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Abstract
Semiconductors, crucial to modern electronics,
are generally under-researched in foundational
models. It highlights the need for research to en-
hance the semiconductor device technology port-
folio and aid in high-end device fabrication. In
this paper, we introduce sLAVA, a small-scale
vision-language assistant tailored for semicon-
ductor manufacturing, with a focus on electron
microscopy image analysis. It addresses chal-
lenges of data scarcity and acquiring high-quality,
expert-annotated data. We employ a teacher-
student paradigm, using a foundational vision-
language model like GPT-4 as a teacher to cre-
ate instruction-following multimodal data for cus-
tomizing the student model, sLAVA, for electron
microscopic image analysis tasks on consumer
hardware with limited budgets. Our approach al-
lows enterprises to further fine-tune the proposed
framework with their proprietary data securely
within their own infrastructure, protecting intel-
lectual property. Rigorous experiments validate
that our framework surpasses traditional methods,
handles data shifts, and enables high-throughput
screening.

1. Introduction
The semiconductor multi-step fabrication process is highly
complex and involves specialized firms. Fabless chip de-
signers like Apple, Qualcomm, and NVIDIA create com-
plex integrated circuit designs but outsource manufactur-
ing to foundries like TSMC and Samsung. Foundries use
expensive, high-tech fabrication techniques, including pho-
tolithography and chemical vapor deposition, to produce
intricate integrated circuits (ICs) on silicon wafers. The
chips then undergo rigorous quality assurance, followed by
packaging and assembly into devices such as microproces-
sors and memory chips. These semiconductor devices are
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then integrated into various electronic systems, such as con-
sumer electronics and automotive technologies. Sub-7nm
technology marks a significant leap in chip miniaturiza-
tion, enabling the creation of smaller, more powerful, and
efficient devices. However, the industry faces challenges
in achieving this miniaturization, such as strictly adhering
to the design specifications and tolerances to consistently
produce reliable, high-performance sub-7nm chips with min-
imal variation and high precision. Overcoming these chal-
lenges requires thorough testing using sophisticated imaging
techniques and analysis to achieve high-quality, large-scale
production of semiconductor chips. Advanced microscopy
tools like Scanning Electron Microscopy (SEM) and Trans-
mission Electron Microscopy (TEM) generate electron mi-
crographs (nanoscale images), critical for quality control,
failure analysis, and subsequent process optimization or de-
sign adjustments to help mitigate defects and ensures chips
conform to specifications. Current deep learning methods
for characterizing materials are insufficient for the semicon-
ductor industry’s specialized needs for accurately analyzing
electron micrographs. More effective technology is criti-
cal to support ongoing technological innovations. Recent
advancements in Artificial Intelligence (AI), such as Large
Multimodal Models (LMMs) like GPT-4 Turbo with Vision
(OpenAI, 2023), Google Gemini(Team et al., 2023) have
the potential to impact semiconductor manufacturing by
accurately analyzing microscopic images for various tasks,
including zero/few-shot classification, image captioning,
and visual question answering (VQA) tasks. GPT-4’s com-
bination of advanced natural language processing, image
processing capabilities, and logical reasoning abilities could
enable it to interpret and answer natural language questions
about the microscopic images being analyzed. The insight-
ful responses generated for end-user questions would allow
human users to better evaluate the rationale behind GPT-4’s
image analysis and, consequently, trust its responses. Us-
ing proprietary multimodal vision-language models raises
legitimate data privacy concerns, as intellectual property
leaks could potentially undermine the cutting-edge tech-
nological portfolio of semiconductor firms and jeopardize
future innovation. Additionally, their large size and com-
plexity limit the adaptability to tailor them for specialized
tasks. On the other hand, open-source, smaller models like
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LLaVA(Liu et al., 2023) and MiniGPT-4(Zhu et al., 2023)
offer the benefits of customizable and interpretable micro-
scopic image analysis of nanomaterials, but they may not
match the reasoning and generalization capabilities of larger
closed-source proprietary models.

(a) High intra-class(within the same class) dissimilarity in elec-
tron micrographs of MEMS devices.

(b) High inter-class similarity(between classes): Electron mi-
crographs of various nanomaterials (porous, particles, powders,
films) exhibit significant resemblance or high homogeneity.

(c) Multi-scale patterns of spatial heterogeneity (e.g., size or
shape variations) in nanoparticle micrographs.

Figure 1. Challenges in Visual Question Answering (VQA) task on
electron micrographs from the SEM dataset (Aversa et al., 2018).

Creating secure, on-premises small-scale vision-language
models for electron micrograph analysis offers several ad-
vantages for enterprise adoption, such as improved effi-
ciency, data privacy, cost-effectiveness, interpretability, and
customizability. However, this approach also presents sig-
nificant challenges. Firstly, the scarcity and high cost of
high-quality datasets tailored for customizing small-scale
multimodal models(SMMs) on electron micrograph analy-
sis for Visual Question Answering (VQA) tasks hinder the
collection of necessary data. Secondly, annotating these
microscopic images demands expert knowledge and spe-
cialized tools, resulting in a resource-intensive and time-
consuming process. Finally, the diverse characteristics and
representations of microscopic images generated by differ-
ent imaging techniques pose the most significant obstacle to
developing a versatile multimodal model that performs ef-
fectively across various electron micrograph-based datasets.
In addition, electron micrograph-based zero/few-shot multi-
class classification, image-captioning, and, VQA tasks offer
powerful insights despite facing challenges. These chal-
lenges, highlighted in Figure 1, include: (1) high intra-
class dissimilarity, (2) high inter-class similarity, and (3)
the presence of multi-scale visual intricacies (spatial het-
erogeneity). These factors complicate both accurate image
understanding and question answering. To address these
limitations, we propose a novel framework that utilizes a
unique teacher-student paradigm. In this paradigm, a pre-
trained foundational large multimodal model (LMM), such
as GPT-4, serves as a robust ’teacher’ to generate instruction-
tuning data (image-question-answer pairs) for customizing

a ’student’ — a small-scale, autoregressive, language-and-
vision assistant (sLAVA) (hereafter referred to as a small-
scale multimodal model or SMM) — to perform various
zero/few-shot multimodal tasks (such as multi-class classifi-
cation, image captioning, or VQA) for electron microscopy
image analysis. Building upon this instruction-following
dataset, we introduce vision-language instruction tuning
for the smaller multimodal models (SMMs) designed for
electron micrograph analysis, thereby eliminating the need
for high-quality, human-annotated question-answer pairs
for domain-specific customization. Our method efficiently
transfers knowledge from a large teacher model to a smaller
student model, enhancing its grounded language generation
and visual reasoning capabilities to understand the visual
content and generate natural language descriptions or re-
sponses that accurately reflect the visual information for the
end-user question. By distilling the teacher’s knowledge, the
student achieves performance on par with the original, large-
scale proprietary models, demonstrating the efficacy of our
approach. Enterprises can further fine-tune our pre-trained
language-and-vision assistant, specifically trained for mi-
crograph analysis tasks, using their proprietary data within
their own infrastructure. This empowers them with a se-
cure, on-premises solution for electron micrograph analysis,
offering enhanced data privacy, sovereignty, and security,
thereby democratizing access to advanced micrograph anal-
ysis capabilities. Overall, it accelerates adoption and fosters
innovation in semiconductor manufacturing. The proposed
small-scale vision-language framework is a visually condi-
tioned autoregressive language generation model with an
encoder-decoder architecture, designed for zero-shot or few-
shot multiclass classification, image captioning, and VQA
tasks. The multimodal model takes as input an interleaved
multimodal prompt containing a target microscopic image,
supplementary image information, and an end-user question.
It then process and aligns the complementary multimodal
information to achieve integration of knowledge and se-
mantics, ultimately outputting an open-ended text response
grounded in the visual content of the microscopic image. In
zero-shot settings, it relies on the domain-specific knowl-
edge acquired during pre-training to answer user questions
on unseen images. For few-shot settings, it additionally re-
quires a small set of examples involving microscopic images
and the corresponding question-answer pairs (input-output
mappings) to tailor its responses for interpreting new, un-
seen images. sLAVA, a small-scale multimodal model that
integrates image processing with language modeling, can
answer questions about specific microscopic image charac-
teristics. sLAVA includes the following components: (a)
The vision encoder is implemented with a vision trans-
former(Dosovitskiy et al., 2020) to capture the long-range
dependencies between microscopic image regions with an
expanded receptive field. Consequently, the vision encoder
captures salient and global information of the microscopic
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<image> This is an electron microscopy image belonging to the particle-based nanomaterial category. Give me a short description of the image.

Input: visual data and text

This is an electron microscopy image belonging to the particle-based nanomaterial category. Give me a short description of the image.

Processed text
Vision Encoder

flatten

S=0

The image is a scanning electron microscope (SEM) photo of spherical nanomaterial particles of 
varying sizes on a textured background, with a measurement scale indicating a nanometer range
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Figure 2. The schematic illustrates a variant of sLAVA, a small-scale, visually conditioned, autoregressive text generation model that takes
prompts combining visual and textual information as input and outputs free-form text for the image captioning task. The input multimodal
prompt includes a microscopic image combined with a supplementary user-provided image description, along with the end-user’s question.
In this zero-shot setting, the task is to answer the question about the microscopic image solely based on the small-scale model’s internal
parametric knowledge. sLAVA comprises a vision encoder to capture the global context of microscopic images, and a text encoder that
interprets end-user questions and the auxiliary user-provided image information. The image-grounded text encoder facilitates cross-modal
learning by integrating visual information directly into text understanding, thereby generating a comprehensive multimodal representation
grounded in the image’s visual content. The image-grounded text decoder then synthesizes coherent and contextually relevant textual
outputs based on the generated multimodal representations. Finally, the framework is jointly optimized using the binary cross-entropy loss
for positive image-text matching and language modeling loss for contextually relevant text generation to answer end-user questions.

image, effectively highlighting more relevant visual regions
along with their contextual relationships to understand and
ground the questions within visual concepts. We incorporate
a <cls> token to attend to and aggregate information from
all image regions. The higher-level visual semantic represen-
tation of the global (<cls>) token represent the summary of
the input image. (b) The text encoder plays a crucial role in
analyzing and interpreting user input to understand the na-
ture of the question. It leverages supporting text descriptions
associated with the image to extract key details and provide
accurate and relevant answers. We insert <image> token at
the image location in the interleaved multimodal input. We
append a <Encode> token to the tokenized text to facilitate
multimodal integration, with its output embedding represent-
ing the fused image-text representation. To better capture
the nuances of language and context, the text encoder lever-
ages a pre-trained language model, Llama-2-7b(Touvron
et al., 2023), to compute a high-level representation that
captures the semantic meaning and relationships within the
end-user question. We fine-tune Llama-2-7b using Dynamic
Adaptation of Mixture of Quantized Parameter-Efficient Ex-
perts (DyA-MOQPEs) technique (details in the technical
appendix) using the instruction-following dataset generated
by GPT-4. This Parameter-Efficient Fine-Tuning (PEFT)
technique integrates quantization-aware low-rank adapta-
tion (QLoRA) with Mixture of Experts (MoEs) and employs

dynamic rank sampling. This approach enhances our abil-
ity to interpret natural language questions. Both unimodal
encoders play a crucial role in interpreting an end-user ques-
tion (textual input) regarding the target microscopic image
and then analyzing the target microscopic image (visual
input) to aid in generating answers that are not only fac-
tually accurate but also consistent with the context of the
visual information in the microscopic image. (c) The image-
grounded text encoder facilitates cross-modal learning to
bridge the gap between visual content and linguistic end-
user questions by pairing textual descriptions with visual
patterns through a cross-attention mechanism. This allows
the encoder to focus on relevant image regions and integrate
visual information directly into text understanding, resulting
in a contextually relevant text representation grounded in
the microscopic image’s visual content. We minimize the bi-
nary cross-entropy loss to align positive image-text pairs. (d)
The image-grounded text decoder leverages multimodal
representations to generate accurate and contextually rele-
vant answers, bridging the gap between visual perception
and language understanding. To demarcate the generated
text sequence, we insert a special <Decode> token at the
beginning and an end-of-sequence (<EOS>) token at the
end, acting as brackets for the output. The decoder, trained
to ground its text generation in visual information, generates
contextually relevant descriptions closely aligned with the
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Figure 3. The figure shows SEM images(Aversa et al., 2018) showcasing diverse nanomaterial morphologies. Top row: biological
structures, fibers, films, MEMS devices, nanowires. Bottom row: nanoparticles, patterned surfaces, porous sponges, powders, tips.

Table 1. The table summarizes the performance of the proposed framework against various methods on the image captioning task.
Method BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

InstructBLIP(Dai et al.) 0.711 ± 0.032 0.660 ± 0.039 0.824 ± 0.016 0.746 ± 0.005 0.814 ± 0.021 0.845 ± 0.024

LLaVA(Liu et al., 2023) 0.715 ± 0.035 0.671 ± 0.043 0.822 ± 0.016 0.757 ± 0.005 0.816 ± 0.021 0.837 ± 0.023

MiniGPT-4(Zhu et al., 2023) 0.776 ± 0.086 0.686 ± 0.100 0.839 ± 0.035 0.795 ± 0.014 0.827 ± 0.047 0.864 ± 0.052

sLAVA 0.819 ± 0.089 0.727 ± 0.115 0.939 ± 0.041 0.876 ± 0.016 0.880 ± 0.054 0.906 ± 0.062

image content. This bridging of visual perception and lan-
guage generation is achieved through a language modeling
loss, ensuring the output accurately captures the image’s
essence. To achieve robust comprehension and accurate an-
swer generation, our proposed multimodal learning frame-
work employs a two-pronged learning approach. First, we
minimize positive image-text pair matching losses to ensure
a deep understanding of both visual and textual content.
Second, minimization of language modeling loss fosters the
generation of accurate and contextually grounded answers.
We jointly optimize these objectives through the vision-
language instruction tuning of our proposed model, sLAVA,
using a multimodal dataset of image-question-answer pairs
generated by GPT-4. This enables sLAVA to achieve re-
markable expertise in the challenging domain of micro-
scopic image-based question-answering tasks. As illustrated
in Figure 2, the proposed framework, sLAVA, is applied for
the zero-shot image captioning task. For other tasks, such
as zero/few-shot multi-class classification and open-ended
VQA, technical details are discussed in the appendix. In
summary, the framework outputs free-form text answers to
open-ended image-related questions.

2. Experiments And Results
2.1. Datasets
Our study utilized the extensive SEM dataset (Aversa et al.,
2018) containing over 21,000 electron micrographs across
10 categories of nanomaterials to generate a diverse set
of instruction-following multimodal data by GPT-4. We
trained our framework for task-specific customization using
this machine-generated data only, without relying on any
human-annotated data. Unlike previous research (Modarres
et al., 2017) that used only a subset of the data, we lever-
aged the publicly available entire dataset, enabling broader
and more robust model training. Since the dataset cura-
tor did not provide predefined train/validation/test splits,
we randomly divided the dataset into 70%, 10%, and 20%
portions for training, validation, and testing, respectively.
Rigorous benchmarking against baseline algorithms demon-

strated significant improvements across tasks for the pro-
posed framework, highlighting its effectiveness. Addition-
ally, we tested our framework’s generalizability on other
open-source material datasets, demonstrating its effective-
ness in similar thematic areas. For a detailed discussion on
additional benchmark datasets, please refer to the appendix.

2.2. Experimental Studies
We evaluated our framework on various tasks involving
microscopic images, including multi-class classification, im-
age captioning, and open-ended VQA, in order to gain a
better understanding of the nanomaterials depicted in the
electron micrographs. We also explored VQA tasks to evalu-
ate intra-class dissimilarity, inter-class similarity, and spatial
heterogeneity, enriching our insights into the nanomaterials
depicted in electron micrographs.

2.3. Results
Table 1 presents the experimental results on the image cap-
tioning task in terms of evaluation metrics like BLEU, ME-
TEOR, and ROUGE, comparing the framework-generated
captions with ground-truth captions. Our proposed frame-
work sLAVA surpasses contemporary baseline models, In-
structBLIP (Dai et al.), LLaVA (Liu et al., 2023), and
MiniGPT-4 (Zhu et al., 2023) on the image captioning task.
Table 2 shows representative electron microscope images
with their true captions and framework-generated captions,
including evaluation metric scores. The experimental results
for zero/few-shot classification, open-ended VQA tasks, and
others are discussed in the technical appendix.

3. Conclusion
Our research introduces a novel approach to electron micro-
graph analysis and presents a small-scale, instruction-tuned
language-and-vision assistant, customized by a multimodal
dataset generated with GPT-4 and optimized for consumer
hardware with performance on-par with proprietary LMMs.
The pre-trained framework can be further fine-tuned with
proprietary data, all without compromising sensitive infor-
mation to third-party LMMs, making it ideal for secure,
efficient, and economically viable enterprise applications.
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Table 2. The table presents randomly sampled electron microscope images alongside their corresponding ground-truth captions and
machine-generated captions. It also includes BLEU-2, ROGUE-L, and METEOR metric scores for each caption, which evaluate their
similarity to the true captions.

Image Ground Truth Answers
BLEU-2/
ROGUE-L/
METEOR

This electron microscopy image dis-
plays a neuron with its dendritic tree
and synaptic connections, magnified
10,000 times.

This electron microscopy image
shows a neuron with its dendritic
tree and synaptic connections mag-
nified 10000 times

0.717
0.857
0.879

This SEM image shows tightly wo-
ven fibrous material, with each fiber
distinctly magnified 225 times to re-
veal its twisted structure.

This SEM image shows tightly wo-
ven fibrous material, with each fiber
distinctly magnified 225 times to dis-
play its twisted structure

0.922
0.950
0.949

This SEM image captures a granu-
lar film surface with a magnification
of 50,000 times, revealing the mi-
crostructure of the coated material.

This SEM image shows a granular
film surface with a magnification
of 50000 times, revealing the mi-
crostructure of the coated material.

0.851
0.884
0.903

This SEM image shows a microelec-
tromechanical system (MEMS) with
intricate wiring and electrodes, cap-
tured at 100 times magnification.

This SEM image displays a micro-
electromechanical system (MEMS)
with intricate wiring and electrodes
captured at 100 times magnification.

0.824
0.944
0.944

This SEM image depicts an array
of vertical nanowires, showcasing
their uniformity and high aspect ra-
tio, magnified at 80,000 times.

This SEM image displays an ar-
ray of vertical nanowires exhibiting
their uniformity and high aspect ra-
tio magnified at 80000 times.

0.628
0.829
0.736

This SEM image reveals clusters of
spherical nanoparticles, each group-
ing distinct from the others, magni-
fied 11,000 times.

This SEM image shows clusters of
spherical nanoparticles, each group
distinct from the others, enlarged
11000 times.

0.656
0.743
0.819

This SEM image displays a highly
ordered, diamond-shaped patterned
surface, magnified 345 times, char-
acteristic of nano-fabrication tech-
niques.

This SEM image displays a highly
ordered, diamond-shaped patterned
surface, magnified 345 times, typi-
cal of nano-fabrication techniques

0.847
0.947
0.881

This SEM image shows a porous
sponge-like material with variously
sized and shaped voids, magnified
50,000 times to reveal the texture
and porosity.

This SEM image displays a porous
sponge-like substance with varied
sized and shaped voids, enlarged
50000 times to show the texture and
porosity.

0.608
0.735
0.760

This SEM image reveals a dense
aggregation of nanoscale particles
forming a powder, with a magnifica-
tion of 13,570 times.

This SEM image shows a dense clus-
ter of nanoscale particles composing
a powder, with a magnification of
13,570 times.

0.749
0.735
0.836

This SEM image shows a sharply
pointed nanomaterial tip, high-
lighted against a stark background
at a magnification of 100,000 times.

This SEM image displays a sharply
pointed nanomaterial tip, high-
lighted against a stark background
with a magnification of 100,000
times.

0.843
0.735
0.949
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Zadouri, T., Üstün, A., Ahmadian, A., Ermiş, B., Locatelli,
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A. Technical Appendix
A.1. Dynamic Adaptation of Mixture of Quantized

Parameter-Efficient Experts (DyA-MoQPEs)

Low-Rank Adaptation (LoRA, (Hu et al., 2021)) is a
parameter-efficient technique that enables the efficient fine-
tuning of large foundational models on consumer hardware
(low-cost GPUs). LoRA injects and adapts these additional
parameters while keeping the original pre-trained weights
frozen, allowing for task-specific customization without full-
parameter fine-tuning. LoRA dramatically reduces memory
and computational requirements for fine-tuning foundational
models with task-specific corpus without increasing infer-
ence latency. LoRA serves as a plug-and-play solution for
tailoring general-purpose large-scale foundational models to
specialized tasks, retaining parametric knowledge acquired
from the vast training corpus and mitigating catastrophic
forgetting of pre-training knowledge while effectively learn-
ing new information. LoRA incorporates a lightweight,
trainable pair of low-rank matrices (adapter modules) into
each pre-trained model layer. LoRA updates these ancillary
parameters while keeping the original pre-trained weights
fixed, achieving performance comparable to that of tradi-
tional full-parameter fine-tuning but with enhanced resource
efficiency. Large-scale pretrained models (Vaswani et al.,
2017) benefit from LoRA’s ability to incorporate low-rank
adapter modules into their linear layers, enhancing perfor-
mance on specialized tasks. These ubiquitous layers hold a
significant portion of the parameters and directly influence
learning, making them ideal targets for efficient fine-tuning.
In LoRA, updates to the linear layer are achieved by in-
troducing new trainable parameters, denoted as ∆W, that
capture task-specific information without altering the origi-
nal pre-trained weight matrix represented as W0. ∆W is
linearly added to W0 to achieve task-specific adaptation
while keeping the original weights frozen. The low-rank
adaptation of the linear layer, with input X and output Y,
can be mathematically described as follows:

Y = (W0 +∆W)X = W0X+ (αAB)X (1)

Here, Y ∈ Rb×dout and X ∈ Rb×din . The dimensions
of the input and output are denoted by din and dout, re-
spectively, with b representing the batch size. The origi-
nal weight matrix W0 ∈ Rdin×dout holds the pretraining
knowledge, preserving the foundational model’s general ca-
pabilities, while the low-rank addition ∆W to W0 captures
task-specific information during fine-tuning. A ∈ Rdin×r

is a projection-down weight matrix, and B ∈ Rr×dout is
a projection-up weight matrix. The rank of the decompo-
sition, denoted as r, is a hyperparameter notably smaller
than both din and dout, expressed as r ≪ din, dout. The
value of r is a critical parameter that optimizes the trade-
off between model adaptability, efficiency, and generaliza-

tion. The scaling factor α is typically set to 1
r . During

the fine-tuning, the trainable weight matrices A and B are
updated, while W0 remains constant. Fine-tuning foun-
dational models involves computing parameter gradients
through a task-specific loss function, updating trainable pa-
rameters using Adam (Kingma & Ba, 2014) or SGD (Rob-
bins & Monro, 1951) optimizers, and storing additional
meta-data such as momentum and adaptive learning rates.
Fine-tuning foundational models demands significant mem-
ory for model parameters, gradients, and optimizer states.
LoRA reduces this memory overhead by decreasing the
number of trainable parameters through low-rank adapta-
tion. Consequently, LoRA requires fewer computational
resources compared to full-parameter fine-tuning, offering
a more efficient method for adapting foundational models
to specialized tasks. While LoRA reduces memory usage
due to fewer trainable parameters, it still requires signifi-
cant memory to hold large intermediate input activations
(X ∈ Rb×din ; refer to Equation A.1) during the computa-
tion of gradients for low-rank weights, A and B, during
backpropagation. This high activation memory demand lim-
its scalability, especially under resource constraints. Meth-
ods like selective LoRA (Hu et al., 2021) or activation re-
computation (Chen et al., 2016) could help mitigate this is-
sue, but they may impact efficiency. Thus, the high demand
for activation memory remains a challenge in efficiently
adapting large-scale foundational models with LoRA, pos-
ing a significant limitation. To overcome the aforemen-
tioned limitations, LoRA with Frozen-A (LoRA-FA) (Zhang
et al., 2023)—a variant of LoRA—reduces activation mem-
ory footprint by avoiding the storage of full-rank input
activations, enabling efficient fine-tuning of foundational
models on limited resources without compromising perfor-
mance. LoRA-FA accomplishes this through freezing both
the original pre-trained weights, W0, and the projection-
down weight, A, while only updating the projection-up
weight, B, which is typically initialized to zero. The frozen
projection-down weight matrix A, sampled from a normal
distribution, maps the high-dimensional input X into a re-
duced r-dimensional space (AX ∈ Rb×r, where r ≪ din).
This low-dimensional mapping further reduces the activa-
tion memory requirements for gradient computation of B
during back-propagation. In essence, LoRA-FA effectively
decreases the number of trainable parameters and also re-
duces the activation memory usage, making it an efficient
technique for fine-tuning large-scale foundational models
without increasing inference latency. We propose a novel
approach that combines the advantages of the Mixture of
Experts (MoEs) framework with Parameter-Efficient Fine-
Tuning (PEFT) techniques, such as LoRA-FA. We refer to
this innovative method as Mixture of Parameter-Efficient
Experts (MoPEs) (Zadouri et al., 2023). This method adapts
the MoE approach to be more parameter-efficient by inte-
grating LoRA-FA adapters. We employ MoPEs technique to
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instruction-tune pretrained foundational models, thereby im-
proving their performance on niche, domain-specific tasks
while minimizing resource usage. In the MoPE architecture,
a set of specialized experts, known as LoRA-FA adapters,
are trained to address different aspects of the fine-tuning
data. This targeted approach allows each expert to focus
on specific data aspects, significantly enhancing the per-
formance of pretrained decoder-only foundational models
on complex downstream tasks. These multiple experts are
activated based on a gating mechanism denoted as router
R, designed for conditional computation. We represent the
set of K experts as B0 = E(X; θ0), . . . ,BK = E(X; θK),
where each Bk corresponds to the weight matrix of the k-th
expert, which is learned during the fine-tuning based on
the downstream task. Here, E represents a parameterized
function, and θk denotes the trainable parameters specific to
expert k. The router R typically takes the form of another
feed-forward network, producing a k-dimensional vector
that indicates the routing probabilities for each expert.

Y = (W0+∆W)X = W0X+A(BX), B =

K∑
k=1

R(X)kBk

Here, B represents a composite weight matrix obtained
by combining the contributions of multiple expert weight
matrices, with each matrix weighted by its respective rout-
ing probability. We implement a top-k routing strategy
for soft merging, where only the k experts with the high-
est routing probabilities contribute to the composite matrix.
This effectively reduces computational complexity. While
MoPEs slightly increases trainable parameters compared
to LoRA-FA due to conditional computation, the reduced
activation memory usage makes it an economical choice
for fine-tuning on consumer-grade hardware with improved
performance than LoRA-FA. While MoPEs effectively re-
duce memory usage without compromising their fine-tuning
performance, they are not without limitations. Carefully
tuning rank r is crucial, as it balances model complexity
and learning complex data patterns. A static rank, how-
ever, could limit adaptability to data distribution shifts. To
address these limitations, which stem from a fixed rank
size and require exhaustive searches for the optimal rank,
we introduce ‘Dynamic low-rank adaptation with MoPEs’
(denoted as DyA-MoPEs). Specifically, DyA-MoPEs can
adapt across various ranks within the range from rmin to rmax,
where rmin and rmax are introduced as hyperparameters dur-
ing training. This approach eliminates the need for multiple
training iterations to determine the optimal singular rank.
Dynamic low-rank adaptation offers significant advantages
by allowing dynamic rank adjustments during training for
effective performance across a broad range of ranks. More-
over, DyA-MoPEs can adapt their rank based on the task,
making them suitable for continuous learning scenarios or
contexts with frequent data distribution shifts. During fine
tuning, we dynamically sample a rank b from a pre-defined

categorical distribution, b ∼ pB(Range[rmin, rmax]) and the
pair of low-rank matrices are truncated as follows:

B
↓b

= B[1 : b, :]

A↓b = A[:, 1 : b]

Y = W0X+ αA↓b(B
↓b
X)

This truncation keeps the first b rows of B and the first
b columns of A, resulting in matrices with a lower rank.
Consequently, the output Y is computed using these lower-
rank matrices, allowing for dynamic adjustment of model
complexity during training. We compute gradients for these
truncated matrices and apply updates accordingly. To man-
age the increased computational complexity, we utilize cus-
tom gradient accumulation. This technique enables more
stable and efficient learning by accumulating gradients over
multiple iterations or steps. Additionally, we implement
rank normalization to equalize the influence of different
ranks on the model’s learning process. By scaling gradients
or updates according to the rank size, this method helps
stabilize training and ensures fair contributions from all
ranks. To reduce their memory footprint, we quantize the
pre-trained weights or base weights (W0) of the Llama 2-
7B model from a 16-bit format into a lower precision format
(e.g., 8-bit quantization (Dettmers et al., 2023; Xu et al.,
2023)). During inference, the product of low-rank adapter
parameters, A↓b and B

↓b
, is combined with these quantized

weights to approximate the original full-precision model.

A.2. Fine-Tuning, Pretrained Large Language
Models(LLMs)

The Llama-2 (Touvron et al., 2023), a sophisticated auto-
regressive, language-optimized transformer architecture tai-
lored specifically for various natural language processing
tasks, leverages supervised fine-tuning (SFT) and reinforce-
ment learning with human feedback (RLHF) optimized for
chat applications and natural language generation tasks. The
core strength of Llama-2 lies in its ability to process and
generate text for end-user questions that closely resembles
human language, making it highly suitable for complex lan-
guage processing tasks. The Llama-2’s architecture, an auto-
regressive decoder, excels at open-ended conditional text
generation, particularly suited for interpreting natural lan-
guage questions. Its advanced architectural features include
RMSNorm pre-normalization(Zhang & Sennrich, 2019),
SwiGLU activation functions inspired by PaLM(Chowdhery
et al., 2022), and rotary positional embeddings(Shaw et al.,
2018). To extend its context comprehension, Llama-2 lever-
ages a grouped-query attention mechanism(Ainslie et al.,
2023), allowing it to process a significant number of 2048
tokens. The architecture, consisting of 32 layers, 32 at-
tention heads, and a hidden size of 4096, efficiently han-
dles batch sizes of up to 32 for sequences of up to 2048
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tokens. We fine-tune Llama-2 using Parameter-Efficient
Fine-Tuning (PEFT) methods, specifically employing the
Dynamic Adaptation of Mixture of Quantized Parameter-
Efficient Experts (DyA-MoQPEs) technique. This approach
enhances Llama-2’s performance on visual question answer-
ing (VQA) tasks related to electron micrograph analysis
through Vision-Language Instruction Tuning. As a result,
Llama-2 efficiently adapts its extensive language under-
standing capabilities to the specific context and nuances of
niche domain topics, such as interpreting complex natural
language queries related to electron micrographs. The fine-
tuned Llama-2 model demonstrates a deeper understanding
of end-user questions, effectively handling ambiguity and
complex language for accurate image-text correspondence
in VQA tasks, connecting textual concepts and entities with
their visual counterparts in microscopic images. Our work
integrates QDyA-MoPEs adapter modules into each linear
layer of the grouped-query attention mechanism layers in
the Llama 2-7B model architecture. These layers analyze
different aspects of language understanding, with earlier lay-
ers focusing on fundamental syntactic elements and subse-
quent layers exploring more complex semantic connections.
This integration allows for task-specific customization to
effectively interpret natural language questions related to
microscopic image analysis.

A.3. Generation of MultiModal Instruction-Tuning Data
We leverage GPT-4 Turbo with Vision, a state-of-the-art
multimodal large language model (MLLM), to create a cus-
tomized and comprehensive dataset of image-question an-
swer pairs specifically designed for fine-tuning small multi-
modal models (SMMs) for visual question answering (VQA)
tasks on electron micrographs. GPT-4 first generates chal-
lenging and contextually relevant questions that interpret
and analyze these micrographs. Simultaneously, it utilizes
knowledge distillation to produce corresponding answers
using its internal knowledge representation grounded in the
visual content of the microscopic images. These generated
answers are enriched with domain-specific insights, ensur-
ing accurate responses to open-ended user questions about
electron micrographs. Our approach addresses the scarcity
of high-quality vision-language datasets for analyzing mi-
croscopic images. By training SMMs using the generated
vision-language instruction-following dataset, we enable
them to acquire domain-specific adaptation abilities through
transfer learning. This allows them to perform comparably
to proprietary large multimodal models (LMMs) on VQA
tasks without incurring excessive computational costs. Our
approach offers a methodology for developing a highly effi-
cient, accurate, and domain-specific framework to interpret
complex microscopic images. It leverages multimodal intel-
ligence, encompassing vision, language, and reasoning, to
address these challenges. The compact multimodal models
facilitate interaction between multiple modalities through

joint representation learning. This process implicitly aligns
semantic concepts across vision and language, enabling the
smaller models to contextually understand and reason about
these multimodal inputs in order to answer visual questions.
This establishes a clear, concise, and relevant foundation for
SMMs, allowing them to grasp the visual representation of
concept-based instructions and their corresponding answers.
GPT-4 crafts questions to guide a comprehensive and thor-
ough investigation of diverse facets, including fundamental
characteristics like the size, distribution, and morphology of
nanomaterials depicted in microscopic images, such as:

Prompt 1: **Basics** - This image depicts a nano-
material. What specific type of nanomaterial is it?
Additionally, what is the scale or resolution - that
is, what real-world length does one unit of mea-
surement in the image correspond to?. Prompt 2:
**Morphology and Structure** - Can you describe
the overall shape and morphology of the nanoma-
terials depicted in the image? - Are there any vis-
ible layers, phases, or distinct domains within the
nanomaterials? - Do the nanomaterials exhibit a
consistent size and shape throughout, or do they
display variability in these aspects?. Prompt 3:
**Size and Distribution** - Can you estimate the
approximate size or size range of the individual
nanostructures depicted in the image? - Addition-
ally, how are the nanomaterials distributed - are they
evenly spaced, clustered, or randomly placed? - Fi-
nally, is there any visible evidence of aggregation
or bundling among the nanostructures?”. Prompt 4:
**Surface Characteristics** - When examining the
nanomaterials in the image, what are their surface
textures like - are they predominantly smooth, rough,
or do they possess distinct textures? - Additionally,
are there any noticeable imperfections, such as de-
fects, pores, or impurities, visible on the surfaces of
these nanomaterials?. Prompt 5: **Composition
and Elements** - In the provided image, can we
identify any evidence of compositional variations,
such as changes in color, brightness, or contrast
that might indicate different components? - Addi-
tionally, are there any discernible labels or markers
within the image that specifically point to the pres-
ence of certain elements or compounds?. Prompt
6: **Interactions and Boundaries** - Describe how
the individual nanostructures visually interact with
one another. For example, do they appear to be
touching, fused together, or fully separate? - Ex-
amine the boundaries between nanostructures. Can
you clearly distinguish boundaries between different
structures or phases? - Or do they blend together
without defined borders?.
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Prompt 7: **External Environment** - In the pro-
vided image, can you identify any signs of interac-
tion between the nanomaterials and their surround-
ing environment or matrix, which might include
solvents, polymers, or other materials? - Addition-
ally, are there any discernible structures or objects
present in the image that are not nanomaterials?
If so, please describe these elements?. Prompt
8: **Image Technique and Modifications** - Can
you identify the specific imaging technique, such as
Scanning Electron Microscopy (SEM) or Transmis-
sion Electron Microscopy (TEM), used to capture
this image of nanomaterials? - Additionally, were
there any post-processing techniques or modifica-
tions applied, including but not limited to false color-
ing or 3D rendering?. Prompt 9: **Functional Fea-
tures** - Can you identify any specific functional
elements in the image, like active sites or regions
with distinct properties? - Additionally, does the
image depict any dynamic processes taking place
within the subject, or is it primarily a static represen-
tation?. Prompt 10: **Context and Application** -
What is the primary intended use or application of
the nanomaterials as depicted in the image, and is
the representation of these nanomaterials based on
actual experimental samples, or are they theoretical
or simulation-based representations?

A.4. Sampling Strategies for Instruction Tuning Dataset
Generation

To generate instruction-tuning data using GPT-4 Turbo with
vision for few-shot image classification tasks (refer to Fig-
ure 5), and to discover key insights into high intra-class
dissimilarity, high inter-class similarity, and spatial hetero-
geneity in electron micrographs (refer to Figures 6 - 8), we
follow the strategies outlined below. Given an input image
I as a 3D tensor with dimensions H × W × C (height,
width, and number of channels, respectively), we divide
it into non-overlapping patches of size P × P × C. This
results in n =

(
HW
P 2

)
patches. Each patch of size P 2C is

then encoded into a 1D vector, resulting in an encoded patch
matrix I′ ∈ Rn×d, where d represents the embedding dimen-
sion. To incorporate spatial information, we add positional
embeddings to these patch embeddings. Additionally, we in-
troduce a classification token, <cls>, to represent the global
image characteristics. The augmented patch sequence, in-
cluding the classification token, is processed by the Vision
Transformer (ViT (Dosovitskiy et al., 2020)), which refines
the patch representations through multiple encoder layers.
We update the trainable parameters through a supervised
learning task, aiming to minimize cross-entropy loss and
maximize multiclass classification accuracy. Consequently,
the output embedding hcls corresponding to the < cls >
token encapsulates a comprehensive representation of the

microscopic image. We propose a similarity-driven sam-
pling approach for the few-shot image classification task,
based on the hypothesis that training on demonstrations
resembling the target image’s data distribution promotes
model adaptability and accuracy. This method utilizes co-
sine similarity of the hcls token embeddings to select the
top-K most similar images to the target image from the train-
ing set. We follow the same strategy for sampling highly
similar images across different nanomaterial categories to
generate question-answer pairs, aiming to gain insights into
high inter-class similarity. Conversely, we employ the in-
verse strategy for generating question-answer pairs for each
target image, extracting insights on high intra-class dissimi-
larity by sampling highly dissimilar images within the same
nanomaterial category.

A.5. Loss Functions
A.5.1. IMAGE-TEXT MATCHING LOSS (ITM)

The ITM loss is fundamental to multimodal learning. It uti-
lizes binary cross-entropy loss to enhance the alignment of
image and text representations within a shared embedding
space. Minimizing the LM loss allows the image-grounded
text encoder to effectively determine whether an image and
text pair are a match, thereby improving the alignment be-
tween image and text representations. For each image-text
pair, a ground truth label, (yi), is assigned, where (yi = 1)
indicates a match (the image and text are relevant to each
other), and (yi = 0) signifies a non-match. The encoder
predicts the probability, (pi), that each pair is a match. This
probability is computed from the output of the encoder’s
final linear layer through a sigmoid function. The ITM loss
is calculated using the binary cross-entropy loss as follows:

LITM = −1

b

b∑
i=1

[ yi log(pi) + (1− yi) log(1− pi) ]

where b represents the batch size. This approach ensures a
balanced consideration of both matching and non-matching
pairs in the loss calculation. It penalizes the encoder for in-
correct predictions, thereby guiding it towards more precise
representations for image-text matching pairs.

A.5.2. LANGUAGE MODELING LOSS (LM)

In VQA and image captioning tasks, minimizing LM loss
is crucial. It ensures the image-grounded text decoder gen-
erates accurate and descriptive textual descriptions of the
visual content, tailored to the corresponding end-user ques-
tions. Optimizing for LM loss in VQA and image captioning
tasks discourages the model from relying solely on the ques-
tion’s linguistic patterns. This prevents language bias and
promotes the inclusion of relevant visual information in the
generated descriptions. This ensures the decoder learns the
correct grammatical structure and vocabulary for answer
sentences, resulting in texts that are not only coherent but
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also contextually aligned with both the image and the ques-
tion. The framework is trained to enhance word prediction
accuracy in a text sequence. It considers both preceding
words and the visual context to refine its ability to interpret
and respond to image-based queries. This involves minimiz-
ing the negative log-likelihood of the actual words, based on
the predicted probabilities from the decoder, ultimately lead-
ing to grammatically correct, semantically coherent, and
contextually appropriate answers. The LM loss is defined
as follows:

LLM = −
N∑
i

logP (wi|w<i, I, Q)

Where LLM represents the language modeling loss, and N
is the number of words in the text. The term wi denotes the
i-th word in the text, while w<i represents the sequence of
all words preceding the i-th word. I is the target image. Q
refers to the natural language question that the generated
text aims to answer, conditioned on both the image I and
the previous words w<i in the sequence. The expression
P (wi|w<i, I, Q) represents the probability of the i-th word,
given the preceding words, the target image, and the end-
user question, as predicted by the model. At inference time,
the decoder uses the knowledge acquired during training,
such as the relationships between words, images, and end-
user questions, to generate accurate text descriptions for a
given image.

A.6. Additional Information
We train small-scale vision-language models on the elec-
tron micrographs analysis using an instruction-following
dataset generated by GPT-4 Turbo with Vision through a
teacher-student strategy. The robustness and effectiveness
of these small-scale models depend on the composition and
design of the training dataset, particularly the comprehen-
siveness and detail of the image-question-answer pairs. In
this work, we propose a novel approach that leverages a
balanced combination of concise, summarized answers and
more comprehensive, detailed responses in training datasets
for the same end-user questions. This method optimizes the
performance of small-scale vision-language models across
a range of tasks, from image captioning to complex visual
question answering (VQA) tasks. Utilizing training data
of varied lengths in the small-scale model training offers
numerous advantages. It enhances flexibility and adaptabil-
ity by exposing the small-scale model to diverse sentence
structures and visual complexities, thus improving its ability
to handle real-world scenarios with varying levels of detail.
This approach improves generalizability and prevents over-
fitting to specific data patterns. Moreover, it challenges the
small-scale model’s reasoning and attention mechanisms,
promoting a deeper understanding of the relationships be-
tween visual features and textual descriptions. These ben-
efits lead to improved performance in tasks such as image

captioning and VQA tasks, making the small-scale model
more robust and versatile for practical applications.

A.7. Experimental Setup
In this work, we propose a novel framework utilizing a
teacher-student paradigm. A large multimodal model like
GPT-4 Turbo with vision acts as a teacher to generate
instruction-following data to train a smaller, specialized
student model, called sLAVA, specifically designed for
zero/few-shot image classification, image captioning, and
VQA tasks in electron microscopy image analysis. It lever-
ages the vision-language instruction-tuning approach to effi-
ciently transfer knowledge from the larger to smaller model,
enabling the student model to perform comparably to larger
models in terms of generating accurate and contextually
relevant responses to end-user questions based on input im-
ages. Additionally, sLAVA is better suited for on-premises
enterprises adoption, ensuring data privacy and security.
The sLAVA framework is a small-scale, visually condi-
tioned autoregressive language generation model designed
for micrograph analysis. It consists of a vision encoder that
analyzes microscopic images, while a text encoder inter-
prets end-user questions. The cross-attention mechanism
in the image-grounded text encoder enables the small-scale
model to effectively align multimodal information, facilitat-
ing accurate answer generation. The small-scale model then
leverages this integrated multimodal understanding to gen-
erate accurate and contextually relevant answers or image
captions. The generated text is not only factually accurate
but also contextually aligned with the specifics of the elec-
tron microscopy images. The small-scale model focuses on
both zero/few-shot settings, using multi-modal prompts as
inputs consisting of a microscopic image, supplementary
image information, and the natural language question for
precise analysis and response. The framework adopts a bi-
objective approach, optimizing both understanding-based
and generation-based goals to improve performance in mi-
croscopic image-based analysis on the image captioning
and VQA tasks. We trained the sLAVA framework using
the tailored image-question-answer pairs dataset generated
by GPT-4 based on the SEM dataset (Aversa et al., 2018), a
collection of high-resolution images (1024×768×3) show-
casing diverse nanomaterials. For preprocessing, we resized
the images to 224×224×3 and applied data standardization
to normalize the mean and variance across channels to 0.5,
constraining values between -1 and 1. To effectively capture
local features, we divided the resized images (224×224×3)
into the 32-pixel patches, representing each micrograph as
a sequence of patches with an embedding dimension of 64.
This patch-wise approach enabled the model to learn lo-
cal features while retaining contextual information through
patch sequences. This ultimately enhances the proficiency
of the sLAVA framework to understand and analyze com-
plex nanomaterial images. Parameter-efficient fine-tuning
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(PEFT) of the Llama-2-7b model utilizes the Dynamic Adap-
tation of Mixture of Quantized Parameter-Efficient Experts
(DyA-MoQPEs) technique. A key hyperparameter, rank (r),
controls the trade-off between the language model’s capac-
ity to learn complex data patterns and its overall complexity
(number of trainable parameters) through low-rank approxi-
mation of weight matrices. During fine-tuning, we randomly
sample r from [rmin = 4, rmax = 16], with higher values
enabling more expressive fine-tuned langauge models with
increased adaptable parameters, while lower ranks reduce
complexity. (b) Alpha (α) – a scaling factor applied to the
low-rank weight matrix updates, typically set to a small
value like 1

r based on the sampled rank. Alpha modulates
the step size of the updates, with larger values allowing
more aggressive adaptation, improving performance but po-
tentially causing instability. (c) LoRA Dropout – applying
dropout specifically to the low-rank adapter layers to pre-
vent overfitting and improve generalization, usually set to
0.05. Additionally, we employ 8-bit quantization to enable
efficient fine-tuning on consumer hardware while retaining
comparable performance. We trained the sLAVA frame-
work over 50 epochs using an initial learning rate of 10−3

and a batch size of 32 for controlled optimization. For the
self-attention and cross-attention layers, we set the number
of heads (H) to 4 and the key/query/value dimensionality
(dh) to 32. To optimize performance, we implemented two
key strategies: (a) Early stopping based on the validation
loss to prevent overfitting; and (b) A learning rate scheduler
that reduces the rate by half if the validation loss plateaus for
5 consecutive epochs, assisting convergence. Additionally,
we employed the Adam optimization algorithm (Kingma &
Ba, 2014) to update parameters. Our instruction-following
image-question-answer pairs dataset comprises three types:
(a) zero-shot/few-shot multiclass classification tasks, (b) im-
age captioning, and (c) visual question answering (VQA).
During training, we minimize both the binary cross-entropy
loss and the language modeling loss to update the trainable
parameters of the framework. High-performance Nvidia
V100 GPUs facilitated development and testing of the cus-
tom sLAVA framework. Rigorous optimization with early
stopping and learning rate adjustments ensured a balance
between expressiveness and overfitting, maximizing real-
world performance for multimodal image analysis guided
by natural language.

A.8. Evaluation Metrics
Image Captioning and VQA tasks combine computer vision
and natural language processing to answer image-based
questions. Evaluating the accuracy of these answers is
challenging, but evaluation metrics assess linguistic sim-
ilarity, grammatical correctness, and semantic relevance
between the ground-truth and generated answers, driving
the framework towards more human-like and accurate re-
sponses. Here’s an overview of some key metrics:

• BLEU Score (Bilingual Evaluation Understudy):
The BLEU Score measures the quality of machine-
generated text by comparing it with a reference transla-
tion (ground-truth). It analyzes the frequency of over-
lapping word sequences (n-grams) between the two
texts. The focus of BLEU is on precision; it counts
matching n-grams while preventing an overemphasis
on repeated phrases. BLEU scores range from 0, in-
dicating no overlap, to 1, indicating a perfect match.
Higher scores signify a greater shared vocabulary and
similarity in phrasing.

• METEOR (Metric for Evaluation of Translation with
Explicit Ordering): The METEOR metric evaluates
machine-generated text by comparing it to the ground
truth, focusing on word similarity. It considers syn-
onyms, paraphrases, and variations of words. ME-
TEOR prioritizes exact matches, lemmas, stems, and
semantic similarities, capturing both recall and pre-
cision on a 0-1 scale. Higher scores indicate greater
similarity to the reference translation. While BLEU
focuses on how often short phrases (n-grams) appear
in the translation, METEOR provides a more compre-
hensive evaluation by including fluency, grammar, and
semantic matching. This allows it to correlate better
with human judgment of translation quality.

• ROUGE Score (Recall-Oriented Understudy for Gist-
ing Evaluation): ROUGE measures the quality of
machine-generated text by comparing its lexical over-
lap with ground-truth. ROUGE-N, the basic metric,
counts matching n-grams between the candidate and
reference texts. Variants like ROUGE-L, ROUGE-
W, and ROUGE-S focus on longest common subse-
quences, word sequences, and skip-bigrams, respec-
tively. Scores range from 0, indicating no overlap, to
1 for complete lexical identity. Higher scores suggest
better quality, indicating content similar to human ref-
erences. While ROUGE primarily evaluates lexical
similarity, variants such as ROUGE-L correlate well
with human judgments of linguistic quality and coher-
ence.

A.9. Empirical Insights into Nanomaterial Classification
Our research thoroughly evaluated the proposed framework
sLAVA for classifying electron micrographs of diverse nano-
materials. These complex materials vary in composition,
morphology, structure, and other properties, which is evi-
dent in their electron micrographs. The framework achieved
high accuracy on the imbalanced SEM dataset(Aversa et al.,
2018) using metrics like precision, recall, and F1-score,
demonstrating its effectiveness in categorizing nanomateri-
als with different patterns in a zero-/few-shot setting. Table
9 reports the experimental results. The multi-metric ap-
proach provided a detailed analysis, highlighting sLAVA’s
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efficiency in handling various categories, especially those
with fewer labeled instances. Overall, our findings con-
firm sLAVA’s robustness in classifying nanomaterials, con-
tributing to advancements in materials characterization and
research.

A.10. Additional Results

The Figures 4, 5, 6, 7, and 8 illustrate the small-scale,
language-and-vision assistant (sLAVA). sLAVA belongs
to a family of small multimodal models (SMMs) that take
electron micrographs and supporting image information
as input and produce free-form text output in response to
end-user questions. Figures 4 and 5 show variants of the
sLAVA framework on the zero/few-shot classification task.
Tables 7 and 8 show the experimental results on the zero/few-
shot multiclass classification task, comparing the accuracy
of our proposed framework to several baseline algorithms.
Table 3 shows the framework’s performance on the open-
ended VQA task. Unlike closed-ended VQA, which requires
choosing the correct answer from a set of predefined op-
tions, open-ended VQA tasks require the small-scale model
to generate its own free-form responses to end-user ques-
tions. Table 10 displays electron microscope images with
their true captions and small-scale model generated captions.
It additionally includes BLEU-2, ROUGE-L, and METEOR
scores that evaluate the similarity of the small-scale model’s
generated captions to the correct captions. Tables 11 to 20
display samples from the instruction-tuning Q&A pairs
dataset, which was generated by GPT-4 Turbo with Vision
for training the smaller multimodal model, sLAVA. Fig-
ure 6, 7, and 8 show variants of the sLAVA framework for
the VQA task, addressing high intra-class dissimilarity, high
inter-class similarity, and spatial heterogeneity in electron
micrographs, respectively. Tables 4, 5, and 6 summarize
the performance of various methods on the aforementioned
VQA task.

A.11. Related Work

Large Language Models (LLMs) like Open AI Chat-
GPT(OpenAI, 2023), Google Gemini(Team et al., 2023)
have significantly advanced natural language processing
by demonstrating remarkable abilities in understanding and
generating human-like text. Building on this progress, Multi-
modal Large Language Models (MLLMs) like MiniGPT-
4(Zhu et al., 2023), LLaVA(Liu et al., 2023), and Instruct-
BLIP(Dai et al.) have emerged, integrating visual under-
standing with linguistic capabilities. These MLLMs, often
based on open-source LLMs like LLaMA(Touvron et al.,
2023) and Qwen(Bai et al., 2023), can process and interpret
both text and images, leading to a more holistic compre-
hension of complex questions that require analysis of both
modalities. InstructBLIP(Dai et al.) is an advanced vision-
language model that utilizes instruction tuning and compo-

nents such as an image encoder, a large language model
(LLM), and a Query Transformer (Q-Former) to improve
its effectiveness across various multimodal tasks, including
image captioning and visual question answering. Based
on the BLIP-2(Li et al., 2023) framework, InstructBLIP
emphasizes adaptability and efficiency, leveraging frozen
components during training to optimize learning from di-
verse instructional datasets. This architecture supports a
wide range of tasks, demonstrates strong zero-shot perfor-
mance, and integrates with multiple datasets, positioning
it as a robust and scalable option for research and appli-
cation in multimodal machine learning. MiniGPT-4(Zhu
et al., 2023) advance vision-language models by aligning a
pretrained vision encoder with the Vicuna large language
model(Chiang et al., 2023) using a single linear projection
layer. This integration enables direct processing of visual
data, enhancing the model’s ability to handle complex tasks.
The model’s development includes a two-stage training pro-
cess, starting with pretraining on 5 million image-text pairs
to learn vision-language interactions, followed by a fine-
tuning stage with a curated high-quality dataset to improve
language outputs and usability. MiniGPT-4’s capabilities,
such as generating detailed image descriptions, creating
websites from sketches, and composing stories from images,
match or exceed those of GPT-4. The LLaVA model(Liu
et al., 2023) represents a significant advancement in vision-
language integration, leveraging a two-stage training process
that initially adapt large language models (LLMs) to visual
inputs through pre-training on extensive image-text pairs,
followed by fine-tuning them on visual instructions. This
approach, enhanced by the use of multi-layer perceptrons
(MLP) instead of traditional linear projections, significantly
improves the model’s multimodal capabilities. Additionally,
LLaVA model incorporates a Mixture of Experts (MoE)
strategy, which optimizes processing by assigning special-
ized experts to handle different types of data, thus reducing
redundancy and boosting efficiency in task-specific contexts.
These architectural and methodological enhancements en-
able LLaVA model to excel across a variety of benchmarks,
demonstrating superior performance in complex visual and
language tasks.
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<image> This is an electron microscopy image. Predict the category of the image from these 10 categories: Biological, Fibres, Films and Coated 
Surfaces, MEMS Devices and Electrodes, Nanowires, Particles, Patterned Surface, Porous Sponge, Powder, Tips.

Input: visual data and text

This is an electron microscopy image. Predict the category of the image from these 10 categories: Biological, Fibres, Films and Coated 
Surfaces, MEMS Devices and Electrodes, Nanowires, Particles, Patterned Surface, Porous Sponge, Powder, Tips.

Vision Encoder

flatten

S=0

Processed text

Particle

Output: text

DyA-MoQPEs 

Cross Attention
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Cross Attention
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Figure 4. The schematic depicts a variant of sLAVA (small-scale, language-and-vision assistant), a family of visually-conditioned,
autoregressive text generation model. The small-scale vision-and-language model take as input a multimodal prompt consisting of the
target electron micrographs and user-provided auxiliary text, along with the user question. The model then generates free-form text to
answer end-user questions. The task is to categorize the image into one of ten categories, such as biological fibers and films, in a zero-shot
setting.

<image>,...,<image>These electron microscopy images belong to the particle-based nanomaterial category. <image> Predict the query image label.

Input: visual data and text

DyA-MoQPEs 

These electron microscopy images belong to the particle-based nanomaterial category. Predict the query image label.
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Figure 5. The schematic depicts a variant of sLAVA, a small-scale language-and-vision assistant. It takes a multimodal prompt consisting
of electron micrographs, interspersed arbitrarily with text, as input and generates free-form text as output. The input consists of a series of
electron microscopy images, their corresponding ground-truth labels, and a task-specific instruction. In a few-shot setting, the objective is
to predict the label for the target image.

16



Vision-Language Instruction Tuning for Semiconductor Electron Micrograph Analysis

<image>,<image>,<image>,<image>These images have high intra-dissimilarity and belong to films and coated surfaces nanomaterial category. 
Give me a brief description of how their features classify them into this specific category.

Input: visual data and text

These electron microscopy images have high intra-dissimilarity and belong to films and coated surfaces 
nanomaterial category. Give me a brief description of how their features classify them into this specific category.

Processed text
Vision Encoder

Output: text The electron microscopy images show granular, interconnected textures with varied uniformity, indicative 

of the nanoscale films and coatings' complex surface topography and particle interactions.
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Figure 6. The schematic showcases a variant of sLAVA, a proposed small-scale language-and-vision assistant, which takes as input a
multimodal prompt comprising the electron microscopy images and their corresponding supplementary text descriptions. The small-scale
model’s objective is to generate concise and accurate descriptions explaining how visual features in these high-contrast images determine
their classification into specific nanomaterial categories. During the inference stage, sLAVA draws upon its pre-trained knowledge and
domain-specific expertise to produce informative and accurate responses to the end-user’s questions for unseen microscopic images within
that category.

<image>,<image>,<image>,<image>These images have high inter-similarity but belong to Films and Coated Surfaces, Particles, Porous Sponge, 
and Powder nanomaterial categories. Give me a brief description to identify key features that are distinctive for these nanomaterial categories.

Input: visual data and text
These electron microscopy images have high inter-similarity but belong to Films and Coated Surfaces, Particles, 
Porous Sponge, and Powder nanomaterial categories(left to right). Give me a brief description to identify key 
features that are distinctive for these nanomaterial categories.

Vision Encoder

flatten

Output: text The images display a coated surface with packed grains, individual nanoparticles, a porous matrix, 
and aggregated powder particles, each typical of their respective nanomaterial categories.
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Figure 7. The schematic illustrates a variant of sLAVA, a proposed small-scale language-and-vision assistant specifically designed for
electron microscopy image Visual Question Answering (VQA) tasks. The model takes in multimodal input: a sequence of similar-looking,
high-resolution electron microscopy images showcasing diverse nanomaterial categories such as Films and Coated Surfaces, Particles,
Porous Sponges, and Powders as well as the auxiliary text information. Additionally, sLAVA receives an end-user question that prompts it
to analyze and describe the unique visual features distinguishing each category, thereby generating precise and concise responses.
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<image>,<image>,<image>,<image>These electron microscopy images have spatial heterogeneity and belong to particles nanomaterial category. 
Give me a brief description of how their features classify them into this specific category.

Input: visual data and text
These electron microscopy images have spatial heterogeneity and belong to particles nanomaterial category. 
Give me a brief description of how their features classify them into this specific category.

Processed text
Vision Encoder

flatten

Output: text The images depict various particle morphologies—elongated, spherical, and hollow with porous 
structures—indicative of engineered nanomaterial particles for specific applications.
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Figure 8. The schematic outlines the architecture of the small-scale language-and-vision assistant (sLAVA), which is tailored for the
analysis of electron microscopy images of nanomaterials. Its multimodal input comprises a series of high-contrast electron microscopy
images that showcase spatial heterogeneity and represent diverse particle morphologies. A task-specific directive instructs the multimodal
model to generate accurate and concise descriptions, identifying and differentiating the visual characteristics that are distinctive to the
nanomaterial category represented in each image.

Table 3. Table shows the performance of sLAVA compared to baselines on open-ended VQA task.
Method BLEU-2 (↑) BLEU-4 (↑) ROUGE-1 (↑) ROUGE-2 (↑) ROUGE-L (↑) METEOR (↑)

InstructBLIP(Dai et al.) 0.715±0.063 0.580±0.078 0.820±0.032 0.721±0.011 0.777±0.042 0.835±0.048

LLaVA(Liu et al., 2023) 0.722±0.070 0.588±0.085 0.821±0.032 0.724±0.011 0.779±0.042 0.836±0.046

MiniGPT-4(Zhu et al., 2023) 0.746±0.075 0.607±0.090 0.836±0.033 0.737±0.012 0.792±0.043 0.855±0.047

sLAVA 0.830 ±0.085 0.757 ±0.105 0.936 ±0.036 0.813 ±0.014 0.864 ±0.050 0.914 ±0.055

Table 4. The table shows sLAVA excels on VQA task on high intra-dissimilarity of nanomaterials.
Method BLEU-2 (↑) BLEU-4 (↑) ROUGE-1 (↑) ROUGE-2 (↑) ROUGE-L (↑) METEOR (↑)

InstructBLIP(Dai et al.) 0.677±0.063 0.549±0.078 0.776±0.032 0.682±0.011 0.735±0.042 0.790±0.048

LLaVA(Liu et al., 2023) 0.661±0.070 0.538±0.085 0.751±0.032 0.662±0.011 0.713±0.042 0.765±0.046

MiniGPT-4(Zhu et al., 2023) 0.683±0.075 0.556±0.090 0.765±0.033 0.674±0.012 0.725±0.043 0.782±0.047

sLAVA 0.759 ±0.085 0.692 ±0.105 0.856 ±0.036 0.743 ±0.014 0.790 ±0.050 0.836 ±0.055

Table 5. The table shows sLAVA excels on VQA task on high inter-similarity of nanomaterials.
Method BLEU-2 (↑) BLEU-4 (↑) ROUGE-1 (↑) ROUGE-2 (↑) ROUGE-L (↑) METEOR (↑)

InstructBLIP(Dai et al.) 0.686±0.063 0.556±0.078 0.787±0.032 0.692±0.011 0.745±0.042 0.801±0.048

LLaVA(Liu et al., 2023) 0.685±0.070 0.558±0.085 0.779±0.032 0.687±0.011 0.741±0.042 0.794±0.046

MiniGPT-4(Zhu et al., 2023) 0.701±0.075 0.570±0.090 0.785±0.033 0.692±0.012 0.744±0.043 0.803±0.047

sLAVA 0.771±0.085 0.704±0.105 0.871±0.036 0.756±0.014 0.803±0.050 0.85002±0.055

Table 6. The table shows sLAVA excels on VQA task related to nanomaterials’ spatial heterogeneity.
Method BLEU-2 (↑) BLEU-4 (↑) ROUGE-1 (↑) ROUGE-2 (↑) ROUGE-L (↑) METEOR (↑)

InstructBLIP(Dai et al.) 0.623±0.055 0.504±0.068 0.714±0.028 0.628±0.010 0.677±0.037 0.727±0.042

LLaVA(Liu et al., 2023) 0.629±0.061 0.511±0.074 0.715±0.028 0.631±0.010 0.679±0.037 0.728±0.040

MiniGPT-4(Zhu et al., 2023) 0.650±0.066 0.529±0.079 0.728±0.029 0.642±0.010 0.691±0.037 0.745±0.041

sLAVA 0.723±0.074 0.660±0.092 0.816±0.031 0.709±0.012 0.754±0.044 0.797±0.048
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Table 7. Table shows the performance comparisons: our method vs.
Convolutional Neural Networks(ConvNets), Vision Transformers
(ViTs), & Vision self-supervised learning(VSL) algorithms for
multi-class classification task.

Algorithms Top-1 Top-5

C
on

vN
et

s

AlexNet((Krizhevsky et al., 2017)) 0.528 0.827
DenseNet((Huang et al., 2017)) 0.569 0.929

ResNet((He et al., 2016)) 0.485 0.897
VGG((Simonyan & Zisserman, 2014)) 0.538 0.808

GoogleNet((Szegedy et al., 2015)) 0.609 0.969
SqueezeNet((Iandola et al., 2016)) 0.404 0.698

V
SL

Barlowtwins(Zbontar et al., 2021) 0.148 0.410
SimCLR(Chen et al., 2020b) 0.130 0.379

byol(Grill et al., 2020) 0.143 0.453
moco(He et al., 2020) 0.169 0.472

simsiam(Chen & He, 2021) 0.188 0.535

V
is

io
n

Tr
an

sf
or

m
er

s(
V

iT
s)

CCT(Hassani et al., 2021) 0.570 0.981
CVT(Wu et al., 2021) 0.577 0.930

ConViT(d’Ascoli et al., 2021) 0.609 0.957
ConvVT(Wu et al., 2021) 0.319 0.921

CrossViT(Chen et al., 2021b) 0.442 0.915
SwinT(Liu et al., 2021) 0.707 0.993

VanillaViT(Dosovitskiy et al., 2020) 0.655 0.970
Visformer(Chen et al., 2021c) 0.398 0.856

ATS(Fayyaz et al., 2021) 0.540 0.973
CaiT(Touvron et al., 2021b) 0.657 0.989
DeepViT(Zhou et al., 2021) 0.546 0.988

Dino(Caron et al., 2021) 0.049 0.437
Distillation(Touvron et al., 2021a) 0.533 0.955

LeViT(Graham et al., 2021) 0.624 0.970
NesT(Zhang et al., 2022) 0.660 0.985

PatchMerger(Renggli et al., 2022) 0.578 0.975
PiT(Heo et al., 2021) 0.555 0.979

RegionViT(Chen et al., 2021a) 0.606 0.948
SMIM(Xie et al., 2021) 0.171 0.646

T2TViT(Yuan et al., 2021) 0.749 0.992
ViT-SD(Lee et al., 2021) 0.597 0.973

Zero-Shot-Image Captioning / sLAVA 0.839 0.878
Few-Shot-Image Captioning / sLAVA 0.987 0.994

Table 8. The table shows the comparison of supervised-Learning
Graph Neural Networks(GNNs), self-supervised Graph Contrast-
ing Learning(GCL) Algorithms on the classification task.

Algorithms Top-1 Top-5

G
C

L

GBT(Bielak et al., 2021) 0.547 0.706
GRACE(Zhu et al., 2020) 0.598 0.750

BGRL(Thakoor et al., 2021) 0.556 0.696
InfoGraph(Sun et al., 2019) 0.526 0.702

G
ra

ph
N

eu
ra

lN
et

w
or

ks

APPNP(Klicpera et al., 2018) 0.632 0.786
AGNN(Thekumparampil et al., 2018) 0.538 0.894

ARMA(Bianchi et al., 2021) 0.582 0.987
DNA(Fey, 2019) 0.622 0.916

GAT(Veličković et al., 2017) 0.491 0.985
GGConv(Li et al., 2015) 0.563 0.992

GraphConv(Morris et al., 2019) 0.658 0.996
GCN2Conv(Chen et al., 2020a) 0.732 0.998

ChebConv(Defferrard et al., 2016) 0.504 0.951
GraphConv(Morris et al., 2019) 0.509 0.993

GraphUNet(Gao & Ji, 2019) 0.657 0.978
MPNN(Gilmer et al., 2017) 0.603 0.999

RGGConv(Bresson & Laurent, 2017) 0.618 0.961
SuperGAT(Kim & Oh, 2022) 0.598 0.985

TAGConv(Du et al., 2017) 0.598 0.999
Zero-Shot-Image Captioning / sLAVA 0.839 0.878
Few-Shot-Image Captioning / sLAVA 0.987 0.994

Category Multi-class metrics

Precision Recall F1 Score

Biological 0.971±0.009 0.993±0.007 0.983±0.013
Tips 0.954±0.005 0.967±0.008 0.964±0.011

Fibres 0.995±0.007 1.000±0.000 1.000±0.000
Porous Sponge 0.971±0.014 0.981±0.013 0.965±0.010

Films Coated Surface 0.979±0.005 0.979±0.009 0.988±0.008
Patterned Surface 0.988±0.016 0.983±0.006 0.982±0.014

Nanowires 0.979±0.012 0.989±0.007 0.995±0.011
Particles 0.982±0.006 0.978±0.011 0.968±0.023

MEMS Devices 0.983±0.011 0.970±0.008 0.966±0.009
Powder 0.985±0.014 0.971±0.009 0.955±0.011

Table 9. The table shows the effectiveness of our proposed frame-
work, compared to existing methods, in terms of precision, recall,
and F1-score for accurately classifying nanomaterials of different
categories.
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Vision-Language Instruction Tuning for Semiconductor Electron Micrograph Analysis

Table 10. The table showcases sample electron microscope images alongside their corresponding ground truth captions and captions
generated by the small-scale vision-language model on a VQA task for characterizing nanostructure size, distribution, and aggregation. To
evaluate the quality of these machine-generated descriptions, BLEU-2, ROUGE-L, and METEOR metrics are included, assessing their
similarity to the accurate labels.

Image Ground Truth Answers
BLEU-2/
ROGUE-L/
METEOR

The SEM image shows nanostructures
that vary in size, clustered predominantly
around a central node, with a non-uniform,
network-like distribution and noticeable
aggregation at interconnection points.

The SEM image displays nanostructures that
vary in size, predominantly clustered around
a central node, with a non-uniform, network-
like pattern and noticeable aggregation at the
interconnection points.

0.762
0.877
0.947

The SEM image shows tightly aligned
fibrous nanostructures with micrometer-
scale width, forming a uniform, mat-like
arrangement without random aggregation.

The SEM image illustrates tightly aligned fi-
brous nanostructures with micrometer-scale
width, forming a uniform, mat-like configura-
tion without random aggregation.

0.834
0.905
0.892

The SEM image reveals hexagonal nanos-
tructures tightly packed in a uniform pat-
tern, with individual sizes in the sub-
micrometer range and minimal interstitial
spacing, indicating a structured assembly.

The SEM image reveals hexagonal nanostruc-
tures compactly arranged in a uniform layout,
with individual sizes in the sub-micrometer
range and limited space between them, denot-
ing a structured formation.

0.614
0.702
0.698

The image shows microstructures with
micrometer-scale, geometric precision, in-
dicative of controlled lithography with no
random aggregation, arranged in a regular,
circuit-like pattern.

The image displays microstructures with
micrometer-scale, geometrically precise, indi-
cating controlled lithography with no random
clusters, arranged in a regular, circuit-style
pattern.

0.570
0.723
0.813

The image features uniformly spaced, ver-
tically aligned nanowires with diameters
in the hundreds of nanometers, showing
no significant aggregation.

The image depicts uniformly spaced, verti-
cally oriented nanowires with diameters span-
ning hundreds of nanometers, without sub-
stantial aggregation.

0.494
0.667
0.638

The SEM image displays spherical nanos-
tructures grouped in clusters, with sizes
likely in the tens to hundreds of nanome-
ters range, scattered randomly across the
surface.

The SEM image shows spherical nanostruc-
tures formed in clusters, with their sizes likely
varying from tens to hundreds of nanometers,
randomly spread across the surface.

0.574
0.760
0.764

The image shows a diamond-shaped nano-
lattice with uniform units several microm-
eters in size, indicating precision fabrica-
tion without random aggregation.

The image presents a diamond-configured
nano-lattice with uniform structures a few
micrometers in size, demonstrating precision
in fabrication without evident aggregation.

0.431
0.682
0.632

The image shows randomly distributed, ir-
regularly shaped voids up to a few microm-
eters in size within a solid matrix, with no
aggregation.

The image depicts randomly arranged, un-
evenly shaped voids, each up to a few mi-
crometers in size, within a solid framework,
without any aggregation.

0.470
0.711
0.666

The image presents densely packed, ag-
gregated nanostructures with a size range
likely within the sub-micrometer to mi-
crometer scale, as inferred from the 2 µm
scale bar.

The image demonstrates densely aggregated
nanostructures with dimensions between the
sub-micrometer and micrometer scale, as in-
ferred from the 2µm scale bar.

0.609
0.711
0.708

The image captures a single nanostructure
with a tapered end, measuring less than
200 nm at its widest point, isolated with-
out any visible aggregation or neighboring
structures.

The micrograph shows an individual nanos-
tructure with a tapering tip, spanning under
200 nm at its broadest region, separated with-
out any discernible clustering or adjacent for-
mations.

0.307
0.711
0.430
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Table 11: The table shows question-answer pairs about a microscopic image of patterned surface nanomaterial, created
with GPT-4 Turbo with vision. In summary, GPT-4 helps generate detailed instruction-tuning dataset about these
nanomaterials images for training smaller multimodal models(SMMs), to serve as a domain-specific vision-language
assistant for enterprise adoption.

Examine the provided input image and answer the following questions
about the patterned surface nanomaterial it depicts.

Query prompt GPT-4 Turbo with vision output

**Basics** The image is a scanning electron microscope (SEM) view of a patterned
nanomaterial with hexagonal structures. The scale bar indicates that 1
micrometer (µm) is the unit of measurement, which means each unit on
the image corresponds to 1 µm in the real world.

**Morphology and Structure** The nanomaterials in the image are hexagonal and uniformly sized, ar-
ranged in a honeycomb pattern without visible layers or phases within
the individual structures. Their consistent shape suggests a precise and
controlled fabrication process.

**Size and Distribution** The nanostructures appear to be roughly 300 to 500 nanometers in size,
judging from the 1-micrometer scale bar. They are evenly spaced in a
hexagonal pattern, without any sign of clustering or random placement.
There’s also no visible aggregation or bundling; each nanostructure is
distinct and separate from its neighbors.

**Surface Characteristics** The nanomaterials have smooth, flat surfaces with uniform hexagonal
shapes and no visible imperfections, suggesting high purity and structural
integrity in their creation.

**Composition and Elements** The electron microscope image displays uniform brightness and contrast
across the nanostructures, suggesting a consistent material composition
without visible evidence of different components. There are no labels
or markers indicating specific elements or compounds; such information
would require additional analytical methods not provided in the image.

**Interactions and Boundaries** The nanostructures are fully separate with clear, well-defined boundaries
between them, suggesting precise fabrication.

**External Environment** The nanomaterials are set against a textured substrate with no visible signs
of interaction like dissolution or blending. The image only shows the
nanostructures and their immediate environment, with no other distinct
objects or structures present.

**Image Technique and Modifica-
tions**

The image is a raw SEM micrograph with potential minor adjustments to
brightness and contrast, showcasing the three-dimensional detail of the
nanostructures.

**Functional Features** The image shows uniform nanostructures without identifiable functional
elements or regions, providing a static structural representation rather than
revealing behavioral or dynamic information.

**Context and Application** The uniform hexagonal shape and close packing of the nanomaterials in the
image suggest potential applications in photonics, electronics, or materials
science, and the realistic details indicate it depicts actual experimental
samples.



Table 12: The table shows question-answer pairs about a microscopic image of biological nanomaterial, created
with GPT-4 Turbo with vision. In summary, GPT-4 helps generate detailed instruction-tuning dataset about these
nanomaterials images for training smaller multimodal models(SMMs), to serve as a domain-specific vision-language
assistant for enterprise adoption.

Examine the provided input image and answer the following questions
about the biological nanomaterial it depicts.

Query prompt GPT-4 Turbo with vision output

**Basics** The image is a Scanning Electron Microscope (SEM) image of a neuron
with dendrites. The scale bar represents 2 micrometers, indicating the high
magnification level of the image.

**Morphology and Structure** The depicted neuron features a roughly spherical soma with a nucleus
and organelles. Branch-like dendrites extend from the soma, varying in
thickness and length, crucial for receiving signals and neuronal networking.
Unlike inorganic materials, the neuron has an irregular surface and shows
variability in size and shape, typical of biological structures.

**Size and Distribution** The image shows a neuron’s cell body and finer branching dendrites. The
scale bar indicates a cell body diameter of several micrometers. The den-
drites vary in width, likely from hundreds of nanometers to a micrometer.
The non-uniform dendrites extend outward in a complex, branching pattern
characteristic of neuronal networking. Unlike aggregated inorganic nanos-
tructures, the dendrites appear individually extended with clear spaces
between to establish neuronal synapses.

**Surface Characteristics** The neuron’s surface is rough and irregular, typical for biological structures
under high magnification. There are no uniform textures, and while there
are no imperfections like in synthetic materials, the surface complexity
reflects the presence of biological molecules.

**Composition and Elements** The SEM image is grayscale, showing variations in brightness and contrast
that may suggest different materials, but specific compositional details
cannot be determined. There are no labels indicating the presence of
specific elements or compounds in the image.

**Interactions and Boundaries** The dendrites in the image are separate and not touching or fused, with each
dendrite clearly distinguishable from others. The boundaries between these
structures are well-defined, showing no blending or undefined borders.

**External Environment** In the SEM image, there are no visible interactions between the neuron
and an external environment like solvents or polymers. The background
is uniform, with no discernible structures or objects other than the neuron
and its dendrites.

**Image Technique and Modifica-
tions**

The image is captured using Scanning Electron Microscopy (SEM), indi-
cated by its high resolution and grayscale appearance. There is no evidence
of post-processing techniques like false coloring or 3D rendering; it appears
to be a standard SEM micrograph.

**Functional Features** The SEM image of the neuron does not reveal specific functional elements
like active sites. It’s a static representation, as SEM captures a frozen
moment and cannot depict dynamic processes within the neuron.

**Context and Application** The image depicts actual neurons studied to understand the nervous sys-
tem and brain function. The detailed SEM imaging indicates these are
experimentally observed, not simulated, neuron structures.



Table 13: The table shows question-answer pairs about a microscopic image of fibers nanomaterial, created with GPT-4
Turbo with vision. In summary, GPT-4 helps generate detailed instruction-tuning dataset about these nanomaterials
images for training smaller multimodal models(SMMs), to serve as a domain-specific vision-language assistant for
enterprise adoption.

Examine the provided input image and answer the following questions
about the fibres nanomaterial it depicts.

Query prompt GPT-4 Turbo with vision output

**Basics** The image depicts nanofibers, which are a type of nanomaterial. The scale
or resolution of the image is not clear, so I cannot determine the real-world
length each unit of measurement corresponds to.

**Morphology and Structure** The image of the nanomaterials exhibits a fibrous morphology with a con-
sistently sized and shaped appearance, indicating a uniform manufacturing
process. They are arranged in bundles and aggregations of parallel fibers,
resembling twisted yarn or rope. There are no clearly visible layers, phases,
or distinct domains within the individual nanofibers from the image alone.
The fibers appear to have a relatively consistent diameter and form through-
out the visible area, suggesting a homogeneous material without significant
variability in size or shape.

**Size and Distribution** The size of the individual nanostructures cannot be estimated without a
clear scale reference. The nanofibers are clustered, resembling bundles,
indicating some degree of aggregation. They do not appear to be evenly
spaced but rather randomly oriented and aggregated.

**Surface Characteristics** The fibers appear to have a relatively smooth surface, without distinct
textures such as roughness or granular patterns. From the image provided,
there are no noticeable imperfections, defects, or pores visible on the
surfaces of the nanomaterials. However, the resolution and clarity of the
image limit the ability to make detailed observations regarding surface
characteristics.

**Composition and Elements** The grayscale image lacks visual cues to determine compositional varia-
tions. No brightness, contrast, labels, or markers indicate distinct compo-
nents or elemental compounds. Additional spectroscopic data and analysis
would be required beyond what is provided.

**Interactions and Boundaries** The nanostructures appear to be touching and fused together, suggesting
strong interfiber interactions. The boundaries between individual nanos-
tructures are not clearly distinguishable, indicating they are closely packed
or bundled. They blend together without defined borders, which is typical
for aggregated nanofibers.

**External Environment** There are no visible signs of interaction with the environment or matrix,
and no other structures or objects besides the nanomaterials are evident.

**Image Technique and Modifica-
tions**

The high-resolution, depth of field, and surface detail indicate this is likely
an unprocessed grayscale SEM image, without false coloring or 3D render-
ing. The characteristics are typical of scanning electron microscopy.

**Functional Features** The image is a static representation of the physical structure of the nanoma-
terials, without clearly identifiable active sites or visible dynamic processes.

**Context and Application** The image alone does not provide enough information to determine the
intended application of the nanomaterials. Additional context is required
to infer whether these are experimental or simulated samples.



Table 14: The table shows question-answer pairs about a microscopic image of films and coated surface nanomaterials,
created with GPT-4 Turbo with vision. In summary, GPT-4 helps generate detailed instruction-tuning dataset about
these nanomaterials images for training smaller multimodal models(SMMs), to serve as a domain-specific vision-
language assistant for enterprise adoption.

Examine the provided input image and answer the following questions
about the films and coated surface nanomaterial it depicts.

Query prompt GPT-4 Turbo with vision output

**Basics** The image is a scanning electron microscope (SEM) image of a nanoma-
terial with polygonal shaped particles. The scale bar indicates that one
unit of measurement in the image corresponds to one micrometer (1 µm).
The magnification is 40,000 times (40.00 KX). The specific type of nano-
material cannot be determined from the image alone without additional
information.

**Morphology and Structure** The nanomaterials in the image exhibit an overall irregular polygonal shape,
which is characteristic of crystalline structures that have multiple facets.
There don’t appear to be visible layers, phases, or distinct domains within
the individual particles; they seem relatively homogenous in texture and
contrast. There is some variability in size and shape, but the particles
generally maintain a consistent morphology throughout the image. This
uniformity suggests a controlled synthesis process that promotes a specific
crystal growth pattern.

**Size and Distribution** The nanostructures are sub-micrometer, uniform in size and morphology,
evenly spaced and randomly placed without aggregation. They show con-
sistent features across the image.

**Surface Characteristics** The surfaces of the nanomaterials appear predominantly smooth with some
minor texture variations, which are typical for materials at this scale. There
are no obvious imperfections such as defects, pores, or impurities that
can be discerned from this image. The edges of the nanostructures are
well-defined, which often indicates a high level of purity and structural
integrity in the synthesis process.

**Composition and Elements** The SEM image does not show variations in brightness or contrast that
would indicate different components, suggesting a uniform composition.
There are no labels or markers indicating specific elements or compounds.

**Interactions and Boundaries** The nanostructures appear to be separate and not fused together, with
clear boundaries between each particle. There is no blending of borders,
indicating distinct and individual structures.

**External Environment** The image does not show any signs of interaction between the nanomate-
rials and their surrounding environment; no solvents, polymers, or other
materials are visible. The background is consistent and featureless, which
suggests it is likely a vacuum or a solid substrate with no additional struc-
tures or objects present other than the nanomaterials themselves.

**Image Technique and Modifica-
tions**

The image is a raw, grayscale Scanning Electron Microscopy (SEM) mi-
crograph without any apparent post-processing.

**Functional Features** The SEM image does not reveal specific functional elements like active
sites. It is a static representation and does not depict any dynamic processes
within the nanomaterials.

**Context and Application** The intended use or application of the nanomaterials and whether they are
actual samples or theoretical representations cannot be determined from
the image alone; additional context is needed.



Table 15: The table shows question-answer pairs about a microscopic image of nanowires nanomaterials, created
with GPT-4 Turbo with vision. In summary, GPT-4 helps generate detailed instruction-tuning dataset about these
nanomaterials images for training smaller multimodal models(SMMs), to serve as a domain-specific vision-language
assistant for enterprise adoption.

Examine the provided input image and answer the following questions
about the nanowires nanomaterial it depicts.

Query prompt GPT-4 Turbo with vision output

**Basics** The image depicts a forest of nanowires, a type of nanomaterial. The scale
bar indicates 2 micrometers (µm), which means that one unit of measure-
ment in the image corresponds to a real-world length of 2 micrometers..

**Morphology and Structure** The nanowires in the image exhibit a high aspect ratio, being much longer
than they are wide, typical for this material. They are uniform in diameter
and length, indicating a controlled synthesis process. The image resolution
and contrast do not reveal distinct layers or phases. However, the nanowires
are densely packed with a consistent orientation, characteristic of well-
aligned nanowire arrays. They are consistent in size and shape across the
visible field, suggesting a uniform growth mechanism. Variability is min-
imal, which is desirable for applications requiring predictable electronic,
optical, and mechanical properties.

**Size and Distribution** The nanowires appear to be evenly spaced and uniformly distributed.
There’s no visible evidence of aggregation or bundling, suggesting they
are well-separated individual structures. Without precise measurements,
estimating their diameter is challenging, but given the 2 µm scale bar, they
likely range from tens to hundreds of nanometers in width.

**Surface Characteristics** The nanowires have smooth surfaces without visible textures, pores or
impurities, indicating high quality and clean synthesis.

**Composition and Elements** No evidence of compositional variations or specific elements is discernible
from the image provided. There are no labels indicating the presence of
certain elements or compounds.

**Interactions and Boundaries** The nanostructures appear to be separate and not fused together, with clear
boundaries between each nanowire. They are well-defined and do not blend
into each other, indicating that they are individually distinct.

**External Environment** The image doesn’t show any signs of interaction between the nanomaterials
and an external environment or matrix such as solvents or polymers. The
background appears relatively uniform and does not display any discernible
structures or objects other than the nanomaterials themselves. Any such
interactions or additional structures are not visible in this image.

**Image Technique and Modifica-
tions**

The image is likely captured using Scanning Electron Microscopy (SEM).
There are no evident post-processing modifications like false coloring or
3D rendering in the image.

**Functional Features** The image appears to be a static representation and does not reveal specific
functional elements like active sites or regions with distinct properties. No
dynamic processes are depicted; it primarily shows the static structure of
the nanowires.

**Context and Application** The primary use of the nanowires cannot be determined from the image
alone. They have various potential applications, but specific intent isn’t
clear. The image appears to depict actual experimental samples, not theo-
retical or simulation-based representations.



Table 16: The table shows question-answer pairs about a microscopic image of porous sponge nanomaterial, created
with GPT-4 Turbo with vision. In summary, GPT-4 helps generate detailed instruction-tuning dataset about these
nanomaterials images for training smaller multimodal models(SMMs), to serve as a domain-specific vision-language
assistant for enterprise adoption.

Examine the provided input image and answer the following questions
about the porous sponge nanomaterial it depicts.

Query prompt GPT-4 Turbo with vision output

**Basics** The image shows a nanoporous material. The scale bar indicates that 1 µm
(micrometer) in the image corresponds to a real-world length of 1 µm.

**Morphology and Structure** The nanomaterial depicted in the image exhibits a highly porous, sponge-
like morphology with a network of interconnected voids and struts. There
is a considerable variability in the pore sizes and shapes, with some being
nearly circular while others are more irregular. There are no apparent layers
or phases visible; it appears to be a homogenous single-phase material.
The struts of the material also show variability in thickness. Overall, the
structure is quite heterogeneous with a random, non-uniform distribution
of pores and solid regions.

**Size and Distribution** The nanoporous material has randomly distributed pores and struts that
range in size from sub-micron to several microns across, based on the 1
µm scale bar. The nanoporous structure appears to be a single integrated
network without evidence of nanostructure aggregation or bundling. This
foam-like material with varying nanostructure sizes and random porosity is
characteristic of aerogels and similar nanoporous materials

**Surface Characteristics** The surfaces of the nanomaterials appear rough and irregular, with a high
degree of texture likely due to the porous nature of the material. The
pores themselves are the imperfections in the surface, and there could
also be other defects not clearly distinguishable at this magnification and
resolution.

**Composition and Elements** The SEM image doesn’t provide direct evidence of compositional varia-
tions or specific elements. Variations in brightness and contrast suggest
differences in composition, but without additional data, we cannot iden-
tify specific elements or compounds. There are no markers indicating
composition in the image.

**Interactions and Boundaries** The nanostructures appear to be fused together, forming a continuous
network with no clear boundaries between individual structures. The pores
and struts blend into each other without defined borders, characteristic of a
single-phase material with a homogenous composition.

**External Environment** The SEM image only shows the nanomaterial itself, without any visible
surrounding environment or matrix.

**Image Technique and Modifica-
tions**

The image is captured using Scanning Electron Microscopy (SEM). There
are no apparent post-processing modifications like false coloring or 3D
rendering; it appears to be a standard grayscale SEM image.

**Functional Features** The SEM image is a static representation that reveals surface morphol-
ogy and structure, but does not show dynamic processes or functional
properties.

**Context and Application** The image likely shows an actual experimental sample of a nanoporous
material. Its specific intended use or application is not clear from the image
alone, but such materials are commonly used in catalysis, filtration, sensors,
and energy storage.



Table 17: The table shows question-answer pairs about a microscopic image of tips nanomaterial, created with GPT-4
Turbo with vision. In summary, GPT-4 helps generate detailed instruction-tuning dataset about these nanomaterials
images for training smaller multimodal models(SMMs), to serve as a domain-specific vision-language assistant for
enterprise adoption.

Examine the provided input image and answer the following questions
about the tip nanomaterial it depicts.

Query prompt GPT-4 Turbo with vision output

**Basics** The image shows a tip nanomaterial, likely a nanowire or nanorod, viewed
under a scanning electron microscope (SEM). The scale bar represents 10
micrometers (µm), indicating the magnified view’s resolution.

**Morphology and Structure** The nanomaterial image shows elongated, needle-like shapes typical of
nanowires or nanorods. The surface is relatively smooth with minor rough-
ness, which is common at this scale. There are no visibly distinct layers,
phases, or domains. The structure is uniform without clear segmentation.
The material exhibits a consistent shape, tapering to a finer point at the
tip. There does not appear to be significant variability in size along its
length, indicating a uniform growth or fabrication process. However, with-
out a wider view of these nanomaterials, it is difficult to comment on the
consistency across multiple specimens.

**Size and Distribution** The image shows a single nanomaterial less than 1 micrometer wide based
on the 10 micrometer scale bar. The full length cannot be determined from
this limited view. With only one nanostructure visible, no conclusions about
distribution, spacing, clustering, or aggregation can be drawn. A wider view
with multiple nanostructures is necessary to assess those characteristics.
The key observation from this image is the estimated maximum width of
this nanomaterial.

**Surface Characteristics** The surface of the nanomaterial appears predominantly smooth with some
minor roughness. There are no clearly visible defects, pores, or impurities
on the surface at this magnification.

**Composition and Elements** The uniform grayscale contrast implies consistent nanomaterial composi-
tion but lacks chemical details. Additional analyses like EDX are needed
with SEM to determine elemental composition, since SEM provides surface
topology not chemistry.

**Interactions and Boundaries** The image only shows a single nanostructure, so interactions or boundaries
with other structures cannot be assessed. There are no visible boundaries
or distinct phases within this nanomaterial.

**External Environment** No signs of interaction with a surrounding environment or other materials
are visible in the image, and there are no other structures or objects present
besides the nanomaterial.

**Image Technique and Modifica-
tions**

The image is captured using Scanning Electron Microscopy (SEM). There
are no apparent post-processing modifications like false coloring or 3D
rendering; it appears to be a standard grayscale SEM image.

**Functional Features** The SEM image does not reveal specific functional elements like active
sites, and it represents a static view of the nanomaterial. SEM images
typically don’t capture dynamic processes.

**Context and Application** The primary use or application of the nanomaterials in the image cannot
be determined from the SEM image alone. The image depicts an actual
experimental sample, not a theoretical or simulation-based representation.
Applications for such nanostructures vary widely, including electronics,
sensors, and biomedical devices



Table 18: The table shows question-answer pairs about a microscopic image of particles nanomaterial, created
with GPT-4 Turbo with vision. In summary, GPT-4 helps generate detailed instruction-tuning dataset about these
nanomaterials images for training smaller multimodal models(SMMs), to serve as a domain-specific vision-language
assistant for enterprise adoption.

Examine the provided input image and answer the following questions
about the particles nanomaterial it depicts.

Query prompt GPT-4 Turbo with vision output

**Basics** The image depicts spherical nanoparticles, and the scale bar indicates that
100 nanometers (nm) corresponds to the real-world length in the image.

**Morphology and Structure** The nanomaterials in the image have a spherical shape with a consistent
size and shape throughout, indicating a uniform and monodisperse batch.
There are no visible layers, phases, or distinct domains within the indi-
vidual nanoparticles; they appear to be solid and single-phased under the
resolution provided by the SEM. The uniformity suggests a well-controlled
synthesis.

**Size and Distribution** The individual nanostructures are uniform in size. Although exact measure-
ments require specialized software, an estimate can be made using the scale
bar, which represents 100 nanometers. The particles are slightly smaller
than the scale bar, likely around 70-90 nanometers in diameter. They are
distributed in an orderly, hexagonal close-packed arrangement, indicating
even spacing without randomness. There is no evidence of aggregation
or bundling; the nanoparticles maintain distinct boundaries and do not
appear fused or clumped, suggesting good stability without a tendency to
aggregate under current conditions.

**Surface Characteristics** The surfaces of the nanomaterials appear predominantly smooth without
distinct textures. There are no noticeable imperfections such as defects,
pores, or impurities visible on the surfaces of these nanomaterials in the
image.

**Composition and Elements** There are no visible compositional variations or specific markers indicat-
ing different elements in the image; it all appears uniform in grayscale,
suggesting a consistent material composition throughout the nanoparticles.

**Interactions and Boundaries** The individual nanostructures appear to be touching but not fused, with
clear boundaries between each particle, suggesting they are separate entities.
There’s no blending of borders, indicating distinct nanostructures.

**External Environment** There are no signs of interaction between the nanomaterials and any sur-
rounding matrix in the image. It shows just the nanoparticles without any
visible solvents, polymers, or other materials. There are also no discernible
structures or objects present that are not nanomaterials; the entire field of
view is occupied by the nanoparticles.

**Image Technique and Modifica-
tions**

The image characteristics and footer information indicate this is a standard,
unprocessed grayscale SEM image. There is no evidence of techniques like
false coloring or 3D rendering applied; it appears to be raw SEM imaging
data.

**Functional Features** The image does not show any specific functional elements or active sites on
the nanoparticles. It is a static representation, with no dynamic processes
depicted.

**Context and Application** The intended use or application of the nanomaterials cannot be determined
from the image alone, and it’s unclear whether they represent actual experi-
mental samples or are theoretical/simulation-based.



Table 19: The table shows question-answer pairs about a microscopic image of powder nanomaterial, created with GPT-
4 Turbo with vision. In summary, GPT-4 helps generate detailed instruction-tuning dataset about these nanomaterials
images for training smaller multimodal models(SMMs), to serve as a domain-specific vision-language assistant for
enterprise adoption.

Examine the provided input image and answer the following questions
about the powder nanomaterial it depicts.

Query prompt GPT-4 Turbo with vision output

**Basics** The image is a scanning electron microscope (SEM) image of a powder
nanomaterial. The type of nanomaterial cannot be determined from the
image alone. The scale bar indicates a measurement of 2 micrometers
(µm), meaning each unit on the scale corresponds to real-world lengths of
2 µm.

**Morphology and Structure** The nanomaterials in the SEM image appear to have an irregular, clustered
morphology with varying sizes and shapes, which suggests they do not
exhibit a consistent size and shape throughout. There are no clear layers,
phases, or distinct domains visible; the material seems to be agglomerated,
with particles fusing together in some areas. The variability in size and
shape is common in powder nanomaterials, which can result from synthesis
conditions or post-synthesis treatments.

**Size and Distribution** The nanostructures vary in size from sub-micrometers to a few micrometers,
with uneven spacing and visible clustering and aggregation, typical for
nanopowder samples viewed at high magnification.

**Surface Characteristics** The nanomaterials in the image exhibit a rough and irregular surface tex-
ture, with no distinct patterns. The surfaces are not smooth, which is typical
for powdered nanomaterials due to their high surface area to volume ratio.
There are noticeable imperfections such as non-uniformities in size and
shape, which could indicate defects, pores, or impurities. These imper-
fections are common in nanostructures and can affect their physical and
chemical properties.

**Composition and Elements** The SEM image does not provide evidence of compositional variations,
as it is in grayscale and changes in brightness or contrast can be due
to topography rather than composition. There are no labels or markers
indicating the presence of specific elements or compounds within the
image.

**Interactions and Boundaries** The nanostructures appear to be predominantly clustered and touching,
with many of them fused together, creating a cohesive mass. This suggests
a high degree of interaction between the particles. It is challenging to
distinguish clear boundaries between different structures or phases; they
blend together without defined borders, which is indicative of aggregation
common in powders at the nanoscale.

**External Environment** The SEM image shows the nanomaterials with no visible surrounding
environment or external materials.

**Image Technique and Modifica-
tions**

The image is an unmodified scanning electron microscopy (SEM) micro-
graph showing nanomaterial morphology without post-processing.

**Functional Features** The SEM image is a static snapshot showing morphology. No dynamic
processes or functional elements are discernible without additional data.

**Context and Application** The SEM image depicts experimental nanomaterials with unspecified appli-
cations, as nanomaterials have diverse uses and require additional context.
The image itself does not indicate a primary intended application.



Table 20: The table shows question-answer pairs about a microscopic image of MEMS devices and electrodes, created
with GPT-4 Turbo with vision. In summary, GPT-4 helps generate detailed instruction-tuning dataset about these
nanomaterials images for training smaller multimodal models(SMMs), to serve as a domain-specific vision-language
assistant for enterprise adoption.

Examine the provided input image and answer the following questions
about the MEMS devices and electrodes nanomaterial it depicts.

Query prompt GPT-4 Turbo with vision output

**Basics** The image is a scanning electron microscope (SEM) picture of a MEMS
device. The scale bar shows 2 micrometers, indicating the resolution of the
image.

**Morphology and Structure** The image shows parallel lines with uniform width and spacing, suggesting
consistent size and shape, indicative of structured electrodes or components
of a MEMS device. There are no visible layers or phases within the
materials, and no variability in size and shape is apparent among the
nanomaterials themselves.

**Size and Distribution** The parallel nanostructures have a consistent size and even spacing, suggest-
ing precise fabrication techniques, with no visible aggregation or bundling,
indicating high design and fabrication precision.

**Surface Characteristics** The surfaces of the nanostructures in the image appear predominantly
smooth, which is typical for fabricated MEMS components. There are
some small particles and imperfections visible on the surface, which could
be due to impurities, defects, or debris.

**Composition and Elements** The image does not show color variations, and there are no labels indicating
specific elements or compounds. The consistent contrast suggests uniform
material composition for the structures displayed.

**Interactions and Boundaries** The nanostructures appear fully separate and not fused together, with clear
and distinct boundaries between them. The image shows no blending of
structures; each one is individually distinguishable.

**External Environment** The nanostructures are embedded in a matrix with no clear signs of inter-
action. Small particles and irregularities are present on the surface, likely
impurities or debris, but not part of the nanomaterials themselves.

**Image Technique and Modifica-
tions**

The image is likely captured using Scanning Electron Microscopy (SEM),
as indicated by the surface detail and depth of field. There is no evidence of
post-processing techniques like false coloring or 3D rendering; it appears
as a standard grayscale SEM image.

**Functional Features** The image appears static and does not depict dynamic processes. It shows
uniform structures, likely part of a MEMS device, but without additional
context, specific functional elements like active sites cannot be conclusively
identified. The image primarily provides a static representation of the
nanostructures.

**Context and Application** The nanomaterials are likely for microelectronics or sensors, typical of
MEMS devices. The image, resembling real SEM samples, suggests it’s
based on actual experimental samples rather than being theoretical or
simulation-based.



A.12. Additional datasets and Experimental results
To assess the robustness and applicability of our frame-
work, we conducted a comprehensive evaluation using a
diverse set of open-source benchmark datasets. We care-
fully selected datasets that were relevant to our research
domain and encompassed a broad spectrum of applications,
ensuring a generalizable evaluation process. This rigorous
approach not only verified the effectiveness of our frame-
work on these established datasets but also demonstrated its
adaptability to a wide range of scenarios. This is particu-
larly significant because our framework extends beyond the
SEM dataset(Aversa et al., 2018) for which it was initially
developed, showcasing its potential for real-world use cases.

Figure 9. The figure showcases a selection of electron microscopy
images from the NEU-SDD dataset(Deshpande et al., 2020), which
clearly illustrate six common types of surface defects found on
hot-rolled steel strips: pitted surfaces, scratches, rolled-in scale,
crazing, patches, and inclusion defects. These microscopic images
provide a comprehensive visual representation of the various types
of defects that can occur on steel surfaces, allowing for a better
understanding of their characteristics and potential impact on the
material’s properties and performance.

A.12.1. NEU-SDD((DESHPANDE ET AL., 2020))

To rigorously evaluate our proposed framework’s perfor-
mance on zero/few-shot label prediction and VQA tasks for
steel material surface defects, we leveraged the comprehen-
sive NEU-SDD dataset1. The diverse dataset encompasses
a variety of surface defect types, making it well-suited for
assessing the generalizability of the proposed framework’s
performance. The dataset includes an extensive collection
of 1,800 electron microscopy images depicting surface de-
fects on hot-rolled steel plates, providing a comprehensive
resource for evaluating our framework’s ability to under-
stand complex visual information and answer insightful
questions about the surface defects. The NEU-SDD dataset
comprises grayscale images, each having a dimension of
200 × 200 pixels, and is carefully classified into six distinct
defect types, with 300 representative images for each cat-
egory. These categories depict a diverse range of surface
imperfections, including pitted surfaces, scratches, rolled-
in scale, crazing, patches, and inclusion defects. Figure 9
provides illustrative images from each defect category. The
NEU-SDD dataset is a valuable benchmark for developing
and testing algorithms that can answer questions about im-
ages of surface defects. Its large size, diversity of defect
types depicted, and high-quality images make it a demand-
ing and representative dataset for evaluating VQA methods

1Datasource: http://faculty.neu.edu.cn/
yunhyan/NEU_surface_defect_database.html

in various surface defect contexts.

A.12.2. CORROSION MONITORING INSPECTION(CMI)
The CMI dataset2 contains 600 detailed electron micro-
graphs of corroded panels, carefully curated by corrosion
experts. This collection of images vividly captures deteri-
oration across varying severity levels of corrosion damage.
The images are classified according to the ASTM-D1654
standards, with individual scores ranging from 5 to 9 (with
higher scores indicating less corrosion severity), with 120
unique micrographs per score. Each high-resolution micro-
graph, measuring 512 × 512 pixels, provides a granular
view of the corrosion damage. We used the CMI dataset (as
shown in Figure 10 with representative images from each
scoring category) to conduct experimental studies evaluating
the effectiveness of our proposed framework for zero/few-
shot prediction and VQA tasks.

Figure 10. The figure displays a selection of meticulously classi-
fied electron micrographs from the CMI dataset. Each micrograph
is assigned a score (ranging from 5 to 9, with higher scores indicat-
ing less severe corrosion) according to ASTM-D1654 standards.
These micrographs illustrate a progression of increasing corrosion
severity (due to pitting, thinning, cracking) as the score decreases,
thus reflecting more extensive damage. This diverse collection of
electron micrographs, encompassing the entire spectrum of corro-
sion severity levels, facilitates the development and evaluation of
cutting-edge algorithms for precise corrosion assessment. More-
over, it provides a realistic and faithful representation of corrosion
damage across various degrees of severity.

A.12.3. KTH-TIPS

The KTH-TIPS dataset3, a seminal benchmark in texture
analysis, comprises an extensive collection of 810 high-
resolution electron micrographs. Each image, having a
dimension of 200 × 200 pixels, has been meticulously cate-
gorized into one of ten distinct material classes, showcasing
a rich diversity of textures. Included are materials such as
sponge, orange peel, styrofoam, cotton, cracker, linen, crust,
sandpaper, aluminum foil, and corduroy. The microscopic
images capture each texture under varying real-world condi-
tions, such as differences in lighting, orientation, and scale.
This versatility makes the KTH-TIPS dataset challenging
and comprehensive for evaluating texture recognition and
analysis methods. Figure 11 presents illustrative samples
from each of the ten material categories.

2https://arl.wpi.edu/corrosion_dataset
3https://www.csc.kth.se/cvap/databases/

kth-tips/index.html

http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_database.html
http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_database.html
https://arl.wpi.edu/corrosion_dataset
https://www.csc.kth.se/cvap/databases/kth-tips/index.html
https://www.csc.kth.se/cvap/databases/kth-tips/index.html


Figure 11. The figure presents a sample collection of electron micrographs from the KTH-TIPS texture dataset. These micrographs
showcase the ten distinct material classes, including sponge, orange peel, styrofoam, cotton, cracker, linen, crust, sandpaper, aluminum
foil, and corduroy.

Table 21. The table compares the performance of our proposed framework on open-ended VQA tasks across benchmark datasets to several
well-known baselines.

Method BLEU-2 (↑) BLEU-4 (↑) ROUGE-1 (↑) ROUGE-2 (↑) ROUGE-L (↑) METEOR (↑)

InstructBLIP(Dai et al.) 0.808 0.656 0.920 0.817 0.884 0.939

LLaVA(Liu et al., 2023) 0.806 0.657 0.935 0.818 0.890 0.937

MiniGPT-4(Zhu et al., 2023) 0.839 0.672 0.939 0.813 0.879 0.957

sLAVA 0.929 0.839 0.971 0.914 0.965 0.988

Algorithms NEU-SDD CMI KTH-TIPS

B
as

el
in

es ResNet 0.906 0.928 0.941
GoogleNet 0.936 0.928 0.929
SqueezeNet 0.955 0.943 0.963
VanillaViT 0.962 0.968 0.972

sLAVA 0.992 0.987 0.989

Table 22. The table compares the performance of the proposed framework to well-established baselines on benchmark datasets for
multi-class classification.

To evaluate the multi-category texture recognition capabili-
ties of our proposed method, particularly for zero/few-shot
classification and VQA tasks, we conducted thorough ex-
periments on this comprehensive dataset.

A.12.4. ADDITIONAL INFORMATION

The belief that a single set of prompts can effectively en-
able advanced AI models, like GPT-4 Turbo with Vision,
to handle various image datasets is flawed. Instead, spe-
cialized prompts tailored to specific tasks are necessary for
the accurate generation of instruction-following datasets to
customize small-scale vision-language models. This tai-
lored approach maximizes the capabilities of sophisticated
small-scale multimodal models and ensures their most ef-
fective use. For instance, in our supplementary experiments,
we demonstrate this by employing GPT-4 Turbo with Vi-
sion to generate high-quality question-answer pairs for mi-
croscopy images, using customized prompts for each dataset.
Our approach, which trains small-scale multimodal mod-
els with expert-generated instruction-answer pairs, allows
these smaller models to excel in complex tasks like nano-
material image analysis. This highlights the importance
of specialized prompting and instruction tuning in creating

small-scale multimodal models. The performance of the
proposed framework, sLAVA, is compared with baseline
models in multi-class classification tasks (accuracy is shown
in Table 22) and in open-ended Visual Question Answer-
ing (VQA) tasks (detailed in Table 21). To illustrate open-
ended VQA performance, Tables 29, 30, and 31 present
examples including images, questions, and the generated
answers/descriptions. These tables offer more than just
text comparisons, including performance evaluation metrics
like BLEU-2, ROUGE-L, and METEOR for the generated
text. Additionally, Tables 23 - 28 show samples from the
instruction-tuning Q&A pairs dataset, generated by GPT-4
Turbo with Vision for training smaller multimodal models.



B. CMI

Table 23: The table shows question-answer pairs about a microscopic image of the corrosion 5 category from the
CMI dataset, created with GPT-4 Turbo with vision. In summary, GPT-4 helps generate detailed instruction-tuning
dataset about these microscopic images for training smaller multimodal models(SMMs), to serve as a domain-specific
vision-language assistant for enterprise adoption.

Examine the provided input image and answer the following questions
about the corrosion 5 category it depicts.

Query prompt GPT-4 Turbo with vision output

What is the primary purpose of the
image?

The primary purpose of this image is to serve as a detailed visual record of
corrosion, categorized under the corrosion 5 category, according to specific
standardized criteria for assessing and studying corrosion damage.

How is the severity of corrosion visu-
ally represented in this rating?

In the corrosion 5 category, the surface would show moderate levels of
rust and deterioration, with noticeable but not extreme material damage,
as the underlying metal remains largely intact, reflecting a midpoint in the
corrosion scale.

What is the dominant feature in the
image?

The dominant feature in the image is the crossed pattern of corrosion,
characterized by two dark, corroded streaks forming an ”X” shape across
a lighter, perhaps more oxidized or corroded background. This pattern
indicates areas of more severe corrosion within the panel, providing a clear
contrast to the surrounding material and highlighting the progression of
deterioration.

Describe the color and texture of the
X-shape?

The “X” shape in the image appears to be a darker shade, suggesting a
concentration of corrosion or an area where the material has been more
significantly affected. The texture looks rough and uneven, indicative of
material degradation typically seen with rust and corrosion. This contrasts
with the lighter, possibly more uniformly corroded background, which
might appear smoother or less pitted in comparison.

What’s notable about the background
surrounding the X-shape?

The lighter-colored background surrounding the “X” shape suggests less
severe corrosion compared to the darker, more corroded “X” itself. The
mottled texture and areas of discoloration indicate uneven surface degrada-
tion and the early stages of rust and corrosion.

Are there visible boundaries or divi-
sions between the X-shape and the
background?

The boundaries between the “X” shape and the background are distinct,
with the darker “X” sharply contrasting against the lighter, less corroded
background, indicating a clear division in the corrosion’s progression.

Is there a pattern to the corrosion em-
anating from the X-shape?

There is no discernible pattern to the corrosion emanating from the “X”
shape; it appears contained within its boundaries.

How do the dark speckles on the back-
ground contribute to the overall ap-
pearance of corrosion?

The dark speckles on the background add to the overall appearance of cor-
rosion by indicating early stages of deterioration and providing a contrast
to the more severely corroded “X” shape.

Given the context of corrosion rat-
ings, what does a rating of 5 sig-
nify in terms of material integrity and
longevity?

A rating of 5 indicates moderate corrosion, where the material has un-
dergone noticeable deterioration but still maintains significant integrity,
though its longevity may be compromised if left unaddressed.



Table 24: The table shows question-answer pairs about a microscopic image of the corrosion 9 category from the
CMI dataset, created with GPT-4 Turbo with vision. In summary, GPT-4 helps generate detailed instruction-tuning
dataset about these microscopic images for training smaller multimodal models(SMMs), to serve as a domain-specific
vision-language assistant for enterprise adoption.

Examine the provided input image and answer the following questions
about the corrosion 9 category it depicts.

Query prompt GPT-4 Turbo with vision output

What is the primary intent of the im-
age?

This image provides a detailed visual depiction of corrosion damage that
has been categorized as Level 9 based on standardized criteria for assessing
and cataloging corrosion severity.

Can you describe the overall color
scheme of the image?

The image displays a color scheme dominated by shades of brown against
a cream or light tan background, which is typical for visualizing the rust
and corrosion on metal surfaces under magnification.

What is the main corroded feature
present in the image?

The main corroded feature present in the image appears to be a linear,
rust-like mark indicative of corrosion, often seen as a result of corrosive
processes on metal surfaces. It shows a concentrated area of material
degradation with color changes that suggest rusting or pitting, which are
common signs of corrosion damage.

How does the corrosion manifest
around this scribed line?

The corrosion around the scribed line manifests as a concentrated area of
discoloration, likely indicating rust, which appears to have spread from
the line itself. The edges of the line show some feathering, suggesting
that the corrosion has progressed from the initial point of damage into
the surrounding material. This pattern is indicative of a corrosive process
where the protective layer has been breached, allowing environmental
factors to attack the exposed metal, leading to progressive degradation.

Given the context of corrosion rat-
ings, how does a rating of 9 compare
to other ratings in terms of corrosion
severity?

In the context of corrosion ratings, a rating of 9 typically indicates minimal
corrosion, as the scale often runs from 0 (severe corrosion) to 10 (no
corrosion). Therefore, a rating of 9 would suggest only slight corrosion,
with the substrate mostly intact and little to no rust or deterioration present.

Is the corrosion consistent throughout
the scribed line?

The corrosion does not appear to be uniform throughout the scribed line.
The variation in color intensity and spread indicates that some areas along
the line are more affected than others, showing signs of irregular and
uneven corrosion progression.

How does the background of the im-
age appear in comparison to the cor-
roded area?

The background of the image, in comparison to the corroded area, appears
to be relatively uniform and intact, with a light tan or cream color. This
contrasts with the corroded area, which shows a darker, brownish discol-
oration along the scribed line, highlighting the presence and impact of the
corrosion.

If one were to run their fingers across
the image, what differences in texture
might they expect between the cor-
roded scribe and the background?

If one were to run their fingers across the image, the corroded scribe would
likely feel rougher and more irregular compared to the background. The
background, appearing smooth and intact, would offer a contrastingly even
surface. The corroded area, due to its degradation and potential pitting or
flaking, would give a tactile sense of unevenness and texture variation.



C. KTH-TIPS

Table 25: The table shows question-answer pairs about a microscopic image of the corduroy category from the KTH-
Tips dataset, created with GPT-4 Turbo with vision. In summary, GPT-4 helps generate detailed instruction-tuning
dataset about these microscopic images for training smaller multimodal models(SMMs), to serve as a domain-specific
vision-language assistant for enterprise adoption.

Examine the provided input image and answer the following questions
about the corduroy category it depicts.

Query prompt GPT-4 Turbo with vision output

What type of material is depicted in
the image?

The image you’ve provided appears to depict corduroy, which is a textile
with a distinctive pattern, characterized by its raised ridges, or “wales”,
that run in parallel lines. Corduroy is typically made from tufted cords,
sometimes exhibiting a channel (bare to the base fabric) between the tufts.
The width of the wales varies and is often used to distinguish different
types of corduroy. It’s a durable fabric and is commonly used for clothing
and upholstery.

What color does the corduroy fabric
primarily exhibit?

The image depicts corduroy fabric with a tan or beige color. This is a
common color for corduroy, making it versatile for various applications in
fashion and furnishings.

Describe the texture and pattern no-
ticeable on the corduroy?

Corduroy fabric has a distinctive texture of raised parallel lines called wales
that run the length of the material, creating a soft, plush, and velvety feel
with visual and tactile interest.

Are these raised lines uniformly dis-
tributed throughout the fabric?

Yes, in the image of the corduroy fabric, the raised lines, or wales, appear
to be uniformly distributed throughout, maintaining consistent spacing and
parallel alignment, which is typical of corduroy.

How does light interact with the fab-
ric’s texture?

The light on the fabric accentuates the corduroy’s ribbed texture, creating
highlights and shadows along the parallel wales. This interplay showcases
the material’s soft sheen on the raised ridges, while the grooves appear
darker from cast shadows. The contrast showcases the tactile quality.

Describe the spacing between the
ribs?

In the provided image, the spacing between the ribs of the corduroy fabric
appears regular and even, consistent with the characteristic look of corduroy.
Each rib is separated by a narrow groove, which is uniform throughout,
giving the fabric its distinctive textured pattern.

How does the fabric’s texture vary be-
tween the raised lines and the gaps in
between?

The corduroy fabric has a textured surface with pronounced, plush wales
separated by flatter, smoother gaps, creating a distinctive tactile and visual
quality.

Are there any visible imperfections
or signs of wear on the corduroy?

Based on the image provided, there are no visible imperfections or signs of
wear on the corduroy. The fabric appears to be in good condition, with the
texture and color uniformly consistent across the surface.

From which angle or perspective is
the fabric being observed?

The fabric is observed from a close-up, top-down perspective, allowing a
detailed view of the corduroy’s texture and pattern.

Is the image a full representation of
the fabric or just a section?

The image appears to capture just a section of the corduroy fabric, focusing
on its texture and pattern in detail rather than showing the entire piece.



Table 26: The table shows question-answer pairs about a microscopic image of the linen category from the KTH-
Tips dataset, created with GPT-4 Turbo with vision. In summary, GPT-4 helps generate detailed instruction-tuning
dataset about these microscopic images for training smaller multimodal models(SMMs), to serve as a domain-specific
vision-language assistant for enterprise adoption.

Examine the provided input image and answer the following questions
about the linen category it depicts.

Query prompt GPT-4 Turbo with vision output

What is the primary material dis-
played in the image?

The primary material displayed in the image appears to be a woven fabric
with a relatively uniform and tight weave, which is characteristic of linen.
Linen is known for its distinct, slightly textured weave, which is visible in
the image. The even, crisscross pattern typical of linen is created by the
plain weave, or ’linen weave’, where each weft thread crosses over and
under each warp thread.

Can you identify the primary color of
the linen fabric in the image?

The primary color of the linen fabric in the image is a neutral, beige
tone. This color is typical for linen and is often associated with its natural,
unbleached state. The variations in the color, such as the slight differences
in shading and the presence of darker and lighter areas, contribute to the
textured appearance of the fabric.

Describe the texture or pattern visible
on the linen?

The linen fabric has a tight, slightly irregular weave pattern with natural
variations in thread thickness, creating a distinctive tactile texture and a
rich, dimensional appearance.

How would you describe the spacing
between the woven threads?

The spacing between the woven threads appears to be consistent and tight,
indicative of a high-quality linen with a fine weave.

Does the linen appear soft or rigid
based on the visible texture?

Based on the visible texture, the linen appears to have a soft, supple texture
rather than a rigid one, as indicated by the slight natural irregularities and
the drape that can be inferred from the flow of the weave.

Are there any observable sheen or re-
flective properties on the linen?

In the provided image, the linen does not exhibit a pronounced sheen or
reflective properties. The fabric appears matte, which is typical for linen,
known for its natural, lusterless finish.

How consistent is the texture through-
out the displayed section?

The texture appears consistent throughout the displayed section, with a
uniform weave pattern and even spacing, characteristic of high-quality linen
fabric. There are no significant variations or defects visible, suggesting a
homogeneous material quality across the section shown.

Based on the visible attributes, how
would you describe the tactile sensa-
tion of the fabric?

Based on the visible attributes, the fabric likely has a crisp yet supple tactile
sensation, with a textured surface that could provide a slight roughness to
the touch due to the natural variations in the weave. However, it would not
be excessively coarse; linen typically feels cool and comfortable against
the skin.

Are there any discernible imperfec-
tions or unique characteristics in the
fabric?

From the image, the linen fabric appears quite uniform with no significant
imperfections. It displays the natural and subtle variations in thread size
that are characteristic of linen, which give it a unique texture. These are
not flaws but rather inherent qualities of the fabric that enhance its natural
aesthetic.



D. NEU-SDD

Table 27: The table displays question-answer pairs related to microscopic images of the scratches category from the
NEU-SDD dataset within the field of defect detection, especially for surface defects. These pairs were created using
GPT-4 Turbo with vision. In summary, GPT-4 assists in generating a detailed instruction-tuning dataset for training
smaller multimodal models (SMMs) to serve as domain-specific vision-language assistants for enterprise adoption.

Examine the provided input image and answer the following questions
about the scratches category it depicts.

Query prompt GPT-4 Turbo with vision output

What category does this texture be-
long to?

The texture in the image belongs to the scratches category, which is char-
acterized by linear grooves or marks on the surface of hot-rolled steel
plates.

Describe the central feature in the im-
age?

The main feature is a linear scratch on the material’s surface. It is a distinct,
narrow, continuous indentation contrasting the surrounding area. Running
vertically with a uniform width, it is lighter than the base material, revealing
variances in depth or texture. Such defects typically result from mechanical
abrasion or contact with sharp, hard objects.

How would you describe the contrast
between the scratch and the surround-
ing texture?

The bright, linear scratch contrasts significantly with the uniform, granular,
and darker surrounding texture, making the defect stand out.

What color tones dominate the im-
age?

A grayscale image with shades of gray ranging from black to white. The
background is a mid-gray tone while the scratch is represented by a lighter,
almost white shade indicating higher reflectance. No color hues since it’s
not a color image; the gray tone variations provide the visual information.

Can you define the orientation of the
scratch?

The scratch has a vertical orientation, running top to bottom with a con-
sistent linear path. It creates distinct contrast against the more textured
background. Its alignment is vertical relative to the image edges

How would you describe the edges of
the scratch?

The edges of the scratch are straight and clearly defined, creating a distinct
contrast with the surrounding surface texture. They appear abrupt rather
than gradual, suggesting a sudden change in surface texture and depth.

Is the scratch in the center or towards
the side of the image?

The scratch is positioned towards the center of the image, running vertically
and occupying a central location within the frame of view.

Are there multiple scratches or just a
single prominent one?

Based on the uploaded image, there is just a single prominent scratch
visible running vertically near the center of the image. There are no other
distinct scratches observable in the grayscale image provided.

Is the rest of the image’s texture
smooth or grainy?

The rest of the image’s texture is grainy, with a speckled pattern that
indicates a rough or irregular surface characteristic of the material under
observation.

How does the brightness of the
scratch compare to the overall image?

The scratch is notably brighter than the overall image. It stands out as a
light, almost white line against the darker, grainier background of the rest
of the image, indicating a significant contrast in brightness.

If you were to touch the scratch,
would it feel raised or recessed?

The brighter appearance of the scratch in the grayscale image suggests it is
likely a recessed, indented area compared to the surrounding surface.



Table 28: The table displays question-answer pairs related to a microscopic image from the patches category within
the NEU-SDD dataset, generated using GPT-4 Turbo with vision. In summary, GPT-4 assists in producing a detailed
instruction-tuning dataset for training smaller multimodal models (SMMs), aiming to serve as a domain-specific
vision-language assistant for enterprise adoption.

Examine the provided input image and answer the following questions
about the patches category it depicts.

Query prompt GPT-4 Turbo with vision output

What category does this texture be-
long to?

This texture appears to be a type of surface defect and it matches the
characteristics of patches category. Typically, patches in the context of
surface defects on hot-rolled steel plates are characterized by areas where
the surface has irregularities that are distinct from the base material. These
can be due to various factors such as contamination, uneven cooling, or
material inconsistencies during the manufacturing process.

Describe the dominant features in the
image?

The image is a grayscale representation of a surface defect on a steel plate,
likely falling under the ’patches’ category. It exhibits varied gray intensity,
non-uniform and irregular patterns, and blurred or distinct edges. The
shape and distribution of these features are crucial for classification, but a
precise description cannot be provided without visual access to the image.

How would you characterize the con-
trast between the patches and the sur-
rounding area?

The contrast in the image likely shows patches as darker or lighter areas
against the base metal, with potentially sharp or blurred boundaries that
make them stand out from the surrounding surface.

What color tones are prevalent in the
image?

The image is grayscale, featuring shades from black to white, without any
color tones.

Describe the shape and arrangement
of the patches?

This grayscale image from the NEU-SDD dataset showcases surface defects
categorized as ‘patches’ on hot-rolled steel. The monochromatic view
displays varying shades of gray, indicating textural differences on the
material. The irregular patches appear randomly distributed without regular
patterns. The grayscale nuances denote surface irregularities; precise
categorization would require material science expertise and analysis.

How does the texture within the
patches compare to the rest of the im-
age?

The provided image likely depicts patches as areas with distinct textures
and contrasts compared to the rest of the surface, indicative of material
defects which require specialized analysis for accurate classification.

Would you say the patches are cen-
tralized or more dispersed?

The patches in the image are not clearly discernible with the given resolu-
tion, making it difficult to determine if they are centralized or dispersed.

Do the patches have well-defined
boundaries?

The image provided is too low in resolution and lacks clear definition,
making it challenging to determine if the patches have well-defined bound-
aries. For a precise assessment, a higher-resolution image and specialized
analysis would be required.

Describe the granularity of the back-
ground texture?

The background texture in the image appears to be quite fine and consistent,
suggesting a high degree of granularity that is typical for grayscale images
representing material surfaces. This granularity could be indicative of the
surface quality or the resolution of the imaging technique used.

In a real-world scenario, how might
such patches form on materials?

Patches on materials may form due to corrosion, wear, inconsistent heat
treatment, coating failures, material defects, repair work, or environmental
damage, affecting the material’s integrity and performance.

Does the image lean more towards
being bright, dark, or neutral overall?

The provided image appears to be neutral overall, with a balanced distri-
bution of both light and dark areas, without leaning significantly towards
being overly bright or dark.



Table 29. The table presents a sample of electron microscope images, along with their corresponding framework-generated and ground-
truth answers, and similarity evaluation metrics for an open-ended VQA task. The task focuses on identifying specific material surface
defects and their impact on performance. We evaluate the quality of the machine-generated answers using evaluation metrics such as
BLEU-2, ROUGE-L, and METEOR to measure their similarity to the ground-truth answers.

Image Ground Truth Framework-Generated Answer
BLEU-2 /
ROGUE-L /
METEOR

The image shows a surface with
crazing, which can compromise ma-
terial strength and lead to premature
failure under stress.

The image depicts a surface with
crazing, which could weaken the ma-
terial strength and lead to early fail-
ure under stress

0.659
0.769
0.831

The image likely shows a material
defect known as inclusion, which
can create weak points and reduce
the uniformity and strength of the
material.

The photo probably displays an im-
perfection referred to as an inclu-
sion, which can make fragile spots
and decrease the consistency and ro-
bustness of the material.

0.271
0.449
0.504

The image depicts a defect known as
patches, which can lead to heteroge-
neous material properties and poten-
tially reduce the material’s overall
durability and performance.

The photo exhibits a flaw termed
patches, which could result in
nonuniform material traits and per-
haps reduce the overall toughness
and function of the material.

0.183
0.400
0.354

The image appears to show a clus-
tering of material defects known as
”pitting,” which can compromise the
material’s integrity and lead to fail-
ure through stress concentration.

The image likely exhibits clustering
of flaws called pitting, which could
undermine the material’s soundness
and cause failure via concentration
of tension.

0.245
0.480
0.370

The image seems to exhibit rolled-
in scale, a defect which can create
weak spots and reduce a material’s
overall strength and fatigue resis-
tance.

The image appears to show rolled-in
scale, a flaw that can generate weak
areas and lessen the complete dura-
bility and wear tolerance of a mate-
rial.

0.235
0.471
0.566

The image displays scratches, a sur-
face defect that can act as stress con-
centrators, potentially leading to re-
duced fatigue life and increased sus-
ceptibility to crack propagation.

The image shows scratches, a sur-
face imperfection which could act
as stress concentrators, potentially
causing shortened fatigue life and
magnified vulnerability to crack
spreading.

0.500
0.612
0.638



Table 30. The table showcases sample electron microscope images with corresponding framework-generated and ground-truth answers for
surface texture analysis (smoothness, roughness, imperfections). We evaluate generated answer quality using similarity metrics (BLEU-2,
ROUGE-L, METEOR) to ground truth.

Image Ground Truth Framework-Generated Answer
BLEU-2 /
ROGUE-L /
METEOR

The material is crinkled and reflec-
tive, with a rough, uneven texture
and no significant imperfections.

The material appears crumpled and
shiny, displaying a jagged, uneven
surface without any major imperfec-
tions visible.

0.144
0.387
0.246

The material is porous with a rough
texture, featuring many small cavi-
ties and no obvious imperfections.

The substance has a rough texture
and is full of tiny pores, with no vis-
ible flaws.

0.171
0.375
0.300

The material has a textured, ribbed
surface with a consistent pattern, in-
dicative of a woven or knitted fabric,
likely rough to the touch, with no
discernible imperfections.

The material features a textured,
ribbed surface with a uniform pat-
tern, suggesting a woven or knitted
fabric, likely rough to touch, and
free of noticeable imperfections

0.593
0.717
0.669

The material has a fine, woven tex-
ture, likely with a slight roughness
due to its knit, and appears uniform
without visible imperfections.

The material features a fine, woven
texture, likely displaying a slight
roughness due to its knit, and ex-
hibits a uniform appearance without
noticeable imperfections.

0.626
0.735
0.810

The material is porous with a grainy
texture, featuring holes and a coarse
surface, with no notable imperfec-
tions aside from its natural texture.

The material exhibits a porous struc-
ture with a grainy texture, character-
ized by holes and a rough surface,
having no significant imperfections
other than its inherent texture.

0.372
0.783
0.548

The material has a fine, tightly wo-
ven texture with a uniform appear-
ance, likely smooth to the touch, and
shows no apparent imperfections.

The material displays a fine, tightly
woven texture with a consistent
appearance, likely feeling smooth
to the touch, and exhibits no dis-
cernible imperfections.

0.653
0.612
0.852

The material has a bubbled, un-
even texture that suggests roughness,
with a glossy sheen and no obvious
imperfections beyond its inherent
textured surface.

The material exhibits a bubbled, un-
even texture, indicating roughness,
featuring a glossy finish, and dis-
playing no noticeable imperfections
beyond its inherent textured surface.

0.533
0.800
0.667

The material has a granular, sandy
texture that would likely be rough
to the touch, with a speckled ap-
pearance and no significant imper-
fections visible.

The material displays a granular,
sandy texture, likely feeling rough
to the touch, featuring a speckled
pattern, and showing no significant
imperfections.

0.465
0.739
0.598

The surface is porous and spongy
with a rough texture, featuring nu-
merous small holes and a coarse feel,
without specific imperfections be-
yond its natural structure.

The surface exhibits a porous and
spongy texture, feeling rough, with
numerous tiny holes, and a coarse
touch, displaying no specific imper-
fections beyond its natural structure.

0.749
0.739
0.686

The surface has a fine, gritty texture
with a subtle sparkle, suggesting a
slightly rough feel, and shows a uni-
form appearance with no clear im-
perfections.

The surface displays a fine, gritty
texture with a slight sparkle, imply-
ing a somewhat rough touch, and
exhibits a uniform look with no ap-
parent imperfections.

0.462
0.739
0.707



Table 31. The table showcases sample electron microscope images used in an open-ended VQA task focused on metal corrosion. It
compares framework-generated answers to ground-truth responses, along with metrics like BLEU-2, ROUGE-L, and METEOR to assess
their similarity.

Image Ground Truth Framework-Generated Answer
BLEU-2 /
ROGUE-L /
METEOR

The extent of corrosion shown in the
image suggests advanced corrosion
with widespread areas of rust, indi-
cating prolonged exposure to a cor-
rosive environment.

The image reveals extensive corro-
sion, suggesting severe corrosion
with widespread rust, indicating pro-
longed exposure to a corrosive atmo-
sphere.

0.424
0.585
0.569

The image shows localized corro-
sion concentrated along the metal’s
edges, with some spread from the
central point of contact, indicating
moderate corrosion.

Theimage reveals localized corro-
sion along the metal edges, with
some spreading from the central con-
tact point, suggesting moderate cor-
rosion

0.491
0.744
0.675

The corrosion is localized at one cor-
ner with streaking patterns, suggest-
ing early to moderate stages of corro-
sion, likely from moisture exposure.

Corrosion is localized in one corner
with streaking patterns, indicating
early to moderate corrosion stages,
likely due to moisture exposure.

0.516
0.732
0.607

The corrosion appears as a well-
defined edge with some spreading,
indicative of moderate progression.

Corrosion appears as a distinct edge
with some spread, suggesting mod-
erate progression.

0.466
0.667
0.640

There’s minimal to no visible cor-
rosion on the metal in this image,
indicating it’s in good condition or
the coating is effective.

There’s little to no visible corrosion
on the metal in this picture, suggest-
ing it’s in good shape or the coating
works well.

0.645
0.750
0.722


