
HiLD 2025: 3rd Workshop on High-dimensional Learning Dynamics

When Can You Get Away with Low Memory Adam?

author names withheld

Under Review for the Workshop on High-dimensional Learning Dynamics, 2025

Abstract

Adam is the go-to optimizer for training modern machine learning models, but it requires additional
memory to maintain the moving averages of the gradients and their squares. While various low-
memory optimizers have been proposed that sometimes match Adam’s performance, their lack of
reliability has left Adam as the default choice. In this work, we apply a simple layer-wise Signal-
to-Noise Ratio (SNR) analysis to quantify when second-moment tensors can be effectively replaced
by their means across different dimensions. Our SNR analysis reveals how architecture, training
hyperparameters, and dataset properties impact compressibility along Adam’s trajectory, naturally
leading to SlimAdam, a memory-efficient Adam variant. SlimAdam compresses second moments
along dimensions with high SNR when feasible, and leaves when compression would be detrimental.

1. Introduction

Adam with weight decay [15] has become the standard optimizer choice in modern machine learning,
consistently outperforming non-adaptive optimizers such as Stochastic Gradient Descent with momen-
tum (SGD-M). Its success is typically attributed to adapting to the geometry of the landscape by esti-
mating the “effective learning rate” for each parameter using a moving average of the squared gradi-
ents. An additional benefit of this adaptive mechanism is that the optimal learning rate is less sensitive
to training recipe changes. While these factors make Adam the go-to optimizer for training language
models, it stores a moving average of squared gradients beyond SGD-M, doubling the optimizer’s
memory footprint. This memory cost becomes particularly crucial in resource-limited settings, where
the memory allocated to the optimizer states could be used for the model parameters or activations.

To avoid the extra memory footprint of Adam, various low-memory optimizers have been proposed
[2, 8, 18, 23]. These optimizers are a free lunch in some settings – slashing memory usage with no de-
tectable loss in performance [29, 30] – but they compromise performance in others [16] (for a detailed
discussion on related works, see Appendix A). While the potential benefits of low-memory optimizers
are clear, a lack of understanding as to when they will perform well is a major barrier to widespread
adoption. In this work, we examine when Adam’s second moments can be replaced by their mean dur-
ing training. Our goal here is to develop a principled framework to help users understand and quantify
when these low-memory variants of Adam are appropriate for their problem, thereby improving the
reliability of low-memory optimizers and providing deeper insights into Adam’s dynamics.

We propose and study a simple measure of the compressibility of Adam’s second-moment memory.
By examining the Signal-to-Noise Ratio (SNR) of the second moment tensor in each layer, we
quantify when individual second moments can be effectively replaced by their means across specific
dimensions (such as fanin, fanout, or both dimensions). Our SNR-based metrics reveal that layers

© .



WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

(a)

10−4 10−3 10−2 10−1

Learning rate

3.0

3.2

3.4

T
es

t
lo

ss

GPT-small FineWeb-Edu

Adam

SlimAdam

Adam-mini v1

Adam-mini v2

Lion

SM3

(b)

0 2k 4k 6k 8k 10k
step

3

4

5

6

7

T
ra

in
lo

ss

GPT-medium FineWeb-Edu η = 1e-04

Adam

Adalayer+LN+TL

SlimAdam

Adam-mini v1

Adam-mini v2

(c)

0 2k 4k 6k 8k 10k
step

3

4

5

6

7

T
ra

in
lo

ss

GPT-medium FineWeb-Edu η = 6e-03

Adam

Adalayer+LN+TL

SlimAdam

Adam-mini v1

Adam-mini v2

Figure 1: Comparison of low-memory optimizers on GPT pre-training with Fineweb-Edu. (a)
SlimAdam matches Adam’s U-shaped loss curve. (b) All Adam variants show identical curves at
small learning rates. (c) At large learning rates, SlimAdam maintains Adam’s stability while other
variants become unstable.

exhibit varying degrees of compressibility across different dimensions, and this compressibility can
depend strongly on the architecture, training hyperparameters, and dataset properties. While several
layer types show consistent compressibility patterns across training configurations, we also observe
that some layer types show varying compression trends.

Our SNR analysis naturally leads to SlimAdam, a memory-efficient Adam variant that compresses the
second moments along the most efficient dimensions, or selectively leaves layers uncompressed when
needed to maintain stability. By taking an adaptive approach to compression, SlimAdam matches
Adam’s performance while maintaining stability at large learning ratesas shown in Figure 1. For
instance, SlimAdam saves 98% of second moments in a ∼ 124M parameter GPT-style Transformer
trained on language tasks. Our investigation also reveals a surprising property of Adam: it uses
significantly more second moments at large learning rates than required for optimal performance. For
instance, in GPT-style Transformers trained on language modeling, while the SNR analysis suggests
that ∼ 35% of second moments could be compressed at Adam’s optimal learning rate, SlimAdam
achieves Adam’s performance while compressing 98% of them. This intriguing finding suggests that
the majority of Adam’s per-parameter adaptivity isn’t necessarily required for optimal training.

2. Notations and Preliminaries

For a weight matrix W ∈ Rfanout×fanin , let Gt denote its gradient at step t. Adam updates these weights
using learning rate ηt and the moving averages of the first two moments of gradients, Mt and Vt,
with coefficients β1 and β2. The equations governing the updates are: Mt+1 = β1Mt + (1− β1)Gt,
Vt+1 = β2Vt + (1 − β2)G

2
t , and Wt+1 = Wt − ηtM̂t+1/

√
V̂t+1+ϵ. Here, M̂t = Mt/1−βt

1 and V̂t =
Vt/1−βt

2 are the bias-corrected moments and ϵ is a small scalar used for numerical stability.

For our analysis, we generalize Adam to a family of low-memory variants parameterized by layer-
specific sharing dimensions. For each layer, we compute an estimate of the second moments by
averaging squared gradients across specified dimensions K (fanin, fanout, or both). The difference
compared to Adam lies in the second moment update:

Vt+1 = β2Vt + (1− β2)EK

[
G2

t

]
, (1)

where EK [·] denotes an average over dimensions K. Since Adam’s second moment acts as a per-
parameter “effective” learning rate, averaging these moments along dimensions K is equivalent to
sharing a common learning rate. The above optimizer coincides with Adam when K = ∅. Through-
out this work, we partition second moments using the default parameter partitioning scheme that
groups parameters at the granularity of layer components (weights, biases, and attention components).
We use K = 0 for fanout, K = 1 for fanin and K = (0, 1) to denote sharing along both dimensions.

2



WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

2 4 6 8 10 12
Layer index

0

1

2

3

4
E t

[S
N

R
K

(V
t)

]

Attn.Key, shape = (768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

1

2

3

4

E t
[S

N
R
K

(V
t)

]

Attn.Value, shape = (768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

1

2

3

4

5

E t
[S

N
R
K

(V
t)

]

MLP.Up, shape = (3072, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0.4

0.6

0.8

1.0

E t
[S

N
R
K

(V
t)

]

Attn.LN, shape = (768,), η = 3e-04

K

(0,)

Figure 2: Depth dependence of average SNR values of selected second-moment blocks of the GPT-
small model trained on OpenWebText.

3. SNR Analysis of Adam’s Second Moments

This section analyzes how effectively Adam’s per-parameter second moments can be replaced by their
mean along different dimensions (such as fanin, fanout, or both) during training. The feasibility of such
a compression depends on how tightly the entries are clustered around their mean value. If entries
along a dimension exhibit low variance relative to their mean, they can be effectively represented
by a single value. To quantify this concentration of values, we analyze the Signal-to-Noise Ratio
(SNR) of the second moments during training. For a second moment matrix V ∈ Rfanout×fanin and
specified compression dimensions K, SNRK is defined as: SNRK(Vt) = EK′

[
(EK [Vt])

2

VarK [Vt]

]
, where

EK [·] and VarK [·] compute the mean and variance along the specified dimensions K, while the
outer expectation EK′ [·] averages the ratio over the remaining dimensions to obtain a scalar. SNRK

quantifies compression feasibility along dimensions K throughout the trajectory. When SNRK ≳ 1 1,
the signal dominates the noise, indicating entries can be effectively described by their mean, whereas
SNRK ≲ 1 suggests that individual entries carry significant information that would be lost when the
entries are replaced by their mean. This analysis not only suggests layers that can be compressed
but also quantifies their relative compression feasibility. As Adam adapts to the local geometry of
the loss landscape, SNR values also serve as a proxy for learning complexity during training, with
lower SNR suggesting higher complexity and a need for per-parameter effective learning rates. We
are interested in cases where it is feasible to replace the second moments by their mean throughout
training. To this end, we define average SNR as: Eτ [SNRK(Vτ )] =

1
T

∑T
τ SNRK(Vτ ), where τ

indexes the training steps at which SNR is measured and T is the total number of measurements. The
averaged SNR quantifies compression feasibility along dimensions K throughout training.

We analyze the evolution of SNR across diverse training configurations (pre-training, fine-tuning,
image classification) to uncover fundamental SNR trends. Table 1 summarizes the preferred com-
pressibility dimension by layer type based on these trends. Below, we discuss language pre-training
results and defer additional results to Appendix D.

Attention key and query second moments consistently show aversion to compression along the fanout
dimension, where multiple heads are stacked, suggesting that each attention head requires its own
effective learning rate. Ref. [29] reached similar conclusions through an independent Hessian-based
analysis, corroborating our findings. On the other hand, attention value and projection second show
an opposite trend, with higher compressibility along the fanout dimension as compared to the fanin
dimension. For projection layers, aversion to compression along the fanin dimension (where heads
are stacked) is intuitive, as the parameters corresponding to each attention head are intended to evolve
independently during training. However, for the same reason, the higher compressibility of second
moments in the value layer along the head-stacked dimension is unexpected. Intuitions aside, from

1. For random Gaussian gradients, SNRK > 1/2 indicates compression feasibility (see Appendix C for a derivation).
However, we find that a more stringent value of 1 is more reliable in practice.

3



WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

an absolute magnitude perspective, values and projection layers show higher averaged SNR values
along the preferred dimension than keys and queries, indicating greater overall compressibility.

Interestingly, by a similar magnitude argument, MLP second moments exhibit greater compressibility
than attention keys and queries. While in general MLP second moments prefer compression along
the output dimension (fanout), for some layer indices the second moment can also be compressed
along the input dimension (fanin) or even both dimensions simultaneously. LayerNorm and bias
components typically exhibit lower compressibility. Due to their minimal contribution to the overall
memory, we advise against compressing them.

4. Factors Influencing Compressibility

Incompressibility under Heavy-Tailed Distributions: In Appendix G, we investigate how token
frequency distribution influences compressibility. We train a simplified two-layer model, solely
consisting of a token embedding matrix and a linear head with varying vocabulary sizes. Figure 19
shows that SNR values along the token dimension of both layers decrease substantially as vocabulary
size increases, suggesting lower compressibility. We then test the effect of this low compressibility
by comparing Adam with shared second moments along the token dimension with standard Adam.
Figure 20 shows that the loss gap between these two optimizers increases with vocabulary size.

Large Learning Rates reduce Compressibility: Figure 17 in Appendix E shows that increasing
the learning rate consistently reduces SNR values across layers. This decline in averaged SNR values
suggests that higher learning rates cause training to explore regions of parameter space where the
gradient distribution contains more outliers, thereby reducing compression feasibility. Layers such as
Token Embedding/LM Head, LayerNorm, Attention keys, queries, first MLP layer (MLP.Up), averse
compression (SNR ≲ 1) at the optimal learning rate, whereas, attention values and projections and
the second MLP layer (MLP.Down) are amenable to compression.

Effect of Initialization on Compressibility: We compare Mitchell initialization [10] used in Sec-
tion 3 against PyTorch’s default initialization scheme. A key feature of Mitchell initialization is that
it scales the variance of layers that add to the residual stream (Attn.Proj and MLP.Down) with a factor
of 1/depth. Figure 18 in Appendix F show that Mitchell initialization leads to higher SNR values
compared to the default PyTorch initialization across layers of the GPT-small model. In particular,
Attn.Proj and MLP.Down layers show significantly higher SNR values. These exceptionally high
SNR values provide empirical support for the 1/depth scaling in Mitchell initialization.

Table 1: Summary of preferred compression dimensions by layer type. Compression dimensions
marked with ⋆ show inconsistent trends across training regimes.

Layer Type K∗ Layer Type K∗

Attention Special Layers
Key & Query fanin Token Embedding fanout

Value & Projection fanout Language Modeling Head fanin

MLP Layers Vision First Layer fanin

First layer (Up) fan⋆
out Vision Classification Head fan⋆

in

Middle layer (Gate) fan⋆
out Normalization Layers –

Last layer (Down) fanout

4



WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

(a)

10−4 10−3 10−2 10−1

Learning Rate

0.0

0.2

0.4

0.6

0.8

1.0

S
N

R
-p

re
di

ct
ed

sa
vi

ng
s

GPT-small FineWeb-Edu

cutoff

0.2

0.6

1.0

1.4

(b)

10−4 10−3 10−2 10−1

Learning rate

3.0

3.2

3.4

3.6

T
es

t
lo

ss

GPT-small FineWeb-Edu

Adam

Adalayer+LN+TL

SlimAdam

Adam-mini v1

Adam-mini v2

Figure 3: (a) Fraction of reducible second moments (relative to Adam) across learning rate and SNR
cutoff, as predicted by SNR analysis. (b) Performance comparison across learning rates between
SlimAdam and baselines: Adam, AdaLayer [30], and Adam-mini [29] (for details, see Appendix A).

5. DIY: Build Your Own Low-Memory Adam

Building on our comprehensive SNR analysis, we now introduce SlimAdam — a memory-efficient
Adam variant that preserves Adam’s performance and stability through SNR-guided compression.
SlimAdam (1) compresses matrix-like second moments along the dimension with the highest SNR
when above a threshold and (2) leaves vector-like second moments uncompressed due to their high
variability and minimal effect on the overall memory. Our implementation consists of three steps.

Step 1: First, we collect layer-wise SNR statistics using a small proxy model (discussed later).
Step 2:: Next, we identify the compression dimension K∗ for each layer type with the highest SNR:
K∗ = argmaxK Eτ [SNRK(V (l))] and compress a layer only if its SNR is above a given cutoff.
Step 3: Finally, we train the target model using Adam with shared second moments (Equation (1))
along these compression dimensions K∗. The full algorithm is detailed in Appendix H.1.

SNR-predicted compressibility primarily depends on the learning rate used to train the proxy model
and the SNR cutoff (Figure 3(a)). GPT models exhibit high compressibility (∼ 98%) at small
learning rates, though these savings reduce to ∼ 30% at large learning rates. In theory, we would
perform the SNR analysis at the optimal learning rate to determine compression rules, but this
approach will only save about 30% of second moments with a cutoff of 1.0. Surprisingly, we find
that a more aggressive compression is possible using smaller learning rates. As shown in Figure 3
(b), SlimAdam achieves Adam-level performance and stability using compression rules derived at
learning rates 10× smaller than optimal, saving ∼ 98% second moments. SlimAdam’s success in
this setting suggests a previously unreported implicit bias in Adam —it maintains significantly more
second moments at large learning rates than required for optimal performance. This also suggests
that SNR analysis at small learning rates captures fundamental compression rules while avoiding
artifacts that emerge when training Adam at large learning rates.

Depth-averaged SNR 1
depth

∑depth
l=1 Eτ [SNRK(V (l))] yields consistent compression dimensions across

model sizes — a 4-layer GPT model with width nembd = 256 yields the same compression dimensions
as a 24-layer model with nembd = 1024 (same as in Table 1). This allows using a smaller proxy model
to identify compression dimensions for larger target models. Figure 25 in Appendix I verifies that
SlimAdam with depth-averaged SNR derived rules yield the same performance in GPT pre-training.

6. Discussion

We present a principled SNR framework to analyze when second moments can be effectively replaced
with their means, naturally leading to SlimAdam, a practical low-memory Adam variant which
maintains its performance and stability while saving up to 98% second moments. We hope our work
furthers understanding of when low memory optimizers are safe to use in practice while deepening
our fundamental understanding of how architecture, training regime, and optimizer design interact.

5



WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

References
[1] Kwangjun Ahn, Xiang Cheng, Minhak Song, Chulhee Yun, Ali Jadbabaie, and Suvrit Sra. Linear

attention is (maybe) all you need (to understand transformer optimization). In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
0uI5415ry7.

[2] Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory-efficient adaptive optimization. In
NeurIPS 2019, 2019. URL https://papers.nips.cc/paper_files/paper/2019/hash/
8f1fa0193ca2b5d2fa0695827d8270e9-Abstract.html.

[3] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong, Thang
Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V Le. Symbolic discovery of optimization algorithms.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://
openreview.net/forum?id=ne6zeqLFCZ.

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In
International Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=YicbFdNTTy.

[5] Enealor. Pytorch-sm3, 7 2020. URL https://github.com/Enealor/PyTorch-SM3.

[6] Facebook Research. Adafactor optimizer implementation in fairseq. https://github.com/
facebookresearch/fairseq/blob/main/fairseq/optim/adafactor.py, 2023. Ac-
cessed: February 2025.

[7] Philip Gage. A new algorithm for data compression. C Users J., 12(2):23–38, February 1994. ISSN
0898-9788.

[8] Boris Ginsburg, Patrice Castonguay, Oleksii Hrinchuk, Oleksii Kuchaiev, Vitaly Lavrukhin, Ryan
Leary, Jason Li, Huyen Nguyen, Yang Zhang, and Jonathan M. Cohen. Training deep networks
with stochastic gradient normalized by layerwise adaptive second moments, 2020. URL https:
//openreview.net/forum?id=BJepq2VtDB.

[9] Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

[10] Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya Jha,
Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson, Russell Authur, Khyathi
Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack Hessel, Tushar Khot, William
Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal Nam, Matthew Peters, Valentina
Pyatkin, Abhilasha Ravichander, Dustin Schwenk, Saurabh Shah, William Smith, Emma Strubell, Nishant
Subramani, Mitchell Wortsman, Pradeep Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer,
Jesse Dodge, Kyle Lo, Luca Soldaini, Noah Smith, and Hannaneh Hajishirzi. OLMo: Accelerating the
science of language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 15789–15809, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.841. URL https://aclanthology.org/2024.acl-long.841/.

[11] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2015.

6

https://openreview.net/forum?id=0uI5415ry7
https://openreview.net/forum?id=0uI5415ry7
https://papers.nips.cc/paper_files/paper/2019/hash/8f1fa0193ca2b5d2fa0695827d8270e9-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/8f1fa0193ca2b5d2fa0695827d8270e9-Abstract.html
https://openreview.net/forum?id=ne6zeqLFCZ
https://openreview.net/forum?id=ne6zeqLFCZ
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://github.com/Enealor/PyTorch-SM3
https://github.com/facebookresearch/fairseq/blob/main/fairseq/optim/adafactor.py
https://github.com/facebookresearch/fairseq/blob/main/fairseq/optim/adafactor.py
https://openreview.net/forum?id=BJepq2VtDB
https://openreview.net/forum?id=BJepq2VtDB
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://aclanthology.org/2024.acl-long.841/


WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

[12] Andrej Karpathy. nanoGPT: The simplest, fastest repository for training/finetuning medium-sized gpts.
https://github.com/karpathy/nanoGPT, 2022.

[13] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[14] Frederik Kunstner, Robin Yadav, Alan Milligan, Mark Schmidt, and Alberto Bietti. Heavy-tailed class
imbalance and why adam outperforms gradient descent on language models, 2024. URL https:
//arxiv.org/abs/2402.19449.

[15] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

[16] Yang Luo, Xiaozhe Ren, Zangwei Zheng, Zhuo Jiang, Xin Jiang, and Yang You. CAME: Confidence-
guided adaptive memory efficient optimization. In Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki, editors, Proceedings of the 61st Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 4442–4453, Toronto, Canada, July 2023. Association for
Computational Linguistics. doi: 10.18653/v1/2023.acl-long.243. URL https://aclanthology.
org/2023.acl-long.243.

[17] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models.
In International Conference on Learning Representations, 2017. URL https://openreview.net/
forum?id=Byj72udxe.

[18] Ionut-Vlad Modoranu, Mher Safaryan, Grigory Malinovsky, Eldar Kurtic, Thomas Robert, Peter
Richtárik, and Dan Alistarh. Microadam: Accurate adaptive optimization with low space overhead
and provable convergence. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=Tck41RANGK.

[19] Yan Pan and Yuanzhi Li. Toward understanding why adam converges faster than SGD for transformers.
In OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop), 2022. URL https:
//openreview.net/forum?id=Sf1NlV2r6PO.

[20] Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin Raffel,
Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the finest text
data at scale. In The Thirty-eight Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2024. URL https://openreview.net/forum?id=n6SCkn2QaG.

[21] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[22] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Katrin Erk and Noah A. Smith, editors, Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin,
Germany, August 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1162. URL
https://aclanthology.org/P16-1162/.

[23] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost. In
Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 4596–4604. PMLR, 10–15
Jul 2018. URL https://proceedings.mlr.press/v80/shazeer18a.html.

[24] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca, 2023.

7

https://github.com/karpathy/nanoGPT
https://arxiv.org/abs/2402.19449
https://arxiv.org/abs/2402.19449
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/2023.acl-long.243
https://aclanthology.org/2023.acl-long.243
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Tck41RANGK
https://openreview.net/forum?id=Sf1NlV2r6PO
https://openreview.net/forum?id=Sf1NlV2r6PO
https://openreview.net/forum?id=n6SCkn2QaG
https://aclanthology.org/P16-1162/
https://proceedings.mlr.press/v80/shazeer18a.html
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca


WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

[25] Llama Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

[26] torchtune maintainers and contributors. torchtune: Pytorch’s finetuning library, April 2024. URL
https//github.com/pytorch/torchtune.

[27] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, San-
jiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neu-
ral Information Processing Systems, volume 33, pages 15383–15393. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
b05b57f6add810d3b7490866d74c0053-Paper.pdf.

[28] Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why transformers
need adam: A hessian perspective, 2024. URL https://arxiv.org/abs/2402.16788.

[29] Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi-Quan Luo, and Ruoyu
Sun. Adam-mini: Use fewer learning rates to gain more, 2024. URL https://arxiv.org/abs/
2406.16793.

[30] Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Deconstructing
what makes a good optimizer for language models, 2024. URL https://arxiv.org/abs/2407.
07972.

8

https://arxiv.org/abs/2407.21783
https//github.com/pytorch/torchtune
https://proceedings.neurips.cc/paper_files/paper/2020/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf
https://arxiv.org/abs/2402.16788
https://arxiv.org/abs/2406.16793
https://arxiv.org/abs/2406.16793
https://arxiv.org/abs/2407.07972
https://arxiv.org/abs/2407.07972


WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

10−4 10−3 10−2 10−1

Learning rate

3.0

3.2

3.4

3.6

T
es

t
lo

ss

GPT-small FineWeb-Edu

Adam

SlimAdam

SM3-0.0

SM3-0.95

10−4 10−3 10−2

Learning rate

3.0

3.2

3.4

3.6

T
es

t
lo

ss

GPT-small FineWeb-Edu

Adam

SlimAdam

Lion-0.0

Lion-0.95

Lion-0.99

10−4 10−3 10−2

Learning rate

3

4

5

6

T
es

t
lo

ss

GPT-small FineWeb-Edu

Adam

SlimAdam

Adafactor

Adafactor-v2

Figure 4: Comparison of SlimAdam with different optimizers on GPT pre-training using Fineweb-Edu
dataset.

Appendix A. Related Works

The superiority of Adam is primarily observed in language modeling, with SGD performing compara-
bly to Adam in image classification settings [27]. This disparity has motivated several investigations
into the unique challenges of language modeling landscapes, with studies identifying several expla-
nations. Ref. [1, 27] demonstrated that the heavy-tailed distribution of the stochastic gradient noise
in language modeling cases causes SGD to perform worse than Adam. Ref. [19] attributed Adam’s
faster convergence to “directional sharpness,” which is the curvature along the update direction.
Adding to these findings, Ref. [28] illustrated that the Hessian spectrum varies heavily across
parameter blocks, attributing SGD’s worse performance to using a single learning rate for all blocks.
Further insights come from Ref. [14], who found that, in settings with heavy-tailed class imbalance,
SGD struggles to decrease loss in infrequent classes, while adaptive optimizers are less sensitive to
this imbalance. Ref. [30] argued that Adam’s advantage over SGD in language modeling primarily
stems from using per-parameter adaptive learning rates in two specific components—LayerNorm
and the final layer—positing that for all other layers, a single shared second moment is sufficient.

Several approaches have been proposed to reduce Adam’s memory footprint in the past few years.
Adafactor [23] approximates the second-moment matrix of a layer using a moving average of the
row and column sums of the squared gradients. SM3 [2] groups parameters by tensor dimensions
and estimates second moments as the minimum value across relevant group averages. Lion [3]
is an algorithmically discovered optimizer that only tracks momentum and uses a sign operation
to estimate the update. MicroAdam [18] combines gradient sparsification, quantization, and error
feedback to compress optimizer states. Adam-mini [29] assigns adaptive learning rates to block
partitions based on the Hessian spectrum at initialization. Specifically, Adam-mini assigns a second
moment to the default PyTorch block partition with two exceptions: (1) each parameter in the first
and last layer is assigned a second moment, and (2) each key and query head gets a second moment.
Below, we further discuss closely related works in detail.

Adam-mini: Ref. [29] introduced Adam-mini, which assigns adaptive learning rates to block
partitions based on the Hessian spectrum at initialization. The initial release, Adam-mini v1.0.4
(referred to as Adam-mini v1), uses PyTorch’s default block partitioning with two key modifications:
(1) individual second moments are assigned to each parameter in the Token Embedding and LM Head,
and (2) individual second moments are assigned to each key and query attention head. In a recent
update, Adam-mini v1.1.1 (referred to as Adam-mini v2) revises this approach by assigning one
second moment per output neuron in each layer, with two exceptions: (1) each key and query attention
head receives its own second moment, and (2) each token dimension in the Token Embedding and
LM Head receives its own second moment. LayerNorms are always compressed.

9



WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

Our SNR analysis identifies similar compression rules to Adam-mini but with two key differences.
First, Adam-mini assigns one second moment to every output neuron of attention values, projection,
and MLPs. In our convention, it amounts to fanin compression. In comparison, our SNR analysis
suggests that fanout compression is more appropriate for these layers. The second difference relates to
LayerNorm parameters. While Adam-mini compresses these by default, our SNR analysis indicates
that LayerNorm second moments show aversion to compression. We attribute SlimAdam’s superior
learning rate stability to its identification of these more appropriate compression dimensions.

AdaLayer: Ref. [30] found that Adam’s superior performance over SGD in language modeling
primarily comes from using per-parameter adaptive learning rates in just two components: LayerNorm
and the LM Head. All other layers can be trained with SGD. Following their naming convention, we
use AdaLayer to refer to Adam with one second moment per weight/bias, and ‘AdaLayer+LN+TN’
to denote AdaLayer with per-parameter second moments for LayerNorm and final layer parameters.

While our SNR analysis supports their findings about Token Embedding/LM Head and LayerNorm
second moments, we find that AdaLayer+LN+TN underperforms Adam and SlimAdam using 2% of
Adam’s second moments closely matches Adam’s performance and stability.

SM3: SM3 [2] groups parameters into sets based on similarity, such that each parameter can belong
to multiple sets. Then, it maintains a moving average of the maximum of squared moments for
each set and approximates a second-moment entry using the minimum value across different sets
it belongs to. We use the implementation from [5] with momentum = 0.9 and β ∈ {0.0, 0.95}.
Figure 4(a) compares SM3 performance with different β values on the GPT pre-training task. We
observe that β = 0.95 performs better for GPT pre-training. We use this optimal β value in the
comparisons shown in Figure 1.

Lion: Lion [3] is an algorithmically discovered optimizer that only tracks momentum and uses
the sign operation to determine update directions. For the GPT-small experiment, we found that
β2 = 0.95 performs best when keeping β1 = 0.9 fixed, as shown in Figure 4(b). Similar to other
optimizers, we use a weight decay strength of λ = 0.1 and a gradient clipping threshold of 1.0.

Adafactor: [23] approximates the second-moment matrix of a layer using a moving average of the
row and column sums of the squared gradients. We evaluate two implementations: (1) the PyTorch
implementation, which does not use a moving average of updates (referred to as Adafactor) and (2)
the implementation by Ref. [6], which incorporates the moving average of updates (referred to as
Adafactor v2). For both variants, we maintain the same learning rate schedule used in our default
experiments. For Adafactor v2, this requires setting relative_step=False. As shown in
Figure 4(c), both Adafactor variants perform significantly worse than Adam. Due to this performance
gap, we exclude these results from Figure 1.

Appendix B. Experimental Details

SNR measurement: We measured SNR values at regular intervals throughout training: every 100
step for the first 1000 steps, then every 1000 step thereafter. For determining the SlimAdam rules,
we deliberately exclude frequent early-training measurements to prevent biasing the averaged SNR
towards initial SNR values.

10



WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

B.1. Language Pre-training

Model and Datasets: We train GPT-style models [21] using a codebase based on NanoGPT [12]
on two language modeling datasets: OpenWebText [9] and 10B token subset of FineWeb-Edu [20].
The datasets are tokenized using the GPT tokenizer with a vocabulary size nvocab = 50, 304. The
models are trained with a context length of Tn = 1024. We use nlayers to denote the number of layers,
nheads to denote the number of heads, and dmodel to denote the embedding dimension.

We consider two model configurations:

1. GPT-small (nlayers = 12, nheads = 12, dmodel = 768)

2. GPT-medium (nlayers = 24, nheads = 16, dmodel = 1024)

Both models have an MLP upscaling factor of 4, learnable positional embedding, and weight tying,
without biases.

Initialization: Unless specified, we consider the Mitchell initialization [10]: For standard layers,
the weights are initialized using a normal distribution N (0, 0.022), while residual projection layers
(attention and MLP projections) use a scaled normal distribution N (0, 0.022/2nlayers). In Section 4, we
use PyTorch’s default uniform initialization: U(− 1√

fanin
, 1√

fanin
).

Training: The training uses a micro-batch size of 32 with 40 gradient accumulation steps, resulting
in an effective batch size of B = 1, 280. All models are trained for 10, 000 steps using different
Adam variants with the following hyperparameters: β1 = 0.9, β2 = 0.95, ϵ = 10−8, and weight
decay strength λ = 0.1. The learning rate is linearly increased from zero to a target learning rate η in
Twrm = 2048 steps, followed by cosine decay to ηmin = η/10.0. Gradients are clipped at a maximum
norm of 1.0.

B.2. Linear Model trained on WikiText

Model Architecture: We consider a two-layer linear model composed of an embedding layer fol-
lowed by a language model head, trained on WikiText-103 [17]. The dataset is tokenized using BPE to-
kenization [7, 22] with different vocabulary sizes V ∈ {1024, 2048, 4096, 8192, 16384, 32768, 49152, 65536}.
The embedding dimension is set to dmodel = 768 and a context length of Tn = 128 is considered.

Initialization: The embedding parameters are initialized using a truncated normal distribution
N (0, 1), while the language model head uses a truncated normal distribution N (0, 1/fanin).

Training: The training consists of one epoch with a batch size B = 16. The model is trained
using Adam variants with hyperparameters β1 = 0.9, β2 = 0.999, ϵ = 10−8, and weight decay
strength λ = 10−4. The learning rate follows a schedule with linear warmup from zero to η over
Twrm = 2048 steps, followed by cosine decay to ηmin = η/10.0. The optimal target learning rate is
found by scanning the set {1e-4, 3e-4, 6e-4, 1e-3, 3e-3}.

B.3. Language Fine-tuning

Model and Datasets: We consider pre-trained Llama-3.2 models [25] and fine-tune them on the
Alpaca dataset [24] using the torchtune library [26].

Fine-tuning: We finetune the models for 3 epochs using a batch size B = 16, optimizer hyperpa-
rameters β1 = 0.9, β2 = 0.999, ϵ = 10−8 and weight decay strength λ = 0.1.

11



WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

B.4. Image Classification

Model and Datasets: We train ResNet [11] and ViT [4] models on CIFAR-10 and CIFAR-100
datasets [13] with random crop and horizontal flip augmentations.

ResNet: We consider the standard ResNet-18 architecture with batch normalization.

ViT: We consider Vision Transformers [4], with GPT-like architecture adapted for image classification
using patch embeddings and a special class token. We consider two model configurations: ViT-
mini (nlayers = 6 layers, nheads = 12 heads, embedding dimension dmodel = 768) and ViT-small
(nlayers = 12 layers, nheads = 12 heads, embedding dimension dmodel = 768). Both models are
initialized using Mitchell initialization, do not use biases, and use a learnable class token and a patch
size of 2.

Training: We train these models with a batch size of B = 128 for 100, 000 steps with optimization
hyperparamters: β1 = 0.9, β2 = 0.999, ϵ = 10−8 and weight decay strength λ = 0.01. The learning
rate is linearly increased from zero to a target learning rate η in Twrm = 2048 steps, followed by
cosine decay to ηmin = η/10.0.

B.5. Estimated Computational Resources

Each experiment required approximately 12 H100 GPU hours to complete. Our experimental design
included around 8 learning rate variations, 2 distinct datasets for the four training regimes, resulting
in 64 total runs. This amounted to 768 H100 GPU hours for the primary experiments. Additional
small-scale exploratory experiments consumed approximately 250 H100 GPU hours, bringing the
total computational resources used in this study to around 1000 H100 GPU hours.

Appendix C. SNR Analysis for Gaussian Gradients

In this section, we analyze the SNR metric for random, iid Gaussian distributed gradients. Consider
a gradient matrix G ∈ Rn×n with elements Gij sampled from N (0, σ2). Let V = G2 denote the
element-wise squared gradient matrix. Then, the expectation of the mean and variance along column
j is:

E [Vi] = E

 1

n

n∑
j=1

Vij

 =
1

n

n∑
j=1

E[G2
ij ] = σ2.

E

 1

n

n∑
j=1

(Vij − E[Vi])
2

 =
1

n

n∑
j=1

[
E[G4

ij ]− E[Gij ]
2
]
= 3σ4 − σ4 = 2σ4.

This yields SNR = 1/2 for iid Gaussian gradients irrespective of matrix dimension. We numerically
verify this result in Figure 5. In real-world scenarios, gradients follow complex distributions, often
exhibiting long tails that defy iid Gaussian assumptions. In our experiments, we found that a more
stringent cutoff of 1 works better.

12



WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

102 103 104

Matrix size

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

S
N

R
al

on
g

ro
w

di
m

Figure 5: SNR values along the row dimension for iid Gaussian distributed gradients.

0 2k 4k 6k 8k 10k
step

10−1

100

S
N

R
K

(V
)

Attn.Key, layer=6, shape=(768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−1

100

S
N

R
K

(V
)

Attn.Query, layer=10, shape=(768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−1

100

S
N

R
K

(V
)

Attn.Value, layer=1, shape=(768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−1

100

101

S
N

R
K

(V
)

Attn.Proj, layer=8, shape=(768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−1

100

S
N

R
K

(V
)

MLP.Up, layer=3, shape=(3072, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−1

100

S
N

R
K

(V
)

MLP.Down, layer=4, shape=(768, 3072), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

100

S
N

R
K

(V
)

Attn.LN, layer=12, shape=(768,), η = 3e-04

K

(0,)

0 2k 4k 6k 8k 10k
step

100

S
N

R
K

(V
)

MLP.LN, layer=10, shape=(768,), η = 3e-04

K

(0,)

0 2k 4k 6k 8k 10k
step

100

101

S
N

R
K

(V
)

Final.LN, shape=(768,), η = 3e-04

K

(0,)

0 2k 4k 6k 8k 10k
step

10−3

10−1

101

S
N

R
K

(V
)

Tok.Embd, shape=(50304, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−2

10−1

100

101

S
N

R
K

(V
)

Pos.Embd, shape=(1024, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

Figure 6: SNR trajectories of GPT-small trained on OpenWebText. For each layer type, the layer
number is selected at random.

Appendix D. SNR Analysis Across Diverse Training Regimes

D.1. Language Pre-training

We analyze GPT-style Transformers [21] trained on two language datasets: OpenWebText [9] and
a 10B token subset of FineWeb-Edu [20]. Figure 6 shows SNR trajectories as a function of the
optimization step for selected second-moment blocks of a GPT-small model trained on OpenWebText.
Figure 2 presents the depth dependence of the averaged SNR values of different layer types within
a standard transformer block. The lack of consistency as to which compression dimension K
exhibits higher SNR across different layer types suggests that optimal compression strategies must
be customized for each parameter category rather than applying a uniform approach throughout the
model. Below, we describe these trends in detail and discuss their implications.

13



WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

Token Embedding and Language Modeling Head (LM Head2) second moments show a strong aver-
sion to compressing along the token dimension (vocabulary dimension) while favoring compression
along the embedding dimension. This pattern suggests that the subset of the parameter matrix corre-
sponding to each token in the vocabulary evolves at its own pace during training, thereby requiring its
own learning rate. These findings align with recent studies [29, 30] that advise against compressing
the token embedding and LM Head matrices in language modeling. Our SNR analysis extends this
understanding by revealing that this aversion to compression is specific only to the token dimension.

Figures 6 and 8 show that similar SNR trajectories are observed across different web text datasets.
The layerwise trends shown in Figures 7 and 9 further support this claim. Furthermore, Figure 10
shows that similar SNR trends for a GPT-medium model.

2 4 6 8 10 12
Layer index

0

1

2

3

4

E t
[S

N
R
K

(V
t)

]

Attn.Key, shape = (768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

2

4

6

E t
[S

N
R
K

(V
t)

]

Attn.Query, shape = (768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

1

2

3

4

E t
[S

N
R
K

(V
t)

]

Attn.Value, shape = (768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0.0

2.5

5.0

7.5

10.0

12.5

E t
[S

N
R
K

(V
t)

]

Attn.Proj, shape = (768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

1

2

3

4

5

E t
[S

N
R
K

(V
t)

]

MLP.Up, shape = (3072, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0.0

2.5

5.0

7.5

10.0

12.5

E t
[S

N
R
K

(V
t)

]

MLP.Down, shape = (768, 3072), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0.4

0.6

0.8

1.0

E t
[S

N
R
K

(V
t)

]

Attn.LN, shape = (768,), η = 3e-04

K

(0,)

2 4 6 8 10 12
Layer index

1.0

1.5

2.0

E t
[S

N
R
K

(V
t)

]

MLP.LN, shape = (768,), η = 3e-04

K

(0,)

Figure 7: Layer dependence of averaged SNR values of GPT-small trained on OpenWebText.

D.2. Language Fine-tuning

Next, we examine second-moment compressibility during fine-tuning with Llama-3.2 [25] on the
Alpaca dataset [24]. Figure 11 shows the SNR trends of selected layers, which reveal layer-wise
patterns with subtle distinctions from GPT pre-training.

We find lower SNR values across all layers during fine-tuning, suggesting an aversion to compress-
ibility in general in this experimental setting. This is particularly pronounced in the attention layer,
where key and query second moments exhibit SNR values well below 1.0. While attention value
and projection second moments maintain an SNR value above 1.0 along fanout dimension, these
values are notably smaller than those observed during GPT pre-training. MLP layers display variable
compressibility patterns. The first two MLP layers (MLP.Up and MLP.Gate) show sporadic compress-
ibility (SNR ≳ 1) at certain depths, but without consistently favoring either input or output dimension
compression. In comparison, the output MLP layer (MLP.Down) consistently maintains a high SNR
value (SNR ≳ 1) across depths, favoring compression along the fanout dimension. Attention and
MLP RMSNorms show consistently low SNR values across layers, while the final RMSNorm’s SNR
gradually increases during training, eventually exceeding 1.0. The token embeddings show reduced
SNR values even along the embedding dimension, possibly due to a larger vocabulary relative to the
embedding dimension for the Llama model than the GPT-small model.

2. Unless otherwise mentioned, we use weight tying meaning that the Token Embedding and LM Head share the same
underlying set of parameters and moments.

14



WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

0 2k 4k 6k 8k 10k
step

10−1

100

S
N

R
K

(V
)

Attn.Key, layer=10, shape=(768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−1

100

S
N

R
K

(V
)

Attn.Query, layer=12, shape=(768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−1

100

S
N

R
K

(V
)

Attn.Value, layer=7, shape=(768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−1

100

101

S
N

R
K

(V
)

Attn.Proj, layer=9, shape=(768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−1

100

S
N

R
K

(V
)

MLP.Up, layer=5, shape=(3072, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−1

100

101

S
N

R
K

(V
)

MLP.Down, layer=1, shape=(768, 3072), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−1

100

S
N

R
K

(V
)

Attn.LN, layer=11, shape=(768,), η = 3e-04

K

(0,)

0 2k 4k 6k 8k 10k
step

100

S
N

R
K

(V
)

MLP.LN, layer=10, shape=(768,), η = 3e-04

K

(0,)

0 2k 4k 6k 8k 10k
step

100

101

S
N

R
K

(V
)

Final.LN, shape=(768,), η = 3e-04

K

(0,)

0 2k 4k 6k 8k 10k
step

10−3

10−1

101

S
N

R
K

(V
)

Tok.Embd, shape=(50304, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 2k 4k 6k 8k 10k
step

10−2

10−1

100

101

S
N

R
K

(V
)

Pos.Embd, shape=(1024, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

Figure 8: SNR trajectories of GPT-small trained on 10B subset of FineWeb-Edu. For each layer type,
the layer number is selected at random.

2 4 6 8 10 12
Layer index

0

1

2

3

4

E t
[S

N
R
K

(V
t)

]

Attn.Key, shape = (768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

1

2

3

4

5

E t
[S

N
R
K

(V
t)

]

Attn.Query, shape = (768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

1

2

3

E t
[S

N
R
K

(V
t)

]

Attn.Value, shape = (768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0.0

2.5

5.0

7.5

10.0

12.5

E t
[S

N
R
K

(V
t)

]

Attn.Proj, shape = (768, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

1

2

3

4

5

E t
[S

N
R
K

(V
t)

]

MLP.Up, shape = (3072, 768), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0.0

2.5

5.0

7.5

10.0

E t
[S

N
R
K

(V
t)

]

MLP.Down, shape = (768, 3072), η = 3e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0.4

0.6

0.8

1.0

E t
[S

N
R
K

(V
t)

]

Attn.LN, shape = (768,), η = 3e-04

K

(0,)

2 4 6 8 10 12
Layer index

0.5

1.0

1.5

2.0

2.5

E t
[S

N
R
K

(V
t)

]

MLP.LN, shape = (768,), η = 3e-04

K

(0,)

Figure 9: Layer dependence of averaged SNR values of GPT-small trained on 10B token subset of
FineWeb-Edu.

D.3. ResNet Image Classification

Compared to language pre-training and fine-tuning settings, the second moments of ResNets trained
on CIFAR-100 and CIFAR-10 (Figures 12 and 13) exhibit high SNR values. These SNR values
suggest high second-moment compression feasibility across layers. In particular, the intermediate
convolutional layers show exceptionally high SNR values across both fanin and fanout dimensions,
with an increasing trend as a function of depth. By comparison, the first and last layers behave
differently. The first convolutional layer resists compression along the fanout dimension (shown in
Figure 13), while the final layer exhibits SNR values close to 1.0 that decreases late in training.

15



WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

0 3 6 9 12 15 18 21 24
Layer index

0

1

2

3

4

E t
[S

N
R
K

(V
t)

]
Attn.Key, shape = (1024, 1024), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 3 6 9 12 15 18 21 24
Layer index

0

2

4

6

E t
[S

N
R
K

(V
t)

]

Attn.Query, shape = (1024, 1024), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 3 6 9 12 15 18 21 24
Layer index

0

1

2

3

4

E t
[S

N
R
K

(V
t)

]

Attn.Value, shape = (1024, 1024), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 3 6 9 12 15 18 21 24
Layer index

0

5

10

E t
[S

N
R
K

(V
t)

]

Attn.Proj, shape = (1024, 1024), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 3 6 9 12 15 18 21 24
Layer index

0

2

4

6

E t
[S

N
R
K

(V
t)

]

MLP.Up, shape = (4096, 1024), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 3 6 9 12 15 18 21 24
Layer index

0

5

10

15

E t
[S

N
R
K

(V
t)

]

MLP.Down, shape = (1024, 4096), η = 3e-04

K

(0,)

(1,)

(0, 1)

0 3 6 9 12 15 18 21 24
Layer index

0.2

0.4

0.6

0.8

1.0

E t
[S

N
R
K

(V
t)

]

Attn.LN, shape = (1024,), η = 3e-04

K

(0,)

0 3 6 9 12 15 18 21 24
Layer index

1

2

3

E t
[S

N
R
K

(V
t)

]

MLP.LN, shape = (1024,), η = 3e-04

K

(0,)

Figure 10: Layer dependence of average SNR values of the GPT-medium trained on FineWeb-Edu.

2 4 6 8 10 12 14 16
Layer index

0.0

0.2

0.4

0.6

0.8

1.0

E t
[S

N
R
K

(V
t)

]

Attn.Key, shape = (512, 2048), η = 3e-05

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12 14 16
Layer index

0.0

0.2

0.4

0.6

0.8

1.0

E t
[S

N
R
K

(V
t)

]

Attn.Query, shape = (2048, 2048), η = 3e-05

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12 14 16
Layer index

0

2

4

6

E t
[S

N
R
K

(V
t)

]

Attn.Value, shape = (512, 2048), η = 3e-05

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12 14 16
Layer index

0

5

10

15

E t
[S

N
R
K

(V
t)

]

Attn.Proj, shape = (2048, 2048), η = 3e-05

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12 14 16
Layer index

0.0

0.5

1.0

1.5

2.0

E t
[S

N
R
K

(V
t)

]

MLP.Up, shape = (8192, 2048), η = 3e-05

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12 14 16
Layer index

0

5

10

15

20

25

E t
[S

N
R
K

(V
t)

]

MLP.Down, shape = (2048, 8192), η = 3e-05

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12 14 16
Layer index

0.0

0.5

1.0

1.5

2.0
E t

[S
N

R
K

(V
t)

]

MLP.Gate, shape = (8192, 2048), η = 3e-05

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12 14 16
Layer index

0.0

0.2

0.4

0.6

0.8

1.0

E t
[S

N
R
K

(V
t)

]

Attn.norm, shape = (2048,), η = 3e-05

K

(0,)

2 4 6 8 10 12 14 16
Layer index

0.0

0.2

0.4

0.6

0.8

1.0

E t
[S

N
R
K

(V
t)

]

MLP.norm, shape = (2048,), η = 3e-05

K

(0,)

0 1k 2k 3k
step

10−4

10−2

100

S
N

R
K

(V
)

Tok.Embd, shape=(128256, 2048), η = 3e-05

K

(0,)

(1,)

(0, 1)

0 1k 2k 3k
step

10−1

100

S
N

R
K

(V
)

Final.norm, shape=(2048,), η = 3e-05

K

(0,)

Figure 11: SNR analysis of pre-trained Llama 3.2 1B fine-tuned on Alpaca dataset.

0 5k 10k 15k 20k
step

100

101

102

103

S
N

R
K

(V
)

Conv.first, shape=(64, 3, 3, 3), η = 1e-03

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12 14 16
Layer index

2

4

6

8

10

12

E t
[S

N
R
K

(V
t)

]

Conv, shape = (64, 64, 3, 3), η = 1e-03

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12 14 16
Layer index

2

4

6

E t
[S

N
R
K

(V
t)

]

BN.weight, shape = (64,), η = 1e-03

K

(0,)

0 5k 10k 15k 20k
step

100

101

S
N

R
K

(V
)

FC.weight, shape=(10, 512), η = 1e-03

K

(0,)

(1,)

(0, 1)

Figure 12: SNR trends of different layers of ResNet-18 trained on CIFAR-10.

D.4. ViT Image Classification

Next, we analyze Vision Transformers (ViTs)[4], with GPT-style Transformer adapted for image
classification. Figure 15 shows that ViTs trained on CIFAR-100 exhibit SNR trends combining
characteristics from both ResNet and GPT pre-training. The attention moments maintain GPT-like

16



WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

0 5k 10k 15k 20k
step

10−1

100

101

102

103

S
N

R
K

(V
)

Conv.first, shape=(64, 3, 3, 3), η = 1e-03

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12 14 16
Layer index

2

4

6

8

10

12

E t
[S

N
R
K

(V
t)

]

Conv, shape = (64, 64, 3, 3), η = 1e-03

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12 14 16
Layer index

0

5

10

15

20

25

E t
[S

N
R
K

(V
t)

]

BN.weight, shape = (64,), η = 1e-03

K

(0,)

0 5k 10k 15k 20k
step

100

101

S
N

R
K

(V
)

FC.weight, shape=(100, 512), η = 1e-03

K

(0,)

(1,)

(0, 1)

Figure 13: SNR trends of different layers of ResNet-18 trained on CIFAR-100.

SNR trends but with higher SNR values. The keys and query second moments favor fanin com-
pression, while values and projections prefer fanout dimension. These attention components exhibit
higher SNR values than GPT pre-training, with the averaged SNR increasing with depth for most
layers. Unlike GPT pre-training, the first MLP layer (MLP.Up) favors fanin compression instead
of fanout. This suggests that this layer type’s compression behavior is training regime-dependent.
By comparison, the second layer (MLP.Down) maintains GPT-like fanout preference and exhibits
high SNR values along both dimensions. Similar to ResNet’s first convolution layer, ViT’s patch
embedding layer favors fanin compression. Meanwhile, the classification layer maintains SNR values
close to 1.0 without consistent preference toward a particular compression dimension. Notably, all
LayerNorm components display surprisingly high SNR values, suggesting high compressibility.

2 4 6 8 10 12
Layer index

0.5

1.0

1.5

2.0

E t
[S

N
R
K

(V
t)

]

Attn.Key, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

1

2

3

E t
[S

N
R
K

(V
t)

]

Attn.Query, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0.5

1.0

1.5

2.0

2.5

3.0

E t
[S

N
R
K

(V
t)

]

Attn.Value, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

10

20

30

E t
[S

N
R
K

(V
t)

]

Attn.Proj, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

1

2

3

E t
[S

N
R
K

(V
t)

]

MLP.Up, shape = (3072, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

5

10

15

20

25

E t
[S

N
R
K

(V
t)

]

MLP.Down, shape = (768, 3072), η = 1e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

1.0

1.2

1.4

1.6

1.8

2.0

E t
[S

N
R
K

(V
t)

]

Attn.LN, shape = (768,), η = 1e-04

K

(0,)

2 4 6 8 10 12
Layer index

1.0

1.5

2.0

2.5

3.0

E t
[S

N
R
K

(V
t)

]

MLP.LN, shape = (768,), η = 1e-04

K

(0,)

0 5k 10k 15k 20k
step

101

103

105

S
N

R
K

(V
)

Patch.Embd, shape=(768, 3, 2, 2), η = 1e-04

K

(0,)

(1,)

(0, 1)

0 5k 10k 15k 20k
step

10−2

10−1

100

S
N

R
K

(V
)

Pos.Embd, shape=(1, 257, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

0 5k 10k 15k 20k
step

100

S
N

R
K

(V
)

Final.LN, shape=(768,), η = 1e-04

K

(0,)

0 5k 10k 15k 20k
step

100

101

S
N

R
K

(V
)

LM.Head, shape=(10, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

Figure 14: SNR trends of different layers of ViT-small trained on CIFAR-10.

Next, we examine the SNR trends of ResNets and ViTs trained on image classification tasks. As
shown in Figures 12 and 13, ResNets trained on both CIFAR-10 and CIFAR-100 exhibit consistently
high SNR values, suggesting compressibility. Most layers maintain high SNR values throughout
training, with notable exceptions at the network boundaries. The first convolutional layer averses
compressibility along the fanout dimension, while the final layer exhibits declining SNR values during
later training stages when both dimensions are compressed. Unlike LayerNorm in Transformers,
BatchNorm layers demonstrate SNR values around 1.0 throughout training.

17



WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

2 4 6 8 10 12
Layer index

0

2

4

6

E t
[S

N
R
K

(V
t)

]

Attn.Key, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

10

20

30

E t
[S

N
R
K

(V
t)

]

Attn.Query, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

2

4

6

8

10

E t
[S

N
R
K

(V
t)

]

Attn.Value, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

20

40

60

80

E t
[S

N
R
K

(V
t)

]

Attn.Proj, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

5

10

15

E t
[S

N
R
K

(V
t)

]

MLP.Up, shape = (3072, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

0

10

20

30

40

50
E t

[S
N

R
K

(V
t)

]
MLP.Down, shape = (768, 3072), η = 1e-04

K

(0,)

(1,)

(0, 1)

2 4 6 8 10 12
Layer index

2

4

6

8

E t
[S

N
R
K

(V
t)

]

Attn.LN, shape = (768,), η = 1e-04

K

(0,)

2 4 6 8 10 12
Layer index

5

10

15

E t
[S

N
R
K

(V
t)

]

MLP.LN, shape = (768,), η = 1e-04

K

(0,)

0 5k 10k 15k 20k
step

100

101

102

103

104

S
N

R
K

(V
)

Patch.Embd, shape=(768, 3, 2, 2), η = 1e-04

K

(0,)

(1,)

(0, 1)

0 5k 10k 15k 20k
step

10−2

10−1

100

S
N

R
K

(V
)

Pos.Embd, shape=(1, 257, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

0 5k 10k 15k 20k
step

100

101

S
N

R
K

(V
)

Final.LN, shape=(768,), η = 1e-04

K

(0,)

0 5k 10k 15k 20k
step

100

101

S
N

R
K

(V
)

LM.Head, shape=(100, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

Figure 15: SNR trends of different layers of ViT-small trained on CIFAR-100.

1 2 3 4 5 6
Layer index

0.0

0.5

1.0

1.5

2.0

2.5

E t
[S

N
R
K

(V
t)

]

Attn.Key, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

1 2 3 4 5 6
Layer index

0

10

20

30

E t
[S

N
R
K

(V
t)

]

Attn.Query, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

1 2 3 4 5 6
Layer index

2

4

6

8

10

E t
[S

N
R
K

(V
t)

]

Attn.Value, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

1 2 3 4 5 6
Layer index

0

20

40

60

80

E t
[S

N
R
K

(V
t)

]

Attn.Proj, shape = (768, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

1 2 3 4 5 6
Layer index

0

5

10

15

E t
[S

N
R
K

(V
t)

]

MLP.Up, shape = (3072, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

1 2 3 4 5 6
Layer index

0

10

20

30

40

50

E t
[S

N
R
K

(V
t)

]

MLP.Down, shape = (768, 3072), η = 1e-04

K

(0,)

(1,)

(0, 1)

1 2 3 4 5 6
Layer index

1.00

1.25

1.50

1.75

2.00

E t
[S

N
R
K

(V
t)

]

Attn.LN, shape = (768,), η = 1e-04

K

(0,)

1 2 3 4 5 6
Layer index

5

10

15

20

E t
[S

N
R
K

(V
t)

]

MLP.LN, shape = (768,), η = 1e-04

K

(0,)

0 5k 10k 15k 20k
step

100

101

102

103

104

S
N

R
K

(V
)

Patch.Embd, shape=(768, 3, 2, 2), η = 1e-04

K

(0,)

(1,)

(0, 1)

0 5k 10k 15k 20k
step

10−2

10−1

100

S
N

R
K

(V
)

Pos.Embd, shape=(1, 257, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

0 5k 10k 15k 20k
step

100

101

S
N

R
K

(V
)

Final.LN, shape=(768,), η = 1e-04

K

(0,)

0 5k 10k 15k 20k
step

100

101

S
N

R
K

(V
)

LM.Head, shape=(100, 768), η = 1e-04

K

(0,)

(1,)

(0, 1)

Figure 16: SNR trends of different layers of ViT-mini trained on CIFAR-100.

18



WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

Appendix E. Effect of Large Learning Rates on Compressibility

10−4 10−3 10−2 10−1

Learning Rate

1

2

3

E t
[S

N
R
K
∗ (
V
t)

]

GPT-small OpenWebText Attn.Key

10−4 10−3 10−2 10−1

Learning Rate

1

2

3

E t
[S

N
R
K
∗ (
V
t)

]

GPT-small OpenWebText Attn.Query

10−4 10−3 10−2 10−1

Learning Rate

1.0

1.5

2.0

2.5

3.0

E t
[S

N
R
K
∗ (
V
t)

]

GPT-small OpenWebText Attn.Value

10−4 10−3 10−2 10−1

Learning Rate

2

4

6

8

10

E t
[S

N
R
K
∗ (
V
t)

]

GPT-small OpenWebText Attn.Proj

10−4 10−3 10−2 10−1

Learning Rate

1

2

3

4

E t
[S

N
R
K
∗ (
V
t)

]

GPT-small OpenWebText MLP.Up

10−4 10−3 10−2 10−1

Learning Rate

0

2

4

6

8

10

E t
[S

N
R
K
∗ (
V
t)

]

GPT-small OpenWebText MLP.Down

10−4 10−3 10−2 10−1

Learning Rate

0.0

0.5

1.0

1.5

2.0

E t
[S

N
R
K
∗ (
V
t)

]

GPT-small OpenWebText MLP.LN

10−4 10−3 10−2 10−1

Learning Rate

0.00

0.25

0.50

0.75

1.00

1.25

E t
[S

N
R
K
∗ (
V
t)

]

GPT-small OpenWebText Attn.LN

10−4 10−3 10−2 10−1

Learning Rate

0

2

4

6

E t
[S

N
R
K
∗ (
V
t)

]

GPT-small OpenWebText Tok.Embd

10−4 10−3 10−2 10−1

Learning Rate

0.0

2.5

5.0

7.5

10.0

12.5
E t

[S
N

R
K
∗ (
V
t)

]
GPT-small OpenWebText Pos.Embd

10−4 10−3 10−2 10−1

Learning Rate

0

5

10

15

E t
[S

N
R
K
∗ (
V
t)

]

GPT-small OpenWebText Final.LN

Figure 17: The effect of learning rate on the averaged SNR values of different layers of a GPT-small
model trained on the OpenWebText dataset. For each layer, we have selected the dimension K∗ with
the highest SNR. The shaded region around the mean trend shows the variation across depth. The
vertical dashed line at 3e-03 denotes the optimal learning rate.

This section provides supporting results for Section 4 on the effect of learning rates on averaged SNR
values Et[SNRK(Vt)]. For each layer, we analyze the effect of the learning rate on the dimension
K∗ with the highest SNR. Figure 17 shows that the averaged SNR values consistently decrease with
the learning rate. This decline suggests that higher learning rates cause training to explore regions
of parameter space where gradients contain more outliers, thereby reducing compression feasibility
across all layers. Based on the effect of increasing the learning rate on SNR values, we classify layer
types into two categories:

1. Layers that exhibit low SNR values (≲ 1) at the optimal learning rate: Token Embedding/LM
Head, LayerNorm, attention keys, queries and MLp.Up.

2. Layers that exhibit high SNR values (≳ 1) even at the optimal learning rate: Attention values,
projections and MLP.Down.

19



WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

Appendix F. Effect of Initialization on Compressibility

10−4 10−3 10−2

Learning Rate

1

2

3

E t
[S

N
R
K

(V
t)

]

GPT-small FineWeb-Edu Attn.Key

init

Mitchell

PyTorch

10−4 10−3 10−2

Learning Rate

1

2

3

E t
[S

N
R
K

(V
t)

]

GPT-small FineWeb-Edu Attn.Query

init

Mitchell

PyTorch

10−4 10−3 10−2

Learning Rate

0.5

1.0

1.5

2.0

2.5

3.0

E t
[S

N
R
K

(V
t)

]

GPT-small FineWeb-Edu Attn.Value

init

Mitchell

PyTorch

10−4 10−3 10−2

Learning Rate

2

4

6

8

10

E t
[S

N
R
K

(V
t)

]

GPT-small FineWeb-Edu Attn.Proj

init

Mitchell

PyTorch

10−4 10−3 10−2

Learning Rate

0

1

2

3

4

E t
[S

N
R
K

(V
t)

]

GPT-small FineWeb-Edu MLP.Up

init

Mitchell

PyTorch

10−4 10−3 10−2

Learning Rate

0

2

4

6

8
E t

[S
N

R
K

(V
t)

]

GPT-small FineWeb-Edu MLP.Down

init

Mitchell

PyTorch

10−4 10−3 10−2

Learning Rate

0.0

0.5

1.0

1.5

E t
[S

N
R
K

(V
t)

]

GPT-small FineWeb-Edu Attn.LN

init

Mitchell

PyTorch

10−4 10−3 10−2

Learning Rate

0.0

0.5

1.0

1.5

2.0

2.5

E t
[S

N
R
K

(V
t)

]

GPT-small FineWeb-Edu MLP.LN

init

Mitchell

PyTorch

10−4 10−3 10−2

Learning Rate

0

2

4

6

E t
[S

N
R
K

(V
t)

]

GPT-small FineWeb-Edu Tok.Embd

init

Mitchell

PyTorch

10−4 10−3 10−2

Learning Rate

0.0

2.5

5.0

7.5

10.0

12.5
E t

[S
N

R
K

(V
t)

]

GPT-small FineWeb-Edu Pos.Embd

init

Mitchell

PyTorch

10−4 10−3 10−2

Learning Rate

0.0

2.5

5.0

7.5

10.0

12.5

E t
[S

N
R
K

(V
t)

]

GPT-small FineWeb-Edu Final.LN

init

Mitchell

PyTorch

Figure 18: The effect of initialization on the averaged SNR values of different layers of a GPT-small
model trained on the OpenWebText dataset. For each layer, we have selected the dimension K∗ with
the highest SNR. The shaded region around the mean trend shows the variation across depth. The
vertical dashed line at 3e-03 denotes the optimal learning rate for Mitchel initialization.

This section provides supporting results for Section 4 on the effect of initialization on averaged
SNR values Et[SNRK(Vt)]. We analyze how different initialization schemes affect SNR trends by
comparing PyTorch’s default initialization with the commonly used Mitchell initialization used in
GPT models (recall that Mitchell initialization scales down the variance by 1/depth in layers that add
to the residual stream, such as Attn.Proj and MLP.Down). For simplicity, we select the dimension
K∗ with the highest SNR for each layer.

Figure 18 shows that PyTorch’s default initialization exhibits substantially lower SNR values across
layers, especially the layers that add to the residual stream (Attn.Proj and MLP.Down) exhibit
substantially lower SNR values. These results suggest that the compression feasibility depends
on initialization choices and architectural details, suggesting that a single compression strategy is
unlikely to work universally.

20



WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

Appendix G. Incompressibility under Heavy-Tailed Distributions

0 10k 20k 30k 40k 50k
step

100

101

S
N

R
K

(V
)

Tok.Embd, K = (0, ), η =3e-03

nvocab

1024

2048

4096

8192

16384

32768

49152

65536

0 10k 20k 30k 40k 50k
step

10−3

10−2

10−1

100

S
N

R
K

(V
)

Tok.Embd, K = (1, ), η =3e-03

nvocab

1024

2048

4096

8192

16384

32768

49152

65536

0 10k 20k 30k 40k 50k
step

10−4

10−3

10−2

10−1

100

S
N

R
K

(V
)

Tok.Embd, K = (0, 1), η =3e-03

nvocab

1024

2048

4096

8192

16384

32768

49152

65536

0 10k 20k 30k 40k 50k
step

10−3

10−2

10−1

100

S
N

R
K

(V
)

LM.Head, K = (0, ), η =3e-03

nvocab

1024

2048

4096

8192

16384

32768

49152

65536

0 10k 20k 30k 40k 50k
step

100

S
N

R
K

(V
)

LM.Head, K = (1, ), η =3e-03

nvocab

1024

2048

4096

8192

16384

32768

49152

65536

0 10k 20k 30k 40k 50k
step

10−4

10−3

10−2

10−1

100

S
N

R
K

(V
)

LM.Head, K = (0, 1), η =3e-03

nvocab

1024

2048

4096

8192

16384

32768

49152

65536

Figure 19: SNR trajectories of the token embedding and linear head of the simplified two-layer
model with varying vocabulary sizes.

In Section 3, we observed that language models strongly averse compression along the token
dimension in the first and last layers. This resistance suggests that individual tokens require their own
learning rates, as their gradients evolve at different paces. To better understand this phenomenon, we
investigate how token frequency distribution influences compressibility.

We examine a simplified two-layer model, solely consisting of a token embedding matrix and a linear
head. We train the model on the WikiText-103 dataset [17], tokenized using BPE tokenizer [7] with
varying vocabulary sizes. By progressively reducing the vocabulary size, we systematically remove
rare tokens to control the tail of the token distribution. Figure 19 shows that SNR values along the
token dimension and linear head of both layers decrease substantially as vocabulary size increases,
suggesting lower compressibility.

We then analyze how large vocabulary sizes affect performance by training the model using
Adam with shared second moments (Equation (1)) along dimensions (Kembd,Khead). Figure 20
shows the loss gap between the above optimizer and standard Adam, defined as ∆LAdam =
L(Kembd,Khead) − LAdam. For large vocabularies, compression is only effective along embedding
dimensions, while token-dimension compression degrades performance. In contrast, small vocabular-
ies permit compression along both dimensions. These findings extend the work of Ref. [14], which
showed that Adam outperforms SGD on language tasks by making faster progress on rare tokens.
Our analysis suggests that the apparent advantage of Adam in language modeling might stem in large
part from allowing individual second moments to each token in the vocabulary.

For both layers, the SNR values along the token dimension (K = 0 for Tok.Embd and K = 1 for
LM.Head) decrease as the vocabulary size is increased. This suggests that at large vocabulary sizes,
each token evolves at its own pace and this requires its own effective learning rate.

21



WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

210 211 212 213 214 215 216

nvocab

0.00

0.02

0.04

0.06

∆
L

A
d

am

Two Layer Linear Model, WikiText-103

Kembd, Khead

(), ()

(0, 1), (0, 1)

(0, ), (0, )

(0, ), (1, )

(1, ), (0, )

(1, ), (1, )

Figure 20: Test loss gap ∆LAdam = L(Kembd,Khead) − LAdam of the linear model trained with Adam
with shared second moments across dimensions (Kembd,Khead).

Appendix H. The SlimAdam Optimizer

H.1. SlimAdam Algorithm

This section describes the SlimAdam algorithm in detail. SlimAdam implementation consists of three
steps. The code is available at https://github.com/ml-conf-authors/low-memory-adam.

Step 1: Collect SNR statistics using a small proxy model

First, we collect layer-wise SNR statistics using a small proxy model with a 10× smaller learning
rate than optimal. In theory, we would perform the SNR analysis at the optimal learning rate to
determine compression rules, but this approach only saves around 30% of seconds moments with a
cutoff of 1.0 for Transformer models. Instead, we chose a 10× smaller learning rate, which predicts
saving around 98% of second moments for a large range of cutoffs.

Algorithm 1: Collect SNR statistics using a small proxy model
Input: Small model, dataset, optimization hyperparameters (10× smaller learning rate)
Train for TSNR steps foreach layer l in model do

foreach compression dimension K ∈ {(0, ), (1, ), (0, 1)} do
Compute and record SNRK(V

(l)
t ) according to Equation (2)

end
end

Step 2: Extract Compression Rules from SNR Statistics

Next, we identify the compression dimension K∗ for each layer type with the highest SNR:

K∗ = argmax
K

Eτ [SNRK(V (l))]. (2)

If SNR 1
depth

∑depth
l=1 Eτ [SNRKmax(V

(l))] exceeds the cutoff, we set the compression dimension K(l)

to Kmax. Otherwise, no compression is performed. This results in consistent compression rules that
generalize across depth and width and can be reused.

Step 3: SlimAdam Optimizer

Finally, we train the target model using Adam with shared second moments (Equation (1)) along these
compression dimensions K∗. Given either (1) SNR derived compression rules or (2) pre-computed
rules from Table 1, SlimAdam applies these rules during training using Equation Equation (1). If
K(l) = ∅, SlimAdam does not compress second moments, and the optimization is identical to Adam.

22

https://github.com/ml-conf-authors/low-memory-adam


WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

Algorithm 2: Compression Rule Extraction from SNR Statistics
Data: layer-wise SNR statistics and SNR cutoff
foreach layer l in model do

K(l) ← ∅ if dim(V (l)) > 1 then
Kmax = argmaxK Eτ [SNRK(V

(l)
τ )] if 1

depth

∑depth
l=1 Eτ [SNRKmax(V

(l))] > cutoff then
K(l) ← Kmax

end
end

end
return K∗ for all layers

For new training configurations, we suggest deriving compression rules using the SNR statistics of a
smaller model. For known training setups, such as GPT pre-training, Table 1 rules can be used out of
the box.

Algorithm 3: SlimAdam
Data: Learning rate η, moment decay rates β1, β2, layer-wise compression rules K(l)

for each training step t do
Gt := ∇WL(θt) for each layer l do

M
(l)
t+1 = β1M

(l)
t + (1− β1)G

(l)
t if K(l) ̸= ∅ then

V
(l)
t+1 = β2V

(l)
t + (1− β2)EK(l) [(G

(l)
t )2]

else
V

(l)
t+1 = β2V

(l)
t + (1− β2)(G

(l)
t )2

end

M̂
(l)
t+1 ←

M
(l)
t+1

1−βt
1

V̂
(l)
t+1 ←

V
(l)
t+1√
1−βt

2

W
(l)
t+1 = W

(l)
t − ηt

M̂
(l)
t+1√

V̂
(l)
t+1+ϵ

end
end

H.2. Effect of SNR cutoff and Proxy Model Learning Rate on SlimAdam Performance

0.2 0.4 0.6 0.8 1.0 1.2 1.4
SNR cutoff

0.0001

0.0003

0.0006

0.001

0.003

0.006

0.01

S
N

R
L

ea
rn

in
g

R
at

e

0.999 0.999 0.999 0.999 0.994 0.989 0.980

0.999 0.999 0.999 0.980 0.980 0.975 0.966

0.999 0.999 0.966 0.932 0.890 0.871 0.857

0.999 0.975 0.932 0.880 0.819 0.504 0.485

0.994 0.942 0.594 0.442 0.309 0.272 0.248

0.956 0.523 0.404 0.314 0.253 0.219 0.175

0.651 0.485 0.338 0.291 0.238 0.208 0.166

SNR predicted savings

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1.0 1.2 1.4
SNR cutoff

0.
00

01
0.

00
03

0.
00

1
0.

00
3

0.
01

S
N

R
L

ea
rn

in
g

R
at

e

2.937 2.938 2.937 2.937 2.936 2.937 2.937

2.936 2.938 2.940 2.937 2.938 2.938 2.936

2.937 2.937 2.938 2.936 2.936 2.938 2.938

2.938 2.937 2.939 2.938 2.939 2.937 2.937

2.940 2.939 2.939 2.938 2.939 2.939 2.937

Validation Loss at LR = 0.003

2.936

2.937

2.938

2.939

2.940

0.2 0.4 0.6 0.8 1.0 1.2 1.4
SNR cutoff

0.
00

01
0.

00
03

0.
00

1
0.

00
3

0.
01

S
N

R
L

ea
rn

in
g

R
at

e

3.052 3.069 3.094 3.074 3.092 3.082 3.065

3.051 3.072 3.072 3.053 3.074 3.059 3.058

3.063 3.050 3.086 3.073 3.047 3.063 3.053

3.050 3.047 3.064 3.043 3.024 3.032 3.022

3.069 3.042 3.045 3.035 3.040 3.039 3.034

Validation Loss at LR = 0.03

3.04

3.06

3.08

Figure 21: Effect of SNR cutoff and proxy model learning rate on SlimAdam performance: (left)
SNR predicted memory savings, (middle, right) validation loss as a function of SNR learning rate
and cutoff for optimal learning rate and a large learning rate.

23



WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

Figure 21 shows the effect of SNR cutoff and proxy model learning rate (SNR learning rate) on
SlimAdam performance for GPT-small pre-trained on FineWeb-Edu.

H.3. Additional Results for SlimAdam

This section provides additional results for Section 5. Figure 22 compares SNR predicted savings
and performance of SlimAdam with other baselines on additional tasks. Figures 23 and 24 shows the
training loss and downstream performance (HellaSwag and TruthfulQA) of Llama-3.2 1B and Llama
3.2 3B fine-tuned on the Alpaca dataset.

10−4 10−3 10−2 10−1

Learning Rate

0.0

0.2

0.4

0.6

0.8

1.0

S
N

R
-p

re
di

ct
ed

sa
vi

ng
s

GPT-small OpenWebText

cutoff

0.2

0.6

1.0

1.4

10−4 10−3 10−2 10−1

Learning Rate

0.0

0.2

0.4

0.6

0.8

1.0

S
N

R
-p

re
di

ct
ed

sa
vi

ng
s

GPT-medium FineWeb-Edu

cutoff

0.2

0.6

1.0

1.4

10−5 10−4 10−3 10−2 10−1

Learning Rate

0.90

0.92

0.94

0.96

0.98

1.00

S
N

R
-p

re
di

ct
ed

sa
vi

ng
s

Resnet18 CIFAR-100

cutoff

0.2

0.6

1.0

1.4

10−5 10−4 10−3

Learning Rate

0.5

0.6

0.7

0.8

0.9

1.0

S
N

R
-p

re
di

ct
ed

sa
vi

ng
s

ViT-small CIFAR-100

cutoff

0.2

0.6

1.0

1.4

10−4 10−3 10−2 10−1

Learning rate

3.0

3.2

3.4

3.6

T
es

t
lo

ss

GPT-small OpenWebText

Adam

Adalayer+LN+TL

SlimAdam

Adam-mini v1

Adam-mini v2

10−4 10−3 10−2 10−1

Learning rate

2.7

2.8

2.9

3.0

3.1

3.2

3.3

T
es

t
lo

ss

GPT-medium FineWeb-Edu

Adam

Adalayer+LN+TL

SlimAdam

Adam-mini v1

Adam-mini v2

10−5 10−4 10−3 10−2 10−1 100

Learning rate

20

40

60

T
es

t
ac

cu
ra

cy

Resnet18 CIFAR-100

Adam

Adalayer

SlimAdam

10−5 10−4 10−3

Learning rate

10

20

30

40

50

T
es

t
ac

cu
ra

cy

ViT-small CIFAR-100

Adam

Adalayer+LN+TL

SlimAdam

Figure 22: (Top) Fraction of second moments saved (relative to Adam) as a function of learning
rate and SNR cutoff across training configuration, as suggested by the SNR analysis. (Bottom)
Performance comparison across learning rates between SlimAdam and baselines.

10−6 10−5 10−4 10−3

Learning rate

1.0

1.5

2.0

2.5

T
ra

in
in

g
L

os
s

Llama-3.2-1B, Alpaca

Adalayer+LN+TL

Adam

SlimAdam

10−6 10−5 10−4 10−3

Learning rate

0.400

0.425

0.450

0.475

0.500

E
va

l
A

cc
ur

ac
y

Llama-3.2-1B, Alpaca, truthfulqa mc2

Adam

Adalayer+LN+TL

SlimAdam

10−6 10−5 10−4 10−3

Learning rate

0.25

0.30

0.35

0.40

0.45

0.50

E
va

l
A

cc
ur

ac
y

Llama-3.2-1B, Alpaca, hellaswag

Adam

Adalayer+LN+TL

SlimAdam

Figure 23: Training loss and Downstream performance of Llama-3.2 1B finetuned on the Alpaca
dataset.

10−6 10−5 10−4 10−3

Learning rate

1

2

3

4

T
ra

in
in

g
L

os
s

Llama-3.2-3B, Alpaca

Adalayer+LN+TL

Adam

SlimAdam

10−6 10−5 10−4 10−3

Learning rate

0.42

0.44

0.46

0.48

0.50

E
va

l
A

cc
ur

ac
y

Llama-3.2-3B, Alpaca, truthfulqa mc2

Adam

Adalayer+LN+TL

SlimAdam

10−6 10−5 10−4 10−3

Learning rate

0.3

0.4

0.5

E
va

l
A

cc
ur

ac
y

Llama-3.2-3B, Alpaca, hellaswag

Adam

Adalayer+LN+TL

SlimAdam

Figure 24: Training loss and Downstream performance of Llama-3.2 3B finetuned on the Alpaca
dataset.

24



WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

10−4 10−3 10−2 10−1

Learning rate

3.0

3.2

3.4

3.6

T
es

t
lo

ss

GPT-small FineWeb-Edu

Adam

SlimAdam

SlimAdam-mean

Figure 25: SlimAdam with compression rules derived from depth-averaged SNR per layer type
(SlimAdam-mean) achieves identical performance to SlimAdam with per-layer compression rules.

Appendix I. Robustness of SlimAdam Compression Rules

This section analyzes the robustness of SlimAdam rules across datasets and model sizes. These
variations disappear when using the depth-averaged SNR.

I.1. Dataset Dependency of SlimAdam Rules

This section analyzes how SlimAdam’s compression rules vary across different datasets. We compare
rules derived from OpenWebText against FineWeb-Edu using GPT-small. The compression rules
remain largely consistent, with differences in only five matrices, primarily in early MLP layers, as
summarized in Table 2.

Table 2: Compression rule differences between datasets for GPT-small.

Layer OpenWebText FineWeb-Edu

Attention
Attn Query (L3) None fan-out

MLP
MLP Up (L0) fan-out None
MLP Up (L1) None fan-out
MLP Proj (L1) fan-out fan-in
MLP Proj (L2) fan-in fan-out

I.2. Width Dependency of SlimAdam Rules

This section analyzes the robustness of SlimAdam’s compression rules across model widths (dmodel).
We compare the SNR-derived compression rules for GPT-small with embedding dimension dmodel =
768 against a narrower model (dmodel = 256. Out of all layer matrices, we observe differences in
compression rules for only 12 matrices, primarily in early to middle layers, as shown in Table 3.

The variations observed in Tables 2 and 3 can be eliminated by deriving compression rules using
depth-averaged SNR for each layer type. Figure 25 shows that compression rules derived from
depth-averaged SNR result in identical performance to SlimAdam with per-layer compression rules.

25



WHEN CAN YOU GET AWAY WITH LOW MEMORY ADAM?

Table 3: SlimAdam compression rule differences between narrow (width 256) and wide (width 768)
models.

Layer dmodel = 256 dmodel = 768

Attention Components
Attention Value (L0) fan-in fan-out
Attention Key (L2) fan-out fan-in
Attention Query (L2) fan-in fan-out
Attention Query (L3) fan-in None

MLP Components
MLP Up (L0) fan-in fan-out
MLP Up (L1) fan-out None
MLP Proj (L2) fan-out fan-in
MLP Up (L3) fan-in fan-out
MLP Up (L4) fan-in fan-out
MLP Proj (L4) fan-in fan-out
MLP Proj (L5) fan-in fan-out
MLP Up (L6) fan-in fan-out

26


	Introduction
	Notations and Preliminaries
	SNR Analysis of Adam's Second Moments
	Factors Influencing Compressibility
	DIY: Build Your Own Low-Memory Adam
	Discussion
	Related Works
	Experimental Details
	Language Pre-training
	Linear Model trained on WikiText
	Language Fine-tuning
	Image Classification
	Estimated Computational Resources

	SNR Analysis for Gaussian Gradients
	SNR Analysis Across Diverse Training Regimes
	Language Pre-training
	Language Fine-tuning
	ResNet Image Classification
	ViT Image Classification

	Effect of Large Learning Rates on Compressibility
	Effect of Initialization on Compressibility
	Incompressibility under Heavy-Tailed Distributions
	The SlimAdam Optimizer
	SlimAdam Algorithm
	Effect of SNR cutoff and Proxy Model Learning Rate on SlimAdam Performance
	Additional Results for SlimAdam

	Robustness of SlimAdam Compression Rules
	Dataset Dependency of SlimAdam Rules
	Width Dependency of SlimAdam Rules


