

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 LIGHTCTRL: TRAINING-FREE CONTROLLABLE VIDEO RELIGHTING

005 **Anonymous authors**

006 Paper under double-blind review

025 Figure 1: LightCtrl can relight an input video to produce high-quality results with strong temporal
026 consistency and, particularly, illumination that closely follows the user-specified light trajectory.

027 ABSTRACT

029 Recent diffusion models have achieved remarkable success in image relighting,
030 and this success has quickly been reproduced in video relighting. Although these
031 methods can relight videos under various conditions, their ability to explicitly con-
032 trol the illumination in the relighted video remains limited. Therefore, we present
033 LightCtrl, the first controllable video relighting method that offers explicit control
034 over the video illumination through a user-supplied light trajectory in a training-
035 free manner. This is essentially achieved by leveraging a hybrid approach that
036 combines pre-trained diffusion models: a pre-trained image relighting diffusion
037 model is used to relight each frame individually, followed by a video diffusion
038 prior that enhances the temporal consistency of the relighted sequence. In partic-
039 ular, to enable explicit control over dynamically varying lighting in the relighted
040 video, we introduce two key components. First, the Light Map Injection module
041 samples light trajectory-specific noise and injects it into the latent representation
042 of the source video, significantly enhancing illumination coherence with respect
043 to the conditional light trajectory. Second, the Geometry-Aware Relighting mod-
044 ule dynamically combines RGB and normal map latents in the frequency domain
045 to suppress the influence of the original lighting in the input video, thereby further
046 improving the relighted video’s adherence to the input light trajectory. Our ex-
047 periments demonstrate that LightCtrl can generate high-quality video results with
048 diverse illumination changes closely following the light trajectory condition, indi-
049 cating improved controllability over baseline methods. The code will be released
050 to facilitate future studies.

051 1 INTRODUCTION

052 The ability to controllably edit illumination in images and videos is a highly desired feature in visual
053 content creation. With the rapid advancement of generative models, image relighting has achieved

054 remarkable success. These image relighting pipelines (Sun et al., 2019; Nestmeyer et al., 2020;
 055 Pandey et al., 2021; Zeng et al., 2024; Bharadwaj et al., 2024; He et al., 2024; Ponglertrnapakorn
 056 et al., 2023; Ren et al., 2024; Kim et al., 2024) typically involve a complex traditional synthesis
 057 pipeline that adheres to the desired relighting conditions. More recently, the state-of-the-art im-
 058 age relighting model IC-Light (Zhang et al., 2025) directly fine-tunes a pre-trained diffusion-based
 059 image generator conditioned on various input lighting scenarios.

060 The success is quickly reproduced in video relighting, where, analogically, video diffusion mod-
 061 els (VDMs) are repurposed for relighting existing videos. , RelightVid (Fang et al., 2025) constructs
 062 a high-quality video dataset featuring diverse lighting conditions to train the VDM. Nevertheless,
 063 the data crafting is often prohibitively expensive. This limitation has prompted the development of
 064 training-free methods, such as Light-A-Video (Zhou et al., 2025), which progressively integrates in-
 065 dividualy relighted frames, produced by a pre-trained image relighting model (Zhang et al., 2025),
 066 into the denoising process of a VDM.

067 These existing approaches (Fang et al., 2025; Zhou et al., 2025) often overlook the subtle yet crucial
 068 impact of localized light adjustments on the narrative and emotional expression within videos. We
 069 argue that a specific local light change in video frames can significantly enhance the storytelling
 070 atmosphere, as it allows for more nuanced manipulation of visual focus and mood. For instance,
 071 a gradual dimming of light in a particular scene corner can emphasize a character’s inner tension,
 072 while a sudden beam of light can highlight a pivotal plot moment. To address this gap and mock the
 073 dynamic changes of light and shadow in videos, we define a controllable video relighting task. This
 074 task aims to provide fine-grained control over frame-wise lighting, enabling creators to tailor light
 075 effects to the narrative flow of each scene. By introducing procedural synthesis techniques, we seek
 076 to achieve precise, frame-by-frame light control, which can simulate real-world lighting dynamics
 077 such as the slow transition of dawn or the specific highlight region.

078 We thus present LightCtrl, the *first* controllable video relighting method that produces high-quality
 079 results with explicit control over the video illumination through a user-supplied light trajectory. Sim-
 080 ilar to previous work (Zhou et al., 2025; Meng et al., 2021), LightCtrl is based on the video editing
 081 pipeline and adopts a hybrid approach that combines pre-trained diffusion models: a pre-trained
 082 image relighting diffusion model is used to relight each frame individually, followed by a video
 083 diffusion prior that enhances the temporal consistency of the relighted sequence. In particular, to
 084 achieve controllability of video relighting through user-defined light trajectory, a Light Map Injec-
 085 tion module is devised. Specifically, we begin by synthesizing a sequence of light maps that align
 086 with the lighting trajectory defined by the user. This can be straightforwardly achieved through pro-
 087 cedural synthesis, or users have the flexibility to manually author the light map sequence. Then,
 088 we inject these light maps as control signals into the noise latent of both the single-frame relighting
 089 model and the video diffusion model. The Light Map Injection module significantly improves the
 090 adherence of the lighting in the generated video with respect to the input light trajectory. On the
 091 other hand, the illumination in the source video could greatly affect the relighting results, hence we
 092 introduce the Geometry-Aware Relighting module, which takes as input the estimated normal map
 093 sequence of the source video, to suppress the influence of the source illumination. Additionally,
 094 to preserve the details in the source video, we dynamically fuse the RGB video and normal maps
 095 latents in the frequency domain, obtaining the best of both worlds. Experiments demonstrate that
 096 our training-free method enables coherent and controllable video relighting across a wide range of
 097 source videos, faithfully following diverse lighting trajectories specified by the user.

098 2 RELATED WORK

099 **Illumination-Controlled Visual Generation.** Controllable illumination synthesis has become a
 100 crucial research direction in visual generation. Early efforts employed deep neural networks to con-
 101 trol illumination on light stage data (Sun et al., 2019) and enhanced neural network relighting by
 102 incorporating physical priors (Nestmeyer et al., 2020). Total Relighting (Pandey et al., 2021) op-
 103 timized the Phong model using HDR lighting maps. With the advent of diffusion-based models,
 104 methods such as DiLightNet (Zeng et al., 2024), GenLit (Bharadwaj et al., 2024), DifFRelight (He
 105 et al., 2024), and DiFaReli (Ponglertrnapakorn et al., 2023) have emerged, achieving detailed relight-
 106 ing. However, applying image-based methods such as Relightful Harmonization (Ren et al., 2024),
 107 SwitchLight (Kim et al., 2024), and IC-Light (Zhang et al., 2025) to videos often results in tem-
 108 poral inconsistency. In video illumination control, methods like EdgeRelight360 (Lin et al., 2024)

108 and ReliTalk (Qiu et al., 2024a) addressed temporal consistency using 3D-aware models. Generative portrait-relighting works such as Lumos (Yeh et al., 2022) and related methods (Zhang et al., 2021; Cai et al., 2024) also achieve impressive relighting results by injecting illumination through environment maps. However, their strong dependence on environment-map inputs limits practical applicability. Training-based methods like RelightVid (Fang et al., 2025) achieve coherent video relighting through high-quality datasets, while training-free methods like Light-A-Video (Zhou et al., 2025) leverage image relighting techniques and video diffusion models' motion priors. Despite these advances, no existing method can yet achieve flexible video relighting based on user-defined lighting trajectories.

117 **Video Editing and Video Diffusion Models.** Recent years have witnessed substantial advancements in video generation, particularly through the application of video diffusion models (Blattmann et al., 2023; Guo et al., 2023; Yang et al., 2024; Xing et al., 2024), which are capable of producing high-quality, physically plausible videos. In the domain of text-to-video generation, various strategies have been explored: some methods integrate motion modeling modules into existing text-to-image (T2I) architectures (Guo et al., 2023; Chen et al., 2023; 2024; Wang et al., 2023a) to capture temporal dynamics, while others focus on learning video-specific priors from scratch (Yang et al., 2024). These innovations have also spurred interest in video editing techniques, where some approaches optimize models through additional training (Mou et al., 2024; Cheng et al., 2023), while others achieve editing without requiring further training (Ku et al., 2024; Ling et al., 2024). Additionally, when adapting image-based methods to video, researchers have employed different strategies, such as leveraging pre-trained T2I networks (Ma et al., 2024b; Wang et al., 2023b; Wu et al., 2023) or utilizing pre-trained optical flow models (Yang et al., 2023; Cong et al., 2023) to enhance temporal coherence. However, despite these notable achievements, precise control over video lighting remains a significant challenge, with existing methods falling short in maintaining lighting motion consistency, preserving scene details, and ensuring the rationality of character lighting.

132 **Controllable Video Generation.** With the rapid development of video generation models, significant potential has been brought to the field of controllable video generation. Recently, some methods have used basic conditions such as depths and sketches to control video content generation (Chen et al., 2024; Wang et al., 2023c). There are also methods based on motion (Geng & Owens, 2024), optical flows (Zhao et al., 2023), and those related to human poses (Ma et al., 2024b). Another category of methods (Wang et al., 2024a;b) provides user-defined bounding boxes or trajectories to achieve flexible control over the foreground content in videos. The emergence of most of these methods is largely due to the appearance of the ControlNet (Zhang et al., 2023) architecture. However, these methods often require us to construct high-quality training data to train the corresponding modules to achieve controllable generation. Accordingly, some training-free methods have emerged, such as Trailblazer (Ma et al., 2024a), which enhances attention on specific regions via cross-attention, Peekaboo (Jain et al., 2024), which uses masked attention for control without additional training, and FreeTraj (Qiu et al., 2024b), which aligns trajectories with given boxes using frequency fusion.

146 3 METHOD

147 The proposed LightCtrl is a training-free controllable video relighting method that provides controllability of the video illumination through the given light map conditioning. We begin by introducing the background of the image relighting method, , IC-Light (Zhang et al., 2025) in Sec. 3.1. Then we elaborate the overall pipeline of LightCtrl in Sec. 3.2, along with its two key components: Light Map Injection module (Sec. 3.2.2) and Geometric-Aware Relighting module (Sec. 3.2.3).

153 3.1 PRELIMINARY: IC-LIGHT (ZHANG ET AL., 2025) FOR SINGLE IMAGE RELIGHTING

155 IC-Light (Zhang et al., 2025) is the state-of-the-art method for conditional image relighting, which is fine-tuned based on a pre-trained text-to-image diffusion model, , Stable Diffusion (Rombach et al., 2021). During training, the target relighted image I_L is encoded into a latent space via a pre-trained VAE encoder \mathcal{E} , where the noise is added iteratively via diffusion model theory (Ho et al., 2020). Given the set of conditions, including time step t , background reference L , and the input degradation I_d , the network δ learn to predict the added noise ϵ of each step. Besides the original diffusion progress, their key innovation is the light transport consistency constraint, which enforces the linear properties of light transport by minimizing the difference between the appearance under

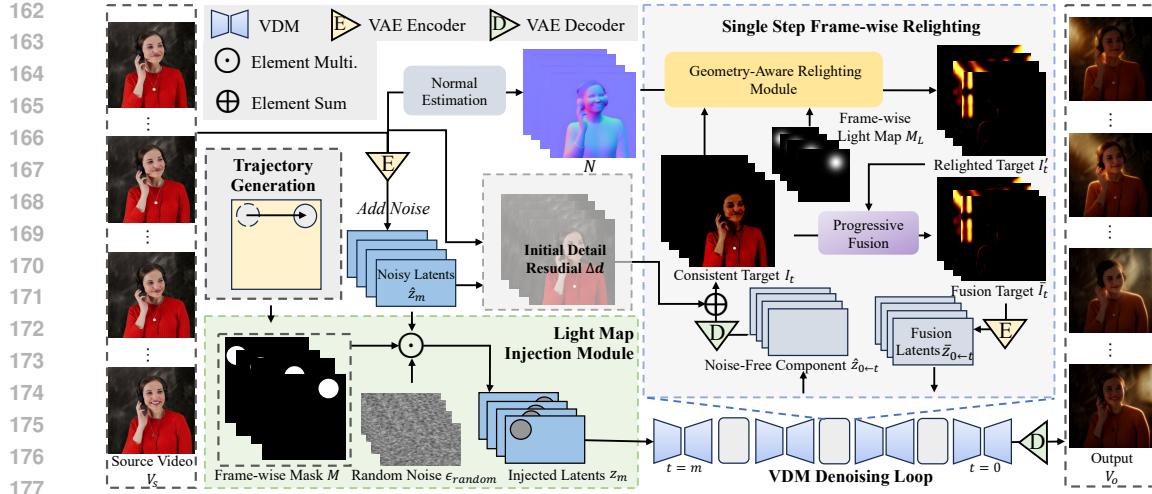


Figure 2: **Overall Pipeline.** We perform controllable video relighting with a user-provided light trajectory. Where we inject the light map on the noisy latent of VDM using the light map injection module. Then, in each denoising step, we design a geometry-aware relighting module to produce the relighted results frame-wise. Thus, the VDM can help to generate consistent video results with controllable lighting.

mixed illumination and the sum of appearances under individual illuminations, so that IC-Light can be trained via:

$$\mathcal{L} = \lambda_{\text{diffusion}} \|\epsilon - \delta(\mathcal{E}(I_L)_t, t, L, \mathcal{E}(I_d))\|_2^2 + \lambda_{\text{consistency}} \|M \odot (\epsilon_{L_1+L_2} - \phi(\epsilon_{L_1}, \epsilon_{L_2}))\|_2^2, \quad (1)$$

where M is the foreground mask, \odot denotes pixel-wise multiplication, and $\phi(\cdot, \cdot)$ is a learnable function. The final loss function is a weighted combination of the vanilla diffusion loss and the light transport consistency loss, with weights $\lambda_{\text{diffusion}}$ and $\lambda_{\text{consistency}}$, respectively. During the inference stage, we can obtain the corresponding controllable image relighting results by inputting an image along with an appropriate background reference.

Specifically, IC-Light shows a very interesting application by manually defining a gradient mask as the potential light map, as the background reference. Then, it can be used to generate the light-controllable results in a specific direction. This light map reflects the positional and directional preference information of the illumination in the relighting results, laying the foundation and inspiring our controllable video relighting task.

3.2 LIGHTCTRL

Unlike image relighting methods that focus on single images and the specific lighting direction, our approach targets high-quality video relighting, particularly with a continuously varying light map, ensuring coherence and naturalness throughout the video. Specifically, given a source video, a relighting prompt, and a light map condition, our model aims to generate a new illumination for the video while preserving its original content. We begin by presenting the overall pipeline of the proposed framework, followed by a detailed description of its two key components: the Geometry-Aware Relighting module and the Light Map Injection module.

3.2.1 OVERALL PIPELINE

LightCtrl follows a similar approach to the training-free video editing paradigm (Meng et al., 2021), where the source video is first encoded into a noisy latent, and controllable relighting is achieved through progressive denoising in the latent space. As shown in Fig. 2, we first encode the l frame source video \mathbf{V}_s into a latent space $\hat{\mathbf{z}}_0$, and add T_m steps of noise to obtain the noisy latents $\hat{\mathbf{z}}_m$. Subsequently, according to the trajectory defined by the user, the corresponding frame-wise mask sequence is generated. For controllable relighting, firstly, we use the Light Map Injection module to obtain the trajectory-injected latents \mathbf{z}_m from $\hat{\mathbf{z}}_m$, so that the following T_m steps of denoising have the prior of generating the corresponding light trajectory. Then, similar to previous work (Zhou et al.,

2025), we perform a single frame relighting and utilize the VDM for temporal consistency. In detail, 217 during each denoising step t , we first predict the noise-free latent at 0 step $\hat{\mathbf{z}}_{0 \leftarrow t}$. Here, each frame of 218 $\mathbf{z}_{0 \leftarrow t}$ is decoded to the RGB space, which serves as the video consistent target $\mathbf{I}_t = \mathcal{D}(\mathbf{z}_{0 \leftarrow t})$ using 219 the pre-trained VAE decoder $\mathcal{D}(\cdot)$ for frame-wise relighting. To address detail loss, we calculate 220 the initial detail residual $\Delta \mathbf{d}$ between the decoded latent in the first step \mathbf{I}_m and the source video 221 \mathbf{V}_s pixelwisely and add it into \mathbf{I}_t as the input of Geometry-Aware Relighting module for frame- 222 wise relighting, obtaining the relighted target \mathbf{I}'_t for the t -th denoising step. Finally, we employ 223 a progressive fusion strategy with a fusion weight λ_t that decreases as denoising progresses. The 224 fusion target $\bar{\mathbf{I}}_t$ for the step t is calculated as:

$$\bar{\mathbf{I}}_t = (1 - \lambda_t)\mathbf{I}_t + \lambda_t \mathbf{I}'_t. \quad (2)$$

225 The fusion latent $\bar{\mathbf{z}}_{0 \leftarrow t} = \mathcal{E}(\bar{\mathbf{I}}_t)$ guides the next step of the denoising process towards the relighting 226 direction. This ensures temporally coherent lighting, addressing temporal inconsistencies and 227 enhancing the visual quality of the relighted video.

230 3.2.2 USER-DEFINED TRAJECTORY AS LIGHT MAP CONTROL SIGNAL

231 As mentioned above, the first key component of our framework enables the injection of a user- 232 defined light trajectory, allowing the generated video to exhibit temporally varying lighting across 233 frames that follows the specified trajectory. For example, with circular light sources, the user man- 234 ually specifies a light trajectory along with the starting and ending radius. We then linearly interpolate 235 the radius and position of the light for each frame to construct a frame-wise light map. This control 236 signal is subsequently integrated into both the single-frame relighting process and the video diffu- 237 sion denoising loop. Firstly, in the single frame relighting, as discussed in Sec. 3.1, IC-Light (Zhang 238 et al., 2025) provides a manual background map to generate the relighting results in the correspond- 239 ing direction. Inspired by this finding, we expand this directional background light source to the 240 local dynamic for relighting video with differences as shown in the Fig. 3.

241 Although the above method can achieve some kind of controllability at the frame level, it still shows 242 limited effects when facing the multi-step VDM denosing. Therefore, to produce more controllable 243 results, inspired by the previous bounding box injection method (Qiu et al., 2024b) on leveraging 244 the noise to guide the motion of objects in video generation, we adapt the concept to control the 245 movement of illumination and then propose the Light Map Injection module.

246 During the video diffusion processes, given the initial noisy latent $\hat{\mathbf{z}}_m$ of the source video, we ini- 247 tialize a random Gaussian noise ϵ_{random} based on the area defined by the input light masks \mathbf{M} . 248 However, directly replacing the noisy latents $\hat{\mathbf{z}}_m$ with the masked local latent ϵ_{random} caused severe 249 visual artifacts. To mitigate this, we introduced a weighted fusion strategy. Mathematically, for each 250 frame k , the new initial noise \mathbf{z}_m^k is calculated as:

$$\mathbf{z}_m^k = \begin{cases} \hat{\mathbf{z}}_m^k & \text{if } \mathbf{M}_k[i, j] = 0 \\ \omega \cdot \epsilon_{random} + (1 - \omega) \cdot \hat{\mathbf{z}}_m^k & \text{if } \mathbf{M}_k[i, j] = 1, \end{cases} \quad (3)$$

251 where $\hat{\mathbf{z}}_m^k$ represents the noisy latent variable corresponding to frame k , and \mathbf{M}_k denotes the input 252 light mask at frame k . $\mathbf{M}_k[i, j] = 1$ when the position $[i, j]$ is inside the mask area of the light map, 253 and $\mathbf{M}_k[i, j] = 0$ otherwise. ω is the fusion weight carefully tuned to balance the influence of the 254 local random noise and the original noise, ensuring a smooth transition and minimizing artifacts. 255 Based on the above strategy, the light trajectory can be successfully injected into both the video 256 diffusion model and the image diffusion model for controllable video relighting.

261 3.2.3 GEOMETRY-AWARE RELIGHTING MODULE

262 Directly using the proposed Light Map Injection module can achieve controllable video relighting. 263 However, the light environment in the source video often causes undesirable leakage into the final 264 output. For instance, when the illumination direction changes from left to right, artifacts may 265 persist where the left side of the subject's face remains incorrectly lit. To address this, we propose 266 incorporating geometry information(surface normal maps) as a part of single-frame relighting.

267 Similar to the RGB image, we find that the latent of the normal map contains stronger structural 268 information and can also be utilized in a zero-shot setting. However, directly integrating this geometry 269 information before each step of relighting would bring the blurring results caused by the pre-trained

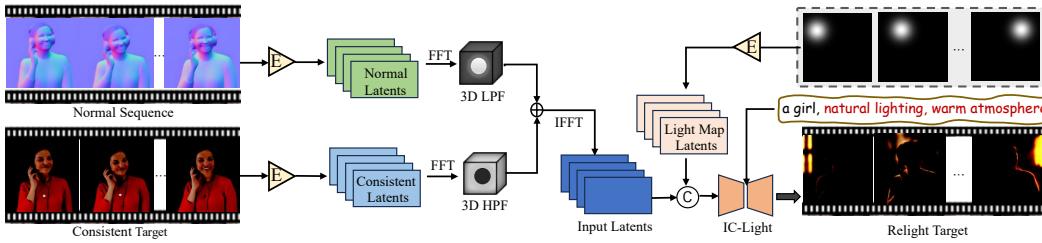


Figure 3: **The framework of Geometry-Aware Relighting Module.** This module is designed for frame-wise relighting. Firstly, the normal sequence of the source video and each consistent target derived from the denoising steps are encoded into the latent space and further process them in the frequency domain. Then, their spatio-temporal low-frequency components are dynamically fused with the high-frequency components of the consistent latents, with the cut-off frequency varying at each denoising step to add details. Finally, these latents are transformed back to the video space and produce the relighted frames using frame-wise IC-Light Zhang et al. (2025).

model, thereby severely affecting the quality and details of the final relighted video. Thus, we involve the frequency features for better fusion. As shown in Fig. 3, specifically, in each step of VDM denoising, we firstly use a pre-trained state-of-the-art normal estimation model, , Stable Normal (Ye et al., 2024), to predict the frame-wise normal map \mathbf{N} from the source video. Given the consistent target \mathbf{I}_t as input to the relight model, we first encode it into the latent space to obtain the consistent latents $\mathbf{z}_{0 \leftarrow t}$. We perform the similar VAE encoding to the predicted normal \mathbf{N} , obtaining \mathbf{z}_{normal} . Then, we transfer them into the frequency domain via the Fast Fourier Transformation \mathcal{FFT}_{3D} in the spatial and frequency domain (Wu et al., 2024). Whereas we define a dynamic 3D Butterworth filter $\mathcal{H}_\alpha(t)$ with cut-off frequency at α to control the high-frequency and low-frequency details between two latents. The detailed definition of the filter will be provided in Appendix B. After that, we combine the low-frequency latents and high-frequency latents and recover them into the spatial latent domain via inversed 3D Fast Fourier Transformation \mathcal{IFFT}_{3D} , which serves as the input latents $\tilde{\mathbf{z}}_t$ for frame-wise IC-Light relighting. Formally, this process can be written as:

$$\tilde{\mathbf{z}}_t = \mathcal{IFFT}_{3D} (\mathcal{FFT}_{3D}(\mathbf{z}_{normal}) \odot \mathcal{H}_\alpha(t) + \mathcal{FFT}_{3D}(\mathbf{z}_{0 \leftarrow t}) \odot (1 - \mathcal{H}_\alpha(t))), \quad (4)$$

As the denoising loop progresses, we linearly decrease the cut-off frequency α so that the dynamic filter $\mathcal{H}_\alpha(t)$ gradually changes from all-pass to low-pass. In this way, we completely adopt the normal latents as input at the beginning of denoising. In the later stage of denoising, we utilize more of the low-frequency part of the normal latents and gradually add the high-frequency information from the consistent latents. This module enables us to effectively leverage the normal information to eliminate interfering lighting distributions while preserving details.

4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

Baselines. As a baseline, we adopt IC-Light (Zhang et al., 2025), a state-of-the-art controllable image relighting model that relights each frame individually based on its corresponding light map from the input lighting trajectory. To balance frame-wise relighting controllability with temporal consistency, we also develop another baseline method based on SDEdit (Meng et al., 2021), where the frame-wise relighted video produced by IC-Light is perturbed with noise (using two levels: 0.2 and 0.6) and subsequently denoised. Finally, we compare against a variant based on the recent video relighting method Light-A-Video (Zhou et al., 2025), which we refer to as LAV-Traj, in which the light map from the input lighting trajectory is provided as the background image to the frame-wise image relighting model used in Light-A-Video.

Datasets. We construct a test dataset comprising 50 videos, primarily sourced from Pixabay (pixabay, 2025), which offers a diverse collection of high-quality footage. For each video, we apply six predefined light trajectories featuring variations in light source radius and trajectories, including left-to-right, top-to-bottom, circular motion, and more. Additional results and comparisons are provided in Appendix D.

Evaluation Metrics. We conduct quantitative evaluations to assess the relighting controllability with respect to the input light trajectory, as well as the visual quality. For the light trajectory control-

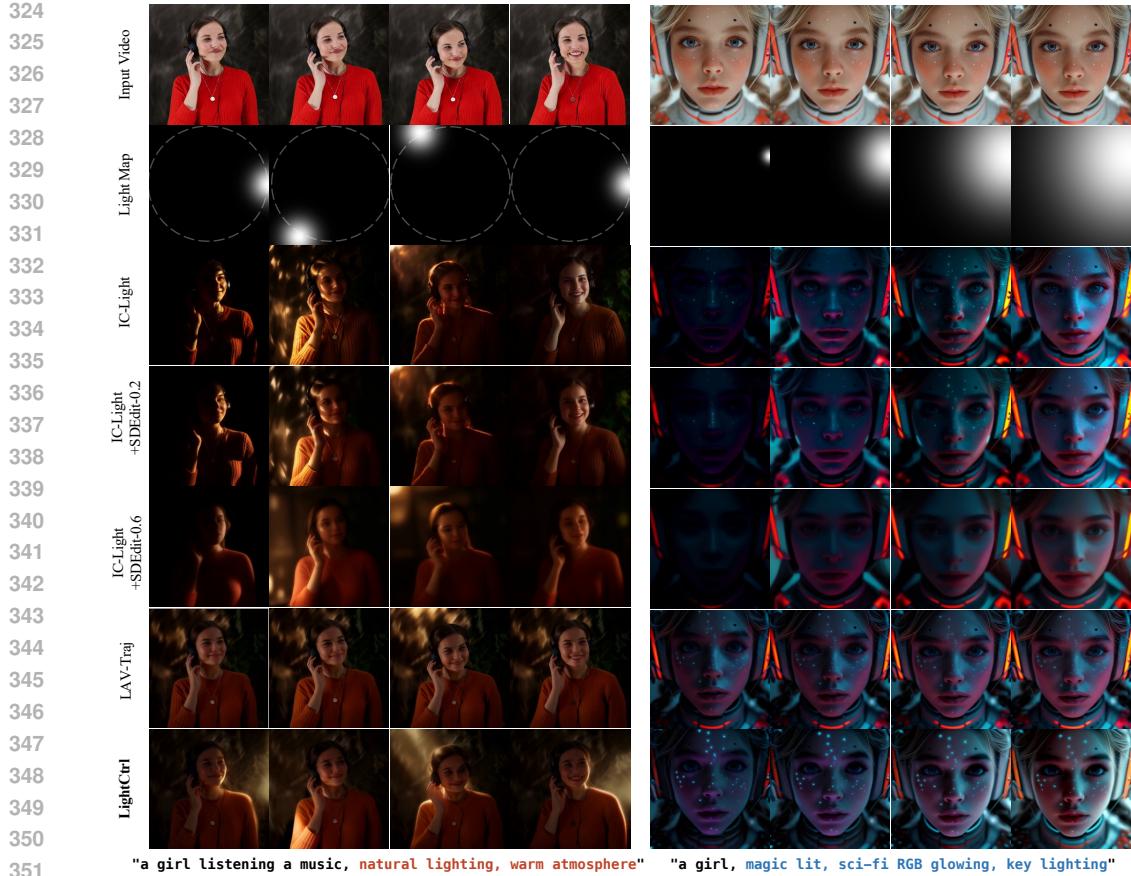


Figure 4: Qualitative comparison of light trajectory control. We compare our LightCtrl with IC-Light, IC-Light + SDEdit-0.2, IC-Light + SDEdit-0.6, and LAV-Traj. Compared to baselines, LightCtrl produces high-quality, temporally coherent, and controllable relighting results, closely following the input light trajectories.

lability, we report the $PSNR_y$ in the y channel (the luminance channel) in the light map mask region between the results of the baseline methods and a pure white video to measure the controllability of illumination. When the result in the mask area of the light map is closer to a pure white result in the luminance channel, we have reason to believe that there is more lighting in that area, which also reflects a better ability to control the video lighting according to the lighting trajectory. Then, we directly overlay the light map on the original video and calculate the $PSNR_{light}$ between the overlay results and all baseline methods to evaluate the controllable temporal consistency of lighting and foreground. Secondly, to evaluate the video quality of the results, we adopt aesthetic quality in Vbench (Huang et al., 2024) to assess the aesthetic quality of videos, and calculate the Frechet Video Distance (FVD) (Unterthiner et al., 2018) scores between all video results of different baselines and the input videos.

Finally, we conduct a user study with 40 volunteers. We randomly select 24 videos from the 50 videos generated by each method, where these 24 sets of videos include 6 predefined trajectories by users, as well as source videos with different characteristics and a variety of lighting prompts. They assessed the performance of our method by comparing it with baseline methods across four key aspects. Specifically, they examined Video Smoothness (the coherence and naturalness of appearance and lighting changes in the video), Lighting Controllability (the alignment of lighting movement with the given trajectory), Lighting Quality (the overall quality and rationality of the lighting effects), and Alignment between Lighting and Text (the match between the generated lighting and the provided relight prompt). The best results from the baseline methods for each dimension are chosen by the volunteers and used as preference metrics.

Implementation Details. In our experiments, following by (Zhou et al., 2025), we adopt IC-Light (Zhang et al., 2025) as the image relight model and employ AnimateDiff (Guo et al., 2023) as

378

379

Table 1: Quantitative Comparisons with Other Methods.

Methods	Video Quality		Control Ability		User Study			
	AQ \uparrow	FVD \downarrow	PSNR _y \uparrow	PSNR _{light} \uparrow	VS \uparrow	LC \uparrow	LQ \uparrow	ALT \uparrow
IC-Light Zhang et al. (2025)	0.5937	1018.5	11.059	15.850	1.00%	15.00%	3.00%	9.73%
IC-Light + SDEdit-0.2 Meng et al. (2021)	0.5907	1134.8	11.009	16.249	2.50%	2.00%	0.50%	3.00%
IC-Light + SDEdit-0.6 Meng et al. (2021)	0.5681	1630.9	10.980	16.385	4.75%	1.09%	0.50%	3.27%
LAV Zhou et al. (2025)-Traj	0.6157	1077.4	11.043	17.755	23.50%	4.00%	20.00%	10.27%
LightCtrl (Ours)	0.6114	993.1	11.768	18.532	68.25%	77.91%	74.86%	73.73%

385

386 the default VDM. We typically set T_m to 25. Then we set $\lambda_t = 1 - t/T_m$ in the progressive fusion
 387 strategy, where the fusion weight λ_t decreases as denoising progresses. In the geometry-aware
 388 relighting module, we set the cut-off frequency $\alpha = \lambda_t$ so that as the denoising loop progresses, α
 389 is linearly decreasing. More implementation details are in Appendix A.

391

4.2 COMPARE WITH THE STATE-OF-THE-ART METHODS

392

393 Fig. 4 presents the control ability of illumination of all methods. The IC-Light per-frame model,
 394 while capable of producing high-quality relighting results on a frame-by-frame basis, performs
 395 poorly in terms of temporal consistency when dealing with continuously varying lighting trajec-
 396 tories. This results in significant flickering and discontinuity in the overall visual output. However,
 397 ICLight + SDEdit, although introducing motion priors through VDM, suffers from inconsistency in
 398 lighting after relighting at a noise level of 0.2, and excessive smoothing of appearance at a noise level
 399 of 0.6. Under the PLF fusion strategy, LAV-Traj has demonstrated strong capabilities in terms of
 400 temporal consistency in relighting results. However, when it comes to handling the diverse lighting
 401 trajectory variations we require, its controllability still falls short and fails to achieve controllable
 402 results for a variety of lighting trajectories.

403

404 The quantitative comparison of our method with other baseline methods is shown in Table 1. The
 405 IC-Light results still demonstrate their effectiveness in terms of the controllability of lighting in each
 406 frame. However, the obvious temporal inconsistency greatly reduces the aesthetic quality AQ score
 407 of the results. By combining SDEdit with different noise levels, temporal consistency is improved,
 408 but since it only smooths the video by changing the noise level and cannot achieve a consistency
 409 constraint on lighting, the video quality scores AQ and FVD, as well as the controllability metrics
 410 PSNR, are all low. LAV-Traj achieves the best aesthetic quality AQ score, but its strong consis-
 411 tency constraint greatly reduces its lighting controllability based on the given trajectory. In contrast,
 412 LightCtrl achieves a low FVD score and a high AQ score. While maintaining high temporal con-
 413 sistency in relighting quality, it also achieves the best scores in both controllability metrics PSNR_y,
 414 PSNR_{light}, demonstrating outstanding lighting control capability. Furthermore, we demonstrate our
 415 method’s superiority under static light conditions in Appendix C.

416

4.3 ABLATION STUDY

417

418 We conduct an ablation study to evaluate the importance of different components. Considering the
 419 original LAV + Traj as baseline (Zhou et al., 2025), due to the strong temporal consistency constraint,
 420 it is unable to handle controllable continuous variations in lighting trajectories. As shown in Fig. 5,
 421 the Geometry-Aware Relighting module makes the lighting results on human faces more reasonable,
 422 independent of the lighting distribution in the source video. Meanwhile, the lighting distribution
 423 brought by the source video on the lawn on the right side causes the LAV-Traj to still highlight
 424 the background (as shown in the red box) when the light reaches the lower part of the frame, even
 425 when our method does not have the GAR module. In addition, by injecting lighting trajectories into
 426 the initial noise before VDM denoising, LightCtrl can generate more controllable relighting videos
 427 while preserving the overall details of the video(as shown in the right part of Fig. 5). Due to the
 428 space limitation, we give more ablation experiments in Appendix B.

429

4.4 LIMITATION AND FUTURE WORK

430

431

Since our method is based on existing image relighting models and VDM models, although our
 approach can achieve controllable lighting results for different light paths under the zero-shot setting,
 its performance is still limited. For example, when the light path passes over the foreground, it can

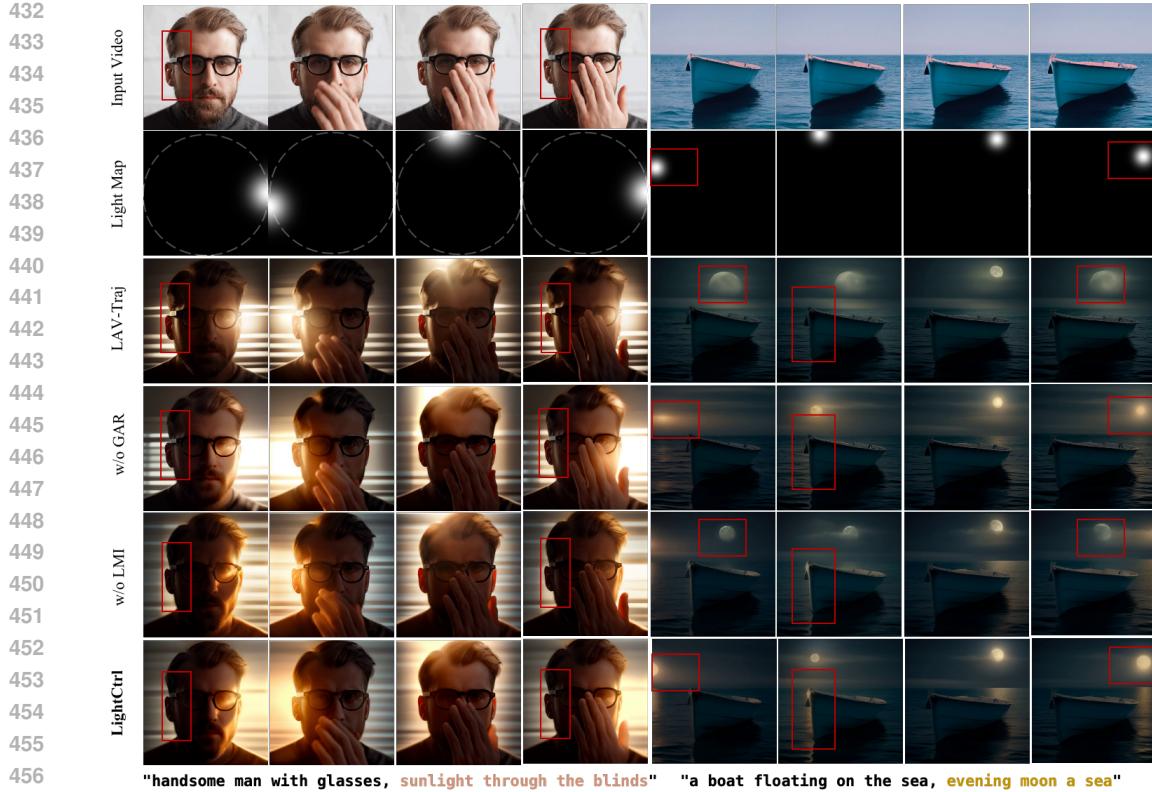


Figure 5: **Ablation Study.** Results of controllable video relighting with the Geometry-Aware Relighting (GAR) module or the Light Map Injection (LMI) module removed. The red box indicates the light distribution brought by the input video.

cause abnormal flickering on the face. Moreover, our method currently cannot achieve 3D perception of the light path. Despite the use of geometry-aware information, we still cannot effectively remove the influence of obvious shadows in the source video. As shown in Fig. 6, the shadow on the right side of the cat remains after relighting. To address these limitations, we will adapt the latest video generation base models and design an advanced network in our future work to achieve higher-quality controllable lighting.

Figure 6: **Failure Case.** We show an example result where the light map is blended into the original input video. Our method struggles to perform effectively in scenarios involving strong shadows, such as the "cat" case with the relight prompt "a cat, warm sunshine."

5 CONCLUSION

We introduce LightCtrl, a controllable video relighting method using pre-trained video and image diffusion models. So as the image relighting model produces high-quality relighting results, while the video diffusion model produces robust temporal consistency and control abilities over the whole video via user-supplied trajectories. To achieve this goal, we propose two key modules, Light Map Injection and Geometry-Aware Relighting, to boost controllability by enhancing illumination coherence and reducing the impact of initial lighting. LightCtrl precisely generates high-quality videos with diverse illumination changes according to light trajectories, outperforming baseline methods in controllability as well as maintaining the temporal consistency.

486 REFERENCES
487

488 Shrisha Bharadwaj, Haiwen Feng, Victoria Abrevaya, and Michael J Black. Genlit: Reformulating
489 single-image relighting as video generation. *arXiv preprint arXiv:2412.11224*, 2024.

490 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
491 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
492 latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.

493

494 Ziqi Cai, Kaiwen Jiang, Shu-Yu Chen, Yu-Kun Lai, Hongbo Fu, Boxin Shi, and Lin Gao. Real-time
495 3d-aware portrait video relighting. In *Proceedings of the IEEE/CVF Conference on Computer
496 Vision and Pattern Recognition*, pp. 6221–6231, 2024.

497 Haoxin Chen, Menghan Xia, Yingqing He, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Jinbo Xing,
498 Yaofang Liu, Qifeng Chen, Xintao Wang, et al. Videocrafter1: Open diffusion models for high-
499 quality video generation. *arXiv preprint arXiv:2310.19512*, 2023.

500

501 Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying
502 Shan. Videocrafter2: Overcoming data limitations for high-quality video diffusion models. In
503 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
504 7310–7320, 2024.

505 Jiaxin Cheng, Tianjun Xiao, and Tong He. Consistent video-to-video transfer using synthetic dataset.
506 *arXiv preprint arXiv:2311.00213*, 2023.

507

508 Yuren Cong, Mengmeng Xu, Christian Simon, Shoufa Chen, Jiawei Ren, Yanping Xie, Juan-Manuel
509 Perez-Rua, Bodo Rosenhahn, Tao Xiang, and Sen He. Flatten: optical flow-guided attention for
510 consistent text-to-video editing. *arXiv preprint arXiv:2310.05922*, 2023.

511 Ye Fang, Zeyi Sun, Shangzhan Zhang, Tong Wu, Yinghao Xu, Pan Zhang, Jiaqi Wang, Gordon
512 Wetzstein, and Dahua Lin. Relightvid: Temporal-consistent diffusion model for video relighting.
513 *arXiv preprint arXiv:2501.16330*, 2025.

514

515 Daniel Geng and Andrew Owens. Motion guidance: Diffusion-based image editing with differen-
516 tiable motion estimators. *arXiv preprint arXiv:2401.18085*, 2024.

517

518 Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh
519 Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffu-
520 sion models without specific tuning. *arXiv preprint arXiv:2307.04725*, 2023.

521

522 Mingming He, Pascal Clausen, Ahmet Levent Taşel, Li Ma, Oliver Pilarski, Wenqi Xian, Laszlo
523 Rikker, Xueming Yu, Ryan Burgett, Ning Yu, et al. Diffrelight: Diffusion-based facial per-
524 formance relighting. In *SIGGRAPH Asia 2024 Conference Papers*, pp. 1–12, 2024.

525

526 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
527 neural information processing systems*, 33:6840–6851, 2020.

528

529 Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
530 ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for
531 video generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
532 Pattern Recognition*, pp. 21807–21818, 2024.

533

534 Yash Jain, Anshul Nasery, Vibhav Vineet, and Harkirat Behl. Peekaboo: Interactive video generation
535 via masked-diffusion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
536 Pattern Recognition*, pp. 8079–8088, 2024.

537

538 Hoon Kim, Minje Jang, Wonjun Yoon, Jisoo Lee, Donghyun Na, and Sanghyun Woo. Switchlight:
539 Co-design of physics-driven architecture and pre-training framework for human portrait relight-
540 ing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
541 pp. 25096–25106, 2024.

542

543 Max Ku, Cong Wei, Weiming Ren, Harry Yang, and Wenhui Chen. Anyv2v: A tuning-free frame-
544 work for any video-to-video editing tasks. *arXiv preprint arXiv:2403.14468*, 2024.

540 Min-Hui Lin, Mahesh Reddy, Guillaume Berger, Michel Sarkis, Fatih Porikli, and Ning Bi. Edgeline-
 541 light360: Text-conditioned 360-degree hdr image generation for real-time on-device video por-
 542 trait relighting. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 543 *Recognition*, pp. 831–840, 2024.

544 Pengyang Ling, Jiazi Bu, Pan Zhang, Xiaoyi Dong, Yuhang Zang, Tong Wu, Huaian Chen, Jiaqi
 545 Wang, and Yi Jin. Motionclone: Training-free motion cloning for controllable video generation.
 546 *arXiv preprint arXiv:2406.05338*, 2024.

548 Wan-Duo Kurt Ma, John P Lewis, and W Bastiaan Kleijn. Trailblazer: Trajectory control for
 549 diffusion-based video generation. In *SIGGRAPH Asia 2024 Conference Papers*, pp. 1–11, 2024a.

550 Yue Ma, Yingqing He, Hongfa Wang, Andong Wang, Chenyang Qi, Chengfei Cai, Xiu Li, Zhifeng
 551 Li, Heung-Yeung Shum, Wei Liu, et al. Follow-your-click: Open-domain regional image anima-
 552 tion via short prompts. *arXiv preprint arXiv:2403.08268*, 2024b.

553 Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
 554 Sdedit: Guided image synthesis and editing with stochastic differential equations. *arXiv preprint*
 555 *arXiv:2108.01073*, 2021.

556 Chong Mou, Mingdeng Cao, Xintao Wang, Zhaoyang Zhang, Ying Shan, and Jian Zhang. Revideo:
 557 Remake a video with motion and content control. *Advances in Neural Information Processing*
 558 *Systems*, 37:18481–18505, 2024.

559 Thomas Nestmeyer, Jean-François Lalonde, Iain Matthews, and Andreas Lehrmann. Learning
 560 physics-guided face relighting under directional light. In *Proceedings of the IEEE/CVF Con-*
 561 *ference on Computer Vision and Pattern Recognition*, pp. 5124–5133, 2020.

562 Rohit Pandey, Sergio Orts-Escalano, Chloe Legendre, Christian Haene, Sofien Bouaziz, Christoph
 563 Rhemann, Paul E Debevec, and Sean Ryan Fanello. Total relighting: learning to relight portraits
 564 for background replacement. *ACM Trans. Graph.*, 40(4):43–1, 2021.

565 pixabay. <https://pixabay.com/videos/>, 2025. URL <https://pixabay.com/videos/>.

566 Puntawat Ponglernapakorn, Nontawat Tritrong, and Supasorn Suwajanakorn. Difareli: Diffusion
 567 face relighting. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 568 pp. 22646–22657, 2023.

569 Haonan Qiu, Zhaoxi Chen, Yuming Jiang, Hang Zhou, Xiangyu Fan, Lei Yang, Wayne Wu, and
 570 Ziwei Liu. Relitalk: Relightable talking portrait generation from a single video. *International*
 571 *Journal of Computer Vision*, 132(8):2713–2728, 2024a.

572 Haonan Qiu, Zhaoxi Chen, Zhouxia Wang, Yingqing He, Menghan Xia, and Ziwei Liu. Free-
 573 traj: Tuning-free trajectory control in video diffusion models. *arXiv preprint arXiv:2406.16863*,
 574 2024b.

575 Mengwei Ren, Wei Xiong, Jae Shin Yoon, Zhixin Shu, Jianming Zhang, HyunJoon Jung, Guido
 576 Gerig, and He Zhang. Relightful harmonization: Lighting-aware portrait background replace-
 577 ment. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 578 pp. 6452–6462, 2024.

579 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 580 resolution image synthesis with latent diffusion models, 2021.

581 Tiancheng Sun, Jonathan T Barron, Yun-Ta Tsai, Zexiang Xu, Xueming Yu, Graham Fyffe,
 582 Christoph Rhemann, Jay Busch, Paul E Debevec, and Ravi Ramamoorthi. Single image portrait
 583 relighting. *ACM Trans. Graph.*, 38(4):79–1, 2019.

584 Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski,
 585 and Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges.
 586 *arXiv preprint arXiv:1812.01717*, 2018.

594 Jiawei Wang, Yuchen Zhang, Jiaxin Zou, Yan Zeng, Guoqiang Wei, Liping Yuan, and Hang
 595 Li. Boximator: Generating rich and controllable motions for video synthesis. *arXiv preprint*
 596 *arXiv:2402.01566*, 2024a.

597

598 Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, and Shiwei Zhang. Mod-
 599 elscope text-to-video technical report. *arXiv preprint arXiv:2308.06571*, 2023a.

600 Wen Wang, Yan Jiang, Kangyang Xie, Zide Liu, Hao Chen, Yue Cao, Xinlong Wang, and Chun-
 601 hua Shen. Zero-shot video editing using off-the-shelf image diffusion models. *arXiv preprint*
 602 *arXiv:2303.17599*, 2023b.

603

604 Xiang Wang, Hangjie Yuan, Shiwei Zhang, Dayou Chen, Jiuniu Wang, Yingya Zhang, Yujun Shen,
 605 Deli Zhao, and Jingren Zhou. Videocomposer: Compositional video synthesis with motion con-
 606 trollability. *Advances in Neural Information Processing Systems*, 36:7594–7611, 2023c.

607 Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan Xia, Ping Luo,
 608 and Ying Shan. Motionctrl: A unified and flexible motion controller for video generation. In
 609 *ACM SIGGRAPH 2024 Conference Papers*, pp. 1–11, 2024b.

610

611 Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu,
 612 Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image diffusion
 613 models for text-to-video generation. In *Proceedings of the IEEE/CVF International Conference*
 614 *on Computer Vision*, pp. 7623–7633, 2023.

615 Tianxing Wu, Chenyang Si, Yuming Jiang, Ziqi Huang, and Ziwei Liu. Freeinit: Bridging initializa-
 616 tion gap in video diffusion models. In *European Conference on Computer Vision*, pp. 378–394.
 617 Springer, 2024.

618 Jinbo Xing, Menghan Xia, Yong Zhang, Haoxin Chen, Wangbo Yu, Hanyuan Liu, Gongye Liu,
 619 Xintao Wang, Ying Shan, and Tien-Tsin Wong. Dynamicrofter: Animating open-domain images
 620 with video diffusion priors. In *European Conference on Computer Vision*, pp. 399–417. Springer,
 621 2024.

622

623 Shuai Yang, Yifan Zhou, Ziwei Liu, and Chen Change Loy. Rerender a video: Zero-shot text-guided
 624 video-to-video translation. In *SIGGRAPH Asia 2023 Conference Papers*, pp. 1–11, 2023.

625 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 626 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
 627 with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024.

628

629 Chongjie Ye, Lingteng Qiu, Xiaodong Gu, Qi Zuo, Yushuang Wu, Zilong Dong, Liefeng Bo, Yuliang
 630 Xiu, and Xiaoguang Han. Stablenormal: Reducing diffusion variance for stable and sharp normal.
 631 *ACM Transactions on Graphics (TOG)*, 43(6):1–18, 2024.

632

633 Yu-Ying Yeh, Koki Nagano, Sameh Khamis, Jan Kautz, Ming-Yu Liu, and Ting-Chun Wang. Learning
 634 to relight portrait images via a virtual light stage and synthetic-to-real adaptation. *ACM Trans-
 635 actions on Graphics (TOG)*, 41(6):1–21, 2022.

636

637 Chong Zeng, Yue Dong, Pieter Peers, Youkang Kong, Hongzhi Wu, and Xin Tong. Dilightnet:
 638 Fine-grained lighting control for diffusion-based image generation. In *ACM SIGGRAPH 2024*
 639 *Conference Papers*, pp. 1–12, 2024.

640

641 Longwen Zhang, Qixuan Zhang, Minye Wu, Jingyi Yu, and Lan Xu. Neural video portrait relighting
 642 in real-time via consistency modeling. In *Proceedings of the IEEE/CVF international conference*
 643 *on computer vision*, pp. 802–812, 2021.

644

645 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 646 diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 647 pp. 3836–3847, 2023.

648

649 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Scaling in-the-wild training for diffusion-based
 650 illumination harmonization and editing by imposing consistent light transport. In *The Thirteenth*
 651 *International Conference on Learning Representations*, 2025.

648 Shihao Zhao, Dongdong Chen, Yen-Chun Chen, Jianmin Bao, Shaozhe Hao, Lu Yuan, and Kwan-
 649 Yee K Wong. Uni-controlnet: All-in-one control to text-to-image diffusion models. *Advances in*
 650 *Neural Information Processing Systems*, 36:11127–11150, 2023.

651
 652 Yujie Zhou, Jiazi Bu, Pengyang Ling, Pan Zhang, Tong Wu, Qidong Huang, Jinsong Li, Xiaoyi
 653 Dong, Yuhang Zang, Yuhang Cao, et al. Light-a-video: Training-free video relighting via pro-
 654 gressive light fusion. *arXiv preprint arXiv:2502.08590*, 2025.

656 A IMPLEMENTATION DETAILS

659 **Inference time.** We automatically generate light masks consistent with the video length based on
 660 user-defined trajectory patterns. On our A6000 GPU, the inference time for a 512×512 video with
 661 16 frames is approximately 240 seconds.

662 **Details of user study.** We used a Tencent survey to create a questionnaire for all volunteers to
 663 evaluate the generated 24 sets of videos from four aspects.

664

- 665 i) **Video Smoothness:** Does the appearance and illumination changes in the video flow co-
 666 herently, naturally, and smoothly, without noticeable sudden flickers or jumps?
- 667 ii) **Lighting Controllability:** Does the movement of illumination in the video align with the
 668 given illumination trajectory?
- 669 iii) **Lighting Quality:** How is the overall lighting quality of the foreground and the entire
 670 frame, and is the lighting reasonable?
- 671 iv) **Alignment between Lighting and Text:** Is there consistency between the generated illu-
 672 mination in the video and the given relight prompt?

673 Fig. 7 illustrates an example of the questionnaire utilized in our study. For a comprehensive assess-
 674 ment, we recruited 40 participants, **all participants were students working in video generation or**
 675 **computer vision related fields. Before the study, all participants received a concise tutorial explain-
 676 ing the relighting task and the meaning of each evaluation metric, including lighting controllability,**
 677 **so that they shared a consistent and informed understanding of what they were rating. In the provided**
 678 **study example, we also explicitly state the definition of each metric.** To enhance efficiency, users
 679 were guided to compare multiple methods within each evaluation dimension. Prior to comparing our
 680 method with the baseline approaches, we randomly shuffled the order of videos for each evaluation
 681 metric. Participants were then asked to select the more favorable result for each comparison. To en-
 682 sure the rationality and objectivity of the lighting controllability evaluation, we include the current
 683 lighting map in each comparison video. This allows users to refer to the movement trajectories of
 684 the lighting, which are based on six predefined lighting patterns, each with distinct characteristics.

685
 686 * 02 Video Group2—"a car driving on the street, neon light"

687
 688 1.Video smoothness: Whether the appearance and illumination changes in the video are
 689 coherent, natural, and smooth, without obvious sudden flickers or jumps.
 690 2.Lighting controllability: Whether the movement of illumination in the video is consistent
 691 with the given illumination trajectory.
 692 3.Lighting quality: The overall lighting quality of the foreground and the entire frame, as
 693 well as the rationality of the lighting.
 694 4.Alignment between Lighting and Text: Whether there is consistency between the
 695 generated illumination in the video and the given illumination description.

696 The conditions for the illumination map are as follows:

	ModelA	ModelB	ModelC	...
Video Smoothness	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	
Lighting Controllability	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	
Lighting Quality	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	
Alignment between Lighting and Text	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	

700 **Figure 7: Visualization of the questionnaire for user study.** Users are asked to compare the all
 701 baselines at each aspect and select their preferred one.

702 **B MORE ABLATION STUDIES**
703

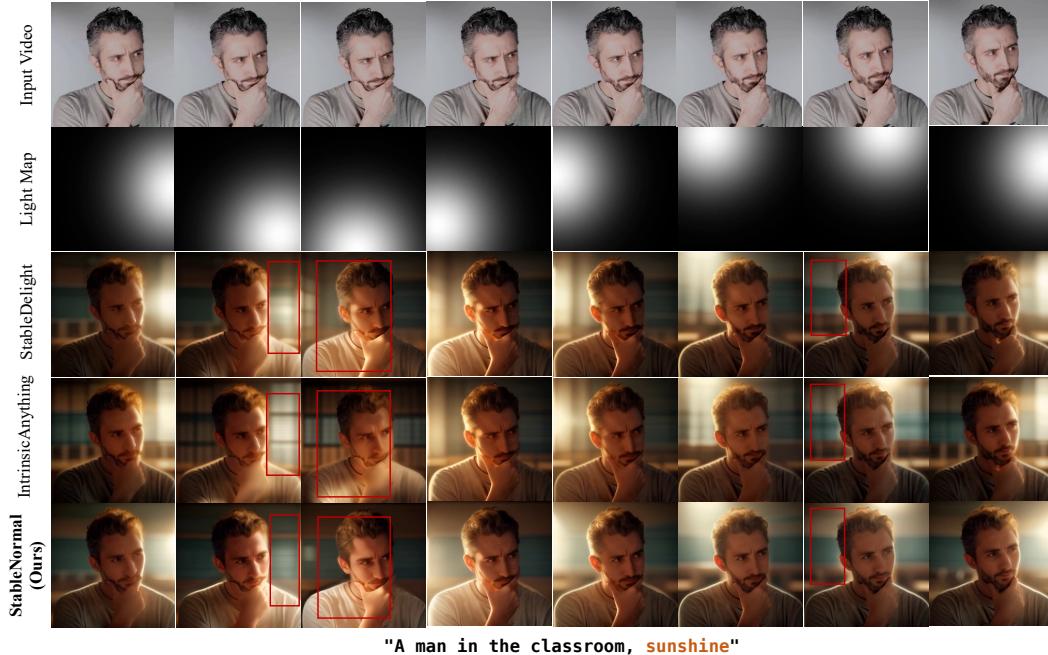
704 **The definition of the dynamic filter in the GAR module.** In the GAR module, to better fuse the
705 normal map and the RGB latent, we adopt a strategy of dynamic fusion in the frequency domain.
706 The definition of this dynamic filter $H_\alpha(t)$ is as follows:
707

$$708 H_\alpha(t) = \begin{cases} \frac{1}{1 + \left(\frac{D^2(t, h, w)}{d_s(t)^2}\right)^n} & \text{when } D(t, h, w) \leq d_s(t) \\ 709 0 & \text{when } D(t, h, w) > d_s(t) \end{cases} \quad (5)$$

710
711 where **the time-varying cut-off frequency**: $d_s(t) = d_t(t) = \alpha = 1 - \frac{t}{T_m}$, the frequency distance
712 calculation is updated to:
713

$$714 D(t, h, w) = \sqrt{\left(\frac{d_s(t)}{d_t(t)} \cdot \left(\frac{2t}{T} - 1\right)\right)^2 + \left(\frac{2h}{H} - 1\right)^2 + \left(\frac{2w}{W} - 1\right)^2} \quad (6)$$

715 Through the above method, we have defined a 3D dynamic filter, whose cut-off frequency is a value
716 that changes with the denoising step t . By gradually adjusting the high-frequency and low-frequency
717 information, we have effectively injected the normal map.
718

744 **Figure 8: Ablation Study on Feature Selection of GAR module.**
745

746 **Impact on feature selection of the GAR module.** In our GAR module, we introduce geometry
747 feature information to mitigate the bias in lighting distribution brought by the source video. In our
748 experiments, we adopt two types of features: delight images and normal maps. However, since we
749 use pre-trained models for these features, the domain-specific models' performance significantly af-
750 fects the quality, impacting the subsequent relighting results. As shown in Fig. 8, we use two delight
751 models to remove the lighting distribution in the source video. While both the StableDelight and In-
752 trinsicAnything models can mitigate the illumination distribution in the input video to some extent,
753 noticeable artifacts (highlighted by the red boxes) emerge in the generated results after injecting in-
754 formation via the GAR module, as evident from the third and fourth rows. In contrast, our method,
755 by incorporating normal information, produces more plausible and high-quality outputs. Moreover,
as demonstrated in the third frame, our approach excels in terms of lighting quality in the generated

Figure 9: **Ablation Study on Injection Method of GAR(Left) and LMI module(Right).**Table 2: **Comparison of Normal Injection Strategies on Video Quality**

Method	AQ \uparrow	FVD \downarrow
0.5 + 0.5	0.5892	1010.9
Cut-off-0.25	0.6097	998.7
Cut-off-lbd	0.6114	993.1

results. Overall, our results can better reflect the impact of lighting changes in the video. Therefore, in our experiments, we chose the normal map with better feature quality.

Impact on injection method of the GAR module. After selecting the normal map as the input for the GAR module among delight images and the normal map, we need to consider how to integrate this feature into our model. Here, we conducted an ablation experiment on the injection method. We attempted direct weighted fusion, using half of the consistent target and half of the normal map as the input. However, due to the loss of details in the normal map, the result of direct fusion showed significant blurriness (the third left row of Fig. 9). Then, we fused the two in the frequency domain, combining the high-frequency information of the consistent target, which is rich in detail, with the low-frequency information of the normal map. But from the results (the fourth and fifth left rows of Fig. 9), we found that no matter how we adjusted the cut-off frequency of the filter, we couldn't effectively remove the highlight in the red box on the left side of the image. Based on this, we decided to adopt a dynamic fusion method, injecting more normal map information in the early stage of denoising and supplementing details with the consistent target in the later stage. Finally, we achieved a good balance between detail preservation and prevention of light leakage (the last left row of Fig. 9). To further validate the benefit of this design, we additionally include another set of comparisons between latent space and frequency space integration as the right part of Fig. 11. We evaluate video quality under both strategies, and the results are consistent with the visual observations: the frequency-domain method yields markedly superior performance across all quantitative metrics, as reported in Table 2.

Impact on injection method of the LMI module. When injecting the light map, to strike a balance between detail preservation and post-injection lighting controllability, we explored two fusion methods: direct fusion in the latent space and frequency-domain fusion of local noise and the orig-

inal noisy latent, separating high and low frequencies. Our experiments revealed an issue with the frequency-domain approach. When using the original noisy latent to supplement high frequencies after injecting local noise to maintain details, the edges of the girl’s sweater under sunlight exhibited excessive (as shown in the third row of the right image in Fig. 9). This over-enhancement of details deviated from our desired outcome. Consequently, we adopted a direct weighted fusion strategy in the latent space. We conducted multiple experiments to determine the optimal weights for local and original noise. Initially, when the original noise accounted for 0.8 (as shown in the fourth row of the right image in Fig. 9), while the excessive outlining was mitigated, lighting controllability decreased. For instance, in the last figure, although lighting was present in the bottom-right corner, the corresponding illumination effect was not properly reflected in the image. To address this, we increased the weight of local noise, ultimately settling on a ratio of 0.8 local noise to 0.2 original noise. This configuration effectively reduced excessive outlining while ensuring lighting controllability, making the lighting in the image more consistent with expectations (as shown in the last row of the right image in Fig. 9). It enables us to preserve image details while achieving precise adjustment and control of the lighting distribution.

Table 3: Quantitative Results between Raw Frames and Decoded Frames + Residual.

Methods	AQ \uparrow	FVD \downarrow
Raw Frames	0.5946	1037.4
With Residual	0.6114	993.1

Raw Frames vs Decoded Frames + Residual. This design compensates for the loss of local high-frequency information introduced by the VDM denoising process. The residual computed once at the first step restores these fine details while preserving the relighting effects progressively established through latent space denoising. Using the raw frames directly would break this balance. As demonstrated in Fig. 10, directly injecting raw frames causes the output video to inherit substantial illumination patterns and low-frequency structures from the input, which preserves appearance but ultimately fails to achieve correct relighting. In contrast, the residual formulation enables us to replenish structural details during the early denoising stages, while its influence gradually diminishes in later stages where lighting appearance is formed. This yields the desired balance: retaining necessary fine-grained details without interfering with the generation of high-quality, trajectory-controlled relighting. We also compute AQ and FVD for both, as shown in Table 3, further quantifying the improvement in video quality achieved by our design.

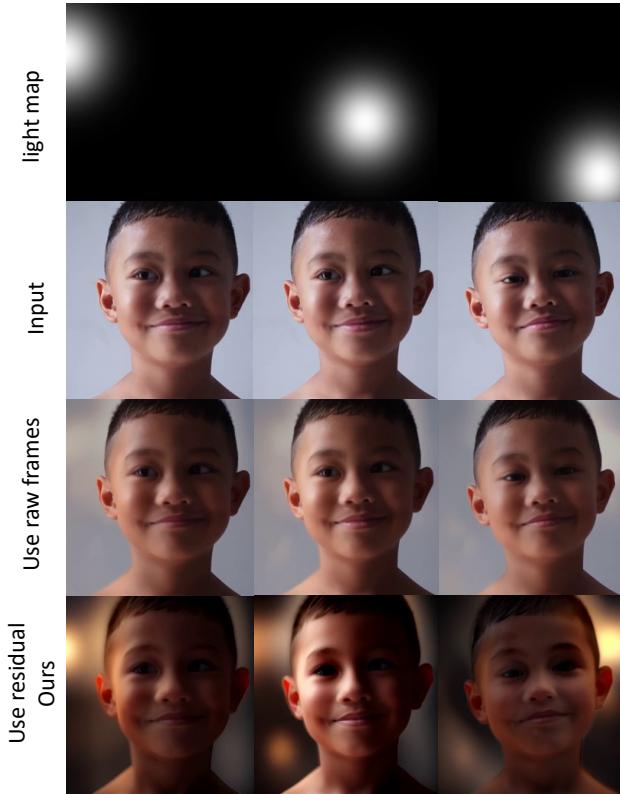
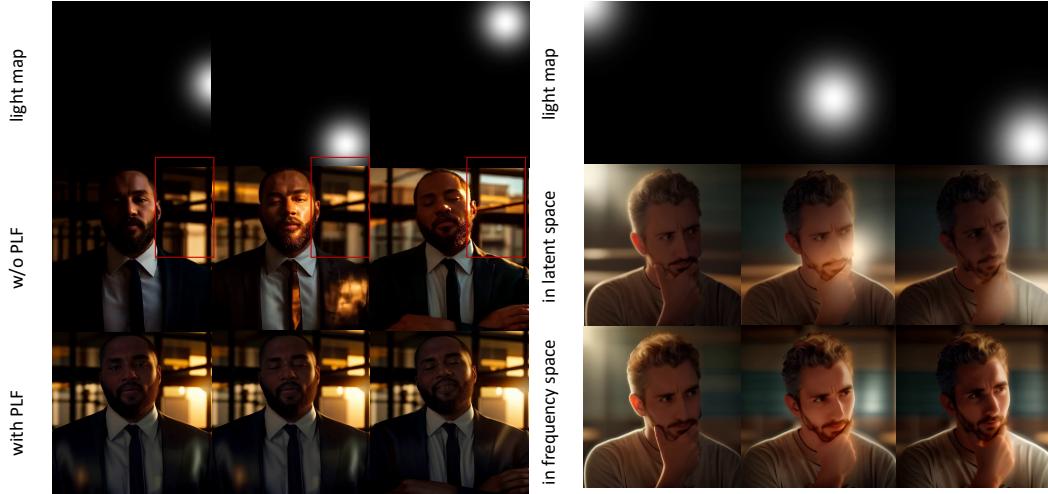
Table 4: Effect of Progressive Fusion on Temporal CLIP-Score

Methods	CLIP-Score ↑
w/o Progressive Fusion	0.9200
With Progressive Fusion	0.9634

The Effects of Progressive fusion. The progressive fusion mechanism is key to achieving temporal consistency. As illustrated in the left part of Fig. 11, compared with the per-frame results produced by IC-Light, progressive fusion ensures that both the foreground and background remain noticeably coherent over time. In particular, the red-boxed background region shows that without progressive fusion, the background exhibits clear frame-to-frame fluctuations with no temporal stability, whereas our fusion strategy effectively suppresses such inconsistencies and maintains stable appearance throughout the sequence. To objectively evaluate the improvement in temporal consistency brought by progressive fusion, we additionally report the average CLIP score across consecutive video frames, which reflects semantic and structural coherence over time. In the Table 5 with progressive fusion, the model achieves higher CLIP scores, confirming its contribution to smoother and more stable video relighting.

C MORE QUANTITATIVE RESULTS

The effectiveness of static light conditions. We have also conducted a experiment evaluating illumination control in static scenes (Specifically, we keep the light map in the same position through-

Figure 10: **Ablation Study on Raw Frames vs Residual.**Figure 11: **Ablation Study on Progressive Fusion and Injection method of Normal.**

914 out the entire video) using our established $PSNR_{light}$ metric (defined in Section 4.1 and used for
 915 temporal consistency). The results show our method achieves **17.494 dB, exceeding all baselines**
 916 (next-best Zhou et al. (2025) 16.630 dB). This quantitative evidence confirms our method's lighting
 917 control superiority even in static conditions, supporting our original claim. The complete results are
 918 presented as shown in Table 5:

918
919
920
921
922
923Table 5: Comparison of $PSNR_{light}$ (dB) under static light conditions

Methods	IC-Light	SDEdit-0.2	SDEdit-0.6	LAV-Traj	Ours
$PSNR_{light}$	12.112	13.349	13.686	16.630	17.494

D MORE QUALITATIVE RESULTS

More results based on CogVideoX. In Fig. 12, we present some results on the DIT-based video diffusion model, such as CogVideoX. These results also demonstrate that our model can be adapted to multiple video diffusion models. Since the model of CogVideoX uses the DDIMScheduler, while our main model, based on AnimateDiff, uses the EulerAncestralDiscreteScheduler, the intensity of the lighting colors in the final results is largely affected by the different schedulers. The lighting results from the DDIMScheduler tend to be lighter. This difference in color intensity is also a reasonable phenomenon.

More results of LightCtrl. In Fig. 14, we present more visual results of LightCtrl. These examples show that our model can generate controllable video relighting under different customized trajectories in various scenes.

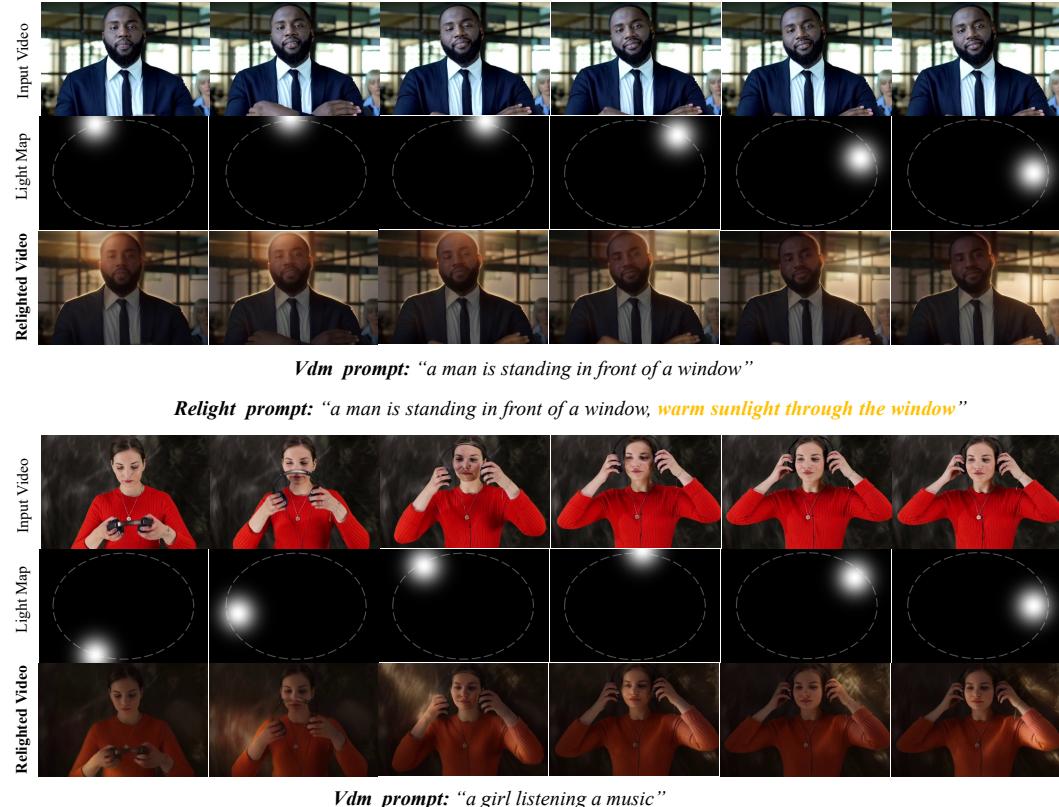


Figure 12: More results based on CogVideoX.

E LARGE LANGUAGE MODEL USAGE

In the preparation of this work, the authors used LLMs (e.g., GPT-4, Claude, etc.) solely for text polishing, including grammar checking and sentence refinement. The LLM did not contribute to the scientific content, and the authors assume full responsibility for the work.

972
973
974
975
976
977
978
979
980
981
982
983
984

985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

1010
1011 **Figure 13: More Results with Diverse Lighting Trajectories.** The first and third columns show the
1012 results under random polyline illumination trajectories. The second column presents the results of
1013 two light sources moving independently, one from left to right and the other from top to bottom. The
1014 fourth column shows the results of two light sources moving in opposite directions along circular
1015 paths.

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

