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Abstract. Margin requirements for derivative contracts serve as a buffer against the trans-
mission of losses through the financial system by protecting one party to a contract against
default by the other party. However, if margin levels are proportional to volatility, then a
spike in volatility leads to potentially destabilizing margin calls in times of market stress.
Risk-sensitive margin requirements are thus procyclical in the sense that they amplify
shocks. We use a GARCHmodel of volatility and a combination of theoretical and empir-
ical results to analyze how much higher margin levels need to be to avoid procyclicality
while reducing counterparty credit risk. Our analysis compares the tail decay of con-
ditional and unconditional loss distributions with comparable stable and risk-sensitive
margin requirements. Greater persistence and burstiness in volatility leads to a slower
decay in the tail of the unconditional distribution and a higher buffer needed to avoid
procyclicality. The tail decay drives other measures of procyclicality as well. Our analysis
points to important features of price time series that should inform “antiprocyclicality”
measures but are missing from current rules.
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1. Introduction
Regulatory changes following the financial crisis of
2007–2008 have led to much greater use of collateral
in the over-the-counter derivatives market. Collateral
serves as a buffer against the transmission of losses
through the financial system by protecting one party to
a contract against default by the other party. TheDodd–
Frank Act in the United States and similar mandates
in other jurisdictions require that standard derivatives
be traded through central counterparties (CCPs). A key
function of a CCP is to collect collateral from its mem-
bers in the form of initial margin and contributions to a
guarantee fund. For customized derivatives that do not
trade through CCPs, new rules require an exchange of
bilateral margin, meaning that each party to the con-
tract posts collateral to guarantee its potential future
payments to the other party with high probability; see
Margin and Capital Requirements for Covered Swap
Entities (2015).
Margin requirements are typically designed to cover

potential price changes over a period of 5–10 days with
a probability of 99% or higher. If one party were to
default, this level of collateral would likely cover losses
incurred by the other party in replacing or unwind-
ing the contract. In times of higher market volatil-

ity, price changes are larger, so the minimum level of
margin required to cover potential price changes with
high confidence must also be larger. To put it another
way, risk-sensitive margin requirements will tend to be
lower in quiet times and higher in turbulent times.

This dynamic can, however, have a destabilizing
effect on financial markets. With risk-sensitive mar-
gin requirements, a spike in volatility leads to margin
calls on the firms trading through a CCP or bilaterally.
The increase in volatility is likely to be correlated with
other indicators of market stress, in which case these
firmswould need to post additional collateral precisely
when it becomes most difficult to raise cash or other
liquid assets. Firms short on cash may be forced to
sell assets, driving down prices, or pull back funding
to other firms, spreading a liquidity shortage. Risk-
sensitive margin requirements are thus procyclical in
the sense that they can amplify shocks. They provide a
buffer against counterparty credit risk, but they create
a channel for the spread of funding liquidity risk.

The alternative is to set “through the cycle” mar-
gin levels that are less sensitive to current conditions
and therefore less prone to spike at the onset of mar-
ket stress. The cost of this added stability is that mar-
gin levels need to be higher in quiet times and may
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seem unnecessarily high as memories of past volatility
fade. The goal of this paper is to investigate how much
higher margin levels need to be to avoid procyclicality
and to examine specific rules for limiting procyclicality.
The tension between the merits of greater risk-sen-

sitivity on one hand and the amplifying effects of
the same risk-sensitivity on the other challenges other
areas of financial regulation and risk management as
well. Adrian and Shin (2010) find that in the lead
up to the financial crisis, banks and broker–dealers
increased leverage in inverse proportion to their value-
at-risk estimates; the sharp increase in volatility start-
ing in mid-2007 thus led firms to delever, driving
down prices of less liquid assets and further increas-
ing volatility. Bank capital requirements under the
Basel II international agreement were designed to be
more risk-sensitive than requirements under Basel I,
but it was recognized early on that this feature could
amplifymacroeconomic shocks: in a recession, borrow-
ers are more likely to default, leading banks to hold
more capital and reduce lending, thus exacerbating the
downturn. As Repullo and Suarez (2013, pp. 452–453)
put it, “[microprudential regulators] think that pro-
cyclicality is a necessary evil, whereas others with a
more macroprudential perspective think that it should
be explicitly corrected.” Basel III introduced a counter-
cyclical capital buffer to have banks hold extra capital
in good times so that they can continue to supply credit
in bad times while maintaining adequate capital by
draining the buffer.

Gorton and Metrick (2012) point to a run in the repo
market in 2007–2008 as a key factor precipitating the
financial crisis. Lenders sought to reduce their risk
by demanding wider “haircuts” in repurchase agree-
ments, effectively increasing the collateral demanded
of borrowers and shrinking their access to funding.
A widening haircut is thus analogous to a margin call.
Regulators have sought to dampen procyclicality by
setting stable—and therefore higher—minimum hair-
cuts, trading higher collateral requirements for greater
stability; see Committee on the Global Financial Sys-
tem (2010) and Financial Stability Board (2015). Higher
minimum haircuts for repurchase agreements are sim-
ilar to the higher margin requirements for derivatives
on which we focus.

As already noted, changes in financial regulation
now require that most over-the-counter (OTC) deriva-
tives trade through CCPs. Under normal conditions,
a CCP has a “matched book” of buyers and sellers
of each contract and thus no exposure to the market.
However, if a clearingmember defaults, the CCP has to
continue to meet the payment obligations on the other
side of the failed member’s contracts. To protect itself
against losses as it seeks to restore a matched book, the
CCP collects initial margin from its members, typically
in the form of cash or other high-quality liquid assets.

Initial margin requirements are commonly set to
cover losses with probability at least 99% or 99.5%
over a period of 5–10 days, depending on the type
of derivative contract and the legal jurisdiction. These
potential losses are primarily based on changes in mar-
ket prices and thus driven by market volatility. Each
member’s margin requirements are updated daily as
the member’s positions and market conditions change.
The CCP may make intraday margin calls if volatility
increases sharply.

A CCP also credits or debits a clearing member’s
variation margin account for gains and losses on the
member’s positions; variation margin is thus based
on realized price changes rather than potential price
changes. In addition, CCPs usually collect contribu-
tions to a guarantee fund that would be tapped to cover
losses if the failed member’s collateral and the CCP’s
own capital contribution proved inadequate to cover
losses. (See Cont 2015 for an overview, and see Bignon
and Vuillemey 2017 for a case study of a clearinghouse
failure.) Guarantee fund contributions are commonly
based on stressed market conditions rather than cur-
rent market conditions and are therefore more stable.
Initial margin—henceforth simplymargin—is themost
procyclical component of the total collateral provided
by a clearing member to the CCP and the focus of our
analysis.

Procyclical margin has attracted the concern of reg-
ulators and international standard-setting bodies. The
Committee on the Global Financial System (2010)
studied the causes and consequences of procyclical-
ity in margin requirements and proposed counter-
cyclical measures. The Committee on Payment and
Settlement Systems (2012) recommends that financial
market infrastructures (including CCPs) adopt stable
and conservative margin requirements to avoid pro-
cyclical increases in margin. The European Union has
adopted specific requirements on CCPs to mitigate
procyclicality inmargin requirements (European Com-
mission 2012), to which we return later. These rules
also apply to U.S.-based CCPs seeking to clear trades
for European market participants.

Our objective is to analyze procyclicality in margin
requirements through a combination of theoretical and
empirical results. Our analysis is based primarily on a
GARCH model (Engle 1982, Bollerslev 1986) of price
changes—not because the model is a perfect descrip-
tion of market data, but because it provides a valuable
lens through which to highlight important features.
The GARCH setting captures volatility clustering and
persistence in volatility, which, we argue, drive the size
of the buffer needed to counter procyclicality; they also
drive the length of historical data needed to estimate
stable margin levels. The GARCH setting provides a
natural distinction between current market conditions,
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described by conditional volatility, and long-run con-
ditions, described by unconditional distributions. The
unconditional distribution of volatility has heavy tails
even when conditional changes in volatility do not,
and this leads the stable nonprocyclical margin level to
be much larger than the average (risk-sensitive) condi-
tional margin level.
The GARCH setting offers two parameters that

neatly summarize important features of price data,
which, we argue, should inform measures to limit pro-
cyclicality: one is the exponent describing the tail of the
unconditional distribution, and the other is the extremal
index of the process. The tail exponent governs the size
of the buffer needed to counter procyclicality; it also
helps quantify the degree of procyclicality that results
from risk-sensitive margin requirements. The extremal
index governs the length of the historical look-back
period required to set adequate margin levels that are
resistant to procyclicality.
Both of these parameters reflect the clustering and

persistence of volatility, which we see as robust fea-
tures of market data, beyond the specific structure of
GARCH models. The GARCH setting offers a conve-
nient setting in which to highlight these features and
their consequences, but these properties of volatility
are not limited to the GARCH setting. A shortcom-
ing of current proposals to mitigate procyclicality is
that they fail to address these features or incorpo-
rate them in differentiating across different types of
assets.

The rest of this paper is organized as follows. Sec-
tion 2 formulates our model and presents our first
results relating the tail exponent to stable margin lev-
els. Section 3 studies the probability of sharp increases
in required margin under a risk-sensitive rule and
shows how these measures of procyclicality are related
to the tail exponent. Section 4 studies the probabil-
ity of margin breaches and the transition from light-
tailed price changes over short horizons to heavy-tailed
changes over long horizons. Section 5 uses the frame-
work of earlier sections to analyze rules to counter pro-
cyclicality adopted by the European Union. One of the
these rules requires a 10-year look back for estimation;
Section 6 provides some theoretical guidance for set-
ting the length of the look-back period. Most proofs are
deferred to the appendices.

2. Persistence and Procyclicality
2.1. A Simple Margin Model
In this section, we present a simple model of mar-
gin requirements and use it to illustrate and quantify
how persistence and clustering in volatility widen the
gap between through-the-cycle and conditionalmargin
levels.

As discussed in the introduction, initial margin is
intended to cover potential losses from price changes

over the period it takes the CCP to restore a matched
book, following the failure of a clearing member. This
interval is called the margin period of risk and is cus-
tomarily 5–10 days. We will index time t , t + 1, . . . in
multiples of this basic time unit. We denote by Xt the
price change for a swap contract or portfolio from t
to t + 1, and we adopt the convention that, in setting
the margin level for a particular clearing member, pos-
itive values of Xt reflect losses to the CCP. (In bilateral
trading, each party undertakes a similar analysis with
respect to its counterparty.)

We model these price changes using a GARCH(1, 1)
process,

Xt � σt Zt (1)
σ2

t � ω+ αX2
t−1 + βσ

2
t−1 (2)

� ω+ (αZ2
t−1 + β)σ2

t−1 , (3)

where the innovations . . . ,Z−1 ,Z0 ,Z1 , . . . are inde-
pendent and identically distributed with ƐZ � 0 and
ƐZ2 � 1, and ω > 0, α > 0 and β ≥ 0 are constants. A key
feature of this model is that the conditional variance
σ2

t depends on both the prior conditional variance σ2
t−1

and the squared price change X2
t . The sum α + β con-

trols the persistence of volatility, and the parameter
α controls the burstiness of volatility—with larger α,
large price moves in one period fuel large price moves
in the next period.

As an illustration of these effects, Figure 1 shows
daily returns on the S&P 500 stock index in 2004–
2007. The index moved by more than 2% on only two
days during 2004–2006. It moved by more than 2% on
17 days in 2007, and 15 of those moves occurred in
the last six months of the year. A large price move
in either direction is often followed by another large
price move, producing clustering and persistence in
volatility. These effects are well known in financial risk
management and have long informed the estimation of
value-at-risk; see, for example, the books by Alexander

Figure 1. (Color online) Daily Returns on the S&P 500 Index
Illustrate Volatility Clustering
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Notes. The index moved by more than 2% on only two days during
2004–2006. It moved by more than 2% on 17 days in 2007, and 15 of
those moves occurred in the last six months of the year.
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(2001) and McNeil et al. (2005). For applications of
GARCH models to margin levels, see Cont and Kan
(2011) and Murphy et al. (2016).
We will use the following conditions:
(A1) The parameters α and β satisfy α+ β < 1.
(A2) The innovations Zt have a symmetric distribu-

tion, and their cumulative distribution function FZ is
continuous with 0 < FZ(x) < 1 for all x ∈ �. We write
F̄Z(x) for 1− FZ(x).
(A3) For some 0 < r <∞, we have 1 < Ɛ[(αZ2 + β)r]

<∞.
Condition (A1) ensures that (Xt , σt) admits a sta-

tionary ergodic distribution by Theorem 2 of Nelson
(1990b). The notation (X∞ , σ∞) denotes a stochastic
vector with this stationary distribution, which we
also refer to as the unconditional distribution. Con-
dition (A2) simplifies the statement of several of our
results. Examples in which (A3) is violated are rare. In
particular, (A2) and (A3) hold when the distribution
of Z is standard normal, Laplace (double-exponential),
or Student t with more than two degrees of freedom
(scaled to have unit variance). For several results, con-
ditions (A1)–(A3) are somewhat stronger than neces-
sary. We adopt them because they are simple to state
and widely applicable.
Given market conditions at time t, the margin re-

quired to ensure that the probability of a loss is not
greater than p > 0 (with, e.g., p � 0.005) is the condi-
tional quantile Mp , t , defined by

Mp , t � inf{x ∈ �: � t(Xt ≥ x) ≤ p},

where � t denotes conditional probability given the his-
tory {(σs ,Zs), s ≤ t − 1}. This conditional margin level
is given by

Mp , t � σt F̄
−1
Z (p) ≡ σt kp , (4)

where F̄−1
Z (p) is the (1−p)th quantile of FZ ; in particular

FZ(kp)� 1−p, under our assumption that FZ is continu-
ous. For example, if FZ is the standard normal and p �

0.005, then Mp , t ≈ 2.58σt . Setting the margin require-
ment at this level yields the target rate of exceedances
in the following sense:

Proposition 1. If (A1)–(A2) hold, then, with probability 1,

1
T

T∑
t�1

1{Xt > Mp , t}→ p , as T→∞.

Proof. The existence of the limit follows from the
ergodicity of the GARCH process, which follows
from (A1) throughNelson (1990b, Theorem 2). Because
the indicator variables are bounded, we get the same
limit if we take expectations on the left. But � (Xt >
Mp , t)� Ɛ[� t(Xt > Mp , t)]� p by definition. �

As a consequence of (4), the conditional margin level
Mp , t increases or decreases together with the condi-
tional volatility σt . The corresponding through-the-

cycle or unconditional margin level is the correspond-
ing percentile of the distribution of X∞,

up � inf{x ∈ �: � (X∞ ≥ x) ≤ p}. (5)

To justify this definition, suppose the CCP demands a
fixedmargin of up each period regardless of the current
level of volatility. Then the long-run average fraction of
periods in which price changes exceed up is given by

lim
T→∞

1
T

T∑
t�1

1{Xt > up} � � (X∞ > up)� p.

The limit follows from the ergodicity of the GARCH
process, which follows from (A1), and the last equal-
ity follows from the continuity assumed in (A2). Thus,
the fixed margin level up is exceeded exactly a frac-
tion p of the time: a lower margin would be exceeded
more often, and a higher margin would be exceeded
less often. This makes up the appropriate constant level
of margin for a confidence level of 1 − p. The differ-
ence between Mp , t and up is illustrated schematically
in Figure 2.

We want to contrast this fixed, unconditional mar-
gin level with the average margin level mp under the
procyclical rule (4), defined by

1
T

T∑
t�1

Mp , t→ kpƐ[σ∞] ≡mp . (6)

Here, mp is average level of the risk-sensitive, con-
ditional margin requirement Mp , t at confidence level
1 − p whereas up is the stable, unconditional margin
requirement at the same confidence level. The condi-
tional margin Mp , t will be higher than up in times of
high volatility and lower than up in times of low volatil-
ity, so onemight expect the average mp to be close to up ,
but we will see that this is not the case.

The comparison uses a parameter κ defined as the
strictly positive solution to the equation

Ɛ[(αZ2
+ β)κ/2]� 1 (7)

and further described in Proposition 3. Conditions
(A1)–(A3) ensure the existence of a unique solution
κ > 0. Through Theorem 2.1 of Mikosch and Stărică
(2000) and related work cited there, κ describes the tail
of X∞. We can now compare the unconditional mar-
gin up and the average conditional margin mp at small
values of p, beginning with the case of normal innova-
tions. The symbol ∼ between two expressions indicates
that the ratio of the two expressions converges to 1.
Proposition 2. With normally distributed innovations Zt
and (A1),

unconditional margin
average conditional margin

�
up

mp
∼ cN

p−1/κ√
log(1/p)

,

as p→ 0,

where cN > 0 is a constant and κ > 0 is defined by (7).
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Figure 2. (Color online) Contrast Between Conditional (a) and Unconditional (b) Margin Levels

t t + 1 t + 2

(a) (b)

… t t + 1 t + 2 …

Notes. In (a), the margin level is set at a quantile of the conditional distribution of price changes given current market conditions. In (b), the
margin level is set based on the unconditional distribution and thus remains constant. The conditional distributions in (a) and (b) are the same.

This result makes two points. First, it shows that at
high confidence levels (small values of p) avoiding pro-
cyclicality requires a surprisingly high level of margin.
For small p, the numerator p−1/κ will be quite large
compared with the denominator. Figure 3 plots p−1/κ

and
√

log(1/p) as functions of the confidence level 1− p
at κ � 3 and κ � 5. The ratio p−1/κ/

√
log(1/p) becomes

large at high but practically relevant confidence levels.
The second point we learn from Proposition 2 is that

to understand when “acyclicality” is costliest in the
sense that up/mp is largest, we need to understand the
parameter κ. Moreover, as κ may vary substantially
across different types of assets, the buffer required to
mitigate procyclicality may also vary widely.
The constant cN is difficult to evaluate. We have

estimated it through lengthy simulations of tail prob-
abilities for X∞. At realistic parameter values (those
in Table 1), we find that cN is in the range of 0.5–2,
so the ratio in Proposition 2 gives the right order of

Figure 3. (Color online) Comparison of p−1/κ and
√

log(1/p)
as Functions of the Confidence Level 1− p, for κ � 3
and κ � 5
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magnitude for the comparison. The key point of the
proposition is that the unconditional quantile will be
much larger than the average conditional quantile at
all sufficiently small p regardless of the value of cN .
In Section 5, we report numerical results that do not
rely on this asymptotic comparison.

We record some properties of κ in the following
proposition and formulate these without assuming
normality in the definition (7).

Proposition 3. Under conditions (A1)–(A3), the following
properties hold:

(a) For each α and β, Equation (7) has a unique strictly
positive solution κ � κ(α, β);

(b) κ is a decreasing function of α and β;
(c) As α and β increase with α+ β ↑ 1, we have κ ↓ 2;
(d) As α and β decrease with α+ β ↓ 0, κ increases with-

out bound.

Table 1. Estimates of α, β, and κ Using a GARCH(1,1)
Model for Major Asset Classes

Series α β α+ β κ

S&P 500 0.075 0.915 0.990 5.2
EUROSTOXX 50 0.083 0.904 0.987 5.4
CDX NA IG 0.257 0.731 0.988 2.4
U.S. 10yr IR Swap 0.047 0.951 0.998 3.8
USD–BRL 0.118 0.878 0.996 2.6
Brent Crude Oil 0.045 0.952 0.997 4.6

Notes. Six representative financial time series are considered: the
S&P 500 Index (1/90–4/16), the EUROSTOXX 50 Index (1/90–4/16),
the CDX North American Investment Grade Credit Default Swap
Index (11/04–4/16), the 10-Year U.S. Dollar Interest Rate Swap
Rate (1/90–4/16), the Exchange Rate between the U.S. Dollar and
the Brazilian Real (12/92–4/16), and the Price of Brent Crude Oil
(1/99–4/16). Estimates of α and β are from the Volatility Labora-
tory of New York University’s Stern Volatility Institute (http://vlab
.stern.nyu.edu) and are based on daily data.

http://vlab.stern.nyu.edu
http://vlab.stern.nyu.edu
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In light of these properties, we may interpret κ as
a reflection of persistence (through α + β) and bursti-
ness (through α) with smaller values of κ > 2 result-
ing from larger values of these parameters, and κ ≈ 2
corresponding to the nearly integrated case α + β ≈ 1.
Proposition 2 then says that the higher the persistence, the
wider the gap between stable and procyclical margin levels.
It may be tempting to read Proposition 2 as just re-

flecting the familiar notion that the light tails of the
normal distribution make it unsuitable for modeling
market returns. But that would be a misinterpretation
of the result. The proposition holds under the hypothe-
sis that the innovations are in fact normal, so the condi-
tional margin levels Mp , t are correctly determined: the
CCP is not misjudging the market in setting this mar-
gin requirement. Indeed, the conditional margin level
performs as intended in the sense that the frequency
of exceedances equals the target as we saw in Propo-
sition 1. The shortcoming of Mp , t is its variability—
in particular, because an increase in volatility is often
accompanied by other types of market stress. Propo-
sition 2 shows that avoiding this pattern with a stable
margin requires a substantially higher level of margin.
Table 1 reports estimates of α, β, and κ for financial

time series drawn from different markets—equities,
credit, interest rates, foreign exchange, and crude oil.
In all cases, the estimates of α + β are close to 1 as
is typical of financial data. Given estimates of these
parameters, we solve for κ numerically using (7). The κ
values show noteworthy variation. The smallest values
(corresponding to the heaviest tails) correspond to the
CDX credit index and the exchange rate between the
U.S. dollar and the Brazilian real.
The smallest values of κ in Table 1 coincide with the

largest values of α. From the GARCH dynamics in (1)
and (2), we see that α controls the degree of burstiness
or self-excitation in the model: with a larger α, a larger
squared return produces a larger increase in volatility.
Holding α+ β fixed, the stronger this feedback mecha-
nism, the smaller the value of κ, and the wider the gap
between the average conditional margin level and the
unconditional margin level.

2.2. Innovations with Heavier Tails
We next examine how the gap identified in Proposi-
tion 2 changes if the innovations Zt have heavier tails
than the normal distribution. We consider two cases:
innovations with a Laplace density, z :7→ exp(−

√
2|z |)/√

2 on �, and innovations with the density of√
ν − 2tν/

√
ν, ν > 2, where tν has a Student t distribu-

tion with ν degrees of freedom. The Laplace distribu-
tion has exponential tails whereas the tails of the scaled
t distribution decay like a power law. (More precisely,
the tails are regularly varying; see, for example, sec-
tion A3 of Embrechts et al. 1997 for background on
regular variation.) In both cases, the innovations have
mean zero and are scaled to have unit variance.

Proposition 4. With Laplace distributed innovations,

up

mp
∼ cL

p−1/κ

log(1/p) ,

and with scaled t-distributed innovations,
up

mp
∼ cνp1/ν−1/κ ,

as p→ 0, where cL and cν are positive constants and κ < ν.

As we move from the normal distribution to the
Laplace distribution to the t distribution, the tails of
the innovations become heavier. Holding all else fixed,
heavier-tailed innovations lead to higher conditional
margin levels Mp , t . However, the unconditional mar-
gin up will generally also be higher. For fixed r > 0,
the rth moment Ɛ[(αZ2 + β)r] typically increases as the
tails of Z become heavier, so, holding α and β fixed,
κ will typically be smaller for innovations with heav-
ier tails. As a consequence, we cannot directly com-
pare the ratios in Proposition 4 with each other or
with the normal case in Proposition 2. The main point
of Proposition 4 is that we continue to have a large
wedge between the unconditional margin and the aver-
age conditional margin at high confidence levels even
with heavier-tailed innovations.

2.3. Expected Shortfall
Our analysis deals mainly with margin levels based on
quantiles, but similar results hold using expected short-
fall. Let MES

p , t � Ɛ[Xt | Xt ≥Mp , t , σt] denote the expected
shortfall of Xt , given σt . We can express MES

p , t as

MES
p , t �Ɛ[Xt |Xt ≥Mp , t , σt]�

1
p

∫ p

0
Mq , t dq �

σt

p

∫ p

0
kq dq

�
σt

p

∫ p

0
F̄−1

Z (q) dq≡ σt k
ES
p . (8)

Thus, conditional margin levels based on expected short-
fall are proportional to conditional volatility, just as the
quantile-based margin levels in (4) are.

We can similarly define the expected shortfall-based
unconditional margin level, uES

p , as the unconditional
expected shortfall of X∞,

uES
p � Ɛ[X∞ | X∞ ≥ up].

The next result shows that the comparison of margin
levels based on expected shortfall is very similar to the
comparison based on quantiles:

Proposition 5. As p→ 0 with normally distributed inno-
vations,

uES
p

mES
p
∼ cN

κ
κ− 1

p−1/κ√
log(1/p)
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with Laplace distributed innovations,

uES
p

mES
p
∼ cL

κ
κ− 1

p−1/κ

log(1/p)

and with scaled tν innovations,

uES
p

mES
p
∼ cν

κ
κ− 1

ν − 1
ν

p1/ν−1/κ ,

where cN , cL and cν are the constants appearing in Proposi-
tions 2 and 4, and ν > κ.

2.4. Alternative Models
For simplicity, we limit our analysis primarily to
GARCH(1, 1)models. The results of Sections 2.1 and 2.2
are driven by the fact that the GARCH dynamics turn
light-tailed conditional distributions into heavy-tailed
unconditional distributions. In Appendix B, we show
that this property extends to the asymmetric GARCH
model of Glosten et al. (1993), GARCH(p , q) mod-
els, regime-switching models, and a GARCH diffusion
process.

3. Margin Calls
In Section 2, we investigated how much higher uncon-
ditional margin requirements need to be (compared
with average conditionalmargin requirements) tomeet
a target confidence level. In this section, we analyze
the dynamics of margin levels under a procyclical (con-
ditional) margin requirement. These dynamics reflect
the stress imposed on market participants by a sudden
run-up inmargin requirements in response to climbing
volatility.We analyze the probability of a large cumula-
tivemargin call in Section 3.1; in Section 3.2,we estimate
the probability thatmargin climbs to a high level before
returning to a more typical level. These two measures
are similar tomeasures ofprocyclicalityproposed in the
simulation studies ofMurphy et al. (2014, 2016).

3.1. Margin Run-Ups
As discussed in Section 1, the problem with risk-sen-
sitive margin rules is that they lead to sharp increases
in margin requirements at the onset of market stress,
when market participants may have the most difficulty
raising cash. As a measure of this hazard, we consider
the probability of a large climb in margin over a fixed
number of periods n. For example,Murphy et al. (2016)
note that cumulative increases over 30-day periods are
particularly important because the Basel III liquidity
coverage ratio requires banks to plan for cash outflows
over 30 days in periods of stress; Berlinger et al. (2017)
argue for the importance of smoothing margin levels
over time. We consider both the net increase and the
cumulative margin over n periods when margin Mp , t
is set proportional to current volatility, as in (4) and

Section 2.3. The following result thus holds for margin
levels based on either conditional quantiles or expected
shortfall.

Proposition 6. Suppose Mp , t � kpσt with σt given by a
stationary GARCH(1, 1) model satisfying (A1)–(A3). Let
κ be as in (7). Then the n-period margin increase satisfies

� (Mp , t+n −Mp , t > x) ∼ cn x−κ , as x→∞,

for some constant cn > 0, and the cumulative n-period mar-
gin satisfies

�

( n∑
i�1

Mp , t+i−1 > x
)
∼ c′n x−κ , as x→∞

for some constant c′n > 0 for any fixed n ≥ 1.

This result shows that the parameter κ, which con-
trolled the size of the buffer in Section 2 required to
dampen procyclicality, also controls the probability of
large run-ups in margin requirements. All else being
equal, an asset category with a smaller κ is more prone
to large run-ups in margin requirements when margin
is proportional to current volatility.

3.2. The Storm Before the Calm
Section 2 compared unconditional and average condi-
tional levels of margin and showed that persistence
in volatility leads to a wide gap between the two.
In this section, we turn to amore dynamicmeasure that
describes the risk of sudden run-ups in margin levels.
Such run-ups are potentially destabilizing because they
stress funding liquidity at times of elevated volatility.

Starting from a period of low or moderate (condi-
tional) margin, we consider the probability that margin
climbs to a high level before returning to a low level,
which corresponds to the peak-to-trough measure in
Murphy et al. (2016). Through the relation Mp , t � σt kp
in (4) or (8), this probability reduces to a correspond-
ing statement about the path of volatility. The main
result of this section is that, for high thresholds, this
probability is controlled by κ.

Denote by σ0 the initial or current level of volatility
in the GARCH model (1)–(2). Let a and b satisfy

0 <
√

ω
1− β < a < σ0 < b <∞;

think of a and b as low and high levels of volatility,
respectively. Define stopping times

τa � inf{t ≥ 1: σt < a}, τb � inf{t ≥ 1: σt > b}.

We are interested in � σ0
(τb < τa) for large b and fixed a,

where the subscript σ0 indicates the initial level of
volatility. This is the probability of a sharp rise in
volatility, particularly if we take a close to σ0.



Glasserman and Wu: Persistence and Procyclicality in Margin Requirements
8 Management Science, Articles in Advance, pp. 1–20, ©2018 INFORMS

Figure 4. (Color online) The Decrease in log� σ0
(τb < τa),

as Estimated by Simulation, Is Well Approximated by a
Straight Line of Slope −κ, Using GARCH Parameters for
the S&P 500 and the CDX Index
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Proposition 7. Under conditions (A1)–(A3), there are con-
stants c` , cu > 0 such that

c`b
−κ ≤ � σ0

(τb < τa) ≤ cu b−κ , (9)

for all sufficiently large b.

To interpret this result, suppose that margin is set
according to the conditional rule in (4) or (8), so Mp , t �

kpσt . Then the probability in (9) is also the probabil-
ity that margin climbs to kp b starting from kpσ0 before
declining to kp a. Think of kp b as a high, fixed level
of margin and an alternative to the conditional mar-
gin rule. The probability that the conditional margin
climbs above kp b is then O(b−κ). For the stable margin
level to be effective, this probability should be small,
which is to say that b should be large. Just how large
depends on κ.

Figure 4 plots simulation estimates of log� σ0
(τb < τa)

against log b using parameters from Table 1 for the
S&P 500 and the CDX index. In each case, we set a
equal to 1.4 times theminimumvalue of σt ,

√
ω/(1− β),

and σ0 � Ɛ[σ∞]. The straight lines in the figure have
slope −κ � −5.2 (solid) for the S&P 500 and −κ � −2.4
(dashed) for the CDX index. As predicted by Propo-
sition 7, the decay rate of the log probability is well
approximated by κ in each case. The vertical offset
between the simulation estimates and the asymptotic
slopes results from the constants c` , cu in (9).

4. The Probability of a Margin Breach
In Section 2, we saw that the margin level required to
meet a target exceedance probability unconditionally
can be much larger than the average level required to

meet the target conditional on the current market envi-
ronment. This conclusion holdswhenever the uncondi-
tional, long-run distribution of volatility has a heavier
tail than the conditional distribution.

In this section, we examine the transition from the
lighter tails associated with the changes in volatility
over a single time step to the heavier tails produced
over a long horizon. We continue to work within the
GARCH(1, 1) setting of Section 2.1, and we show that
the transition is, in a certain sense, abrupt. The main
result of this section associates with each tail proba-
bility p a time Tp . If the margin requirement is set at
its unconditional level up , then over horizons longer
than Tp the probability of a margin breach is approxi-
mately p; over horizons shorter than Tp , the probability
is much smaller than p. The critical time Tp depends
on the parameter κ.

Given a GARCH model (1)–(2), let

ψ(s)� logƐ[(αZ2
+ β)s], s ≥ 0; (10)

we assume that ψ(s) is finite for all s < s̄ for some s̄ > 0.
If Z is normal or Laplace, we may take s̄ �∞, but if
Z has a scaled tν distribution, then the largest such s̄
is ν/2.
The function ψ is convex on [0, s̄) with ψ(0) � 0,

ψ′(0)� Ɛ[log(αZ2 + β)] ≤ log(α+ β) < 0. Under (A3), we
have ψ(s) > 0 for some s ∈ (0, s̄), and this ensures the
existence of the parameter κ defined by the condition
ψ(κ/2) � 0. See Figure 5. We write smin for the point at
which ψ is minimized.

For each point s ∈ (0, s̄)with ψ′(s) > 0, we may inter-
pret ψ′(s) as a potential rate of increase for log σ2

t . In
other words, to assess the probability that σt exceeds
some high level v (which is the probability that log σt
exceeds log v), we check the slope (log v)/t. Similarly,
the time it takes the process log σt to reach log v, grow-
ing at an average rate of ψ′(s) > 0, is

tv ≈ log v/ψ′(s). (11)

By varying s over (smin , s̄), we obtain any slope between
0 and lims→s̄ ψ

′(s), which is typically infinite. We will

Figure 5. (Color online) Illustration of ψ(s), smin, κ/2,
and r(s)

�
(s

)

�/2

r (s )
s

smin
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see, building on Buraczewski et al. (2016), that if the
slope ψ′(s) is smaller than ψ′(κ/2), then the probabil-
ity that σt exceeds v is asymptotically equivalent to the
probability that σ∞ exceeds v; if this slope is greater
than ψ′(κ/2), then the probability that σt exceeds v
is asymptotically negligible compared with the prob-
ability that σ∞ exceeds v. In this sense, ψ′(κ/2) deter-
mines the natural growth rate of volatility, conditional
on reaching a large level.
This discussion presupposes that the volatility pro-

cess starts at a moderate level—if σ0 is very large, then
even a large level u may be reachable in a short amount
of time. We will make the simplifying assumption that
volatility starts at a low level σ2

0 ≤ ω/(1− β). (The inter-
val [0, ω/(1− β)) is transient for σ2

t .) This simplification
yields the following property:

Lemma 1. If 0< σ0 ≤
√
ω/(1− β), then {σt , t � 0, 1, 2, . . .}

is a stochastically increasing sequence. In other words,
� (σt > x) is increasing in t for all x > 0.

Let c0 be the constant in (A.1) and let c1 � c0Ɛ[|Z |κ]/2
as in (A.3); our assumption that ψ(s) <∞ for some s >
κ/2 ensures that Z2 has a finite moment of order κ/2.
For p > 0 and s ∈ (smin , s̄), set

tp �

⌊
log(c1/p)
κψ′(s)

⌋
. (12)

Consistent with the discussion of (11), we interpret
tp as the time to reach (1/κ) log(c1/p) for a pro-
cess growing at rate ψ′(s). Moreover, through (A.4),
(1/κ) log(c1/p) approximates the log of the uncondi-
tional quantile up of X∞, so tp approximates the time to
reach up at rate ψ′(s). For the special case s � κ/2, set

Tp �

⌊
log(c1/p)
κψ′(κ/2)

⌋
. (13)

If we adopt the unconditional margin level up in (5),
then a margin breach occurs at time t if Xt > up . By def-
inition, the stationary probability of a margin breach
is � (X∞ > up) � p. The following result approximates
this probability for finite t by considering a sequence of
times tp that increase without bound as p decreases to
zero. Observe that with s fixed we have tp < Tp , tp �Tp ,
or tp > Tp for all sufficiently small p.

Theorem 1. Suppose that σ0 �
√
ω. (i) If tp > Tp , then

� (Xtp
> up) ∼ p as p→ 0. (ii) If tp �Tp , then � (Xtp

> up) ∼
p/2. (iii) If tp < Tp and Ɛ[exp(γ |Z |)] <∞ for some γ > 0,
then � (Xtp

> up)� pδ+o(1) for some δ > 1.

This result should be interpreted as follows. Part (i)
says that the unconditional margin yields the target
exceedance probability over horizons longer than Tp .
The last statement of the theorem states that over hori-
zons shorter than Tp , the exceedance probability will

be much smaller than p. Part (ii) is a knife-edge case:
at Tp itself, the probability of a margin breach is p/2,
hence smaller than p but of the same order of magni-
tude. The overall conclusion is that the unconditional
margin is conservative over horizons shorter than Tp
but not over longer horizons.

We can be more explicit about the exponent δ ap-
pearing in part (iii) of the theorem. For any s ∈ (smin , s̄)
with ψ′(s) > 0, define

r(s)� s −
ψ(s)
ψ′(s) .

Graphically, r(s) is the point at which the line tan-
gent to ψ at s crosses the horizontal access. In particu-
lar, r(κ/2) � κ/2, and r(s) is increasing for s ∈ [κ/2, s̄).
This representation, which is used in Buraczewski et al.
(2016), differs from the expression used in Nyrhinen
(2001) but is equivalent to it and yields the following
result:
Proposition 8. Let tp be as in (12) for some s ∈ (κ/2, s̄).
Then, the exponent in part (iii) of Theorem 1 is given by
δ(s)� 2r(s)/κ > 1, which is increasing for s ∈ (κ/2, s̄).
This result provides a roughmeasure of the probabil-

ity � (Xt > up) of a margin breach, starting from a low
initial volatility σ0 as follows. A breach occurs at time
t < Tp if the growth rate of log σ is log up/t. The value
of s that yields this growth rate satisfiesψ′(s)� log up/t.
The probability of a margin breach is then pδ(s)+o(1). As
t increases to Tp , s decreases to κ/2, δ(s) decreases to 1,
and the probability of amargin breach approaches p.

5. Analysis of Countermeasures
We now apply the framework developed in previous
sections to evaluate specific rules adopted by the Euro-
pean Union to counter procyclicality in CCP margin
requirements. These measures were enacted by the
European Commission in December 2012 (European
Commission 2013). As of 2016, these rules are effec-
tively binding on U.S. central counterparties seeking to
clear trades for European firms. An agreement between
the primary U.S. regulator of CCPs, the Commod-
ity Futures Trading Commission, and European reg-
ulators determined that rules in the two jurisdictions
would be considered equivalent under certain condi-
tions, and one of these conditions is adherence to the
European Union’s rules on limiting procyclicality.1
The European Union rules (European Commission

2013, Article 28, p. L 52/59) require a CCP to adopt one
of threemeasures to counter procyclicality, stating that

the CCP shall employ at least one of the following
options:

(a) applying a margin buffer at least equal to 25% of
the calculatedmargins which it allows to be temporarily
exhausted in periods where calculated margin require-
ments are rising significantly;
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(b) assigning at least 25% weight to stressed observa-
tions in the lookback period calculated in accordance
with Article 26;

(c) ensuring that its margin requirements are not
lower than those that would be calculated using volatil-
ity estimated over a 10 year historical lookback period.

These rules are vague and therefore open to interpre-
tation despite the specificity suggested by the numeri-
cal values associated with the three options. The rules
also fail to differentiate between features of different
asset classes. We examine each of the options more
closely through the lens of the GARCH model.

5.1. The 25% Buffer
The first of the three options above presupposes that
the CCP allows clearing members to fall short of their
required margin levels when these levels are rising
quickly. This rule is difficult to evaluate because the
permitted shortfall is unspecified. Indeed, a CCP that
permitted no shortfall could in theory complywith this
rule with no additional buffer.

As a conservative analysis, we can investigatewheth-
er adding a 25% buffer to the average level of a procycli-
cal margin requirement approximates the level of an
unconditional margin requirement. This comparison is
conservative because it implies a buffer at least as large
would be calculated underEuropean Union (EU) rules.

In the notation of Section 2.1, we want to compare
the ratio up/mp with 1.25. We already know that this
ratio increases without bound as p approaches zero,
so the threshold of 1.25 is eventually exceeded. For a
practical comparison, we take p � 0.01 or p � 0.005,
corresponding to confidence levels of 99% and 99.5%,
respectively. Using the parameter values in Table 1, we
simulate GARCH(1, 1) processes and estimate up/mp
from a large number of simulated observations.
The results are summarized in Table 2 for the time

series reported in Table 1. The left panel corresponds
to a one-day horizon. The two columns under “margin

Table 2. Numerical Assessment of the 25% Buffer

One-day period Five-day period

Margin ratio Margin ratio
Stress Stress

Series κ 99% 99.5% threshold (%) κ 99% 99.5% threshold (%)

S&P 500 5.2 1.17 1.26 6 6.2 1.12 1.17 7
EUROSTOXX 50 5.4 1.17 1.24 6 6.6 1.11 1.16 8
CDX NA IG 2.4 1.48 1.73 3 2.7 1.40 1.65 3
U.S. 10yr IR Swap 3.8 1.24 1.38 5 4.1 1.24 1.35 4
USD–BRL 2.6 1.45 1.69 3 2.8 1.18 1.26 5
Brent Crude Oil 4.6 1.19 1.26 6 5.1 1.18 1.26 5

Notes. The third and fourth columns show estimated margin ratios up/mp for six time series at 1− p � 0.99 and
1− p � 0.995. Estimates of κ are reproduced from Table 1 for comparison. Smaller values of κ yield higher margin
ratios. The fifth column shows the stress threshold required to match the margin ratio at a 99% confidence level.
The last four columns report corresponding results for a five-day margin period of risk.

ratio” report up/mp at p � 0.01 and p � 0.005. Inter-
estingly, with margin levels set at 99.5% confidence,
a buffer of 25% looks about right for several of the
asset classes. However, the 25% buffer falls significantly
short of the margin ratio precisely when κ is small. This
pattern is consistent with the asymptotic results of ear-
lier sections, which emphasize the importance of the
index κ, but the numerical results in the table confirm
that these insights are relevant at practical parameter
values. In fact, in the left panel, the correlation between
the κ values and each of the margin ratio columns is
−0.96, indicating that κ very effectively explains the
size of the required buffer.

In the right panel of Table 2, we report correspond-
ing results for a five-day horizon. We convert the daily
GARCH parameters in Table 1 to five-day parameters
using equations (9) and (10) of Drost andNĳman (1993)
and then calculate the resulting κ values. As expected,
the κ values are larger over the longer horizon. But the
main qualitative conclusion remains unchanged: the
margin ratios and stress thresholds vary across assets,
and the κ values help explain the variation. We report
similar results using an asymmetric GARCH model in
Appendix E.

The main implication of these numerical examples is
that the first option in the EU rules could be improved
by making the size of the buffer depend on character-
istics of specific derivative contracts or asset classes.
In particular, asset classes with greater persistence and
burstiness in volatility require larger buffers tomitigate
procyclicality.

5.2. Stressed Observations
The second option under the EU rules suffers from two
significant indeterminacies: it does not identify which
observations should be considered stressed, and it does
not define what it means to give these observations
a weight of 25%. (Article 26, to which the rules refer,
is titled “Time horizons for the liquidation period”
and deals with the number of days a CCP requires to
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liquidate the portfolio of a clearingmember in default.)
Within the framework of Section 2, we can interpret the
25% weight to mean that the conditional margin Mp , t
in (4) should instead be set according to the rule

M̃p , t � kp(0.25σstress + 0.75σt),

with σstress estimated from stressed observations in
some as yet unspecified manner. Such a rule creates
some stickiness in margin levels by putting less weight
on the current level of volatility σt . Asymptotically,
however, this specification fails to address the quali-
tative behavior of up/mp we observed before: Proposi-
tions 1 and 4 apply to M̃p , t as they did to Mp , t with only
the constants cN , cL, and cν changing. Asymptotically,
the adjustment has a negligible effect.
At fixed values of p, we can again use simulation

estimates to evaluate the potential improvement using
M̃p , t rather than Mp , t . To do so, we need to specify how
the stressed volatility is determined. We assume that
the stressed volatility is estimated from the largest (in
absolute value) x% of observations. A smaller value
of x yields a larger stressed volatility because it relies
on more extreme observations.
Rather than fix a particular value of x and estimate

margin ratios, we take the opposite perspective: We
evaluate how small x would have to be to get m̃p � up ,
where m̃p is the long-run average value of M̃p , t in the
sense of (6). The results appear in the last column of
Table 2, based on p � 0.01. For example, to get m̃p � up
for the GARCH parameters of the S&P 500 index, we
need to calculate σstress from the most extreme 6% of
observations. For the CDX index, with a smaller κ, the
required threshold drops to 3%. This difference is large:
it implies that only half as many observations should
be used to calculate a stressed volatility for the CDX
index as would be used for the S&P 500 index.
The numerical examples suggest that putting 25%

weight on stressed observations is a potentially reason-
able way to counter procyclicality under our interpre-
tation of the rule. However, the examples again point
to significant heterogeneity across asset classes in the
appropriate implementation of the rule as a conse-
quence of different levels of persistence and burstiness
in volatility.

5.3. The 10-Year Look Back
The third option in the EU rules allows a CCP to set
margin levels “using volatility estimated over a 10 year
historical lookback period.” Our framework suggests
that, taken literally, this option is ineffective. Volatility
estimated from a long time series would come close to
the stationary mean Ɛ[σ∞]. Scaling this long-run aver-
age level of volatility by the multiplier kp in (4) would
produce a stable (in fact, constant) margin level, but
this level would be precisely the average mp , which we

have argued is insufficient. As stated, the rule fails to
specify how a long-run average level of volatility Ɛ[σ∞]
should be translated into an effective level of margin.
In particular, there is no simple relationship between
Ɛ[σ∞] and the unconditional margin level up .

The rule would be more effective if it referred to esti-
mating a quantile over a long look-back period rather
than a volatility. Given a history of price changes, the
sample quantile at a tail probability of p converges to up
in great generality. (We formulate the sample quantile
precisely in the next section.) So, within our frame-
work, using a sample quantile eventually yields the
right answer. The only remaining question is how long
a history one needs to estimate up accurately.
Here again we can gain some insight at practical

parameter values through simulation experiments. For
each of the asset classes in Table 1, we simulate long
histories of GARCHprocesses at the estimated parame-
ter values. We delete an initial segment of 50,000 obser-
vations to ensure stationarity of the simulated data.
We then plot the ratio of the sample quantile estimated
from n years to our estimate from a simulation of
50 years, which we take as an accurate approximation
to up . We use p � 0.005 in our examples.
Results for two cases are shown in Figure 6; the other

cases are very similar. The sample quantiles (marked
with circles) converge slowly and require a surpris-
ingly long look back to reach their limiting values.
A 10-year history looks like a good rule of thumb, and
a history of, say, two years is clearly inadequate. The
estimates in the figure are shown in multiples of the
stationary volatility Ɛ[σ∞] for each case. The figure also
shows estimates of the average conditional quantile mp
(marked with asterisks), which converge very quickly.

These examples (and similar results for other cases)
suggest that the 10-year look back specified in the EU
rules is effective, provided the rule is modified to refer
to a quantile estimate rather than a volatility estimate.

For comparison, the plots in Figure 6 include a third
line (marked with crosses), labeled “Unconditional,
IID.” For this sequence, we create an independent
and identically distributed (i.i.d.) sequence of price
changes with the same marginal distribution as the
simulated GARCH price changes by resampling ran-
domly from the empirical distribution of the simu-
lated GARCH data. Because the two time series have
the same marginal distributions, they have the same
quantile, and their quantiles have the same depen-
dence on κ with the same value of κ. Nevertheless,
the sample quantiles estimated from i.i.d data con-
verge much more quickly than the sample quantiles
from the GARCH data. In other words, the slow con-
vergence of the sample quantiles in the GARCH data
cannot be ascribed to κ or to heavy tails—those fea-
tures are shared by the i.i.d. data; the slow convergence
must instead be a result of serial dependence in the
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Figure 6. (Color online) Convergence of Quantile Estimates in GARCH Simulations Using Parameters for the S&P 500 Index
(Left) and the CDX.NA.IG Index (Right)
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GARCH data. We make this conclusion precise in the
next section.

6. Quantile Estimation
In this section, we seek to explain the long look-back
periods required in Section 5.3 to obtain accurate esti-
mates of unconditional margin levels up . As before, let
X1 ,X2 , . . . ,Xn denote price changes and suppose that
this sequence is stationary. In our earlier notation, this
means that X1 has the distribution of X∞. Let

X1:n ≤ X2:n ≤ · · · ≤ Xn:n

denote the ordered observations. The sample quantile
associated with upper tail probability p is

Ûp � Xdn(1−p)e: n ,

where dxe denotes the smallest integer greater than or
equal to x. If p < 1/n, then Ûp is simply Xn:n , the largest
value observed.
Alternative estimators, based on extreme value the-

ory, seek to extract more information from the data to
provide better estimates of up , particularly at small val-
ues of p. If the tail of X decays like a constant times u−κ
for some κ > 0, then one can try to extrapolate from a
less extreme quantile to a more extreme quantile using
an estimator of the form (see Drees 2003, p. 619)

V̂p � Xn−kn : n

(
np
kn

)−κ̂
.

Here, kn is an intermediate value that grows with n
but more slowly than n, and κ̂ is an estimate of the tail
decay power κ. A popular choice is the Hill estimator

κ̂ �
1
kn

kn∑
i�1

log
Xn−i+1: n

Xn−kn : n
.

The sample quantile estimator Ûp requires almost
no assumptions on the underlying data. The extreme
value estimator V̂p requires that the tail of X have a
power law. In the case of a GARCH(1, 1) process, the
power κ can be calculated directly from (7) given esti-
mates of α, β and the distribution of Z; however, this
requires imposing stronger assumptions on the data.
Thus, we focus on the sample quantile, which is prob-
ably the most widely used estimator in practice. We
examine the behavior of the sample quantile when the
data-generating process is GARCH(1, 1) but without
using knowledge of this process to estimate the quan-
tile. In other words, we consider a case in which the
CCP estimates the unconditional margin level from
historical data, which, unbeknownst to the CCP, comes
from a GARCH process. (In their simulation study,
Dutta and Biswas (2017) find that the sample quan-
tile estimator performs about as well as the extreme
value estimator in GARCH models; see their Table 10
and especially their model (ix), which has parameters
similar to those we find in Table 1. This lends further
support to our focus on Ûp .)

We discuss two results that shed light on the per-
formance of the sample quantile. Drees (2003, p. 627),
gives conditions under which the relative error of the
estimator Ûp is asymptotically normal; more precisely,

√
np

( Ûp

up
− 1

)
⇒N(0, σ2

U),

where⇒ denotes convergence in distribution, N(0, σ2
U)

denotes the normal distribution with mean zero and
some variance σ2

U > 0, and the limit holds as np→∞.
This result implies that the sample size n needs to be

substantially larger than 1/p. If, for example, a sample
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size n0.01 is sufficient to provide an adequately accu-
rate estimate of the unconditional margin up at 99%
confidence (p � 0.01), then the sample size required to
estimate up at 99.9% margin (p � 0.001) is greater than
10n0.01. A sample size requirement of one to two years
can thus quickly grow to a requirement of 5–10 years
at high confidence levels.
For Ûp to be close to up , we need a fraction p of the

observations to exceed up and the remaining fraction
1 − p to fall below up . Clearly, we need at least one
observation that exceeds up to get an accurate estimate
of the quantile. We consider the time required until the
first such exceedance, taking this duration as ameasure
of the difficulty in estimating up . To state the result, let

τp � inf{n ≥ 0: Xn > up}.

Let ξ denote an exponential random variable with
mean 1 and⇒ denote convergence in distribution.

Proposition 9. In a stationary GARCH(1, 1) model satis-
fying (A1)–(A3),

pτp⇒ ξ/θ, as p→ 0,

with θ ∈ (0, 1).
The parameter θ in this result comes from extreme

value theory and is known as the extremal index of the
process Xt ; see Appendix F for its definition, see sec-
tion 8.1 of Embrechts et al. (1997) for a general dis-
cussion of the extremal index, and see Mikosch and
Stărică (2000) for the specific case of a GARCH(1, 1)
process. The extremal index measures the clustering of
exceedances. Roughly speaking, when Xt exceeds up ,
we expect to see a cluster of times t′ following t at
which Xt′ again exceeds up , and the mean number of
such times in the cluster is 1/θ.
To interpret Proposition 9, contrast it with the case

of an i.i.d. sequence. By definition, � (Xt > up) � p, so,
in the i.i.d. case, the time τp until the first exceedance
has a geometric distribution with mean 1/p. For geo-
metrically distributed τp , the product pτp converges in
distribution to a standard exponential random variable
as p→ 0. Proposition 9 shows that the time until the
first exceedance is much longer if θ is small because
then ξ/θ is much larger than ξ. If exceedances occur
on average with frequency p and if they occur in clus-
ters when they occur, then the time between clus-
ters must on average be longer. If, for example, each
cluster had exactly 1/θ exceedances, the average time
between clusters would have to be p/θ for the overall
exceedance rate to remain p.
Estimating the extremal index from historical data is

difficult; see Mikosch and Stărică (2000) for an exam-
ple. One can fit a model to the data, such as a GARCH
model, and then calculate θ for the model, but this
requires imposing additional assumptions. The main

point of this discussion is that greater burstiness in
volatility will lead to greater clustering of exceedances
and therefore slower convergence of quantile esti-
mates. This qualitative relationship should inform the
choice of look-back period in setting margin require-
ments to mitigate procyclicality.

7. Concluding Remarks
The growing use of margin requirements in over-the-
counter derivative transactions reduces counterparty
credit risk but may amplify shocks to the financial sys-
tem through margin calls when volatility spikes. We
have examined the problem of setting margin levels
that are high enough to reduce credit exposure yet
stable enough to avoid these amplifying, procyclical
effects. Using a simple GARCH model as a lens, we
have given a precise formulation of the problem of pro-
cyclicality through conditional and unconditional mar-
gin levels. The GARCH setting yields two key insights:
the buffer required to offset procyclicality depends on
the tail exponent κ, and the look-back period required
to estimate the quantile accurately depends on the
extremal index θ. Both of these parameters depend on
the persistence and burstiness of volatility. The quali-
tative impact these features of volatility have on mar-
gin procyclicality should holdwell beyond the GARCH
setting.

Our analysis highlights important trade-offs. Mar-
ket participants want their margin obligations to reflect
the risk in their portfolios, but tying margin too closely
to current risk levels amplifies stress when volatility
spikes. CCPs face a trade-off in their use of historical
data: long look-back periods are required to capture
periods of high and low volatility, but changes in mar-
kets canmake older data less relevant. In calmmarkets,
CCPs and industry regulators may be tempted to allow
lower margin levels. Our analysis cautions against this
temptation. Setting practical and prudent margin lev-
els requires balancing the risk-sensitivity that comes
from relying on conditional volatility and the stability
that comes from unconditional margin levels.

Our investigation also touches on other areas for
investigation. One related topic is the right mix of mar-
gin requirements and guarantee fund contributions at
CCPs. Guarantee fund contributions change less often
and are therefore less procyclical, but CCP clearing
members generally prefer putting more of their over-
all contributions in initial margin. A further important
topic is a fine-grained analysis of how shocks inmargin
levels propagate through a network of CCPs and clear-
ing members. Steps in this direction include in Amini
et al. (2013), Barker et al. (2017) and Paddrik et al.
(2016). A better understanding of the origins of shocks
to market volatility and the consequences of spikes in
margin levels should help shape margin requirements
that balance concerns for risk-sensitivity and financial
stability.
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Appendix A. Comparison of Margin Levels
A.1. Proof of Proposition 2
Proof. The unconditional distribution of X∞ has the distri-
bution of σ∞Z with Z independent of σ∞, so the uncondi-
tional distribution inherits three properties from Z: if Z is
symmetric, then so is X∞; if Z has unbounded support, then
so does X; and if Z has a continuous distribution, then so
does X∞. All three properties apply in the normal case.

Symmetry implies that � (X∞ > u) � � (|X∞ | > u)/2 for any
u > 0. By Theorem 2.1 of Mikosch and Stărică (2000),

� (σ∞ > u) ∼ c0u−κ , as u→∞, (A.1)

and
� (|X∞ | > u) ∼ c0Ɛ[|Z |κ]u−κ , as u→∞, (A.2)

with c0 > 0 a constant. Unbounded support implies that the
unconditional quantile up satisfies up →∞ as p→ 0. Conti-
nuity implies that � (X∞ > up)� p. Thus,

p � � (X∞ > up) ∼
c0

2 Ɛ[|Z |κ]u−κp , as p→ 0,

and then, with

c1 �
c0

2 Ɛ[|Z |κ], (A.3)

up ∼ (p/c1)−1/κ ≡ ûp . (A.4)

For the normal distribution function Φ and density φ, we
have 1−Φ(x)∼φ(x)/x as x→∞.With p �1−Φ(kp), this yields
p ∼ φ(kp)/kp as p → 0, and then log p + log kp ∼ logφ(kp),
which we can write as

1
2 k2

p ∼− log p − log kp − log
√

2π.

Since log kp/k2
p → 0, this yields k2

p ∼ −2 log p and kp ∼√
2 log(1/p). Combining this limit for kp with the limit of

up proves the result. The constant cN is given by cN �

c1/κ
1 /(
√

2Ɛ[σ∞])with c1 as in (A.3). �

A.2. Proof of Proposition 4
Proof. The proof follows the same argument as that of
Proposition 2; only the analysis of kp changes. With the
Laplace distribution,

p � � (Z > kp)� 1
2 e−
√

2kp ,

so kp � (1/
√

2) log(1/2p) ∼ (1/
√

2) log(1/p). The constant cL is
given by cL � c1/κ

1 /(
√

2Ɛ[σ∞]) with c1 as in (A.3). In the case
of a scaled t distribution, we have � (Z > z) ∼ c̃z−ν for some
c̃ > 0, so kp ∼ c̃1/νp−1/ν . Also, Ɛ[(αZ2 + β)r] <∞ if and only if
r < ν/2, so it follows from (7) that κ < ν. Using the density of
the scaled t distribution, one finds that

c̃ �
Γ((ν + 1)/2)(ν − 2)ν/2

ν
√
πΓ(ν/2)

,

and then cν � c1/κ
1 /(c̃1/νƐ[σ∞]). �

A.3. Proof of Proposition 5
Proof. If the distribution of Z is normal or Laplace, then
kES

p /kp → 1 as p→ 0. If Z has a scaled tν distribution, then
its tail distribution is regularly varying with index −ν, and
this implies kES

p /kp → ν/(ν − 1). The unconditional distribu-
tion X∞ is regularly varying with index −κ (see Mikosch and
Stărică 2000), so uES

p /up→ κ/(κ − 1). The proof now follows
by combining these limits with Propositions 2 and 4. �

Appendix B. Alternative Models
In this section, we review some alternative models that
yield the key feature of the GARCH(1, 1) model discussed
in the previous section, namely the qualitative divergence
between the average conditional margin and the uncondi-
tional margin.

B.1. Asymmetric and Higher Order GARCH Models
In the GJR-GARCH model of Glosten et al. (1993), negative
returns amplify volatility more than positive returns. The
model replaces the variance Equation (2) with

σ2
t � ω+ αX2

t−1 + βσ
2
t−1 + γX2

t−11{Xt−1<0} , ω, α, β > 0.

If γ > 0, then a large squared return X2
t−1 will have a greater

effect on volatility when Xt−1 < 0 than when Xt−1 > 0.
If we continue to assume that the innovations Zt have a

symmetric, standardized distribution, then a sufficient con-
dition for the existence of a stationary distribution of (Xt , σt)
is α+ β+ γ/2 < 1. The equation

Ɛ[(αZ2
+ β+ γZ21{Z<0})κ/2]� 1 (B.1)

has a unique positive solution κ > 0 if wemodify (A3) accord-
ingly. The results of Sections 2.1 and 2.2 then hold for the
GJR-GARCH model with κ defined by (B.1).

In a GARCH(p , q) model, p , q ≥ 1, the variance equation
becomes

σ2
t � ω+

p∑
i�1
αi X

2
t−i +

q∑
j�1
β jσ

2
t− j . (B.2)

We assume that the parameters αi and β j are not all identi-
cally zero and that they satisfy

p∑
i�1
αi +

q∑
j�1
β j < 1,

which is sufficient for the existence of a stationary distribu-
tion; see Basrak et al. (2002b, p. 107).

The vector Yt � (σ2
t+1 , . . . , σ

2
t−q+2 ,X

2
t , . . . ,X

2
t−p+2)> satisfies a

linear difference equation of the form

Yt � At Yt−1 + Bt ,

where Bt � (ω, 0, . . . , 0)>, and to encode (B.2), the first row of
the matrix At is given by

(α1Z2
t + β1 , β2 , . . . , βq , α2 , . . . , αp).

In particular, each At is a function only of Zt and the model
parameters, so the At are i.i.d. matrices. See equation (3.2) of
Basrak et al. (2002b) for a complete specification of At .

For any d × d matrix A, let ‖A‖ � sup‖x‖�1 ‖Ax‖ with the
supremum taken over vectors x ∈ �d and with ‖x‖ denoting
the Euclidean norm of the vector x. In this setting, it follows
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from Kesten (1973) that the appropriate generalization of κ
is defined by

lim
n→∞

1
n

logƐ[‖An · · ·A1‖κ]� 0. (B.3)

We now have the following:

Proposition 10. Propositions 2 and 4 hold under the GJR-
GARCH model with κ defined by (B.1), and they hold under the
GARCH(p , q) model with κ defined by (B.3).

Proof. For the GJR-GARCH model, we can write

σ2
t � ω+ (αZ2

t−1 + β+ γZ2
t−11{Zt−1<0})σ2

t−1 ≡ ω+ atσ
2
t−1.

Then Ɛ[log at] ≤ logƐ[at] � log(α + β + γ/2) < 0. Under the
normal, Laplace, and student distributions for Z, we also
have � (at > 1) > 0. It follows from Theorem 2.1 of Mikosch
and Stărică (2000) that (B.1) has just one positive solution.
The rest of the analysis then follows as in the GARCH(1, 1)
setting. For the GARCH(p , q) model, existence and unique-
ness of κ in (B.3) follows from Theorem 3.1(B) of Basrak et al.
(2002b) under our parameter and distributional assumptions.
The same result also shows that this κ determines the tail
decay of the stationary distribution of σt and Xt . The rest of
the proof then follows as in the GARCH(1, 1) case. �

B.2. Regime-Switching Model
In some cases, the onset of elevated volatility is well de-
scribed through a change in regime that produces a structural
break in the dynamics of volatility; the transition in the sec-
ond half of 2007 illustrated in Figure 1 might, for example, be
modeled this way.

In a regime-switching GARCH model, the parameters of
the volatility equation depend on the state of an underly-
ing Markov chain St , so we write ω(St), α(St), and β(St) to
indicate this dependence. The Markov chain St is irreducible
with finite state space {1, 2, . . . ,N}. We assume that some
state (which we may take to be N) is reachable in a single
step from every other state,

� (St+1 � N | St � i) > 0, i � 1, . . . ,N − 1, (B.4)

which implies, in particular, that the chain is aperiodic. We
denote by π1 , π2 , . . . , πN , the Markov chain’s stationary prob-
abilities. The innovations Zt are i.i.d. and, in particular, do
not depend on St .

We assume that ω(i) > 0 and β(i) > 0 for i � 1, . . . ,N , and
we impose the stability condition

N∑
i�1
πiƐ[log(α(i)Z2

+ β(i))] < 0. (B.5)

This holds, for example, if ∑i πi(α(i)+ β(i)) < 1 even if α(i)+
β(i) > 1 for some i. We suppose the existence of r0 > 0
such that

1 <min
i

Ɛ[(α(i)Z2
+ β(i))r0/2] ≤max

i
Ɛ[(α(i)Z2

+ β(i))r0/2] <∞.
(B.6)

For any r ≥ 0, define the N ×N matrix B(r) by setting

Bi j(r)� � (St+1 � j | S j � i)Ɛ[(α( j)Z2
+ β( j))r/2],

whenever the expectations are finite for all j � 1, . . . ,N . The
matrix B(r) has nonnegative entries, and it inherits irre-
ducibility from the transition probabilities of the Markov
chain. By the Perron–Frobenius theorem, the spectral radius
ρ(r) of B(r) is real and positive. At r � 0, B(0) is the transition
matrix of St , so ρ(0)� 1.

Proposition 11. Suppose (B.4), (B.5), and (B.6) hold. There exists
a unique solution κ > 0 to the equation ρ(κ)�1, and Propositions 2
and 4 hold for the regime-switching GARCH model with this κ.

Proof. Write the variance equation as

σ2
t+1 � ω(St)+ (α(St)Z2

t + β(St))σ2
t ≡ ω(St)+ at(St)σ2

t .

The existence of a stationary distribution for σ2
t (and then

for (Xt , σt) � (σt Zt , σt)) follows from Theorem 1 of Brandt
(1986) under condition (B.5). It follows from Kingman (1961)
that logρ(r) is convex in r. As already noted, ρ(0) � 1, so
logρ(0)� 0. Condition (B.4) implies (see Collamore 2009,
p. 1418) that (logρ(0))′ � ∑N

i�1 πiƐ[log(α(i)Z2 + β(i))] < 0 in
light of (B.5). For r satisfying (B.6), every row sum of B(r)
is strictly greater than 1, so ρ(r) > 1. But if logρ is a convex
function with logρ(0) � 0, (logρ(0))′ < 0, and logρ(r) > 0 for
some r > 0, then there is a unique κ > 0 at which logρ(κ)� 0.
To show that � (σ∞ > x) ∼ cx−κ for some c > 0, we may apply
Theorem 2.2 of Collamore (2009). Under (B.5), his condition
(M) and (H3) are satisfied (see Collamore 2009, p. 1418). His
conditions (H1) and (H2) are then implied by (B.6). �

B.3. Diffusion Models
We mainly work in discrete time, in which the notion of
conditional margin is well defined. However, in this section,
we consider continuous-time models. Essentially any diffu-
sion model looks approximately Gaussian over a short time
period. Our focus then is on settings that lead to heavy-tailed
stationary distributions.

Building on the regime-switching model of Section B.2,
we may consider a Markov-modulated diffusion model of
the form

dσt � a(St)(σt − σ̄) dt + b(St) dWt ,

in which W is a standard Brownian motion, σ̄ is a constant,
and St is now a continuous-time Markov chain on {1, . . . ,N}
with stationary distribution π.

For fixed a < 0 and b > 0, this equation defines anOrnstein–
Uhlenbeck process with a Gaussian stationary distribution.
The tails of the unconditional (stationary) distribution are
thus qualitatively the same as those of the conditional distri-
bution of changes in σt over a short time interval.

In the Markov-modulated case, Guyon et al. (2004) show
that σt has a stationary distribution if

N∑
i�1
πi a(i) < 0.

De Saporta and Yao (2005) show that this stationary distri-
bution is light-tailed if a(i) < 0 for all i � 1, . . . ,N . However,
if a(i) > 0 for some i, then the tail of the stationary distribu-
tion is regularly varying with index κ > 0. As in Section B.2,
the parameter κ is determined through the spectral radius
of a matrix associated with the transition probabilities of
the underlying Markov chain; see Theorem 2 of De Saporta
and Yao (2005). In particular, then, burstiness in volatility,
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in the form of occasional periods of rapid growth in volatil-
ity (regimes in which a(i) > 0), creates a wedge between the
tail behavior of conditional and unconditional volatility. This
feature is qualitatively similar to what we see in the discrete-
time models considered previously.

Nelson (1990a) proved a continuous-time limit for
GARCH(1, 1) processes in which the limiting process takes
the form

dXt � σt dW (1)
t ,

dσ2
t � (ω− θσ2

t ) dt + ασ2
t dW (2)

t ,

where W (1) and W (2) are independent Brownianmotions, and
θ is the limiting value of 1−(α+β) in a sequence of processes
approaching the diffusion limit. He showed that if 2θ/α2 >
−1, then σ2

t has a stationary distribution, and this distribu-
tion is an inverse gamma distribution with shape parameter
κ � 1 + 2θ/α2. It follows that the tail of the stationary dis-
tribution is regularly varying with parameter κ. Moreover, a
higher degree of persistence, in the form of a smaller θ > 0,
and a higher degree of self-excitation, in the form of a larger
α > 0, lead to a smaller κ and a heavier tail for the stationary
distribution, consistent with what we saw in discrete time.

To summarize, we have shown in the section that a vari-
ety of models beyond the GARCH(1, 1) process share the
main property underlying the results of Section 2: their
unconditional distributions are heavy-tailed even when their
conditional distributions are not. This feature arises fromper-
sistence or burstiness in volatility. It leads to unconditional
margin requirements that are substantially higher than aver-
age conditional margin levels.

Appendix C. Analysis of Margin Calls
C.1. Proof of Proposition 6
Proof. By Theorem 2.3(c) of Mikosch and Stărică (2000), the
vector (σt , σt+1 , . . . , σt+n) satisfies multivariate regular vari-
ation with index κ, for any fixed n. It then follows from
Theorem 1.1(i) of Basrak et al. (2002a) that, for any w �

(w1 , . . . ,wn), not identically zero,

�

( n∑
i�1

wiσt+i−1 > x
)
∼ c(w)L(x)x−κ , as x→∞,

for some slowly varying function L not depending on w.
From the special case w � (1, 0, . . . , 0), we see by comparison
with (A.1) that L converges to a constant and can there-
fore be absorbed into c(w). The two claims in the proposi-
tion are now the special cases w � (−kp , 0, . . . , 0, kp) and w �

(kp , . . . , kp). �

C.2. Proof of Proposition 7
We separate the proof of Proposition 7 into separate argu-
ments for the lower and upper bounds in (9).

Lower Bound. Define

ξt �
1
2 log(αZ2

t + β), t � 0, 1, 2, . . . ,

and, with Y0 � log σ0, set

Yt+1 � Yt + ξt , t � 0, 1, 2, . . . .

Whenever exp(Yt) ≤ σt ,

exp(Yt+1)� exp(Yt + ξt)

≤ σt

√
αZ2

t + β

≤
√
ω+ σ2

t (αZ2
t + β)� σt+1.

With exp(Y0)� σ0, we conclude that exp(Yt) ≤ σt for all t.
Define

τY
a � inf{t ≥ 1: Yt < log a},
τY

b � inf{t ≥ 1: Yt > log b}.

Then σt ≥ exp(Yt) for all t implies that

� σ0
(τb < τa) ≥ �Y0

(τY
b < τ

Y
a ).

By the definition of κ in (7), we have Ɛ[exp(κξt)] � 1. We
may therefore define an i.i.d. sequence ξ̃t , t � 0, 1, . . . , in
which each ξ̃t has the distribution

� (ξ̃t ∈ ·)� Ɛ[exp(κξt)1{ξ ∈ ·}].

Set Ỹ0 �Y0 � log σ0 and Ỹt+1 � Ỹt + ξ̃t , t � 0, 1, . . .. equation (39)
of Siegmund (1975) yields

�Y0
(τY

b < τ
Y
a )� �Y0

(τỸ
b < τ

Ỹ
a )ƐY0

· [exp(−κ(ỸT − log b)) | ỸT ≥ log b]
(

b
σ0

)−κ
,

(C.1)

where T � min{τỸ
a , τ

Ỹ
b }.

The random walk Ỹt has positive drift because Ɛ[ξ̃t] �
Ɛ[ξt exp(κξt)] > 0. It follows that � (τỸ

b < ∞) � 1 and
� (τỸ

a �∞) > 0. Then

�Y0
(τỸ

b < τ
Ỹ
a ) ≥ �Y0

(τỸ
b < τ

Ỹ
a , τ

Ỹ
a �∞)� � (τỸ

a �∞) ≡ q ,

independent of b. From Remark (i) in Siegmund (1975),

lim
b→∞

ƐY0
[exp(−κ(ỸT − log b)) | ỸT ≥ log b] ≡ c′ > 0.

The lower bound in (9) now follows from (C.1) for all suffi-
ciently large b for any c` < σκ0 qc′.

Upper Bound. Under the stability condition (A1), σt has a
stationary distribution, which we represent through a prob-
ability measure π on �. We begin by recording a simple
property of π.

Lemma 2. Under conditions (A1) and (A2), the support of π is
[
√
ω/(1− β),∞).

Proof. It suffices to show that the stationary distribution π2
of σ2

t has support [ω/(1 − β),∞). The mapping (x , y) 7→ ω +

x(αy + β) is monotone and continuous on [0,∞)× [0,∞). So,
for any x in the support of π2 and any y in the support of the
distribution of Z2

t , ω + x(αy + β) is also in the support of π2.
Because the support of Z2

t is [0,∞), it follows that if x is in
the support of π2, then so is every x′ > x. In other words, the
support of π2 is a set of the form [x0 ,∞). It now follows from
Proposition 2.1(b) of Meister and Kreiß (2016) that x0 is the
fixed point of themapping x 7→ω+xβ, which is ω/(1−β). �
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For any set A ⊆ [
√
ω/(1− β),∞)with π(A)> 0, write πA for

the restriction of π to A. Define

τA � inf{t ≥ 1: σt ∈ A}.

For any B ⊆ �, we have (see Theorem 10.0.1 of Meyn and
Tweedie 1993)

π(B)�
ƐπA
[∑τA

t�1 1{σt ∈ B}]
ƐπA
[τA]

, (C.2)

where ƐπA
indicates expectation when σ0 is drawn from the

stationary distribution restricted to A. In particular, if we take
B � (b ,∞) and A � [

√
ω/(1− β), a), then

π((b ,∞))�
ƐπA
[∑τA

t�1 1{σt > b}]
ƐπA
[τA]

≥
�πA
(τb < τa)

ƐπA
[τA]

,

so
�πA
(τb < τa) ≤ cπ((b ,∞)) (C.3)

for a constant c not depending on b. We also have, using the
Markov property of σt ,

�πA
(τb < τa) ≥ �πA

(σ1 ∈ [σ0 , σ0 + ε]) · inf
x∈[σ0 , σ0+ε]

� x(τb < τa)

≥ �πA
(σ1 ∈ [σ0 , σ0 + ε]) · � σ0

(τb < τa), (C.4)

and �πA
(σ1 ∈ [σ0 , σ0 + ε]) > 0 because the support of Z2

t is
all of �+. In (C.4), we have used the fact that � x(τb < τa) is
increasing in x as σt+1 is increasing in σt . (In other words, σt
is a stochastically monotone Markov chain.) Combining (C.3)
and (C.4), we get

� σ0
(τb < τa) ≤

c
�πA
(σ1 ∈ [σ0 , σ0 + ε])

π((b ,∞)).

But (A.1) yields π((b ,∞))� � (σ∞ > b) ∼ c0b−κ , and this estab-
lishes the upper bound.

Appendix D. Analysis of Margin Breaches
D.1. Proof of Lemma 1
Proof. If we set At � (αZ2

t +β), thenwe canwrite the GARCH
recursion (3) as σ2

t � ω+Atσ
2
t−1, which yields

σ2
t � ω+Atω+At At−1ω+ · · ·+At At−1 · · ·A1σ

2
0 .

Because the At are i.i.d., σ2
t has, for each t, the same distribu-

tion as

σ̃2
t � ω+A1ω+A1A2ω+ · · ·+A1A2 · · ·Atσ

2
0 . (D.1)

Now we have

σ̃2
t+1 − σ̃2

t � A1A2 · · ·At(ω+ (At+1 − 1)σ2
0) ≥ 0

because At+1 ≥ β and 0 < σ2
0 ≤ ω/(1− β). For any x ≥ 0,

� (σ2
t > x)� � (σ̃2

t > x)� �
(

max
0≤n≤t

σ̃2
n > x

)
(D.2)

are all increasing in t. �

D.2. Proof of Theorem 1
The (standard) fact noted in (D.2) that σ2

t has the same
marginal distribution as the running maximum of (D.1)
allows us to apply results for processes such as (D.1) with
σ2

0 � ω (in particular, Buraczewski et al. 2016 and Nyrhinen
2001) to analyze tail probabilities of σ2

t , t ≥ 0.

Proof. (i). For any y > 0 and a > 0, set

nu , y �

⌊
log u
ψ′(κ/2) + a y

√
log u

⌋
.

Because the process σ2
t is nonnegative, we can apply Theo-

rem 2.5 of Buraczewski et al. (2016) to conclude that a may
be chosen so that

uκ/2� (σ2
nu , y

> u)→ c0Φ(y)

with c0 as in (A.1) and Φ the standard normal distribution
function. See, in particular, equation (2.44) of Buraczewski
et al. (2016).

Set nu � blog u/ψ′(s)c with s as in the definition of tp
in (12). The condition tp > Tp implies that ψ′(s) < ψ′(κ/2).
Then for all sufficiently large u,

ψ′(κ/2)
ψ′(s) > 1+

ψ′(κ/2)a y√
log u

,

in which case nu , y ≤ nu . Lemma 1 implies that

uκ/2� (σ2
nu , y

> u) ≤ uκ/2� (σ2
nu
> u) ≤ uκ/2� (σ2

∞ > u).

As u → ∞, the leftmost expression converges to c0Φ(y)
and, by (A.1), the rightmost expression converges to c0.
Because we can take y arbitrarily large, we conclude that
the expression in the middle converges to c0, which implies
� (σnu

> u) ∼ c0u−κ .
If we take u � up , then, in particular, we have � (σnup

>

up) ∼ c0u−κp as p→ 0. We claim that this limit holds with nup

replaced by tp . To see why, notice from (12) that tp � nûp
≡

blog ûp/ψ′(s)c with ûp as in (A.4). From (A.4), we know that
up/ûp → 1, so log up − log ûp → 0. Thus, for all sufficiently
small p,

log ûp

log up

ψ′(κ/2)
ψ′(s) > 1+

ψ′(κ/2)a y
√

log up

,

which implies nup , y ≤ tp ; so the argument used above for nu
applies as well to tp , and we have

� (σtp
> up) ∼ c0u−κp .

To consider margin breaches, we need to extend this limit
from σtp

to Xtp
, which has the distribution of σtp

Z with Z
independent of σtp

. Conditioning on Z and then integrating
over Z yields

� (|X∞ | > u)� Ɛ[� (σ∞ |Z | > u | Z)],

and, for Z , 0, (A.1) gives

� (σ∞ |Z | > u | Z) ∼ (c0 |Z |κ)u−κ .

Thus, (A.2) is an interchange of limit and expectation:

lim
u→∞

uκƐ[� (σ∞ |Z | > u | Z)]

� Ɛ[ lim
u→∞

uκ� (σ∞ |Z | > u | Z)]� c0Ɛ[|Z |κ]. (D.3)
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The stochastic monotonicity of σt in Lemma 1 implies that
for all Z,

uκp� (σtp
|Z | > up | Z) ≤ uκp� (σ∞ |Z | > up | Z). (D.4)

As (D.3) permits us to interchange the limit in up with the
expectation over Z for the upper-bounding sequence on the
right side of (D.4), the Lebesgue convergence theorem allows
us to do so for the sequence on the left side of (D.4) to con-
clude that

� (|Xtp
| > up) ∼ Ɛ[|Z |κ]� (σtp

> up) ∼ c0Ɛ[|Z |κ]u−κp .

By the symmetry of Z,

� (Xtp
> up)�

1
2� (|Xtp

| > up) ∼
c0

2 Ɛ[|Z |κ]u−κp � c1u−κp .

Applying (A.4), we conclude that � (Xtp
> up) ∼ p.

For part (ii), set

np ,±ε �

⌊ log up

ψ′(κ/2) ± aε
√

log up

⌋
.

Because log up − log ûp→ 0,

log up

ψ′(κ/2) − aε
√

log up ≤
log ûp

ψ′(κ/2) ≤
log up

ψ′(κ/2) + aε
√

log up

for all sufficiently small p, for any ε > 0. In this case, np ,−ε ≤
Tp ≤ np , ε , and Lemma 1 implies

uκ/2p � (σ2
np ,−ε

> up) ≤ uκ/2� (σ2
Tp
> up) ≤ uκ/2p � (σ2

np , ε
> up).

Letting p→ 0 and applying Theorem 2.5 of Buraczewski et al.
(2016), we find that

c0Φ(−ε) ≤ lim inf
p→0

uκ/2p � (σ2
Tp
> up)

≤ lim sup
p→0

uκ/2p � (σ2
Tp
> up) ≤ c0Φ(ε).

As ε > 0 can be taken arbitrarily close to zero and Φ(0)� 1/2,
we conclude that

uκp� (σTp
> up)→ c0/2.

The extension from σTp
to XTp

proceeds exactly as in part (i).
For case (iii), set nu � blog u/ψ′(s)c. Theorem 2 ofNyrhinen

(2001) yields

lim
u→∞
(log u)−1 log� (σ2

nu
> u)�−r(s), (D.5)

where r(s) > κ/2 depends on the value of s in nu . Nyrhinen’s
(2001) result applies to (D.1), and (D.5) then follows
from (D.2). Our r(s) corresponds to his R(1/ψ′(s)).

Next, we extend (D.5) to Xnu
. The condition that

Ɛ[exp(γ |Z |)] <∞ implies that

� (|Z | > x)� o(e−γx), as x→∞.

Let mu � a log u for any a > 2r(s)/γ; then � (|Z | > mu) �
o(u−aγ)� o(u−2r(s)). Now

� (σnu
|Z | > u) ≤ � (σnu

|Z | > u , |Z | ≤ mu)+P(|Z | > mu)
≤ � (σnu

> u/mu)+ o(u−2r(s)). (D.6)

To analyze the first term on the right, set n(s) � blog(u/mu)/
ψ′(s)c. For any sufficiently small ε > 0 and all sufficiently
large u, n(s + ε) ≤ nu ≤ n(s − ε), so Lemma 1 implies

� (σn(s+ε) > u/mu) ≤ � (σnu
> u/mu) ≤ � (σn(s−ε) > u/mu).

Then (D.5) implies

− 2r(s + ε) ≤ lim inf
u→∞

(log u/mu)−1 log� (σnu
> u/mu)

≤ lim sup
u→∞

(log u/mu)−1 log� (σnu
> u/mu) ≤ −2r(s − ε).

Because r is continuous (see Nyrhinen 2001, p. 268) and ε > 0
can be made arbitrarily small,

lim
u→∞
(log u/mu)−1 log� (σnu

> u/mu)�−2r(s).

But log(u/mu)/log u→ 1, so we also have

lim
u→∞
(log u)−1 log� (σnu

> u/mu)�−2r(s).

Applying this limit in (D.6), where the last term is negligi-
bly small, we get

lim inf
u→∞

−(log u)−1 log� (σnu
|Z | > u) ≥ 2r(s).

On the other hand,

� (σnu
|Z | > u) ≥ � (σnu

|Z | > u , |Z | > 1)
≥ � (σnu

> u , |Z | > 1)
� � (σnu

> u)� (|Z | > 1).

It follows that

lim sup
u→∞

−(log u)−1 log� (σnu
|Z | > u)

≤ lim
u→∞
−(log u)−1 log� (σnu

> u)� 2r(s).

We have shown that

lim
u→∞
−(log u)−1 log� (|Xnu

| > u)� 2r(s).

Replacing |Xnu
| with Xnu

cuts the probability in half, but
the factor of 1/2 disappears in the limit after we take logs.
Replacing u with up yields

lim
p→0
−(log up)−1 log� (Xnup

> up)� 2r(s).

Moreover, from (A.4), we have κ log up ∼− log p. Thus,

lim
p→0
(log p)−1� (Xnup

> up)� 2r(s)/κ > 1.

In other words, � (Xnup
> up) � pδ+o(1) with δ � r(s)/(κ/2).

Following the same argument used in part (i), we can replace
nup

with tp . �

Appendix E. Estimates Using GJR-GARCH(1, 1)
Table E.1 reports parameter estimates, α, β, and γ using a
GJR-GARCH(1, 1) model for the same set of financial time
series used in Table 1. The results are qualitatively consistent
with the GARCH(1, 1) case. In particular, the pattern of κ
estimates is similar to that in Table 1.

Table E.2 repeats the analysis of Table 2 using the GJR-
GARCH model. The results are qualitatively very similar to
those of Table 2.
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Table E.1. Estimates of α, β, γ, and κ Using a GJR-GARCH(1,1) Model for the Same Set of Asset
Classes Used in Table 1

Series α β γ α+ β+ γ/2 κ

S&P 500 0.000 0.915 0.140 0.985 4.4
EUROSTOXX 50 0.012 0.910 0.125 0.984 4.7
CDX NA IG 0.302 0.734 −0.088 0.992 2.3
U.S. 10yr IR Swap 0.022 0.960 0.036 0.999 2.8
USD–BRL 0.155 0.879 −0.081 0.993 2.9
Brent Crude Oil 0.026 0.955 0.032 0.997 4.7

Notes. The results are qualitatively consistent with the GARCH(1,1) case. In particular, the pattern of κ estimates
is similar to that in Table 1. Six representative financial time series are considered: the S&P 500 Index (1/90–6/17),
the EUROSTOXX 50 Index (1/90–6/17), the CDX North American Investment Grade Credit Default Swap Index
(11/04–4/16), the 10-Year U.S. Dollar Interest Rate Swap Rate (1/90–4/17), the Exchange Rate between the U.S.
Dollar and the Brazilian Real (12/92–6/17), and the Price of Brent Crude Oil (1/99–6/17). Estimates of α, β, and γ
are from the Volatility Laboratory of New York University’s Stern Volatility Institute (http://vlab.stern.nyu.edu)
and are based on daily data.

Table E.2. Numerical Assessment of the 25% Buffer: GJR-GARCH

Margin ratio Margin ratio
Stress Stress

Series κ 99% 99.5% threshold (%) κ 99% 99.5% threshold (%)

S&P 500 4.4 1.20 1.30 5 6.1 1.10 1.15 11
EUROSTOXX 50 4.7 1.18 1.27 5 6.7 1.08 1.12 14
CDX NA IG 2.3 1.53 1.81 3 2.9 1.34 1.50 5
U.S. 10yr IR Swap 2.8 1.33 1.44 3 3.9 1.22 1.29 7
USD–BRL 2.9 1.38 1.56 3 3.7 1.24 1.35 6
Brent Crude Oil 4.7 1.18 1.25 6 6.4 1.10 1.15 16

Notes. The third and fourth columns show estimated margin ratios up/mp for six time series at 1− p � 0.99 and
1 − p � 0.995. Estimates of κ are reproduced from Table E.1 for comparison. Smaller values of κ yield higher
margin ratios. The fifth column shows the stress threshold required to match the margin ratio at a 99% confidence
level. The last four columns report corresponding results for a five-day margin period of risk.

Appendix F. Proof of Proposition 9
We first recall the definition of the extremal index in sec-
tion 8.1 of Embrechts et al. (1997). Suppose {Xn} is a strictly
stationary sequence with marginal distribution F. Suppose
that for every x there exists a sequence {un} such that

lim
n→∞

n(1− F(un))� x , lim
n→∞

� (max{X1 , . . . ,Xn} ≤ un)� e−θx ;

then the sequence {Xn} has extremal index θ.

Proof. From Theorem 4.1 of Mikosch and Stărică (2000), we
have that for any x > 0,

�
(

max
1≤i≤n

Xi ≤ (c1n)1/κx
)
→ e−θx−κ , as n→∞

with c1 as in (A.3). If we set

np �

⌊( uκp
c1

)
x−κ

⌋
,

then (c1np)1/κx ≤ up . Furthermore, c1np/uκp→ x−κ as p→0, so
for any ε > 0 and all sufficiently small p, (c1np)1/κ(x + ε) ≥ up .
These inequalities imply

�
(

max
1≤i≤np

Xi ≤ (c1np)1/κx
)

≤ �
(

max
1≤i≤np

Xi ≤ up

)
≤ �

(
max

1≤i≤np
Xi ≤ (c1np)1/κ(x + ε)

)
.

Letting p→ 0, we get

e−θx−κ ≤ lim inf
p→0

�
(

max
1≤i≤np

Xi ≤ up

)
≤ lim sup

p→0
�
(

max
1≤i≤np

Xi ≤ up

)
≤ e−θ(x+ε)

−κ
.

Because ε > 0 is arbitrary, we conclude that these inequalities
hold as equalities at ε�0. In other words, we have shown that

�
(

max
1≤i≤np

Xi ≤ up

)
→ e−θx−κ .

For any n, the event {τp > n} coincides with the event
{max1≤i≤n Xi ≤ up}. Set t � x−κ and write np � np(t) for
emphasis. Then

� (τp > np(t))� �
(

max
1≤i≤np (t)

Xi ≤ up

)
→ e−θt , as p→ 0.

For any t > 0 and any ε > 0 for which np(t + ε) ≥ np(t)+ 1,
c1

uκp
np(t) ≤ t ≤ c1

uκp
np(t + ε). (F.1)

The condition np(t + ε) ≥ np(t) + 1 is satisfied if εuκp/c1 ≥ 1,
and this holds for all sufficiently small p. Thus, for any t > 0
and ε > 0, (F.1) holds for all sufficiently small p. Then

� (c1u−κp τp > c1u−κp np(t + ε))
≤ � (c1u−κp τp > t) ≤ � (c1u−κp τp > c1u−κp np(t)),

http://vlab.stern.nyu.edu
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so

� (τp > np(t + ε)) ≤ � (c1u−κp τp > t) ≤ � (τp > np(t)).

Letting p→ 0,

e−θ(t+ε) ≤ lim inf
p→0

� (c1u−κp τp > t)

≤ lim sup
p→0

� (c1u−κp τp > t) ≤ e−θt .

Because ε > 0 is arbitrary, we conclude that these inequalities
hold as equalities at ε�0. In other words, we have shown that

c1u−κp τp ⇒ ξ/θ.

But from (A.4) we know that c1u−κp /p→ 1, so the same limit
in distribution holds for pτp . �

Endnote
1See “The U.S. Commodity Futures Trading Commission and the
EuropeanCommission: CommonApproach for Transatlantic CCPs,”
February 10, 2016, at www.cftc.gov/PressRoom/PressReleases/cftc
_euapproach021016.
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