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Abstract

While sparse autoencoders (SAEs) successfully extract interpretable features from
language models, applying them to audio generation faces unique challenges:
audio’s dense nature requires compression that obscures semantic meaning, and
automatic feature characterization remains limited. We propose a framework for
interpreting audio generative models by mapping their latent representations to
human-interpretable acoustic concepts. We train SAEs on audio autoencoder
latents, then learn linear mappings from SAE features to discretized acoustic prop-
erties (pitch, amplitude, and timbre). This enables both controllable manipulation
and analysis of the AI music generation process, revealing how acoustic properties
emerge during synthesis. We validate our approach on continuous (DiffRhythm-
VAE) and discrete (EnCodec, WavTokenizer) audio latent spaces, and analyze
DiffRhythm, a state-of-the-art text-to-music model, to demonstrate how pitch,
timbre, and loudness evolve throughout generation. While our work is only done
on audio modality, our framework can be extended to interpretable analysis of
visual latent space generation models.

1 Introduction

As powerful neural networks become more integrated into society, their lack of interpretability raises
a significant concern [11]. To address this challenge, sparse autoencoders (SAEs) have emerged as a
key tool in mechanistic interpretability research [[19, 4, [17]. They are motivated by the polysemantic
hypothesis [[19}[7,[15]: that neurons encode more features than dimensions by superposing multiple
concepts. SAEs work by finding sparse directions in activation space to isolate these underlying,
disentangled features. This approach has proven effective in large language models (LLMs), where
SAEs can extract highly monosemantic features that are automatically characterized by using the
model itself to summarize the results of token-level perturbations [5]].

However, extending this approach to audio generative networks presents fundamental challenges.
Unlike text, audio is inherently dense [24], and thus typically requires learned compression through
autoencoders before tokenization [14]. This compression step, whether producing continuous or
discrete latent codes, obscures the semantic meaning of individual “tokens,” making perturbation-
based analysis less interpretable [24} 28]]. Moreover, while language models excel at summarizing
textual patterns, current audio understanding models are not yet capable of providing an equally
robust automatic characterization of SAE feature behaviors [23}127]]. These limitations necessitate
new approaches for interpretable feature discovery in audio generative systems.

In this work, we propose a novel framework for understanding audio generative models by analyzing
their latent space representations through human-interpretable acoustic concepts. Our approach
proceeds in three stages. First, we train SAEs on the latent representations of audio autoencoders
to extract sparse features. Second, we learn linear mappings from these SAE features to human-
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Figure 1: Framework for interpreting and controlling audio generative models through sparse features
learned on their generation space. Sparse autoencoders extract interpretable features from audio
latents, which are then linearly mapped to acoustic concepts. Control vectors extracted from these
linear mappings can then be used to transform audio.

interpretable acoustic concepts: pitch, amplitude, and timbre (represented here by spectral centroid
as a simplified proxy [21, [20]). To enable discrete analysis, we quantize each acoustic property
into interpretable “units”: pitch is discretized according to the Western tonal system (e.g., C4,
C#4), while amplitude and spectral centroid are binned with equal spacing within their physical
ranges. The effectiveness of linear mappings suggests that SAE features already encode acoustic
properties in a near-linear fashion, validating the hypothesis that these learned representations align
with human-interpretable concepts. Finally, by decomposing the audio synthesis process into an
interpretable feature hierarchy, our framework traces how specific acoustic properties emerge. We
empirically validate this approach on DiffRhythm, a state-of-the-art text-to-music model. Although
our experiments focus on audio, we believe this framework is generalizable to other generative models
that operate within learned latent spaces, including those for image and video.

2 Methodology

2.1 Sparse Autoencoder Training

We train SAEs on latent representations from three pretrained audio encoders: the continuous VAE
space of Stable Audio Open and DiffRhythm [8 18], and the discrete latent spaces of EnCodec [6]
and WavTokenizer [12]. To address the unique requirements of audio latents, we modify the standard
SAE architecture by adding an RMS normalization layer after the ReLU activation. This modification
maintains consistent activation magnitudes and, as we empirically found, prevents out-of-distribution
artifacts during feature manipulation. Following standard practice [3]], we optimize the SAEs using a
composite loss function:

£ = x — %[3 + Al (1)
where the first term ensures reconstruction fidelity and the L, penalty promotes sparsity in the hidden
activations h. We conduct systematic grid searches over hidden dimensionalities (ranging from 4 x
to 256 the input dimension) and sparsity coefficients A (ranging from 0.005 to 0.15) to identify
optimal configurations for each latent space.

2.2 Linear Mapping to Acoustic Concepts

To connect SAE features to interpretable acoustic properties, we train linear probes that predict
discretized audio attributes from sparse activations. Given a latent vector x € R?, our SAE produces
sparse features:

h = ReLU(WepeX + bene), £ = RMSNorm(h) 2)

where f € R™ are the normalized features used for both reconstruction and interpretation.

For each acoustic attribute a € {pitch, amplitude, timbre}, we first extract continuous measurements
from the audio: pitch via CREPE [13]], amplitude via windowed RMS energy using librosa [16], and
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Figure 2: Controlled audio manipulation via control vectors. When « increases, isolated changes in
pitch (imminent C5), amplitude (decreasing loudness), and timbre (brightening via high-frequency
emphasis) can be observed. Corresponding audio samples can be found here: https://anonymous,
4open.science/r/audio_samples-A301/

timbre via windowed spectral centroid using librosa. We then discretize these continuous curves into
K, classes (pitch using logarithmic bins aligned with MIDI note numbers, and amplitude/timbre
using linear bins) and train a linear classifier:

P = softmax (W (f + b)) (3)

where W(@) ¢ REax™ maps SAE features to class logits. The linearity provides bidirectional

interpretability, as the contribution of SAE feature j to acoustic class & is simply cgﬂ = W,g;l) - fis

where the weights W,E?) reveal both which features encode specific acoustic properties and how
acoustic concepts decompose into SAE features. For targeted intervention, we leverage this linearity
directly by adding the scaled probe weight vector o - wk(®) (“control vectors") to the SAE features to
shift the audio toward acoustic class k. After re-normalizing to maintain valid activation magnitudes,
we decode through both SAE and audio decoders to generate the modified audio (shown in Figure2).

3 Experiments

3.1 Acoustic Concept Mapping Discovery

Dataset. We use a composite dataset of ~31 hours of audio sampled from several sources: Coco-
Chorales [25]—11.2 hours of four-part Bach chorales, DAMP-VSEP [22]—11.7 hours of pop/rock
singing, the Extended Groove MIDI Dataset [3]—7.8 hours of drums, GuitarSet [26]—24 minutes of
solo guitar, and MAESTRO [10]—33 minutes containing classical piano.

Training SAEs on audio latent spaces. We conduct grid searches over SAE hidden dimen-
sions {2048, 4096, 8192, 12288, 16384} and sparsity coefficients A € {0.005,0.01,0.05,0.1,0.15}
for each audio encoder. The resulting SAEs exhibit distinct characteristics across latent spaces.
DiffRhythm achieves sparsity ratios ranging from 0.65 to 0.98. WavTokenizer produces the sparsest
representations (0.993-0.999), suggesting its discrete tokens already encode highly disentangled
features. EnCodec demonstrates the widest sparsity range (0.55-0.95). Across all models, larger
hidden dimensions consistently improve reconstruction quality.

Training linear probes from SAE features to acoustic concepts. We train linear probes to predict
pitch (with 66 bins spanning the pitch range present in our dataset), loudness (20 bins), and timbre
(20 bins) from SAE features. Plotting the probe classification accuracy on a test set vs. the sparsity of
its SAE in Figure [3] shows a hierarchy of linear decodability across acoustic properties. Pitch proves
most linearly separable (0.75-0.87 accuracy) and remains stable across all sparsity levels, suggesting
fundamental frequency encoding. EnCodec excels at loudness (0.56—0.63) compared to DiffRhythm
and WavTokenizer (0.17-0.49). Timbre remains challenging across all models (0.17-0.46).

Applying targeted interventions to audio samples. We test controllability on diverse audio
sources (singing voice, drums, four-part harmony). Figure [2]shows a chordal audio sample from the
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Figure 3: Linear probe accuracy for acoustic property classification across different sparsity levels.
Left: Stable Audio Open/DiffRhythm VAE, Middle: WavTokenizer, Right: EnCodec.

CocoChorales dataset encoded with EnCodec and our highest-sparsity SAE (hidden_dim=16384,
A = 0.1). We apply control vectors targeting pitch (MIDI C5), timbre (spectral centroid class 17),
and loudness (class 2) with strengths « € {1,10,20,30}. As « increases, edits are isolated in the
targeted attribute, while non-targeted properties remain largely preserved.

3.2 Generation Process Visualization

Generation Progress (Mean/Std across prompts)
We demonstrate how our learned mappings 10 ] — ritch ean
can help us understand the audio genera-  Tmorepean
tion process by analyzing DiffRhythm 18], 05
a rectified flow model designed for full-
length song synthesis. In this analysis,
the model was configured to generate a

95-second audio segment, encompassing a

Progress s_t

verse and a chorus, over 32 inference steps. 02

At each generation step ¢ € {0,...,31},

we extract the latent X; € RE*F and 0]

decompose it through our SAE and linear 0 ; 0 R

. A . Sampling Step
probes to obtain acoustic concept activa-

tions P,Ea) € RF*Ka  After applying a Figure 4: Probes Variation in Generation Progress

mean pooling over frames (F'), we obtain distributions pta) for each attribute a. To quantify the

evolution of acoustic properties, we track how these distributions interpolate from noise to the final

audio. Specifically, for each attribute a and step ¢, we compute the per-class normalized L' distance:
@ _ 1< e = el

ST R, 2 (@ @

@ k=1 ‘pT,k — Dok

where sga) € [0, 1] measures the progression from initial noise (f = 0) toward the final acoustic

structure (¢ = 1" = 31). This reveals when different acoustic properties emerge during generation.
We sample 500 prompts from MusicCaps [1], then plot the mean and standard deviation of the
generation progress in Figure ] which indicates a clear hierarchy. Pitch converges first (around step
21), followed by timbre, while loudness converges last and remains unresolved by the final step.
This coarse-to-fine progression suggests the model establishes fundamental frequency before refining
textural and dynamic details.

4 Conclusion

We present a framework for interpreting audio generative models by mapping their latent representa-
tions to human-interpretable acoustic properties through sparse autoencoders and linear probes. Our
experiments demonstrate that SAE features naturally align with acoustic properties, enabling both
controllable manipulation and better understanding of music generative models.

In future work, we plan to apply our method to other generative architectures, such as RAVE [2],
ACE-Step [9], and AudioLDM [14]. Beyond the three acoustic properties explored here, we will train
probes for richer audio features such as rhythm, harmony, and instrument identity. Finally, we aim to
use these interpretable features to directly guide generation behavior during inference, potentially
enabling fine-grained control over specific attributes while maintaining generation quality.
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