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ABSTRACT

Unsupervised domain adaptation (UDA) aims at exploiting related but different
data sources to tackle a common task in a target domain. UDA remains a central
yet challenging problem in machine learning. In this paper, we present an approach
tailored to moderate-dimensional tabular problems which are hugely important in
industrial applications and less well-served by the plethora of methods designed for
image and language data. Knothe-Rosenblatt Domain Adaptation (KRDA) is based
on the Knothe-Rosenblatt transport: we exploit autoregressive density estimation
algorithms to accurately model the different sources by an autoregressive model
using a mixture of Gaussians. KRDA then takes advantage of the triangularity of
the autoregressive models to build an explicit mapping of the source samples into
the target domain. We show that the transfer map built by KRDA preserves each
component quantiles of the observations, hence aligning the representations of the
different data sets in the same target domain. Finally, we show that KRDA has
state-of-the-art performance on both synthetic and real world UDA problems.

1 INTRODUCTION

In classical machine learning, we assume that both the training and test data follow the same
distribution and we can thus expect to generalize from the training set to the test set. In practice, this
assumption does not always hold. For example, data is often collected in asynchronous manner, at
different times and locations, and may be labeled by different people, which can affect the efficiency
and quality of the standard supervised learning models (Quionero-Candela et al., 2009; Pan & Yang,
2010). Collecting data from multiple sources may also lead to distribution shift between the collectors.
For example, wireless network data would present different properties and patterns depending on time
(such as day, night, week-end), or location/ infrastructure (downtown, countryside, or touristic area).
Even when the task is common, an efficient approach should take into account the shift. Coping with
this problem lead to the development of transfer learning methods that adapt the knowledge from a
source domain to a new target domain.

Transfer learning, or domain adaptation, is central in vision (image classification, image segmentation,
or activity recognition) (Li et al., 2020b) and natural language processing (translation, language
generation) (Malte & Ratadiya, 2019; Ruder et al., 2019) problems. Both of these domains generate
very high-dimensional data, and transfer learning usually focuses on fine tuning pre-trained models to
specific tasks. In contrast, the principal problem in many industrial applications is not dimensionality,
rather class imbalance, probability shift in data collection, and small data (Zhang et al., 2019). For
example, wireless network data (5G and beyond), IoT or smart cities are often low dimensional (less
than 100), and highly dependent on the data collection context (Fu et al., 2018; Arjoune & Faruque,
2020; Benzaid & Taleb, 2020). These issues are rarely dealt within the transfer learning literature.

Transfer learning on high-dimensional data usually proceeds by mapping the data into a smaller
dimensional space and carrying out the transfer in this latent space. In the lower dimensional domain
we are targeting, we can use recently developed powerful density estimation techniques and principled
transport-based approaches that rely on these precise estimates.

Our contribution is Knothe-Rosenblatt Domain Adaptation, or KRDA. We tackle Domain Adaptation
(DA) which arises when the probability distribution of the source and the target data are different
but related. We focus on the more challenging task where we do not have labeled target data. This
approach, called Unsupervised Domain Adaptation, is the most difficult case of distribution shift.
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We estimate the density of both the source and the target data in order to transfer the former to
the later. We use RNADE (Uria et al., 2013), an autoregressive technique that decomposes the
d-dimensional density into d one-dimensional conditional densities, represented by input dependent
mixtures of Gaussian (also known as mixture density nets (Bishop, 1994)). Using these explicit
representations, KRDA transfers each sample by preserving the conditional quantiles with Knothe-
Rosenblatt transport. Once embedded in the target domain, the source and its labels are learned by a
supervised learning algorithm. Although theoretically simple, using autoregressive models in order
to perform a transport has not yet been considered in the transfer learning literature.

As it will be illustrated, KRDA is particularly well suited for small data (less than 10000 samples)
in small dimension (less than 100), where other state-of-the-art methods tend to under-perform, as
shown in Section 6. We can also consider KRDA as an embedding algorithm with a great advantage:
all the extra-computational cost of KRDA is spent in the computation of the transfer map. Once the
source is transferred, training and testing will have no overhead beyond the cost of the supervised
learning algorithm used.

The paper is structured as follows. We first introduce KRDA, an algorithm based on density estimation.
We review some topics in density estimation in Section 4. We then introduce KRDA, the core of
our paper, in Section 5, and expose its properties and limitations. Finally we compare our approach
against state-of-the-art transfer learning algorithms on several benchmark. A detailed experimental
setting and the results are given in Section 6.

2 RELATED WORK

Transfer learning (TL) aims at building algorithms that generalize across different domains with
different probability distributions, see for example (Pan & Yang, 2010; Kouw & Loog, 2019; Zhuang
et al., 2019) for global surveys of the field. Domain adaptation is the specific case when the task is
the same across the different domains. DA approaches may be roughly divided in two categories
depending on whether we have access to labels in the target space, or not. The first case is known as
semi-supervised DA. The usual approach is to find a global transformation that aligns the different
domains by preserving the information coming from a few labels (Saenko et al., 2010). Many papers
embed both domains in the same latent space using different tools such as similarity (Donahue et al.,
2013), non-linear kernel mapping (Pan et al., 2010; Gong et al., 2016), or entropy (Saito et al., 2019).

In unsupervised domain adaptation, we assume that we have no labels from the target domain.
One avenue is to reweight the samples in order to correct the shift between the source and target
distributions (Huang et al., 2007; Gretton et al., 2007). This method has the advantage of not requiring
distribution estimation or specific embedding. As in semi-supervised DA, other unsupervised
approaches rely on a common latent space. Both the source and target data are projected into this
space, and a classifier is then learned using the labeled source data in the latent space. Another
shallow approach, subspace mapping, aims at learning a linear map that aligns source and target
(Gong et al., 2012; Fernando et al., 2013; Sharma et al., 2012).

More recently, deep neural nets became a popular choice in UDA due to the flexibility of these
models to learn rich non-linear mappings. Deep Adaptation Network (Long et al., 2015) adds
multiple kernel variants of MMD at the top layers to push the target distribution close to the source.
Domain-Adversarial Neural Network (Ganin et al., 2016) introduces adversarial training to reduce
the distance between the source and target feature distributions. Joint Adaptation Networks (Long
et al., 2017) and Conditional Adversarial Domain Adaptation (Long et al., 2018) aim at aligning the
joint or conditional distributions. Instead of learning transferable representations, Saito et al. (2018)
align the source and target distributions by maximizing the discrepancy between the outputs of two
classifiers. Using clustering is another approach (Shu et al., 2018; Liang et al., 2020; Li et al., 2020a).

In this paper we use recently developed powerful density estimators to relate the source and target
domains. Density estimation is an important problem in statistics in general and machine learning
in particular (Bishop, 1994; Wasserman, 2004). Among the plethora of methods (Salakhutdinov &
Hinton, 2009; 458; Rezende & Mohamed, 2015; Ho et al., 2019), we use autoregressive models for
their triangularity that is crucial for our approach (Larochelle & Murray, 2011; Uria et al., 2013).
These algorithms model the joint distribution as product of one-dimensional conditional densities
using the probability chain rule. They take advantage of recent developments in recurrent neural
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networks (Oord et al., 2016). A drawback of this approach is the fixed arbitrary ordering of the
components, although it seems not to be crucial in many applications (Kégl et al., 2021), including
ours, arguably explained by the flexibility of the mixtures that can model the potentially complex
conditional densities.

Optimal transport sees the domain adaptation problem as graph matching (Courty et al., 2017) and
embed the source into the target by minimizing a transportation cost. Knothe-Rosenblatt transport
has been independently introduced in (Rosenblatt, 1952; Knothe, 1957), the former for multivariate
statistics analysis and the latter to study isoperimetric inequality problems. This approach has been
applied for histogram equalization for RGB pictures (Pitié et al., 2007). More recently, (Muzellec &
Cuturi, 2019) use a generalization of Knothe-Rosenblatt transport as a surrogate to optimal transport
in high dimensional spaces: the paper fits a multi-dimensional GMM that is transferred at once.

3  BACKGROUND AND NOTATIONS

We consider the setting of classical transfer learning. The fundamental objective is to use some
knowledge acquired during the learning of a specific predictive task in order to perform a similar but
different task. More precisely, the domain D of a learning task is a couple composed of a feature
space X and a marginal probability distribution p(X). A task is a couple (Y, f) composed of a
label space ) and a prediction function f : X — ). In transfer learning, we consider two domains
and learning tasks named source (Ds,)s) and target (D7, Y7). In the transfer learning setting
(Xs,ps) # (X7, pr) and the goal is to transfer some knowledge from the source to the target. There
are several sub-cases such as covariate shift, on which KRDA relies, in which ps(z) # p7(x) but
the conditional probabilities are invariant: ps(y|z) = p7(y|x) for every y € V.

In the unsupervised setting we have no access to the labels of the target data. We thus aim at building
a transfer map 7' : Xs — X’ which associates a vector in the target feature space to every source
sample before applying a classifier.

Let Ds = (Xs,Ys) and Dy = (X7, Y7) be the source and target data sets, respectively. Let ps
and p7 be the probability density functions (PDF) of the source data Xs and target data X, and
let ps and p7 be the estimated densities, respectively. We will denote by F}, the cumulative density
function (CDF) associated with the density p. For a vector function g : R™ — R™ and x € R™, let
g'(z) € R be the i-th coefficient of g(x).

4 AUTOREGRESSIVE DENSITY ESTIMATION

In this work, we will focus on autoregressive models. The probability density function is expressed
using the probability chain rule: the PDF of a vector x = (z',...,2%) € R? is the product of
one-dimensional conditional densities

d
p(x) = [[p'@@'=<). )
=1

Each conditional factor density will be approximated by a Gaussian mixture distribution. Note that
this straightforwardly generalizes to any type of mixture distribution, although we will focus on
Gaussian mixtures in this paper for didactic purposes.

RNADE (Uria et al., 2013) is a robust and flexible deep learning method that, following Eq. (1),
fits one-dimensional conditional Gaussian mixtures (originally proposed by (Bishop, 1994) under
the name of mixture density net (MDN)) for every coefficient of a vector x = (z1,. .. ,J;d) € R4,
More precisely we associate to each conditional probability p*(z¢|z<?) a distribution composed of a
mixture of N Gaussians Y r_, wiN (i, o). The RNADE algorithm with hidden size H is based
on NADE (Larochelle & Murray, 2011) and can be summarized as follows. We first compute from

the input z = (!, ... ,xd) the sequence a’ € R¥,4i = 1,...,d, in an iterative manner:

a' = c; att =at + xiVV.)i, 2)
where ¢ € RH and W € R¥*? gre learned parameters, and W. ; denotes the ¢th column of the
parameter matrix /. We then apply a non-linearity after re-scaling

ht = o(C'a’) (3)
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to get the parameters of the conditional Gaussian mixture as output of linear layers:

w" = Softmax(Liny (h")), 4)
pt = Ling(hY), (5)
o' = exp(0.5 x Ling(h?)), (6)

where Liny, Ling, Ling are three linear layers RH — RY with bias. In this work, we use 0 = RELU
as the non-linearity applied in (3). The exact likelihood is thus directly accessible, and the model is
trained end-to-end by maximizing the log-likelihood using gradient ascent. Note that this density
estimator also makes data generation from the estimated distribution easy (go through the chain
Eq. (1) and sample from Gaussian mixtures).

In domain adaptation, we make the assumption of having related distributions for the source and the
target data. In order for the density estimation model to use this assumption, we share the parameters
c and W in Eq. (2) for all data sets. The last linear layer of Eqgs. (4-6) are specific to the source and
target and will capture the dissimilarities between the domains. The density estimation network is
then trained simultaneously on both the source and the target data.

5 KNOTHE-ROSENBLATT TRANSPORT

Having two densities p,, and p,, there are several ways to built a transport place T such that Ty = v.
For example, the change of variable formula p,, = p, (T'(z)) det(Jac,T') defines a PDE for which
T is solution (assuming existence). However this direct approach is not tractable in general. We
propose here to use our autoregressive density estimation model in order to build a Knothe-Rosenblatt
transport map. We refer to (Villani, 2008; Santambrogio, 2015) for an extensive presentation and
study on Optimal Transport (OT) in general and Knothe-Rosenblatt (KR) transport in particular.

5.1 KNOTHE-ROSENBLATT TRANSPORT

Let 1 and v two absolutely continuous measures of R with F'(z) = ffoo dp and G(z) = ffoo dv
their cumulative distribution function (CDF). We define the pseudo inverse of the CDF F’ as

Fl(z)=inf{z €eR: F(2) > x}.
The following theorem gives a transportation map (actually optimal) between y and v.
Theorem 1 ((Santambrogio, 2015, Theorem 2.5)). The map T = G~1 o F verifies Tyup=v.

Knothe-Rosenblatt transport (Rosenblatt, 1952; Knothe, 1957) is a simple transportation plan that
applies one-dimensional optimal transport to all conditional marginals of one distribution into another.
For didactic purposes, we give here a definition involving only density functions defined through the
Lebesgue measure, i.e. we write ju(A) = [, fda where f is the density of the probability of 1. Let

ps and p7 be two density functions on R?, hence ps = ps dA(R?) and pr = v dA(R).

Consider the first marginals ps(z1) and py (1) as one-dimensional random variables. By Theorem 1,
we have a transport map 77 : R! — R such that for 21 ~ ps (1), we have Ty (z1) ~ pr(x1). Now
consider the conditional marginal ps (2|21 ) and p7(x2|x1), by Theorem 1 we construct again a map
T, : R? — R such that for 21 ~ ps(z1) and xo ~ ps(z2|z1), we have Ty (z1,22) ~ pr(22|1).
By iterating the previous process for all components, we construct a collection of d maps 771, ..., Ty.
The Knothe-Rosenblatt transport is the map that sends z € R? to R by applying this construction to
all conditional marginals in the following way:

T(LCl, N ,ZL’d) = (Tl(xl), TQ(SEl, .TQ), . ,Td(l'l, . ,xd)) . (7)
The following theorem assures the correctness of this approach as the density of the source is perfectly
mapped on the target in the following sense.
Proposition 2 ((Santambrogio, 2015, Proposition 2.18)). The map T satisfies Tuus = vr.

Relationship with Optimal Transport In one dimension, KR transport and OT coincide. Hence,
KR transport optimally couples all conditionals. More generally Carlier et al. (2009) show that KR is
a limit of optimal transport with quadratic costs I (x,y) = Y. A\i(x; — y;) when A;/Ai;1 — 0. By
proceeding coefficient after coefficient instead of globally such as OT, KR transport might offer some
interesting regularization for the specific case of transfer learning.
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5.2 KNOTHE-ROSENBLATT DOMAIN ADAPTATION

In this section, we present the KRDA algorithm (for Knothe-Rosenblatt Domain Adaptation), the
main contribution of the paper. We follow the Knothe-Rosenblatt construction of a transportation
map based on estimated densities of the source and the target domain. In order to maximally exploit
the conditional marginal structure of the map, we are relying on autoregressive density estimation
models such as RNADE.

Let Xs the source input data set with associated density ps. Modeling the PDF as a conditional
mixture of Gaussians for every component, we obtain ps. For x € Xs we estimate p%(z*) =
> wi N(ui, oh). The CDF F is easily obtained by linearity from the PDF as

Fi(z') = Z W FN (i o) (), (8)
k

where Fjr(,i o) is the CDF of the Gaussian (u?,0"). KRDA builds a transfer function 7" : Xs —
X7 such that for every sample = € Xs, we have Fii(z%) = Fi(T(2%)), or T(2") = Fi~" o Fi(a?)
(Fé—‘l is the generalized inverse distribution function as in Equation 7). Theorem 1 assures that
taking T' = F;'_—l o FL for every scalar component ' maintains the previous property.

KRDA relies on Proposition 2 in the following sense. With RNADE, we first estimate the densities
ps and pr of the source and the target data, before transferring all samples from the data set X s to
the target domain Xr. Let s = (z',...,2%) € Xs. From jp’(z%), we compute F*(x’) and using
Proposition 2 we compute T'(z%) € X7 such that Fii(z?) = Fi(T(z")). Note that autoregressive
models are triangular in the sense that F*(z*) does only depend on coefficients <! = (x7)7<%,
After having estimated the density of both the source and the target data, we thus construct T'(z)
deterministically, component by component.

1. p}(z}) is fully determined by w', pi! and o' that depend only on the parameter ¢, and
hence is independent of z§. We then assign z%- = F7~! o Fi(x}) so that we have
Pe}) = F(ch).

2. pl(x%-|x5") (or the neural net outputs w’, 11* and &%) only depends on the components z 5.
We then run RNADE on the partially computed =7 in order to access the Gaussian mixture.
As previously, we assign zh = Fi~1 o Fi(2%) and we keep the quantile invariant property
by construction.

This procedure terminates once all components of x7 have been computed, hence after d steps in
order to obtain x7 € X7 such that

Vie{l,...,d}, Fi(zk) = Fi(z%). ©)

Note that in the case where the source and target domains are the same, i.e. ps = p7, we have
T =id.

At every step, the computation of the inverse of the CDF is done with a binary search: the CDF
is monotonically increasing and F~!(z) is a zero of the function z — F(z) — 2. The complete
description of the algorithm is given in Algorithm 1, and we provide several visualizations of the
transfer map in Section 6.

Once the whole source data X is transferred into the target domain 7'(Xs) C X7, a supervised
learning algorithm (e.g., an SVM) is trained on the (labelled) data composed of the transferred source
samples with their labels (T (Xs), YS). At test time, samples from the target domain are directly
given to the learning algorithms for prediction, hence giving no overhead cost after the transfer phase.

Implementation details We perform the CDF inversion by exploiting its non-decreasing property.
To compute F~1(x) we use a bisection algorithm to find a zero of the function z + F(z) — . The
initial search interval is iteratively determined by the presence of a root in [—2%, 2¥] for growing k.
For numerical stability, we clip the values of x to [¢, 1 — €], with € = 1078, The transfer algorithm is
parallelizable since each sample can be treated independently.
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Algorithm 1 KRDA

Learn ps on Xg
Learn p7 on X7
for zs € S do
Initialize z7 = 0 € R?
forie {1,...,d} do
Compute F'(z%)
Compute the partial CDF Ffr‘l from pi-
Compute x4 = Fi~1 o FL(x%)
end for
Set T(:Es) — a7
end for
> run learning algorithm (e.g. SVM) on (T'(Xs),Ys)

m=2n=3 m=3n=2 m=4,n=28

Figure 1: m-Gaussian mixture transferred with KRDA to an n-Gaussian mixture; we plot the source
(blue), target (green), transferred (orange) and some mappings (red).

2 components 3 components 5 components

Figure 2: KRDA on the inter-twinning moon dataset with different number of components; we plot
the source (blue), target (green), transferred (orange) and some mappings (red).

Limitations KRDA has two main limitations. The first one is the reliance of KRDA on the
estimation made by RNADE. Since RNADE does not generalize well to high-dimensional spaces
(> 100), we cannot expect KRDA to work well in this regime. The second limitation is the
computation cost of the transfer: the algorithm iterates on the dataset (parallelizable) and on the
components (not parallelizable because of the conditional distributions). Even though KRDA is linear
in the number of samples, it may not be suited for very large datasets of millions of samples. As we
do not use label information, our approach is suited for the covariate-shift setting.

6 EXPERIMENTS

6.1 DOMAIN ADAPTATION

In this section, we evaluate KRDA in both synthetic and real data sets. In all KRDA experiments,
we model the source and target distributions with mixtures of five Gaussian components. All the
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following experiments are performed in the unsupervised domain adaptation setting, when no labels
of the target domain are accessible. After transformation, we apply an SVM on the transferred source.
We compare our method to various techniques which can be classified into three classes:

e Baseline solutions: For a specific ML model, here Support Vector Machine (SVM), Source
only learns this model using source data set with its labels; Target only learns the model
by using the labeled target data (note that none of the transfer competitors have access the
target data set labels, so this is meant as an optimistic baseline);

e Shallow solutions: Subspace Alignment SA, (Fernando et al., 2013) and reweighting
methods Transfer Component Analysis TCA (Pan et al., 2011), Kernel Mean Matching
KMM(Gretton et al., 2009) , each followed by a SVM;

e Optimal Transport OT (Courty et al., 2017), followed by a SVM,

e Deep learning solutions include DAN (Long et al., 2015), DANN (Ganin et al., 2016),
JAN (Long et al., 2017), CDAN (Long et al., 2018) and SHOT (Liang et al., 2020). We
implement DAN, DANN, JAN and CDAN using the dalib library (Junguang Jiang, 2020).
Instead of using the original image classifier in dalib that would be unsuitable in our
benchmark, we use a five-layer MLP for each algorithm. For SHOT, the feature net is a
four-layer MLP and the classifier net is a one-layer regression model a total of five layers.

For space reasons, we only show a sub-selection of the benchmark: the complete tables are located in
Appendix A.

Hyperparameter Tuning We fix most hyperparameters in our experiments. In deep learning
models (DANN, JAN, and CDAN) n = 1. The number of hidden neurons of MLP is set to 250 which
will be equivalent to the number of parameters of the KRDA models. All the deep learning models
are trained using the Adam optimizer (Kingma & Ba, 2015) with a learning rate set to 1073,

Metric and cross validation Accuracy is used as the metric to evaluate the performance of different
algorithms in the following experiments. All experiments have two classes. We run each experiment
five times. In each running, we randomly pick 90% source and 90% target data to train the model.
The test is systematically performed on unseen samples from the target data set. In each table, we
report the average accuracy of the five experiments as well as 95% confidence intervals. The code
used in all our experiments is available on Github'.

6.2 SYNTHETIC DATA EXPERIMENTS

Mixtures of Gaussians We generate a mixture of Gaussians for the source and target data. We use
1000 samples in both data sets, and we are interested in seeing how the domain adaptation tasks are
handled by KRDA. For all tasks, RNADE uses N = 5 Gaussian components and a hidden layer of
dimension 50. We plot several transfers from mixtures of m Gaussians to mixtures of n Gaussians.
The results are presented in Figure 1.

Inter-twinning moons We perform three experiments on the classical inter-twinning moons dataset.
In all these experiments, KRDA uses N = 5 Gaussian components and a hidden layer of dimension
50. The inter-twinning moon dataset is composed of two interlacing half-moons with labels 0 and 1.

1. We show the KRDA embedding from the source to a target domain with different components of
the Gaussian mixture. We highlight the transfer of the same set of source sample in all figures. Both
train and target data are of size 1000, the target distribution is a 40° rotation of the source distribution.
These visualizations are shown in Figure 2.

2. We use the same experimental setup as in (Germain et al., 2013). We sample 300 samples from
the source distribution and 300 in the target domain with various angles between 10° and 90°. The
difficulty of the problem increases with the angle. The test set is composed of 1000 samples from the
target distribution. We show the performance of KRDA and competitors in Table 4.

3. KRDA is run in six inter-twining moons tasks to investigate its performance in different training
sizes. The source and target training data size ranges from 200 to 1, 000. In each task, the target data

'Tt will be released after the review process.
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distribution is rotated with 40° from the source. Following previous cross validation setting, in each
task we run each algorithm five times with randomly picked 90% source and 90% target data and
average the results. Figure 3 shows results and the corresponding 95% confidence interval. We find
that although all algorithms tend to converge, KRDA acts excellently in small size cases and it is
stabler than other algorithms in the low-data setting.

Table 1: Inter-twinning moons unsupervised

Task Source Target DANN SA KMM oT SHOT KRDA
10° 100+£0.00  100£0  100£0.00 85.3£0.5 50.1£12.0 100.0+0.0 82.8£10.8 100£0.0
20° 99.9+0.1 1000 99.3+0.5 78.5+£04  53.0£8.8 100.0+0.0 81.4+3.7  100+0.0
30° 96.6+0.4 1000 89.4+7.2 734403 51.4+£109 99.8+0.2 77.1£2.1  100+0.0
40° 73.1£2.5 1000 73.8£21.3 69.2+0.2 53.4427.3 89.6+1.2 244422  98.4+2.2
50° 41.5+£2.0 100+£0 48.5+21.9 61.8+£0.5 56.3£7.8 83.8+£0.8 223+1.6  98.4+1.5
60° 28.7£0.6 1000 44.2+143 54.8+04 47.8+18.1 78.0+1.3 19.9+13  90.5+2.8
70° 233404 1000 24.3+1.6 49.0+04 52549.0  71.6+0.6 174+12  84.4+0.8
80°  20.4+1.70 100+0 20.1+2.4  432+40.6 43.249.1 65.8+£0.7 15.7£13 81.2+34
90° 18.1+£0.3 1000  17.7£1.5 38.2+0.1 54.4£179 59.4+£1.2 14.8+1.3  71.1£3.9

1.07 /°\._/e-<./:

0.94 :/ / ————
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Figure 3: The learning curves of different UDA algorithms under different source and target training
sizes. KRDA has excellent performance on small data sets and it shows very stable accuracy over
different training sizes.

6.3 EXPERIMENTS ON REAL DATA

Hepmass The HEPMASS data comes from high-energy physics (Baldi et al., 2016). The objective
of the task is to learn how to separate exotic particles from background noise using collision data
(27 measured features). The data may be split according to the mass of the observed particles
(m € {500, 750, 1000, 1250, 1500}). We create different transfer learning tasks: transferring the
domain from one mass to another. We build the source and target data by subsampling 1000 and 500
instances from the original data with a given source and target mass, respectively. We also sample
2000 independent instances from the target domain for the test set. KRDA uses N = 5 Gaussian
components and dimension 100 for its hidden layer. Each transfer of the source data is followed by a
SVM with the hyperparameters shared for all experiments that require it. SA uses 10 components.
The results are summarized in Table 5. As shown, KRDA performs similarly and often better than
state-of-the-art competitors.

Amazon dataset This data (McAuley et al., 2015) is an aggregation of reviews from four different
products (dvd (D), books (B), electronics (E), kitchen (K)) and their given grade by customers. Each
product or domain has about 2000 training samples and 4000 test samples. Each sample is presented
by 5000 features and is associated to a binary class: 0 for samples ranked less than three stars and
1 otherwise. The goal is to transfer the review-to-grade classification from one product to another.
Thus we created twelve transfer tasks using these products. As KRDA is based on RNADE for the
density estimation, and RNADE is not designed for high dimensional data, we used a neural net (NN)
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Table 2: HEPMASS unsupervised domain adaptation

Task Source Target DANN SA KMM oT SHOT KRDA

500 =750 68.7£0.1 822403  56.7£29  67.9+1.2 60.7£3.5 67.6+£2.0 741%1.9  75.6+2.3
500 —1000 67.210.1 89.2+04  56.7+44  71.7£1.0 50.1+10.8  72.1+19  855+1.1  80.3+3.1
500 —1250 62.6+£0.3  933+03 543438  71.3+4.1 40.1£17.9  74.6+23  89.8+14  829+£35
500 —1500 58.0+£0.2  954+04  55.743.1 72.0£3.7 61.84£209  73.6+3.0 90.8+0.4  80.0+6.1
750 —500 52.6£0.1 56.3+0.5 54.0+£0.2  56.1+1.1 53.1£0.5 56.9+0.7 534408  55.7+1.1
750 —1000 86.510.1 89.2+04  82.2+0.8 83.1£2.6 87.9+0.2 86.2+0.6  87.5+0.6  87.7+0.7
750 —1250 87.7+£0.0 954404  81.3+£29  88.243.1 89.51+0.5 92.5+£0.9  92.0+04  92.3+1.3
750 — 1500 87.7+£0.0  954+04 825428  88.2+3.1 89.51+0.5 92.5+£0.9 91.7+04  92.8+1.6
1000 —500 51.9+£0.0 563+0.5 519404  55.5+0.9 51.940.2 55.0+£0.5 533404  53.2+1.7
1000 —750 77.1£0.1 822403  74.8+0.6 77.3%£l1.1 77.7+£0.4 80.5+£0.6 80.6+1.1  80.7+0.9
1000 —1250  92.6+0.0  93.3+0.3 909405 88.7+1.0 91.24+04 92.1+£04 917404  92.5+0.3
1000 —1500  93.0+0.0 954404 91.04£0.6  88.3+24 91.2+0.3 93.5+£0.6  92.0+03  93.9+0.9
1250 —500 51.3£0.0 563£0.5 51.5+04  55.7+0.9 52.1£0.5 53.8+£0.5 535405  56.5+1.4
1250 —750 68.9+£0.1 822403  702+£12  77.0£1.0 77.0£0.7 80.1+£0.3  77.8+09  80.21+0.7
1250 —+1000  87.7+£0.1 89.2+04  84.7£0.5 827424 88.6+£0.5 88.4+£0.7 87.4+0.7 88.5+0.5
1250 —1500  94.1+0.1  954+04  93.0£03  89.5+24 92.7+0.1 94.3+04  94.04+0.2  94.0+0.7
1500 —500 50.8+0.1 56.3+0.5  50.6+£0.5  56.2:+0.6 51.8+0.2 532405 51.8£04  54.0+2.2
1500 —750 63.3£0.1 822403  643+12 782%£1.6 75.0£0.6 80.0+£0.2 76.4+0.8  80.4+1.2
1500 —1000  83.940.1 89.2+04  82.8+0.7 84.7£1.8 88.4+0.4 87.4+04 88.9+04  88.5+0.8
1500 —+1250  92.9+0.1 933+0.3  90.6£0.5  83.7+2.3 93.0+£0.3 92.1£0.5  92.6+0.2  92.4+0.8

to reduce the sample dimensionality from 5000 to 5. The NN has two hidden layers of dimensions 10
and 5 (the encoding dimension). For each task, we train the NN as a classifier on the source data with
a cross entropy loss. We then cut the output layer and use the trained NN to encode both the source
and target data into 5 dimensions. This dimension reduction is the input data of all the algorithms on
the benchmark and we trained all the competitors on this data. The results are shown in Table 6.

Table 3: Amazon dataset, unsupervised. Tasks are B: books, D: Dvd, E: Electronics, K: kitchen

Task Source Target DANN SA KMM oT SHOT KRDA

B—D 799401  794%+0.1 799+0a1 799+01 79.9+0.1 79.7+£0.1 79.7£0.6  80.0+0.2
B—E 69.24+02  72.7£00 699+04 73.0+01 71.8+0.1  73.0£0.1  72.6+0.7 73.0+0.1
B—K 757+02 762401 758402 761+0.1 763+0.1 762401 762402  76.2+0.1
D—B 75101 756401 751402 753+0.1 755+01 752401 755401  75.3+0.1
D—E 71.0+03 74.6+0.1 71.1£07 743+£01 727+02 74.6£0.1 73.8+£0.9 74.4+0.2
D—K 749401 77.3+0.1 748£05 77.5+01 762401 77.5£0.1 77.0£0.5 763402
E—B 70.7+0.1  71.5+0.0  70.6+04 71.24+02 70.9+0.2 71.1+01  71.34+03  70.9+0.2
E—D 723%+0.1 73.6+00 721404 73.14+02 733+04 72.7+01 72.8403  72.6+0.5
E—K 86.14+0.1 86.2+0.1 85.5+0.5 858+0.2 835+03  86.0+0.1 85.6+0.6 852+1.0
K—B 712402 71.4%0.1 71.2£03 71.6+£0.1  71.7+01  71.8+0.0  71.6£0.1 69.4+0.3
K—D 708401 72.8£00 70.7£1.1 727+£03 70.6+00 72.8+0.2 70.6+£1.0 72.84+0.7
K—E 84.0+00 844400 840402 843400 842400 84.31+0.0 84.240.1 84.1£0.1

7 CONCLUSION

In this paper, we presented a novel transfer learning framework that exploits recent advances in
density estimation techniques in order to transfer samples from a source domain to a target domain
with a distribution shift using Knothe-Rosenblatt transport. The property that is invariant by the
transfer performed by KRDA is the one dimensional conditional quantile distributions from the
source in the target domain space, using an autoregressive setup. We showed that KRDA is state of
the art on small to moderate dimensional tasks, often outperforming competitors especially in the
case where there are few data samples.

Future work includes extending KRDA to the semi-supervised domain adaptation where a few labels
are present in the target data. Another interesting research direction is to use other modern density
estimators such as normalizing flows or variational autoencoders, in place of autoregressive mixture
density nets.
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Knothe-Rosenblatt transport for Unsupervised Domain Adaptation

Supplementary material

A EXPERIMENTS

A.1 INTER-TWINNING MOONS

Table 4: Inter-twinning moons unsupervised

Task Source Target CDAN DAN JAN TCA KRDA

10° 100+0 1000 1000 50.0+£0.1 1000 100.0-£0 1000
20° 99.94+£0.1 1000  99.8+0.2 48.5£3.4 1000 100.0£0 1000
30°  96.6+0.40 100£0 97.842.1 56.1£13.7 99.7+0.7  100.0+0 1000
40°  73.14£2.50 100+£0 80.4+14.4  50.0+0.1 932+79  98.0+0.8 98.4+2.2
50° 41.5£2.0 1000 47.4£245  50.0%0.1 89.8+4.3  80.1+£2.0 98.4=£1.5
60° 28.7£0.6 1000  30.1+5.0 50.0+£0.1 87.4+4.3  44.8+4.7 90.5+2.8
70° 23.3+04 1000 24.9%+1.7 49.9+0 6224349 249406 84.4+0.8
80° 204+1.7 1000 26.7£104  50.0+0.1  49.9422.6 20.54+0.2 81.2+3.4
90° 18.1£0.3 1000  17.24+0.7 50.0+£0.1  27.9+14.1 17.8404 71.1£3.9

A.2 HEPMASS

Table 5: HEPMASS unsupervised domain adaptation
solution Source Target CDAN DAN JAN TCA KRDA

500 —750 68.7£0.1 82.24+0.3 56.0£4.0 51.3£0.7 582+19 67.2+04 75.6+2.3
500 —1000 67.24+0.1 89.2+04 49.2+5.6 51.4+4.1 56.1+3.8 71.7£04 80.3+3.1
500 —1250 62.6+0.3 933403 53.7£8.8 48.9£27 549423 779403 82.9+3.5
500 —1500 58.0£0.2 954404 56.3+9.1 52.8+£03 54.3+£2.6 759+0.5 80.0+6.1
750 —500 52.6+£0.1 563+0.5 542+05 504£08 54.9+0.9 53.7+£0.2 55.7£1.1
750 —1000 86.5+0.1 89.2+04 82.6+04 49.0+0.2 81.8+£1.7 84.5+02 87.7+£0.7
750 —1250 87.7£0.0 95.4£04 825+3.1 52.1+£74 778439 85.7+0.1 92.3+1.3
750 —1500 87.7£0.0 954+£04 748+79 56.1£11.8 76.6£2.1 85.7+0.1 92.8£1.6
1000 —500 51.9+£0.0 563405 52.0+£0.5 50.0£0.0 51.24+0.6 S53.1+0.1 53.2+1.7
1000 —750 77.1£0.1 822403 74.8+£12 51.5+£00 76.2%1.1 73.6£0.2 80.7+0.9
1000 1250  92.6+0.0 93.3+0.3 91.2+0.5 57.2+17.3 88.8+0.4 91.1+0.1 92.5+0.3
1000 —+1500 93.0+£0.0 954404 90.6£0.6 61.4+17.0 88.6*+1.3 91.7£0.1 93.9+0.9
1250 —500 51.3£0.0 563405 51.3+£03 50.0£0.0 52.1+0.6 51.7£0.1 56.5+1.4
1250 =750 68.9+£0.1 822403 69.8+09 54.8+12.6 76.84£0.7 69.8+£0.2 80.2+0.7
1250 —+1000 87.7+£0.1 89.24+0.4 852+0.3 69.9+19.1 85.3+0.7 86.5+0.2 88.5+0.5
1250 —+1500 94.1£0.1 954404 93.2+04 72.6+23.8 93.3+0.7 93.0+£0.1 94.0+0.7
1500 —500 50.8+£0.1 56.3+0.5 50.2+04  50.0£0.2 513406 51.3+0.1 54.0+2.2
1500 =750 63.3+0.1 82.24+03 62.1£09 53.1£103 73.94+06 66.0+0.2 80.4+1.2
1500 —+1000 83.9+0.1 89.2+04 823+14 758+11.5 859+1.7 83.4+0.2 88.5+£0.8
1500 —+1250 92.9+0.1 93.3+03 91.0+£0.6 84.1+18.8 91.3+0.2 91.9+0.3 92.4+0.8

A.3 AMAZON
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Table 6: Amazon dataset, unsupervised. Tasks are B: books, D: Dvd, E: Electronics, K: kitchen

solution Source Target CDAN DAN JAN TCA KRDA

B—D 7994+0.1 79.4+£0.1 79.7+£0.6 63.1£155 59.5+13.5 79.9+0.1 80.0+0.2
B—+E 692£02 727+0.0 64.5£85 59.6+£10.8 70.9+£04 69.9+£0.2 73.0+0.1
B—+K 7574+02 76.2+0.1 75.840.1 552+11.6 7094115 75.84+0.1 76.2+0.1
D—B 7514£0.1 75.6£0.1 753+0.2 693+9.1 7024+109 75.0+0.0 75.3£0.1
D—E 71.0+03 74.6£0.1 6694+9.3 68.0+9.9 67.0£9.9 712402 74.4+0.2
D—-K 749£0.1 77.3+0.1 751£02 602+14.0 62.1£13.0 753£0.0 76.3+0.2
E—-B 70.7+£0.1 71.5£0.0 70.7+£0.4 58.3+11.7 58.6+11.5 71.0+0.1 70.9+0.2
E—-D 723+0.1 73.6£0.0 714+13 665+9.8 63.8+12.6 72.1+0.1 72.6£0.5
E—K 86.1+0.1 86.2+0.1 85.5+0.4 83.5+54 64.4+£19.6 86.0+0.2 85.2+1.0
K—B 712£02 7144+0.1 71.2£0.2 69.7£3.6 62.6+11.6 71.2£0.1 69.4+0.3
K—D 708+0.1 72.8+0.0 70.5+04 62.4+11.7 71.0+02 70.7+£0.0 72.8+0.7
K—E 84.0£00 8444+0.0 84.0£0.2 84.1+0.2 77.2+154 83.9+0.1 84.1+0.1
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