

walker2d-medium-replay-v2

100 101 102

30

40

50

60

70
pen-human-v1

100 101 102

60

65

70

75

pen-cloned-v1

100 101 102

125

130

135

140

pen-expert-v1

100 101 102
0

10

20

antmaze-large-diverse-v2

100 101 102

50

100

150

200
maze2d-large-v1

100 101 102

10

20

30

40

50

kitchen-mixed-v0

0.0 0.2 0.4 0.6 0.8 1.0
Number of policy evaluations

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
sc

or
e

Algorithm
IQL REBRAC TD3-AWR

Figure 14: Full comparison of TD3-AWR to prior model-based methods across all datasets.

Reinforcement Learning Journal 2025

K Complete MoBRAC Results

100 101 102
0

20

40

60

80

100
hopper-medium-v2

100 101 102

20

40

60

80

100

halfcheetah-medium-expert-v2

100 101 102

20

40

60

80
walker2d-medium-replay-v2

100 101 102

0

20

40

pen-human-v1

100 101 102

0

20

40

pen-cloned-v1

100 101 102

0

25

50

75

100

pen-expert-v1

100 101 102
0.000

0.005

0.010

0.015

0.020

antmaze-large-diverse-v2

100 101 102

0

10

20

30

maze2d-large-v1

100 101 102
0

5

10

15

kitchen-mixed-v0

0.0 0.2 0.4 0.6 0.8 1.0
Number of policy evaluations

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
sc

or
e

Algorithm
COMBO MOPO MoReL MoBRAC

Figure 15: Full comparison of MoBRAC to prior model-based methods across all datasets.

A Clean Slate for Offline RL

L Full Related Work

In this section, we describe the prior work related to our evaluation procedure, implementation, and
unified algorithm. We implement a comprehensive selection of offline RL algorithms, for which
more information can be found in Appendix A.

L.1 Evaluation Regimes for Offline RL

The challenge of hyperparameter tuning in RL spans various domains. Wang et al. (2022) discuss
offline tuning and the practical risks of deploying policies of unknown quality in the real world,
whilst Paine et al. (2020) directly tackle this issue, estimating the zero-shot performance of offline-
trained policies without any prior online interactions. Their evaluation is limited to behavioural
cloning (Pomerleau, 1988, BC) and two critic-based methods, which have since been outperformed
by modern algorithms. Konyushova et al. (2021) extend this procedure with an online phase, using
a UCB-based bandit to investigate policy selection over multiple online evaluations. Further high-
lighting these challenges, Smith et al. (2023) propose a procedure where offline evaluation methods
are first calibrated using policies of known quality, evaluating on D4RL (Fu et al., 2020) locomotion
tasks. Unlike their work, we evaluate across the D4RL suite and introduce a procedure that elimi-
nates the need for reference policies or additional hyperparameters. Matsushima et al. (2020) present
a variant of offline RL that uses a limited number of online deployments to update the dataset and
iteratively train offline to match the performance of online methods, introducing an online deploy-
ment frequency hyperparameter. Kurenkov & Kolesnikov (2022) address the practice of unreported
online evaluations for hyperparameter tuning, demonstrating how the performance of each algorithm
changes with the number of online evaluations. Unlike our procedure, they assume a low-variance
estimate of a policy’s true performance each evaluation but still conclude that BC outperforms all
baselines.

L.2 Open-Source Implementations

Offline RL Inspiring our implementation, Clean Offline RL (Tarasov et al., 2022, CORL) provides
single-file implementations of model-free offline RL methods in PyTorch. JAX-CORL (Nishimori,
2024) is a JAX-based port of CORL, albeit with a limited range of only model-free algorithms,
slower training time than our implementations, and lacking our evaluation procedure and code con-
sistency. OfflineRLKit (Sun, 2023) and d3rlpy (Seno, 2020) implement a range of offline RL meth-
ods and feature both model-based and model-free methods. Although the repository has transparent
class inheritance and polymorphism, it lacks any further attempt at algorithmic unification.

Online RL StableBaselines3 (Raffin et al., 2021) is a set of reliable RL algorithm implementations
in PyTorch with the aim of abstracting away training and deployment through an object-oriented
interface. SpinningUp (Achiam, 2018) is a similar, education-oriented effort of jointly implementing
various online RL algorithms. CleanRL (Huang et al., 2022) follows a different design philosophy
with method-focused, single-file implementations of online RL algorithms in PyTorch and JAX.
PureJaxRL (Lu et al., 2022a) also follows the single-file approach and is implemented in JAX.
Rejax (Liesen et al., 2024) is a popular multi-file JAX-based implementation of PureJaxRL with
extensive logging integration and a selection of SOTA methods.

CleanRL, CORL, and JAX-CORL provide clear and accessible logs of their final runs, a standard of
reproducibility we plan to uphold throughout every release of our work.

L.3 Method Unification

Our unified algorithm, Unifloral, is heavily inspired by prior work that also seeks to ablate and
unify a range of methods. Lu et al. (2022b) investigate the key components of model-based offline
RL algorithms to find an optimized algorithm that outperforms all model-based baselines. Sikchi
et al. (2023) cast multiple offline RL methods in the same dual optimization framework and use

Reinforcement Learning Journal 2025

this unification to categorize them in regularized policy learning and pessimistic value learning.
Prudencio et al. (2023) provide a survey of offline RL, focused on elucidating the taxonomy and
disambiguating the contributions of each algorithm. In online RL, Hessel et al. (2018) combine
independent components of Deep Q-network algorithms into a unified algorithm, Rainbow, reaching
SOTA in the Atari 2600 benchmark. Muesli (Hessel et al., 2021) examines the combination of policy
optimization and model-based methods.

