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Abstract

While sparse autoencoders (SAEs) successfully extract interpretable features from1

language models, applying them to audio generation faces unique challenges:2

audio’s dense nature requires compression that obscures semantic meaning, and3

automatic feature characterization remains limited. We propose a framework for4

interpreting audio generative models by mapping their latent representations to5

human-interpretable acoustic concepts. We train SAEs on audio autoencoder6

latents, then learn linear mappings from SAE features to discretized acoustic prop-7

erties (pitch, amplitude, and timbre). This enables both controllable manipulation8

and analysis of the AI music generation process, revealing how acoustic properties9

emerge during synthesis. We validate our approach on continuous (DiffRhythm-10

VAE) and discrete (EnCodec, WavTokenizer) audio latent spaces, and analyze11

DiffRhythm, a state-of-the-art text-to-music model, to demonstrate how pitch,12

timbre, and loudness evolve throughout generation. While our work is only done13

on audio modality, our framework can be extended to interpretable analysis of14

visual latent space generation models.15

1 Introduction16

As powerful neural networks become more integrated into society, their lack of interpretability raises17

a significant concern [11]. To address this challenge, sparse autoencoders (SAEs) have emerged as a18

key tool in mechanistic interpretability research [19, 4, 17]. They are motivated by the polysemantic19

hypothesis [19, 7, 15]: that neurons encode more features than dimensions by superposing multiple20

concepts. SAEs work by finding sparse directions in activation space to isolate these underlying,21

disentangled features. This approach has proven effective in large language models (LLMs), where22

SAEs can extract highly monosemantic features that are automatically characterized by using the23

model itself to summarize the results of token-level perturbations [5].24

However, extending this approach to audio generative networks presents fundamental challenges.25

Unlike text, audio is inherently dense [24], and thus typically requires learned compression through26

autoencoders before tokenization [14]. This compression step, whether producing continuous or27

discrete latent codes, obscures the semantic meaning of individual “tokens,” making perturbation-28

based analysis less interpretable [24, 28]. Moreover, while language models excel at summarizing29

textual patterns, current audio understanding models are not yet capable of providing an equally30

robust automatic characterization of SAE feature behaviors [23, 27]. These limitations necessitate31

new approaches for interpretable feature discovery in audio generative systems.32

In this work, we propose a novel framework for understanding audio generative models by analyzing33

their latent space representations through human-interpretable acoustic concepts. Our approach34

proceeds in three stages. First, we train SAEs on the latent representations of audio autoencoders35

to extract sparse features. Second, we learn linear mappings from these SAE features to human-36
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Figure 1: Framework for interpreting and controlling audio generative models through sparse features
learned on their generation space. Sparse autoencoders extract interpretable features from audio
latents, which are then linearly mapped to acoustic concepts. Control vectors extracted from these
linear mappings can then be used to transform audio.

interpretable acoustic concepts: pitch, amplitude, and timbre (represented here by spectral centroid37

as a simplified proxy [21, 20]). To enable discrete analysis, we quantize each acoustic property38

into interpretable “units”: pitch is discretized according to the Western tonal system (e.g., C4,39

C#4), while amplitude and spectral centroid are binned with equal spacing within their physical40

ranges. The effectiveness of linear mappings suggests that SAE features already encode acoustic41

properties in a near-linear fashion, validating the hypothesis that these learned representations align42

with human-interpretable concepts. Finally, by decomposing the audio synthesis process into an43

interpretable feature hierarchy, our framework traces how specific acoustic properties emerge. We44

empirically validate this approach on DiffRhythm, a state-of-the-art text-to-music model. Although45

our experiments focus on audio, we believe this framework is generalizable to other generative models46

that operate within learned latent spaces, including those for image and video.47

2 Methodology48

2.1 Sparse Autoencoder Training49

We train SAEs on latent representations from three pretrained audio encoders: the continuous VAE50

space of Stable Audio Open and DiffRhythm [8, 18], and the discrete latent spaces of EnCodec [6]51

and WavTokenizer [12]. To address the unique requirements of audio latents, we modify the standard52

SAE architecture by adding an RMS normalization layer after the ReLU activation. This modification53

maintains consistent activation magnitudes and, as we empirically found, prevents out-of-distribution54

artifacts during feature manipulation. Following standard practice [5], we optimize the SAEs using a55

composite loss function:56

L = ∥x− x̂∥22 + λ∥h∥1 (1)
where the first term ensures reconstruction fidelity and the L1 penalty promotes sparsity in the hidden57

activations h. We conduct systematic grid searches over hidden dimensionalities (ranging from 4×58

to 256× the input dimension) and sparsity coefficients λ (ranging from 0.005 to 0.15) to identify59

optimal configurations for each latent space.60

2.2 Linear Mapping to Acoustic Concepts61

To connect SAE features to interpretable acoustic properties, we train linear probes that predict62

discretized audio attributes from sparse activations. Given a latent vector x ∈ Rd, our SAE produces63

sparse features:64

h = ReLU(Wencx+ benc), f = RMSNorm(h) (2)
where f ∈ Rm are the normalized features used for both reconstruction and interpretation.65

For each acoustic attribute a ∈ {pitch, amplitude, timbre}, we first extract continuous measurements66

from the audio: pitch via CREPE [13], amplitude via windowed RMS energy using librosa [16], and67
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Figure 2: Controlled audio manipulation via control vectors. When α increases, isolated changes in
pitch (imminent C5), amplitude (decreasing loudness), and timbre (brightening via high-frequency
emphasis) can be observed. Corresponding audio samples can be found here: https://anonymous.
4open.science/r/audio_samples-A301/

timbre via windowed spectral centroid using librosa. We then discretize these continuous curves into68

Ka classes (pitch using logarithmic bins aligned with MIDI note numbers, and amplitude/timbre69

using linear bins) and train a linear classifier:70

p(a) = softmax(W (a)f + b(a)) (3)

where W (a) ∈ RKa×m maps SAE features to class logits. The linearity provides bidirectional71

interpretability, as the contribution of SAE feature j to acoustic class k is simply c
(a)
j→k = W

(a)
kj · fj ,72

where the weights W
(a)
kj reveal both which features encode specific acoustic properties and how73

acoustic concepts decompose into SAE features. For targeted intervention, we leverage this linearity74

directly by adding the scaled probe weight vector α ·wk(a) ("control vectors") to the SAE features to75

shift the audio toward acoustic class k. After re-normalizing to maintain valid activation magnitudes,76

we decode through both SAE and audio decoders to generate the modified audio (shown in Figure 2).77

3 Experiments78

3.1 Acoustic Concept Mapping Discovery79

Dataset. We use a composite dataset of ∼31 hours of audio sampled from several sources: Coco-80

Chorales [25]—11.2 hours of four-part Bach chorales, DAMP-VSEP [22]—11.7 hours of pop/rock81

singing, the Extended Groove MIDI Dataset [3]—7.8 hours of drums, GuitarSet [26]—24 minutes of82

solo guitar, and MAESTRO [10]—33 minutes containing classical piano.83

Training SAEs on audio latent spaces. We conduct grid searches over SAE hidden dimen-84

sions {2048, 4096, 8192, 12288, 16384} and sparsity coefficients λ ∈ {0.005, 0.01, 0.05, 0.1, 0.15}85

for each audio encoder. The resulting SAEs exhibit distinct characteristics across latent spaces.86

DiffRhythm achieves sparsity ratios ranging from 0.65 to 0.98. WavTokenizer produces the sparsest87

representations (0.993–0.999), suggesting its discrete tokens already encode highly disentangled88

features. EnCodec demonstrates the widest sparsity range (0.55–0.95). Across all models, larger89

hidden dimensions consistently improve reconstruction quality.90

Training linear probes from SAE features to acoustic concepts. We train linear probes to predict91

pitch (with 66 bins spanning the pitch range present in our dataset), loudness (20 bins), and timbre92

(20 bins) from SAE features. Plotting the probe classification accuracy on a test set vs. the sparsity of93

its SAE in Figure 3 shows a hierarchy of linear decodability across acoustic properties. Pitch proves94

most linearly separable (0.75–0.87 accuracy) and remains stable across all sparsity levels, suggesting95

fundamental frequency encoding. EnCodec excels at loudness (0.56–0.63) compared to DiffRhythm96

and WavTokenizer (0.17–0.49). Timbre remains challenging across all models (0.17–0.46).97

Applying targeted interventions to audio samples. We test controllability on diverse audio98

sources (singing voice, drums, four-part harmony). Figure 2 shows a chordal audio sample from the99
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Figure 3: Linear probe accuracy for acoustic property classification across different sparsity levels.
Left: Stable Audio Open/DiffRhythm VAE, Middle: WavTokenizer, Right: EnCodec.

CocoChorales dataset encoded with EnCodec and our highest-sparsity SAE (hidden_dim=16384,100

λ = 0.1). We apply control vectors targeting pitch (MIDI C5), timbre (spectral centroid class 17),101

and loudness (class 2) with strengths α ∈ {1, 10, 20, 30}. As α increases, edits are isolated in the102

targeted attribute, while non-targeted properties remain largely preserved.103

3.2 Generation Process Visualization104

Figure 4: Probes Variation in Generation Progress

We demonstrate how our learned mappings105

can help us understand the audio genera-106

tion process by analyzing DiffRhythm [18],107

a rectified flow model designed for full-108

length song synthesis. In this analysis,109

the model was configured to generate a110

95-second audio segment, encompassing a111

verse and a chorus, over 32 inference steps.112

At each generation step t ∈ {0, ..., 31},113

we extract the latent Xt ∈ RC×F , and114

decompose it through our SAE and linear115

probes to obtain acoustic concept activa-116

tions P
(a)
t ∈ RF×Ka . After applying a117

mean pooling over frames (F ), we obtain distributions p
(a)
t for each attribute a. To quantify the118

evolution of acoustic properties, we track how these distributions interpolate from noise to the final119

audio. Specifically, for each attribute a and step t, we compute the per-class normalized L1 distance:120

s
(a)
t =

1

Ka

Ka∑
k=1

|p(a)t,k − p
(a)
0,k|

|p(a)T,k − p
(a)
0,k|

(4)

where s
(a)
t ∈ [0, 1] measures the progression from initial noise (t = 0) toward the final acoustic121

structure (t = T = 31). This reveals when different acoustic properties emerge during generation.122

We sample 500 prompts from MusicCaps [1], then plot the mean and standard deviation of the123

generation progress in Figure 4, which indicates a clear hierarchy. Pitch converges first (around step124

21), followed by timbre, while loudness converges last and remains unresolved by the final step.125

This coarse-to-fine progression suggests the model establishes fundamental frequency before refining126

textural and dynamic details.127

4 Conclusion128

We present a framework for interpreting audio generative models by mapping their latent representa-129

tions to human-interpretable acoustic properties through sparse autoencoders and linear probes. Our130

experiments demonstrate that SAE features naturally align with acoustic properties, enabling both131

controllable manipulation and better understanding of music generative models.132

In future work, we plan to apply our method to other generative architectures, such as RAVE [2],133

ACE-Step [9], and AudioLDM [14]. Beyond the three acoustic properties explored here, we will train134

probes for richer audio features such as rhythm, harmony, and instrument identity. Finally, we aim to135

use these interpretable features to directly guide generation behavior during inference, potentially136

enabling fine-grained control over specific attributes while maintaining generation quality.137
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