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Abstract

Rubinfeld & Vasilyan recently introduced the framework of testable learning as
an extension of the classical agnostic model. It relaxes distributional assumptions
which are difficult to verify by conditions that can be checked efficiently by a fester.
The tester has to accept whenever the data truly satisfies the original assumptions,
and the learner has to succeed whenever the tester accepts. We focus on the setting
where the tester has to accept standard Gaussian data. There, it is known that
basic concept classes such as halfspaces can be learned testably with the same time
complexity as in the (distribution-specific) agnostic model. In this work, we ask
whether there is a price to pay for testably learning more complex concept classes.
In particular, we consider polynomial threshold functions (PTFs), which naturally
generalize halfspaces. We show that PTFs of arbitrary constant degree can be
testably learned up to excess error € > 0 in time nP°Y(1/2)_ This qualitatively
matches the best known guarantees in the agnostic model. Our results build on
a connection between testable learning and fooling. In particular, we show that
distributions that approximately match at least poly(1/¢) moments of the standard
Gaussian fool constant-degree PTFs (up to error €). As a secondary result, we
prove that a direct approach to show testable learning (without fooling), which was
successfully used for halfspaces, cannot work for PTFs.

1 Introduction

The PAC learning model of Valiant [30] has long served as a test-bed to study which learning tasks can
be performed efficiently and which might be computationally difficult. One drawback of this model is
that it is inherently noiseless. In order to capture noisy learning tasks, the following extension, called
the agnostic model, has been introduced [19, 24]: Let F be a class of boolean functions and let Djqin
be an (unknown) distribution over example-label-pairs in X’ x {+1}. Typically, X = {0,1}" or R™.
As input, we receive iid samples from Djqin¢. For a small € > 0, our task is to output a classifier f
(not necessarily in F) whose loss L(f, Dioint) = P(z,2)~Djoine (f(x) # 2) is at most opt + &, where
opt == inf yc 7 L(f, Djoins ). The parameter opt thus indicates how "noisy" the instance is. We say
that an algorithm agnostically learns F up to error € if it outputs such an f . This model is appealing
since it makes assumptions neither on the distribution of the input, nor on the type and amount of
noise. After running an agnostic learning algorithm, we can therefore be certain that the output f
achieves error close to that of the best function in F even without knowing what distribution the data
came from.
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Efficient learning and distributional assumptions. We are interested in understanding when
agnostic learning can be performed efficiently. Unfortunately, efficient learning is likely im-
possible without making assumptions on the distribution Dj,int, €ven for very simple function
classes F. For instance, consider the class JFyg of halfspaces, i.e., boolean functions of the
form f(z) = sign({(v, z) — ). Then, even if there exists a halfspace achieving arbitrarily small

error, it is widely believed that outputting an f that performs better than a random guess in the
agnostic model takes at least super-polynomial time if no assumptions are made on Djeint [8, 29].
To find efficient algorithms, one therefore has to make such assumptions. Typically, these take the
form of assuming that the marginal D of Djgin over the examples X belongs to a specific family of
distributions.

Definition 1 (Agnostic learning with distributional assumptions). Let e > 0. A learner A agnostically
learns F with respect to D up to error ¢ if, for any distribution Djoint on X x {£1} whose marginal
Dx on X is equal to D, given sufficient samples from Djgine, it outputs with high probability a
function f : X — {£1} satisfying L(f, Djoint) < 0Pt(F, Djoint) + €.

For example, under the assumption that Dy is standard Gaussian, we can find f such that
L(f, Djoint) < opt(Fus, Djoint) + € in time n°1/=) [20, 11]. This runtime is likely best-
possible [12, 29, 13].! Efficient learning is still possible under weaker assumptions on Dy, e.g.,
log-concavity [20]. Regardless, we cannot know whether a learning algorithm achieves its claimed
error without a guarantee that the input actually satisfies our distributional assumptions. Such guar-
antees are inherently difficult to obtain from a finite (small) sample. Furthermore, approaches like

cross-validation (i.e., computing the empirical error of f on a hold-out data set) fail in the noisy
agnostic model, since we do not know the noise level opt. This represents a severe limitation of the
agnostic learning model with distributional assumptions.

1.1 Testable learning.

To address this limitation, Rubinfeld & Vasilyan [28] recently introduced the following model, which
they call testable learning: First, they run a fester on the input data, which attempts to verify a
computationally tractable relaxation of the distributional assumptions. If the tester accepts, they then
run a (standard) agnostic learning algorithm. The tester is required to accept whenever the data truly
satisfies the distributional assumptions, and whenever the tester accepts, the output of the algorithm
must achieve error close to opt. More formally, they define:

Definition 2 (Testable learning [28]). Let ¢ > 0. A tester-learner pair (T, A) testably learns F
with respect to a distribution D on X up to error ¢ if, for any distribution Djoin, on X x {£1}, the
following hold

1. (Soundness). If samples drawn from Diqint, are accepted by the tester T with high probability,
then the learner A must agnostically learn F w.r.t. Djoin up to error e.

2. (Completeness). If the marginal of Djoins on X is equal to D, then the tester must accept
samples drawn from Djqin, with high probability.

Soundness tells us that whenever a testable learning algorithm outputs a function f, this function
achieves low error (regardless of whether Dj,in¢ satisfies any distributional assumption). On the other
hand, completeness tells us testable learners are no weaker than (distribution-specific) agnostic ones,
in the sense that they achieve the same error whenever Djq;y,¢ actually satisfies our assumptions (i.e.,
whenever this error can in fact be guaranteed for the agnostic learner). The testable model is thus
substantially stronger than the agnostic model with distributional assumptions.

Which function classes can be learned testably? A natural question is whether testable learning
comes at an additional computational cost compared to (distribution-specific) agnostic learning.
We focus on the setting where D is the standard Gaussian on X = R”. Following [28, 15], we
consider the following simple tester: Accept if and only if the empirical moments up to degree k of
the input distribution (approximately) match those of D. This tester satisfies completeness as the

'In particular, achieving a runtime in poly(n, 1/¢) is likely not possible. We note that such runtimes can be
achieved in the weaker model where one accepts a loss of O(opt) + & (vs. opt + € in the model we consider) [1].



empirical moments of a Gaussian concentrate well. Using this tester, Rubinfeld & Vasilyan [28] show
that halfspaces can be testably learned in time n®(1/ ). Their runtime guarantee was improved to

nO1/e*) in [15], (nearly) matching the best known non-testable algorithm. This shows that there
is no separation between the two models for halfspaces. On the other hand, a separation does exist
for more complex function classes. Namely, for fixed accuracy € > 0, testably learning the class of
indicator functions of convex sets requires at least 2("™) samples (and hence also time) [28], whereas
agnostically learning them only takes subexponential time 2°(V™) see [25]. The relation between
agnostic and testable learning is thus non-trivial, depending strongly on the concept class considered.

1.2 Our contributions

In this work, we continue to explore testable learning and its relation to the agnostic model. We
consider the concept class of polynomial threshold functions (short PTFs). A degree-d PTF is a
function of the form f(x) = sign(p(x)), where p is a polynomial of degree at most d. PTFs naturally
generalize halfspaces, which correspond to the case d = 1. They form an expressive function class
with applications throughout (theoretical) computer science, and have been studied in the context of
circuit complexity [5, 26, 27, 3], and learning [18, 14]. Despite their expressiveness, PTFs can be

agnostically learned in time n©(4°/¢") [22], which is polynomial in n for any fixed degree d € N and
error € > 0. They are thus significantly easier to learn in the agnostic model than convex sets. Our
main result is that PTFs can be learned efficiently in the testable model as well.

Theorem 3 (Informal version of Theorem 19). Fix d € N. Then, for any € > 0, the concept class
of degree-d polynomial threshold functions can be testably learned up to error € w.r.t. the standard
Gaussian in time and sample complexity nP°Y(1/¢),

Theorem 3 is the first result achieving efficient testable learning for PTFs of any fixed degree d (up to
constant error € > (). Previously, such a result was not even available for learning degree-2 PTFs
with respect to the Gaussian distribution. It also sheds new light on the relation between agnostic and
testable learning: there is no qualitative computational gap between the two models for the concept
class of PTFs, whose complexity lies between that of halfspaces and convex sets in the agnostic
model.

In addition to Theorem 3, we also show an impossibility result ruling out a certain natural approach
to prove testable learning guarantees for PTFs. In particular, we show in Section 2.4 that an approach
which has been successful for testably learning halfspaces in [28] provably cannot work for PTFs.

Limitations. The dependence of the running time on the degree parameter d and the error ¢ is
(much) worse than in the agnostic model (see Theorem 19). Moreover, we do not have access
to lower bounds on the complexity of testably learning PTFs which might indicate whether these
dependencies are inherent to the problem, or an artifact of our analysis. The only lower bounds
available apply already in the agnostic model, and show that the time complexity of agnostically
(and thus also testably) learning degree-d PTFs is at least n@*/2*) in the SQ-model [12], and at
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least n *) for any 8 > 0 under a cryptographic hardness assumption [29].

1.3 Previous work

The two works most closely related to this paper are [28, 15]. Both rely on the following high-
level strategy. A standard result [20] shows that one can agnostically learn a concept class F
w.rt. a distribution D in time n®*) if all elements of F are well-approximated w.r.t. D by
degree-k polynomials. That is, if for all f € F, there exists a degree-k polynomial % such that
Ex~p [|A(X) — f(X)|] < e. This result can be extended to the testable setting, but now one needs
a good low-degree Li-approximation w.r.t. any distribution D’ accepted by the tester. Using the
moment-matching tester outlined above, one thus needs to exhibit low-degree approximations to all
functions in F w.r.t. any distribution which approximately matches the first few moments of D.

A direct approach. In [28], the authors use a direct approach to show that if 7 = Fyg is the class
of halfspaces and D = N(0, I,,), these approximators exist for k = O(1/e%), leading to an overall

running time of n®(/ =*) for their testable learner. Their approach consists of two steps. First, they
construct a low-degree approximation g = sign of the sign function in one dimension using standard



techniques. Then, for any halfspace f(z) = sign({v,z) — ), they set h(z) = q({v,z) — 6). B
exploiting concentration and anti-concentration properties of the push-forward under 11near functlons
of distributions that match the moments of a Gaussian, they show that % is a good approximation of f.
Unfortunately, this kind of approach cannot work for PTFs: We formally rule it out in Theorem 16.
This is the aforementioned secondary contribution of our paper, which extends earlier impossibility
results for (agnostic) learning of Bun & Steinke [6]. See Section 2.4 for details.

An indirect approach using fooling. In order to prove our main theorem we thus need a different
approach. Gollakota, Klivans & Kothari [15] establish a connection between testable learning and
the notion of fooling, which has played an important role in the study of pseudorandomness [4, 2, 9].
Its connection to learning theory had previously been observed in [23]. We say a distribution D’
fools a concept class F up to error ¢ > 0 with respect to D if, for all f € F, it holds that
[Ex~p [f(X)] — Ex~p [f(X)]| < e. Roughly speaking, the work [15] shows that, if any distribu-
tion D’ which approximately matches the moments of D up to degree k fools F with respect to D,
then F can be testably learned in time n©(*) (see Theorem 9 below). We remark that (approximately)
moment-matching distributions have not been considered much in the existing literature on fooling.
Rather, it has focused on distributions D’ whose marginals on any subset of k variables are equal
to those of D, which is a stronger condition a priori. While it coincides with moment-matching
in special cases (e.g., when D is the uniform distribution over the hypercube), it does not when
D = N(0, I,). Nevertheless, the authors of [15] show that (approximate) moment matching up
to degree k = O(1/2?) fools halfspaces with respect to A(0, I,,), allowing them to obtain the
aforementioned result for testably learning Fyg. In fact, they show that this continues to hold when
JF consists of arbitrary boolean functions applied to a constant number of halfspaces. They also use
existing results in the fooling literature to show that degree-2 PTFs can be testably learned under
the uniform distribution over {0, 1}" (but these do not extend to learning over R” w.r.t. a standard
Gaussian).

Other previous work on testable learning. In weaker error models than the agnostic model or
under less stringent requirements on the error of the learner it is known how to construct tester-learner
pairs with runtime poly(n, 1/¢) [16, 10]. These results have been extended to allow for the following
stronger completeness condition: The tester has to accept, whenever Djqiyy is an isotropic strongly
log-concave distribution [17].

2 Technical overview

2.1 Preliminaries

From here, we restrict to the setting X = R". We let D be a well-behaved distribution on R";
usually D = N(0,1,) is the standard Gaussian. For z € R™ and a multi-index o € N, we write
z® =[], 28" For k € N, we write N} :== {a € N, >""" | o; < k}. We say a statement holds
‘with high probab111ty if it holds with probab111ty > 0.99. The notation Oy (resp. €24, ©4) hides
factors that only depend on d. We now define the moment-matching tester introduced above.
Definition 4 (Moment matching). Ler k € N and n > 0. We say a distribution D’ on R™ approxi-
mately moment-matches D up to degree k and with slack n if
|EX~D [Xa] —Ex~p [Xu]l <n Vace NZ

Definition 5. Let k € N and ) > 0. The approximate moment-matching tester Tanv = Tanmm (k, )
for a distribution D accepts the samples (x(V), 21, ... (2™ 2(m)) € R™ x {41} if, and only if,

I &, (ha
IEXND[X"}—%Z(@"(Z)) <n VaecN}.
i=1

That is, Tan (k, n) accepts if and only if the moments of the empirical distribution belonging to the
samples {x i)} match the moments of D up to degree k and slack 1. Note that Tayim (k,n) requires
time at most O(m - n¥) to decide whether to accept a set of m samples.

The tester Tanv does not take the labels of the samples into account. In general, for testers 7~ which
depend only on the marginal D of Djqins on R™, we say that 7 accepts a distribution D’ on R™ if it
accepts samples drawn from D’ with high probability (regardless of the labels).



2.2 Review of existing techniques for testable learning

In this section, we review in more detail the existing techniques to establish guarantees for agnostic
and testable learning discussed in Section 1.3. Our goals are twofold. First, we wish to highlight
the technical difficulties that arise from proving error guarantees in the testable model versus the
agnostic model. Second, we want to introduce the necessary prerequisites for our proof of Theorem 3
in Section 2.3, namely testable learning via fooling (see Theorem 9).

Learning and polynomial approximation. A standard result [20] shows that one can agnostically
learn any concept class that is well-approximated by low-degree polynomials in the following sense.

Theorem 6 ([20]). Let k € N and € > 0. Suppose that, for any f € F, there exists a polynomial h
of degree k such that

Ex~p [[R(X) - f(X)[] <e.

Then, F can be agnostically learned up to error € in time and sample complexity n®*) /poly(e).

The underlying algorithm in the theorem above is polynomial regression w.r.t. the absolute loss
function. In the testable setting, a similar result holds. The key difference is that one now needs good
approximation w.r.t. all distributions accepted by the proposed tester.

Theorem 7. Let k € Nand e > 0. Let T be a tester which accepts D and which requires time and
sample complexity T. Suppose that, for any f € F, and for any D' accepted by T, there exists a
polynomial h of degree k such that

Ex~p [IMX) = f(X)[] <&
Then, F can be testably learned up to error ¢ in time and sample complexity T + n©®*) /poly(e).

The takeaway is that, in order to devise efficient algorithms for agnostic or testable learning, it suffices
to study low-degree polynomial approximations of elements of F. Under the assumption that D is a
(standard) Gaussian, one has access to powerful techniques from Fourier analysis to show existence
of good polynomial approximators w.r.t. D for various concept classes. Using Theorem 6, this leads
to efficient agnostic learning algorithms for a variety of concept classes w.r.t. N'(0, I,) [20, 25, 22].

Testable learning via direct approximation. In the testable setting, it is not sufficient to approxi-
mate with respect to D alone, and so one cannot rely directly on any of its special structure. In [28], the
authors overcome this obstacle to get testable learning guarantees for halfspaces w.r.t. D = N(0, I,,)
by appealing to more basic properties of the distributions D’ accepted by their tester. Their approach
is roughly as follows. First, they use standard results from polynomial approximation theory to find
a (univariate) polynomial ¢ which approximates the sign-function well on the interval [—1, 1]. For
a halfspace f(z) = sign({v, z) — ), they consider the approximator h(x) = ¢({v, z) — ), which

satisfies
Ex~p [[M(X) = f(X)I] = Ey~pr , [la(Y) = sign(Y)]].

Here, D, , is the (shifted) projection of D’ onto the line span(v) C R". Thatis, Y = (v, X) — 0.
Then, for carefully chosen k € N and n > 0, they show that for any D’ accepted by Tannm (k, 77), the
distribution D;ﬁ o satisfies certain concentration and anti-concentration properties, meaning essen-
tially that D;’ ¢ is distributed somewhat uniformly on [—1, 1]. As ¢ approximates the sign-function
on [—1, 1], they may conclude that Ey~p/, [lg(Y) — sign(Y)|] is small, and invoke Theorem 7.

Testable learning via fooling. It is natural to attempt a generalization of the approach above
to PTFs. Indeed, for f(x) = sign(p(z)), one could consider the approximator h(z) = ¢(p(zx)).
However, as we show below in Section 2.4, this approach cannot work when deg(p) > 6. Instead,
we will rely on a more indirect technique, proposed in [15]. It connects the well-studied notion of
fooling to low-degree polynomial approximation, and to testable learning.

Definition 8 (Fooling). Let e > 0. We say a distribution D’ on R fools F w.r.t. D up to error ¢, if,
forall f € F, we have |Ey .p [f(Y)] —Ex~p [f(X)]| <e.

The main result of [15] shows that fooling implies testable learning when using approximate moment-
matching to test the distributional assumptions. It forms the basis of our proof of Theorem 3.



Theorem 9 ([15, Theorem 4.5]). Let k,m € N and e,n > 0. Suppose that the following hold:

1. Any distribution D' whose moments up to degree k match those of D with slack ) fools F
w.r.t. D up to error € /2.

2. With high probability over m samples from D the empirical distribution matches moments
of degree at most k with D up to slack 1.

Then, using the moment-matching tester T = Tanmm(k, n), we can learn F testably with respect
to D up to error ¢ in time and sample complexity m + n©*),

Remark 10. When D = N(0, [,,) is the standard Gaussian, then the second condition in Theorem 9
is satisfied for m = ©((2kn)"* - n=2), see also Fact 36.

The primary technical argument in the proof of Theorem 9 in [15] is an equivalence between fooling
and a type of low-degree polynomial approximation called sandwiching. Compared to Theorem 7, the
advantage of sandwiching is that one needs to approximate f only w.r.t. D (rather than any distribution
accepted by the tester). However, one needs to find not one, but two low degree approximators h1, ho
that satisfy hy < f < hg pointwise (i.e., ‘sandwich’ f). We refer to [15] for details.

Fooling PTFs. In light of Theorem 9 and Remark 10, in order to prove our main result Theorem 3,
it suffices to show that distributions D’ which approximately match the moments of N(0, I,,) fool
the concept class of PTFs. This is our primary technical contribution (see Proposition 12 below). It
can be viewed as a generalization of the following result due to Kane [21].

Theorem 11 (Informal version of [21, Theorem 1]). Let D’ be a k-independent standard Gaussian,
meaning the restriction of D’ to any subset of k variables has distribution N (0, I};). Then, D' fools
degree-d PTFs w.r.t. N'(0, I,) up to error € > 0 as long as k = k(d, ) is large enough.

Theorem 11 applies to a class of distributions that is (far) more restrictive than what we need. First,
note that k-independent Gaussians match the moments of NV (0, I,,) up to degree k exactly, whereas
we must allow D’ whose moments match only approximately. Second, even if D’ would match the
moments of a Gaussian exactly up to degree k, its k-dimensional marginals need not be Gaussian. In
fact, we have no information on its moments of high degree even if they depend on at most % variables.
These two distinctions cause substantial technical difficulties in our proof of Proposition 12 below.

2.3 Overview of the proof of Theorem 3: testably learning PTFs

As we have seen, in order to prove Theorem 3, it suffices to show that approximately moment-
matching distributions fool PTFs. We obtain the following.

Proposition 12. Let € > 0. Suppose that D' approximately matches the moments of N'(0, I,,) up to
degree k and slack n, where k > Qg4 (8_4d'7d), andn < n= 2B =Qa®) Then, D' fools the class of
degree-d PTFs w.r.t. N'(0, I,,) up to error £ /2. That is, for any f € Fprr,q, we then have

Eyno.1,) LF (V)] = Exep [f(X)]] < e/2. 4))

In the rest of this section, we outline how to obtain Proposition 12. Full details can be found
in Appendix A. Structurally, our proof is similar to the proof of Theorem 11 in [21]: First, in
Section 2.3.1, we show fooling for the subclass of PTFs defined by multilinear polynomials. Then, in
Section 2.3.2, we extend this result to general PTFs by relating arbitrary polynomials to multilinear
polynomials in a larger number of variables. Our primary contribution is thus to show that the
construction of [21] (which considers k-independent Gaussians) remains valid for the larger class of
distributions that approximately match the moments of a Gaussian.

2.3.1 Fooling multilinear PTFs

Let f(z) = sign(p(z)), where p is a multilinear polynomial. Our goal is to establish (1) for f
under the assumptions of Proposition 12. We will follow the proof of Kane [21] for Theorem 11,
which proceeds as follows. Let D’ be a k-independent Gaussian. First, Kane constructs a degree-k
polynomial approximation h of f, satisfying

Eyno,1,) [MY)] = Ey ono,1,) [f(Y)], and, )
Ex~p [M(X)] =~ Ex~p [f(X)]. 3



Since the moments of D’ are exactly equal to those of N(0,1,) up to degree k, we have
Eyn0,1,) [M(Y)] = Ex~p [A(X)]. We may then conclude the fooling property for D’ (cf. (1)):

By no,1.) [f (V)] = Eyono,1,) [MY)] = Ex~pr [R(X)] = Ex~pr [f(X)].

As we see below, Kane relies on a structure theorem (see Lemma 21) for multilinear polynomials
to construct his low-degree approximation /. We wish to extend this proof to our setting, where D’
merely matches the moments of the standard Gaussian up to degree k and slack 7. As we will see,
the construction of the polynomial /& remains valid (although some care is required in bounding the
approximation error). A more serious concern is that, for us, Ey zr(0,1,,) [2(Y)] # Ex~pr [h(X)]
in general. Our main technical contribution in this section is dealing with the additional error terms
that arise from this fact.

Constructing a low-degree approximation. We now give details on the construction of the low-
degree approximation h that we use in our proof, which is the same as in [21]. The starting point
of the construction is a structure theorem for multilinear polynomials p (see Lemma 21 below). It
tells us that f = sign(p) can be decomposed as f(xz) = F(P(z)), where F is again a PTF, and
P = (P,) is a vector of multilinear polynomials of degree d, whose moments Ey _xr(o,1,) [P (Y)"]
are all at most O4(v/¢). Note that these bounds are much stronger than what we would get from
standard arguments (which would only yield Ey (0,1, [Pi(Y)] < O4(vV0)%). As in [21], we

approximate F' by a smooth function F' via mollification (see Appendix A.1.1). That is, F' is the
convolution F' * p of F' with a carefully chosen smooth function p. Then, we set h(z) = T'(P(z)),
where 7' is the Taylor approximation of F' of appropriate degree (see Appendix A.1.2). Intuitively,
taking the Taylor expansion yields a good approximation as the (Gaussian) moments of the P; are not
too large, yielding (2), (3).

Error analysis of the approximation. Our goal is now to establish (2), (3) in our setting. Note that,
since (2) is only concerned with the Gaussian distribution, there is no difference with [21]. For (3),
we have to generalize the proof in [21]. For this, we first bound the probability under D’ that (at least)
one of the P; is large, which we do using Markov’s inequality. Then, we need to show a bound on
the moments of P; under D’ (recall that the structure theorem only gives a bound on the Gaussian
moments). Using bounds on the coefficients of the P;, we are able to do this under a mild condition
on 7 (see Appendices A.1.2 and A.1.3).

Controlling the additional error terms. To conclude the argument, we need to show that, for
our low-degree approximation h, we have Eyn(o,7,) [R(Y)] & Ex~p/ [R(X)]. Recall that in [21],
these expectations were simply equal. The main issue lies in the fact that, in our setting, the moment
matching is only approximate; equality would still hold if D’ matched the moments of N'(0, I,,) up
to degree k exactly. Under n-approximate moment matching, we could say that

By nro,1) (1Y) = Exopr RO < - 1Al @)
where ||h]|1 is the 1-norm of the coefficients of h. However, there is no way to control this norm
directly. Instead, we rely on the fact that h = T" o P and argue as follows. On the one hand, we show
a bound on the coefficients in the Taylor approximation 7" of F. On the other hand, we show bounds
on all terms of the form |Eyx(0.1,) [P(Y)?*] — Ex~p [P(X)®]|. Combining these bounds yields
an estimate on the difference [Ey (0,1, [A(Y)] — Ex~ps [2(X)]|, which lets us conclude (1).

Going into more detail, the LHS of (4) is equal to the inner product | (¢, u}| between the vector t = (t,,)
of coefficients of 7" and the vector u = (uq ), Where uy = Eyar(0,1,,) [P(Y)] — Ex~pr [P(X)?].
This can be viewed as a ‘change of basis’ © — P(x). Then, (4) can bounded by ||u|oo - ||¢]|1, Wwhere
u]loc = maxy [ua|. The coefficients ¢, of T are related directly to the partial derivatives of F,
which in turn depend on the function p used in the mollification. After careful inspection of this
function, we can bound ||¢]|; < k94(%) (see Lemma 27). Finally, for any |a| < k, it holds that

a lo|-d
By n0.1) [P(Y)?] = Exopr [P(X)?]] < - sup (J|Bi]1)!™ <m0 <. n@a®)

see Fact 22. Putting things together, we get that
By nro,1,) (BY)] = Exnpr RO < [lulloo - [t1 < - k21010 < g2,
using the fact that < n~?¢(*) =2a(k) and k& >> 1/ for the last inequality.



2.3.2 Fooling arbitrary PTFs

Now, let f(x) = sign(p(x)) be an arbitrary PTF. As before, we want to establish (1). Following [21],
the idea is to reduce this problem to the multilinear case as follows. Let Y ~ N(0, ;) and let X be
a random variable that matches the moments of Y up to degree k and with slack n. For N € N to be

chosen later, we construct new random variables X and )7, and a multilinear PTF f = sign(p), all

in n - N variables, such that Y ~ N (0,I,n), X matches moments of Y’ up to degree k with slack 7,
and

By [f(Y)] — Ex [f(X)]| = [Ey [f(Y)] - Ex [/(X)]- ©)
Assuming 7} is not much bigger than 7, and the approximation above is sufﬁ01ently good we may

then apply the result of Section 2.3.1 to f to conclude (1) for f. Our construction of X,Y and f will
be the same as in [21]. However, with respect to his proof, we face two difficulties. Flrst we need to
control the slack parameter 7) in terms 7). More seriously, Kane’s proof of (5) breaks in our setting:
He relies on the fact that X is k-independent Gaussian in his setting to bound high degree moments

of X which depend on at most k variables. In our setting, we have no information on such moments
at all (even if X matched the moments of A/(0, I,,) up to degree k exactly).

Construction of X and Y. Fori ¢ [n], let Z() be an N-dimensional Gaussian random variable
with mean 0, variances 1 — 1/N and covariances —1/N, independent from X and all other Z (@),
We define Xij = X;/VN + ZJ@, and set X = (Xij). We define Y analogously. This ensures that
Y ~ N (0, I,y). Furthermore, given that X matches the moments of Y with slack 7, it turns out
that X matches the moments of Y with slack 7j = (2k)*/? - ). This follows by direct computation
after expanding the moments of X in terms of those of X and of the Z(), see Lemma 32.

Construction of the multilinear PTF. We want to construct a multilinear polynomial p in nN
variables so that p(X) ~ p(X). For & € R"IAV, write p(Z) = (Z;\le fij/\/ﬁ)ie[n} € R™.
Since ¢(Z@) = 0 holds deterministically, ¢(X) = X. So, if we were to set p = p o g, it
would satisfy p(X) = p(X). However, it would clearly not be multilinear. To fix this, we write

p(e(&)) =", Aa&® and replace each non-multilinear term A\, Z“ by a multilinear one as follows:
If the largest entry of « is at least three, we remove the term completely. If the largest entry of «

is two, we replace the term by Aad® , where o ; = 1lif a;; = 1 and 0 otherwise. This is identical

to the construction in [21]. Now, to show that p(X) ~ p(X) we need to bound the effect of these
modifications. It turns out that it suffices to control the following expressions in terms of N:

N 3 N /v \? N /% A\
Xi; X, . X .
;= E 22N, b= E 2L =1, = E =L €n],3<£<d).
! j:l\/ﬁ j= <VN> o j < N> pelmast=d

=1 Jj=1

For the b; and ¢; ¢, we can do so using a slight modification of the arguments in [21]. For the a;,
however, Kane [21] exploits the fact that in his setting, X; is standard Gaussian for each fixed i € [n],
meaning the XZ ; are jointly standard Gaussian over j. This gives him access to strong concentration
bounds. To get such concentration bounds in our setting, we would need information on the moments
of the X; up to degree roughly log n. However, we only have access to moments up to degree k,
which is not allowed to depend on n (as our tester uses time nQ(’“)). Instead, we use significantly
weaker concentration bounds based on moments of constant degree. By imposing stronger conditions
on the b;, ¢; ¢, we are able to show that the remainder of the argument in [21] still goes through in
our setting, see Appendix A.2.2. Finally, for IV sufficiently large, this allows us to conclude (5) for

f = sign(p).
2.4 Impossibility result: learning PTFs via the push-forward

In this section, we show that the approach of [28] to prove testable learning guarantees for halfspaces
w.r.t. the standard Gaussian cannot be generalized to PTFs. Namely, we show that in general, PTFs
f(x) = sign(p(x)) with deg(p) > 3 cannot be approximated up to arbitrary error w.r.t. N'(0, I,,)
by a polynomial of the form h(x) = q(p(x)), regardless of the degree of q.> Importantly, we show

“Note that this even excludes proving an agnostic learning guarantee w.r.t. A’(0, I,,) using this approach.



that this is the case even if one makes certain typical structural assumptions on p which only change
the PTF f = sign(p) on a set of negligible Gaussian volume; namely that p is square-free and
that {p > 0} C R" is compact. Our main technical contribution is an extension of a well-known
inapproximability result due to Bun & Steinke (Theorem 15 below) to distributions ‘with a single
heavy tail’ (see Theorem 18).

Approximating the sign-function on the real line Let px (0, I,,) be the push-forward of the
standard Gaussian distribution by p, which is defined by

Py p N1 [V € Al :=Px no,1,) [X € p '(A)] (ACR). (6)
Note that, if h(z) = q(p(z)), we then have

hX) = f(X)I] = Eynpyno,r,) [la(Y) = sign(Y)[].

Finding a good approximator i = f of the form i = ¢ o p is thus equivalent to finding a (univariate)
polynomial ¢ which approximates the sign-function on R well under the push-forward distribution
p#N(0,1,,). In light of this observation, we are interested in the following question: Let D be
a distribution on the real line. Is it possible to find for each € > 0 a polynomial g such that
Ey.p [|¢(Y) — sign(Y)|] < €? This question is well-understood for distributions D whose density
is of the form w.(z) = C, exp(—|z|7), v > 0. Namely, when v > 1, these distributions are
log-concave, and the question can be answered in the affirmative. On the other hand, when v < 1,
they are log-superlinear, and polynomial approximation of the sign function is not possible.

Ex~no,1,) |

Theorem 13 (see, e.g. [20]). Let D be a log-concave distribution on R. Then, for any € > 0 there
exists a polynomial q such that Eyp [|q(Y) — sign(Y)|] < e.

Definition 14. Let D be a distribution on R whose density function w satisfies
w(x) > C-wy(x) VzelR
for some v < 1 and C > 0. Then we say D is log-superlinear (LSL).

Theorem 15 (Bun-Steinke [6]). Let D be an LSL-distribution on R. Then there exists an € > 0 such
that, for any polynomial q, we have Eyp [|q(Y) — sign(Y)|] > e.

When p is of degree 1 (i.e., when f = sign(p) defines a halfspace), the push-forward distribution
D= p#./\/ (0,1,,) defined in (6) is itself a (shifted) Gaussian. In particular, it is log-concave and by
Theorem 13 approximation of the sign-function w.r.t. D is possible. On the other hand, when p is of
higher degree, D could be an LSL-distribution, meaning approximation of the sign-function w.r.t. D
is not possible by Theorem 15. For instance, consider p(z) = 2. The density w of pxN(0, 1) is

given by w(z) = C - [z|7%/3 - exp(—|z|*/?), and so px (0, 1) is log-superlinear.
Choice of description. The example p(x) = 2 is artificial: We have sign(p(z)) = sign(z), and
so the issue is not with the concept f = sign(p), but rather with our choice of description p. In
general, one can (and should) assume that p is square-free, meaning it is not of the form p = p? - po.
Indeed, note that for such a polynomial, we have sign(p(x)) = sign(p2(z)) almost everywhere.
Square-freeness plays an important role in the analysis of learning algorithms for PTFs, see, e.g., [22,
Appendix A]. It turns out that even if p is square-free, the distribution pxN(0,I,,) can still be
log-superlinear, e.g., when p(x) = x(x — 1)(x — 2). Note that, for this example, sign(p) describes
a non-compact subset of R. This is crucial to find that px A (0, 1) is LSL. Indeed, if {p > 0} C R
were compact, then pyax = sup,cg p(x) < 0o, and so the density w of pxN (0, 1) would satisfy
w(z) = 0 for all x > ppax. In particular, w would not be log-superlinear. One could therefore hope
that assuming {p > 0} is compact might fix our issues. This assumption is reasonable as {p > 0}
can be approximated arbitrarily well by a compact set (in terms of Gaussian volume). On the contrary,
we show the following.

Theorem 16. There exists a square-free polynomial p, so that {p > 0} C R is compact, but for
which there exists € > 0 so that, for any polynomial q, Ex .xr(0,1) [|¢(p(X)) — sign(p(X))|] > €.

To establish Theorem 16, we prove a ‘one-sided’ analog of Theorem 15 in Appendix B.1, which we
believe to be of independent interest. It shows impossibility of approximating the sign-function under
a class of distributions related to, but distinct from, those considered by Bun & Steinke [6]. The key
difference is that the densities in our result need only to have a single heavy tail. However, this tail
must be ‘twice as heavy’ (y < 1/2 vs. v < 1). We emphasize that [6] does not cover compact PTFs.



Definition 17. Let D be a distribution on R whose density function w satisfies
w(z) > C-wy(zx) Ve (—oo,l1]
Sor some v < 1/2 and C > 0. Then we say D is one-sided log-superlinear.

Theorem 18. Let D be a one-sided LSL-distribution on R. Then there exists an € > 0 such that, for
any polynomial q, we have By .p [|q(Y") — sign(Y)|] > e.

Proof of Theorem 16. Tt suffices to find a square-free polynomial p for which {p > 0} is compact,
and the push-forward distribution p4N (0, 1) is one-sided LSL. A direct computation shows that

p(z) = —x(x —1)(x — 2)(x — 3)(z — 4)(x — b)

meets the criteria, see Appendix B.2 for details. O

Acknowledgments

We thank the anonymous reviewers for their valuable comments and suggestions. We thank Arsen
Vasilyan for helpful discussions. This work is supported by funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 815464).

References

[1] Pranjal Awasthi, Maria Florina Balcan, and Philip M. Long. “The power of localization for
efficiently learning linear separators with noise”. In: J. ACM 63.6 (2017), Art. 50, 27. ISSN:
0004-5411,1557-735X.

[2] Louay M. J. Bazzi. “Polylogarithmic independence can fool DNF formulas™. In: SIAM J.
Comput. 38.6 (2009), pp. 2220-2272. 1SSN: 0097-5397,1095-7111.

[3] Richard Beigel. “The polynomial method in circuit complexity”. In: Proceedings of the Eighth
Annual Structure in Complexity Theory Conference (San Diego, CA, 1993). IEEE Comput.
Soc. Press, Los Alamitos, CA, 1993, pp. 82-95. 1SBN: 0-8186-4070-7.

[4] Mark Braverman. “Polylogarithmic independence fools AC" circuits”. In: J. ACM 57.5 (2008).
ISSN: 0004-5411.

[5] Jehoshua Bruck and Roman Smolensky. “Polynomial threshold functions, ACY functions, and
spectral norms”. In: SIAM J. Comput. 21.1 (1992), pp. 33—42. 1SSN: 0097-5397.

[6] Mark Bun and Thomas Steinke. “Weighted polynomial approximations: limits for learning
and pseudorandomness”. In: Approximation, randomization, and combinatorial optimization.
Algorithms and techniques. Vol. 40. LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl.
Leibniz-Zent. Inform., Wadern, 2015, pp. 625-644. ISBN: 978-3-939897-89-7.

[7] Anthony Carbery and James Wright. “Distributional and L? norm inequalities for polynomials
over convex bodies in R™”. In: Math. Res. Lett. 8.3 (2001), pp. 233-248. 1SSN: 1073-2780.

[8] Amit Daniely. “Complexity theoretic limitations on learning halfspaces”. In: STOC’16—
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing. ACM,
New York, 2016, pp. 105-117. 1SBN: 978-1-4503-4132-5.

[9] Tlias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco A. Servedio, and Emanuele
Viola. “Bounded independence fools halfspaces”. In: SIAM J. Comput. 39.8 (2010), pp. 3441-
3462. 1SSN: 0097-5397,1095-7111.

[10] Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Sihan Liu, and Nikos Zarifis. “Efficient
testable learning of halfspaces with adversarial label noise”. In: Advances in Neural Information
Processing Systems. Vol. 36. Curran Associates, Inc., 2023, pp. 39470-39490.

[11] Tlias Diakonikolas, Daniel M. Kane, and Jelani Nelson. “Bounded independence fools degree-2
threshold functions”. In: 2010 IEEE 51st Annual Symposium on Foundations of Computer
Science—FOCS 2010. IEEE Computer Soc., Los Alamitos, CA, 2010, pp. 11-20. ISBN:
978-0-7695-4244-7.

10



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Ilias Diakonikolas, Daniel M. Kane, Thanasis Pittas, and Nikos Zarifis. “The Optimality of
Polynomial Regression for Agnostic Learning under Gaussian Marginals in the SQ Model”.
In: Proceedings of Thirty Fourth Conference on Learning Theory. Vol. 134. PMLR, 2021,
pp- 1552-1584.

Ilias Diakonikolas, Daniel M. Kane, and Lisheng Ren. “Near-Optimal Cryptographic Hardness
of Agnostically Learning Halfspaces and ReLLU Regression under Gaussian Marginals”. In:
Proceedings of the 40th International Conference on Machine Learning. Vol. 202. PMLR,
2023, pp. 7922-7938.

Ilias Diakonikolas, Ryan O’Donnell, Rocco A. Servedio, and Yi Wu. “Hardness results for
agnostically learning low-degree polynomial threshold functions”. In: Proceedings of the
Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, Philadelphia,
PA, 2011, pp. 1590-1606.

Aravind Gollakota, Adam R. Klivans, and Pravesh K. Kothari. “A moment-matching approach
to testable learning and a new characterization of Rademacher complexity”. In: STOC’23—
Proceedings of the 55th Annual ACM Symposium on Theory of Computing. ACM, New York,
2023, pp. 1657-1670. 1SBN: 978-1-4503-9913-5.

Aravind Gollakota, Adam R. Klivans, Konstantinos Stavropoulos, and Arsen Vasilyan. “An
Efficient Tester-Learner for Halfspaces”. In: The Twelfth International Conference on Learning
Representations. 2024.

Aravind Gollakota, Adam R. Klivans, Konstantinos Stavropoulos, and Arsen Vasilyan. “Tester-
learners for halfspaces: Universal algorithms”. In: Advances in Neural Information Processing
Systems. Vol. 36. Curran Associates, Inc., 2023, pp. 10145-10169.

Prahladh Harsha, Adam R. Klivans, and Raghu Meka. “Bounding the sensitivity of polynomial
threshold functions”. In: Theory Comput. 10 (2014), pp. 1-26. ISSN: 1557-2862.

David Haussler. “Decision-theoretic generalizations of the PAC model for neural net and
other learning applications”. In: Inform. and Comput. 100.1 (1992), pp. 78-150. 1SSN: 0890-
5401,1090-2651.

Adam Tauman Kalai, Adam R. Klivans, Yishay Mansour, and Rocco A. Servedio. “Ag-
nostically learning halfspaces”. In: SIAM J. Comput. 37.6 (2008), pp. 1777-1805. 1SSN:
0097-5397,1095-7111.

Daniel M. Kane. “k-independent Gaussians fool polynomial threshold functions”. In: 26th
Annual IEEE Conference on Computational Complexity. IEEE Computer Soc., Los Alamitos,
CA, 2011, pp. 252-261. ISBN: 978-0-7695-4411-3.

Daniel M. Kane. “The Gaussian surface area and noise sensitivity of degree-D polynomial
threshold functions”. In: Comput. Complexity 20.2 (2011), pp. 389-412. 1SSN: 1016-3328,1420-
8954.

Daniel M. Kane, Adam R. Klivans, and Raghu Meka. “Learning Halfspaces Under Log-
Concave Densities: Polynomial Approximations and Moment Matching”. In: Proceedings of
the 26th Annual Conference on Learning Theory. Vol. 30. PMLR, 2013, pp. 522-545.

Michael J. Kearns, Robert E. Schapire, and Linda M. Sellie. “Toward efficient agnostic
learning”. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory.
Association for Computing Machinery, 1992, pp. 341-352. 1SBN: 089791497X.

Adam R. Klivans, Ryan O’Donnell, and Rocco A. Servedio. “Learning Geometric Concepts via
Gaussian Surface Area”. In: 2008 49th Annual IEEE Symposium on Foundations of Computer
Science. 2008, pp. 541-550.

Matthias Krause and Pavel Pudldk. “Computing Boolean functions by polynomials and thresh-
old circuits”. In: Comput. Complexity 7.4 (1998), pp. 346-370. 1SSN: 1016-3328,1420-8954.

Ryan O’Donnell and Rocco A. Servedio. “Extremal properties of polynomial threshold func-
tions”. In: J. Comput. System Sci. 74.3 (2008), pp. 298-312. 1SSN: 0022-0000,1090-2724.

Ronitt Rubinfeld and Arsen Vasilyan. “Testing distributional assumptions of learning al-
gorithms”. In: STOC’23—Proceedings of the 55th Annual ACM Symposium on Theory of
Computing. ACM, New York, 2023, pp. 1643—-1656. ISBN: 978-1-4503-9913-5.

11



[29] Stefan Tiegel. “Hardness of Agnostically Learning Halfspaces from Worst-Case Lattice Prob-
lems”. In: Proceedings of Thirty Sixth Conference on Learning Theory. Vol. 195. PMLR, 2023,
pp- 3029-3064.

[30] Leslie G. Valiant. “A theory of the learnable”. In: Commun. ACM 27 (1984), pp. 1134-1142.
ISSN: 0001-0782.

12



A Testable learning of polynomial threshold functions

In this section, we give a formal proof of our main result, Theorem 3, that we restate here.
Theorem 19 (Formal version of Theorem 3). Let d € N. For any € > 0, the concept class of degree-d
polynomial threshold functions in n variables can be testably learned up to error € w.r.t. the standard
Gaussian N (0, I,,) in time and sample complexity

nOd' (674d»7d>570d <€74d-7d) ,

In particular, if d is constant, the time and sample complexity is nP°Y1/),

Our goal to show this result is to apply Theorem 9. We first focus on proving the fooling condition in
this theorem. Recall that for this we need to show that there are k and i such that if D’ matches the
moments of (0, I,,) up to degree k and slack 7, then we have

|Ex~p [f(X)] = Eyno,1.) [F(Y)]] < e/2.

In order to show this, we follow the result of [21] (see Theorem 11). This paper shows this condition
for any distribution D’ that is a k-independent Gaussian, i.e. for which the marginal of every subset
of k coordinates is A'(0, Ij,).

The reason why it is enough to only focus on satisfying the fooling condition is that for any 7, we can
find m large enough that the first condition of Theorem 9 is satisfied for A/(0, I,,) (see Remark 10
and Fact 36). For k we choose the same value as in [21], namely

k=0, (5“'7‘1) . %

We first show how to choose 7 for the case of multilinear polynomial polynomials in Appendix A.1.
In Appendix A.2, we generalize the fooling result to arbitrary PTFs. Finally, in Appendix A.3, we
show how to apply Theorem 9 to get testable learning for PTFs.

A.1 Fooling for multlinear PTFs

Thus, let f € C and let p be the multilinear polynomial (of degree d) such that f(x) = sign(p(x)).
Note that this notation is different than the one used in [21]. There, the roles of f and F' are
interchanged. We use f for the PTF throughout to be consistent with the previous work on (testable)
learning. Without loss of generality, we assume that the sum of the squares of the coefficients of p
is 1. We can make this assumption since rescaling does not change the PTF.

The main result of this section is the following proposition.
Proposition 20 (Fooling for multilinear PTFs). Let ¢ > 0. Suppose that D' approximately matches the
moments of N'(0, I,) up to degree k and slack n, where k > Qg4 <6*4d'7d), andn < n~ (k) =2a (k)
Then, we have that, for any multilinear f € Fprr 4,

[Ex~pr [f(X)] = Eyno.r,) [f(Y)]] < Oale).

Note that we only show Og4(e) here instead of £/2, which is needed to apply Theorem 9. This
simplifies the notation in our proof of this proposition. We later apply this proposition to ¢’ = £/Q,4(1)
to conclude the fooling result we need.

As mentioned earlier, the general strategy to do this is based on [21]. We want to find a function
J : R™ — R that approximates f. We will define this function in Appendix A.1.1. In Appendix A.1.2,
we show that the expectation of f is close under D" and N'(0, I,,). More precisely, in Lemma 25, we

show that under the above assumption on 7, we have that
|Ey no,1,) [f (V)] = Exep [f(X)]| < O(e).

In Appendix A.1.3, we then show that under both D’ and N (0, I,,) the expectation of f and f are
close and complete the proof of Proposition 20. More precisely, from [21, Proposition 14] (restated
in Lemma 28), we get that

Eyonr,1,) [f(Y)] = Eyono,1,) [f(Y)H < O(e).
In Appendix A.1.3, we then also show that this also holds for X ~ D’ instead of Y ~ N(0, I,,).

More precisely, we show in Lemma 29 that Lemmas 25 and 28 contain already enough information
about the moment-matching distribution D’ to conclude Proposition 20.
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A.1.1 Set up and definition of the function f

In this section, we want to define the function f that should be thought of as a smooth approximation
of the PTF f. In order to define this function, we first restate the following structural theorem from
[21].

Lemma 21 ([21, Proposition 4]). Let my1 < mo < --- < my be integers. Then there exists integers
ny,na,...,ng where n; < Og(mims...m;_1) and (non-constant homogeneous multilinear)
polynomials hy, ..., hq, P; ; (1 <1 <d, 1< 35 <n;)such that:

1. The sum of the squares of the coefficients of P, ; is 1.

2. IfY ~ N(0,1,) and £ < m;, then E [|P; ;(Y)[*] < Oq(V0)"

The values of m; we want to choose are as in [21], i.e. we let m; = O4 (e 37 ?). Given this

structure theorem, we introduce now the following notation that we use throughout the remainder
of this section, analogous to [21]. As before, we use p : R™ — R to be denote the multilinear
polynomial and f : R™ — [—1,1] to be the PTF we are interested in, i.e. f(z) = sign(p(x)).
Furthermore, the P;; : R™ - R for i € [n] and j € [n;] are the polynomials in the struc-
ture theorem. We denote by P, : R™ — R™ for ¢ € [n] the vector (P;1,...,P; ;) and by
P:R™ — R™ x --- x R™ the vector (P, ..., Py). Finally, we define F' : R™ x --- x R™ — R

as the function F'(y1,...,yq) = Z?:l hi(y;), i.e. we get f(xz) = F(P(z)).

Similar to Condition 1 in the above lemma, we can also get a bound on the sum of the absolute values
of the coefficients of the P; ;. We need this later in the proof of Lemma 25.

Fact 22. Foranyi € [n] and j € [n;), the sum of the absolute values of the coefficients of P; ; is at

most nd/ 2,

The idea to prove this is to bound the number of coefficients we have and use an inequality between
the 1- and 2-norm. The detailed argument can be found in Appendix C.1. Furthermore, we have
an analogous result to Item 2 for the moment-matching distributions, which is again proved in

Appendix C.1. We need this result later for concluding that f is a good approximation under the
moment matching distribution D’.

Fact 23. Foranyi € [d], j € [n;] and ¢ < k/d, we have that
Ex~p [Pi;(X)"] < Eyono1,) [Pij(Y) ] +nn/2,

As in [21], we now consider the function pc : R™ — R defined in the following lemma.
Lemma 24 ([21, Lemma 5]). Let

B(¢) = {1 —€l3 ifligllz <1

_ [B@)P
0 else and  pa(x)

Bl

where where B is the Fourier transform of B. Then, the function pc defined by
c\" Czx
@)= (5) n(F)
satisfies the following conditions
1. pc 20,
2. [enplz)dez =1,

3. for any unit vector v and any non-negative integer { we have

| ipbscr@lan <,
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4. for D >0, [, 1,5plpc(@)ldz =0 ((C%)z>

We now define the following three functions p, F and in particular f, in the same way as in [21]. We
let p: R™ x .-+ x R™ — R be defined as p(y1,--.,yd) = pc, (Y1) - -+ - po, (ya), where the C;

are the same as in [21], i.e. we let C; = Oy (€’7id) . Using this function, we define an approximation

F: R™ x--- x R™ — R to F' as the convolution F =Fxpandan approximation f:R" >R
to f as f(z) = F(P(x)).

The general strategy to prove Proposition 20 is show the following three steps, where as usual
Y ~N(0,1,) and X ~ D,

Ex [f(X)] %" Ex [f(X)]. ®)

Lem. 28 ~ Lem. 25

Ey [f(Y)] "= Ey [f(Y)]

A.1.2 Expectations of f under the Gaussian and the moment-matching distribution are close

In this section, we want to prove the middle approximation of (8). More precisely, we show the
following lemma.

Lemma 25. Let ¢ > 0. Suppose that D' approximately matches the moments of N'(0, I,,) up to
degree k and slack m, where k > (g (5_4d'7d), andn < n~=2a®) =2 (k) Then we have that

|Eyn(0,1) [f(Y)] = Ex~pr [JF(X)H < O(e).

We want to do this similar to [21, Section 6]. For this, let 7" be the Taylor approximation of F
around 0. We use degree m; for the ith batch of coordinates (recall that F' : R™ X -.. x R™ — R).
The strategy to show Lemma 25 is to proceed in the following three steps, where again Y ~ A(0, I,,)
and X ~ D/,

Pf. of Lem. 25 Lem. 26 ~

Ey [f(V)] & By [T(P(Y))] Ex [T(P(X))] "R Ex [f(X)]. ©)

The first approximation above only involves the Gaussian Y, so we get directly from [21, Proof of

Proposition 8] that By _ar0,7,,) [If(Y)=T(P(Y))|] < O(c). We now want to extend this also to
moment-matching distribution, which we do in the following lemma, i.e. show the third approximation
in (9).

Lemma 26. Ler ¢ > 0. Suppose that D' approximately matches the moments of N'(0, I,,) up to
degree k and slack m, where k > (g (5_4d'7d) andn < é. Then, we have that

Ex~p [|f(X) = T(P(X))]] < O(¢)
This proof follows closely [21, Proof of Proposition 8], which is why we defer the proof to Ap-
pendix C.2.

Note that the condition on 7 in this lemma is also satisfied for the 1 from Lemma 25. Thus, it remains
to prove

Ey 0,1, [T(P(Y))] = Exnpr [T(P(X))]] < O(e)
to complete the proof of Lemma 25.
Note that in contrast to [21], this quantity is not 0 in our case since we only have approximate moment
matching. This is the main technical difficulty in our proof for the multilinear case. We need to give a

different argument here and argue that this is small even if X is only approximately moment matching
a Gaussian and not a k-independent Gaussian. We can write the Taylor expansion as follows

1 ~
T(z) = > O F(0)a*,
a=(ai,...,aq): |ai|<m;

where the «; are multi-indices in N. We want to prove the following lemma about the coefficients
in the Taylor expansion.
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Lemma 27. For any multi-index o = (av, ..., aq) € N™ x - . x N we have
d
0) <[]
i=1

The proof of this lemma is in Appendix C.2. The ideas of this proof are based on [21, Proof of
Lemmas 5 and 7]. We can now prove Lemma 25.

Proof of Lemma 25. As argued above, we already know that

Eynro,1) [IF(Y) =T(P(Y))[] £ O(e) and  Ex~p [If(X) - T(P(X))]] < O(e).

It thus remains to argue that
By ~n0.1,) [T(P(Y)] = Exopr [T(P(X))]| < Ofe).
Define the vectors t = (t,) and u = (ug) by
= LOPF(0) and ue =By, [POY)°] ~ Exep [P(X)°].
We then have that
By onro,1,) [T(P(Y))] = Expr [T(PXO))]] = [(t,u)] < [Itll1 - [Julloo-

‘We now want to bound
we have

|t]|1 and ||u||~ separately. For the bound on ||¢||1, note that, by Lemma 27,
tal = 2 0F(0) < HC‘”'

Plugging in the definition of C; = Oy (6_7”) < Oy(k) and using |a| = Zle loi| <k, we get

that
‘ta| < L Oalk)

Since we have that n; < k, we can conclude that the number of multi-indices « with |o;| < k is at
most (dk)* < k©4(¥) and thus, we have that

Il = [tal < KO4®.
@
We now move on to bound ||u||o.. We write P; ; as follows

x) = Z agg)xﬁ.
B

Here, the § in the sum goes over all multi-indices with || being the degree of P; ;, which is at most
d. By Fact 22, we have that
Z la{?| < ni/2.
iyl =
B

Let |a| = ¢ be such that |o;| < m; (i.e. the term appears in the Taylor expansion) and let
(i1,71),- -, (i¢, je) be such that

P(x)* = Py, j,(z)... Py, j, ().

Note that if some (c;); > 1, we include the corresponding factor P; ; multiple times. We can now
expand P(xz)“ as follows

— (B
P(x)a - Zazl,]l : ZG'ZLZJZ
Z Z (B1) (5/ Pt

ai, gt li Ji :
1
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Now, note that k > d(my + - - - + mg) (this condition is in addition to the conditions on & in [21] but
it does not change the asymptotic value of k as stated in (7)). We get that the degree of the terms
appearing in the sum is | 81| + - - - + | Be] < d|a| <d(mi+...mgq) <k and thus that

v a0 P00 = B PEOTT S 3 DIl ol
B1
Here, we used the triangle inequality and the fact that
By a1, [Y TP —Exop [XOH 45| <.
Thus, we can compute
By ~nr0,1,) [P(Y)?] = Exep [P(X)°][ <> - Z| a;, al el ae|77
B1

_ (B1) (Be)
- Z|11,31| Z‘aiz,zjz| 1

B1 Be
= [laiy gl - - @i, g llim
< nld/2,
_ n\a|d/2n'

Thus, we get
oo < 0Oy,

Finally, we can conclude that
Eyn0,1,) [T(P(Y))] = Exnp [T(P(X))]| < [t - [Julle < n2*®EC®y < O(e)

since we have the conditions 7 < n~®%¢(F) =2(k) and k=1 < O(e). O

A.1.3 The functions f and f are close in expectation

In this section, we want to complete the proof of Proposition 20 that shows
|Ex~p [f(X)] = Eyono,r,) [f(Y)]| < Oale).
So far, we already showed in Lemma 25 that
‘EYNN(O,I“) {Jg(y)] —Ex~p [JF(X)H <O0(e)

Thus, it remains to show that under both X ~ D’ and Y ~ AN(0, I,,), the expectation of f and f

differ by at most O4(¢). For Y, we directly get the following. Note that the approximation f depends
on ¢ via the numbers m; in the structure theorem Lemma 21 and the C; in the definition of p.

Lemma 28 ([21, Proposition 14]). Let € > 0. Then, we have that
‘EYNN(O,In) [f(Y)] = Eyono,1.) [ H <O(e

The reason why we get this directly from [21] is that this lemma only concerns the Gaussian and not
the moment matching distribution. Combining this with the above, we have now shown that

By o1 [F(YV)] ~ Exenr [F(X)]] < O()

To conclude Proposition 20 we want to use the following lemma. It is analogous to [21, Proof of

Proposition 2] and we use the same definition of B;, i.e. we define B; = ©4(/log(1/¢)). We prove
this lemmas in Appendix C.2.

Lemma 29 (analogous to [21, Proof of Proposition 2]). Let e > 0. Suppose that D' is a distribution
such that the following holds

Eyno,2,) [f(Y)] = Ex~pr [f(X)] ’ < O(e), and
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e Px.pr [327] : |PZJ(X)‘ > B,] < O(E)

Then, we have that
Ey n0.2,) [f(Y)] = Ex~p [f(X)] ]| < Oale).

We are now ready to prove Proposition 20.

Proof of Proposition 20. Using Lemmas 25, 28 and 29, it remains to argue that
Px..p [31,] : |P1,1(X)‘ > Bi] < 0(6)

This is true by Markov’s inequality and looking at the log(dn;/¢) = ¢-th moment since this implies
that (assuming without loss of generality that / is even)

Ex~p [P;(X)"]
B¢
< By~no.1n) [P (V)] +nt/?
< By~no.1n) [P (V)] +1
< 0u(VO)*
<et
o g

In the second step we used Fact 23. Note that ¢ = log(dn;/e) < k/d is ensured by the choice of & as

in [21]. In the third step we used that since d¢/2 < k and thus the condition on 7 in the statement of

this proposition ensures 77 < nd+/2 In the fourth step we used Lemma 21. In the fifth step we used

the condition B; > Q4(+/¢). This is true by the choice of B; = ©,4(y/log(1/¢)) and the fact that
log(n;) < 23;11 log(m;) < Og4(log(1/¢)). In the last step, we then used the definition of /. Taking
a union bound over j and then over ¢ gives

Px.~p [32,] : |PZ,](X)‘ > Bq] < O(E),

which completes the proof. O

Px~p [|P;(Y)| > Bi] <

A.2 Fooling for arbitrary PTFs

In this section, we want to prove a result similar to Proposition 20 for arbitrary PTFs and not just
multilinear ones. Namely, we show Proposition 12, which we restate with a slight modification below.
Namely, we only prove |Ey xr0.1,) [f (V)] — Ex~p' [f(X)]| < Oq(e) instead of £/2. The reason
for this is, as for Proposition 20, this simplifies the proof and we take care of this difference when we
apply Theorem 9 in Appendix A.3.

Proposition 30 (Restatement of Proposition 12). Let € > 0. Suppose that D' approximately
matches the moments of N(0,1,) up to degree k and slack n, where k > Qg (6’4d'7d), and
n < n~ ) =) Then we have that for any f € FPTF,d

|Ey no,1,) [f (V)] = Exep [f(X)]| < Oqle).

The general strategy for this will be to, given a polynomial p, find another polynomial ps and reduce
to Proposition 20. This strategy and the construction described in what follows are the same as used in
[21, Lemma 15]. The following lemma is an analog of this lemma for our case. However, there is one
key part of the proof of [21] that breaks in our setting, as explained in Section 2.3.2. Specifically, in
[21] all restrictions to coordinates are exactly Gaussian, and in particular we have access to moments
of all orders. The proof in [21] exploits this since it considers a number of moments depending on
the dimension, whereas we only have access to a constant number of moments.
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Lemma 31. Let § > 0. Suppose X ~ D' approximately matches the moments of N'(0, I,) up to
degree k and slack 1, where 1 < 694N n=2ME=F and k > Q4(1). Let Y ~ N(0,1,,). Then there
are a polynomial ps and random variables X andY, all in more variables, such that

* Y is a Gaussian with mean 0 and covariance identity,

e Xis approximately moment-matching Y up to degree k and slack 1) = 1(2k)*/?,

+ Py (oY)~ ps(¥)] > 8] < 6, and,

* Py g [|p(X) —ps(X)| > 5} < 6.

Given this lemma, we can prove Proposition 30. Since this proof follows closely [21, Proof of
Theorem 1], we defer it to Appendix C.2

It remains to prove Lemma 31 and to explain how we construct ps as well as X and Y. We do the
latter in Appendix A.2.1. Namely, we show there how to construct the random variables XandY
from X and Y. In this section, we also make precise in how many variables the polynomial p;s is
(and thus also the random variable X and Y). The proof that they satisfy the condition required by
Lemma 31 can be found in Appendix C.2. In Appendix A.2.2 we then state a lemma about how we

want to replace a factor X! in p by a multilinear polynomial in X (whose proof is in Appendix C.2)
and use it construct ps and prove Lemma 31.

A.2.1 Construction of the random variables X and Y’

To show Lemma 31, we want, given a polynomial p and § > 0 as well as two random variables X
and Y, where Y ~ N(0, I,,) and X matches the moments of (0, I,,) up to degree k and slack 7, to

construct a multilinear polynomial ps in more variables and two random variables X and Y such that

Yisa again Gaussian with mean 0 and covariance identity and X matches the moments of ¥ up to
degree k and slack 7). The guarantee we then want to show in Lemma 31 is that

Pyy [IP(Y) ~ps(V)| > 6} <9

and )
Pxx [IP(X) —ps(X)| > 5] <4,

where the probability is over the joint distribution of Y and Y respectively X and X.

Let N be a (large) positive integer that will be chosen later. Then the number of variables of the
new polynomial ps is n - IV, i.e. we replace every variable of p by N variables for ps. We make the
following definition. Fori € {1,...,n}and j € {1,..., N}, we define
5 1
X; = —
»J \/N

where Z(9 is are multivariate Gaussians with mean 0, variance 1 — % and covariance —%, indepen-

dent for different ¢ and independent from X . In particular, the choice of the covariance matrix ensures
that we deterministically have Z; 1 +...Z; y = 0 and thus X; = Z;\;l X ;. The construction for

Y is the same, i.e.

X+ 29,

N 1
Y, = —

] \/N
where Z'(9) are again multivariate Gaussians with mean 0, variance 1 — % and covariance —
independent for different ¢ and also independent from Y (as well as X and Z2).

: 1(3)
Yi+ 29,
1
N’

‘We now have the following two lemmas that relate XtoXandY toY. The proofs of these lemmas
are in Appendix C.2.

Lemma 32. Suppose X approximately matches the moments of N'(0, I,,) up to degree k and slack .
Then, X approximately matches the moments of N'(0, I, x) up to degree k and slack 7 = (2k)*/n.
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Lemma 33. IfY ~ N(0,1,), then Y ~ N(0, I,x).

Lemma 33 is already proven in [21, Lemma 15], but for completeness we also make it explicit in
Appendix C.2.

A.2.2 Proof of Lemma 31

After constructing the random variables X and Y, we now move on to construct the polynomial ps.
As in [21, Proof of Lemma 15], the goal is to replace every factor z¢ of p by a multilinear polynomial

in variables (i; ;); such that X? is close to this polynomial evaluated in (X; ;); with large probability.
Doing this for all factors z appearing in p and combining the new multilinear terms, this then gives

a multilinear polynomial ps of degree d. Note that the polynomial is in fact multilinear since for
replacing x; we only use the variables &;/ ; where ¢/ = .

Note that it is enough to show
P [[p(X) - ps(X)| > 8] <.
The reason for this is that, if Y ~ A(0, I,,), then Y in particular matches the moments of N (0, I,)

(exactly) and the proof for X applies and we can conclude Lemma 31, using also Lemmas 32 and 33.

In order to get the above, we let §’ be a small positive number (depending on 4, n, d) to be chosen
later. We need the following lemma.

Lemma 34. Let ' > 0. Let i € [n] and £ € [d]. Assume that each of the following conditions holds
with probability 1 — %

N ~
Xij 1
J < 2 10
28| <7 (10)
N A 2
Xi;
=) -] < o 11
> (%) 1< ”
i Xi,j ’ rd—+1
> 7 <4 V3<a<d. (12)
j=1

Then, there is a multilinear polynomial in )A(m that is within O4(8") of X} with probability 1 — §.

The proof of this lemma is analogous to [21, Proof of Lemma 15] and is deferred to Appendix C.2.
However, in contrast to [21], there is a key difference in this lemma. The bound on the RHS of (10)
is much weaker than the one used by Kane. The reason for that is that the bounds used there do not
hold in our case, since we only have that X (approximately) matches the moments of N'(0, I,,). By
using stronger bounds for (11) and (12), we are able to generalize the proof from Kane to our setting.
For a more detailed explanation why we need to change the bounds, we refer to Section 2.3.2.

, ) 5 5d+1 5d+1
0 = mln{m,@d <n3d/2>} = @d (n3d/2> . (13)

Why we make this choice will become clear in the proof of Lemma 31 below. In Appendix C.2, we
prove the following lemma that states that this choice of ¢’ and the condition on 7 from Lemma 31
ensure that we can apply Lemma 34.

Lemma 35. Let 0 as in (13). Assuming n < 69¢MWn=aME=Fk there is a choice of N (independent
of i or £) such that (10), (11) and (12) hold, each with probability 1 — %.

‘We now define

Proof of Lemma 31. Lemma 34 (together with Lemma 35) shows that we can replace X! by a
multilinear polynomial in X ; that is within O4(8’) of X} with probability 1 — ¢’ for our choice of
d’ as in (13). Since §’ < 2(‘;”, we can union bound these events over all ¢ € [n] and ¢ € [d] and get
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that with probability 1 — 2, we have that for any i € [n] and £ € [d], we have that the replacement
polynomial for X/ is within Oy(d") of X7.

Furthermore, for any i € [n], we have that with probability 1 — - that |X;| < 3%. This is true since
we match £ > 2 moments (and n < i), and thus
E [X?7]

(32)°

Hence, we can again apply the union bound to show that with probability 1 —
any i € [n] that | X;| < 3%.

(2+mn)8? .0
9n? T 4n’

P[] 2 37] < <

g
2

we have for
Thus, with probability 1 — 4§, all the above events holds. Conditioned on that, we have that the
replacement polynomial ps is off by at most (3%) ¢ Oy (8") multiplied by the sum of the coefficients
of p. The later is at most n%/2 by Fact 22 applied to p instead of P; ;. Hence, the replacement

polynomial is off by at most Oy (”22/2 ) ¢’. Thus, since §’ < W, we get that with probability
d T
1 — 9, ps is off by at most d, which is what we wanted to show. O

A.3 Proof of testable learning of PTF's

In this section, we prove Theorem 19. As already mentioned in the beginning of this section, we want
to apply Theorem 9 for this. In Proposition 30, we have shown that if we have moment matching up
to error n < n~2(*) ;=2 (k) then we have the fooling condition of Theorem 9.

Note that the fooling condition requires [Ey . ar(0,7,) [f(Y)] = Ex~p [f(X)]| < § but Proposi-
tion 30 only gives Og4(e). Thus, technically, we apply Proposition 30 for ¢’ = ﬁ However,
this does not change the asymptotic condition on 71 described above. In summary, if 7 satisfies the
condition as described above, we get indeed the fooling condition as needed for Theorem 9.

The remaining part to prove Theorem 19 is to find an m such that with high probability over m
samples from A (0, I,,) we have that the empirical distribution matches the moments up to degree k
with error at most 7. Then, we get testable learning of PTFs with respect to Gaussian in time and

sample complexity m + n°*) by Theorem 9.
To get m, we use the following fact, which we prove in Appendix C.1. Using this, we can then prove
Theorem 19.

Fact 36. Given m > Q((2kn)*n=2) samples of N'(0, I,,), we have that with high probability the
empirical distribution matches the moments of N'(0, I,,) up to degree k and slack 7.

Proof of Theorem 19. Using Theorem 9, as noted before, by Proposition 30, we get testable learning
of degree d PTFs with respect to Gaussian in time and sample complexity bounded by m + n?*),
where m is such that with high probability over m samples from N'(0, I,,) we have that the empirical
distribution matches the moments up to degree k& with error at most 7. It remains to determine
m. By Fact 36, we get that the choice of m = ©((2kn)*n~2) is enough. Now, in order to apply

Proposition 30, we need to choose ) = n =94k ;=©4(*) Plugging in the value k = O4 (5_4d'7d)

O (57“7‘1) n~%? <574dl7d) and hence

Thus, the time and sample complexity for testably learning PTFs is

0 ((an)k'nod <574d.7d) E_Qd (674d-7d) nO(k)) .

—4d-7¢

wegetn=-c¢

Again, by plugging in the value k = ©4 (5 ) we can simplify this to get that the sample and

time complexity for testably learning PTFs is

nOd (674d'7d) 579(1 (674d'7d) 7

which completes the proof of this theorem. O
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B Impossibility of approximating PTFs via the push-forward

In this section, we provide further details on the results claimed in Section 2.4. Specifically, we prove
our impossibility result Theorem 16 below in Appendix B.2. For this, we first need to establish our
‘one-sided’ analog Theorem 18 of the inapproximability result for LSL-distributions of Bun & Steinke
(Theorem 15), which we do in Appendix B.1.

B.1 Proof of Theorem 18

Let us begin by restating some important definitions and results from Section 2.4 for convenience. For
v > 0, we write w.(z) = C - exp(—|z|”), where C,, is a normalizing constant which ensures w.,
is a probability density. A distribution D on R is called log-superlinear (LSL) if its density function®
satisfies w(z) > C - wy(x) forall x € R, for some v € (0,1) and C' > 0. Recall the following.

Theorem (Restatement of Theorem 15). Let D be an LSL-distribution on R. Then there exists an
e > 0 such that, for any polynomial q, we have By .p [|q(Y) — sign(Y)|] > e.

We defined in Section 2.4 a ‘one-sided’ analog of LSL-distributions as follows.

Definition (Restatement of Definition 17). Let D be a distribution on R whose density function w
satisfies
w(z) > C-wy(x) Vze (—oo,]]

Sor some v < 1/2 and C > 0. Then we say D is one-sided log-superlinear.

In this section, we prove Theorem 18, which is an analog of Theorem 15 for one-sided LSL-
distributions, and the basis of our proof of Theorem 16 in Appendix B.2.

Theorem (Restatement of Theorem 18). Let D be a one-sided LSL-distribution on R. Then there
exists an € > 0 such that, for any polynomial g, we have Ey p [|q(Y) — sign(Y)|] > e.

For our proof, it is useful to first recall the main ingredient of the proof of Theorem 15 in [6], which
is the following inequality.

Proposition 37 ([6, Lemma 20]). Let q be a univariate polynomial, and let v € (0,1). Then, there
exists a constant M., > 0, depending only on v, so that

sup ' ) (@)] < 3, - [ fa(@)l (o) o

Given Proposition 37, the intuition for the proof of Theorem 15 is that, if ¢ is a good approximation
of the sign-function on R, it must have very large derivative near the origin. On the other hand,
Ey~p [|¢(Y)]] is bounded from above (as Ey p [| sign(Y)|] = 1), leading to a contradiction.

The key technical tool in our proof of Theorem 18 is a version of Proposition 37 that applies to one-
sided LSL distributions. That is, a bound on the derivative of a polynomial in terms of its L;-norm on
(—00, 1] w.r.t. the weight w, (x) = C., - exp(—|z|7), v < 1/2. We will only be able to obtain such a
bound in a small neighborhood of 0 (Proposition 39 below), but this will turn out to be sufficient. We
first need the following lemma, which bounds the derivative near 1. One can think of it as a one-sided
Bernstein-Nikolskii-type inequality (whereas Proposition 37 is a Markov-Nikolskii-type inequality).

Lemma 38. Ler q be a univariate polynomial, and let v < 1/2. Then, there exists a constant M; >0,
depending only on ~, so that

sup 10/ <My [ late)lun (o) do.

le—1]<3
Proof. By a substitution u? = z, and using the fact that w., (z) := C, exp(—|z|") is even, we find

- - ZU)’ILQ'U/U:C’Y - ’U/QU’IUU’U/
/0 |q<x>|wv<w>dx—/o lg(t2) [ (u?) - 2ud / lg(t)ufewa, (1) d

CQ’Y —o0

3Technically, density functions are defined only up to measure-zero sets. Therefore, one should read
statements of the form ‘w(x) > ... forall x € ..." as only holding a.e. throughout.
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Now, since 2y < 1, we may apply Proposition 37 to the polynomial G(u) = g(u?)u, yielding an
upper bound on its derivative for all u € R; namely

was () - \iaw)

o0
<My [ lata?)ubi, (u) du

_ MLOQV/ lq(2) [ () da
C’Y 0

As ws-, is monotonically decreasing, we have wa- (z) > we,(5/4) for all z < 5/4, and so we find

. M., C.
< M, / o) |wy () de, M, = —222 (14)

sup
Cy- wQ’Y(%)

lu2—1<

We wish to transform this bound on the derivative of ¢ into a bound on the derivative of ¢q. Note that

d d
350w = @[q(uz)U] = 2¢'(u?)u® + q(u?).
We can bound this as follows
3
sup [2¢'(w)u® +q(w?)] = 5+ sup |q'(u?)] = sup [q(u?)].
lu2—-1|<3 lu2-1|<3 lu2—1|< 7

Now, switching our notation back to the variable z = w2, and using (14), we have

o on < [

2 jeo1yd

z)|wy(z)dz + sup |g(x)l. (15)
le—1]<g

It remains to bound the rightmost term in this inequality. Write ¢, > O for the constant (depending
on q) satisfying:
%

= . dz. 16
= [ ) (16)

If ¢, < 2, we are done immediately by (15), as then

. @< (5 + -2 [ 1@l @) de
2.|xflll|p§i|q(>|g(M'y+ww(Z>)/O |q(z)|wy (z) da.

So assume that ¢, > 2. Note that

/oo la(2)wy (z) dz > wy(3) - /f lq(2)|do > w,(3) - inf g(x)],
0 3 _

and so

1 o0
inf |q(a)] < - / lg(&) s (2) de. (17)
0

le—1]<1 wy(5)

Applying the mean value theorem to (16) and (17) on the interval [%, %], we find that

~/Ooo|q(x)|w,y(x)dx—2(cql)~ sup  |q(2)].

Cq [1-z|<i

cg—1

sup |¢'(z)] > 2-
le—1]<L wv(%)

As ¢4 > 2 by assumption, this yields

sup |¢'(z)] > sup |q(z)],
lz—1]<1 le—1]<2

and we may conclude from (15) that

(31)~ sup |¢'( |<M /
2 lo—1]<1

Combining the cases ¢, < 2, ¢, > 2 finishes the proof with M. = max{ M, +

w,y x) dx. O

) .
w5y 2My}
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Proposition 39. Let D be a one-sided LSL distribution on R. Then there exists a constant Cp > 0
such that, for any polynomial g, we have

sup |¢'(z)| < Cp -Ex~p [|¢(X)]].

1
|m|§1

Proof. We wish to use Lemma 38, which gives us a bound on the derivative ¢’ (x) of ¢ when z ~ 1.
To transport this bound to the origin, we consider the shifted polynomial G(x) := ¢(1 — ). Let w be
the density function of D. Since D is a one-side LSL-distribution, there exists a constant C' > 0 and
ay € (0,1/2) such that w(z) > C - wy(x) forall z € (—o0, 1]. As w, is even, bounded from above
and below on [0, 1], and w. (z — 1) < w,(x) for z < 0, we can find a constant C’ > 0 such that

w(z) > C" - wy(l—2) Vze (—oo,1].
Now, we find that

[l e = [ = o1 - 0) o

— 0o

< Ci : /m lq(2)|w(z) dz < Ci Exp [|g(X)]].

As vy < 1/2, we may apply Lemma 38 to find that

!

o0 M
sup |(9)' (z)| < M /O |4(@) 1wy (@) dw < = - Ex~p [la(X)].

lo—1]<%
To finish the proof (with Cp = M/ /C"), it remains to note that

sup [(¢)'(x)] = sup |q'(x)]. J
le—1|<3 2<%

We are now ready to prove Theorem 18. Our approach is similar to the proof of Theorem 15 in [6].

Proof of Theorem 18. Let D be a one-side LSL-distribution, and suppose that ¢ is a univariate
polynomial satisfying
Ex~p [[sign(X) —¢(X)|] < 1.

Since Exp [| sign(X)|] = 1, we may use the triangle inequality to find that
Ex~pll¢(X)]<14+1=2.
By Proposition 39, this means that, for some constant C'p > 1 depending only on D,

sup |¢'(z)] <2 Cp.

1
|z|< %

Setn = (10Cp)~ 1. It follows that

1
sup |q(z) — ¢(0)] < (10Cp)~"-2Cp = =

|z|<n

Assuming first that ¢(0) < 0, this means that

lq(x) —sign(z)| > = Va € [0,7].

(AR

Let w be the density function D. As D is one-sided LSL, and n < 1, we know there is a constant
C > 0, independent of 7, such that w(z) > C for « € [0, n]. But, this implies that

B [sign(X) ~ (0] = € [ lsign(o) el do = 20,

giving a uniform lower bound on E xp [| sign(X) — ¢(X)|] for all polynomials g. If, on the other
hand ¢(0) > 0, the same argument works after replacing [0, n] by [—n, 0]. O
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B.2  Proof details for Theorem 16
In this section, we complete the proof of Theorem 16 started in Section 2.4. Recall that, in light of
Theorem 18, it remained to prove the following.

Proposition 40. Let p(z) = —z(x — 1)(x — 2)(x — 3)(x — 4)(x — 5). Then, p is square-free,
{p > 0} C R is compact, and pxN (0, 1) is one-sided log-superlinear.

Proof. The first two properties follow directly. For the third, let w be the density function
of pxN(0,1). Applying the inverse function rule to wy(z) = C3 - exp(—|z|?), we have

w(y)=Ca- Y exp(—|al?)-

zep~1(y)

1
VyeR.
P ()]
We need to show that, for some C' > 0 and y € (0,1/2),
w(y) = C-exp(=ly|") Yy e (—oo,1]. (18)
Qualitatively, the behavior of w can be described as follows. When y > sup,cg p(z) ~ 17, then
w(y) = 0. When y < 0, then = € p~!(y) implies |z ~ [y|'/®, and so w(y) ~ exp(—|y[*/?).

Finally, for any K > 0, there is a uniform lower bound on w(y) for all y € [— K, 1]. To show (18), it
remains to make this description quantitative.

As the leading term of p is —z°, there is a K > 0 such that [p~1(y)| = 2 forally < — K, and
vepty) = |o[ <2yV° Vy<-K
This means that, for a (possibly larger) constant K’ > 0, and some v € (1/3,1/2), we have

1
w(y) >2-Cy -exp<—4ly|”3) PR = exp(—[y]") Vy < -K'. (19)

P’
Now, there is an M > 0 so that

zeply) = |7/ <M Vyel[-K 1]
It follows, as p~!(y) is non-empty for y < 1, that

1
w(y) > inf |Cs-exp(—|z|? -}>0 Yy e [-K',1]. (20)
)= ut |Cavesp(-loP) - i ye K]
Combining (19) and (20), and choosing C' > 0 small enough, yields (18). O

C Technical details on the proof of testable learning

C.1 Facts and computations

In this section, we prove several facts that we used in the proofs in Appendix A about the moments
and other properties of a Gaussian random variable Y and a random variable X that matches the
moments of a Gaussian up to degree %k and slack 7.

First, we want to prove Fact 22, which we restate below, about the sum of the absolute values of
the coefficients of the polynomials P; ;. Recall from Lemma 21 that the sum of the squares of the
coefficients of the polynomials P; ; is 1.

Fact (Restatement of Fact 22). For anyi € [n] and j € [n;], the sum of the absolute values of the
coefficients of P; ; is at most nd/?,

Proof. Similar to before, we write the F; ; as follows

P j(z) = Z agﬁ)zﬁ'
B

The 3 in the sum goes over all multi-indices with |3| being the degree of P; ;, which is at most d.
Thus, there are at most n? terms in the sum. By the structure theorem (Lemma 21), we know that
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llai ;2 = Zﬁ(agﬁ))g = 1. We can now get a bound on the 1-norm as follows (since the number of

coefficients ag)ﬁj) is at most n%)
Sl 1= llaislh < n?laglla < n?/2. O
B

Next, we want to show two facts about the moments of X. On the one hand, we want to show
that under very mild assumptions on 77, we can bound the moments of X similar as the moments
of a Gaussian Y. We also prove Fact 23, which we also restate below, about the expectation of
P; ;(X). For the Gaussian, we get a bound by Lemma 21 and we generalize this in this fact to the
moment-matching distribution.

Fact41. Let ) < 1 and let D' be a distribution that maiches the moments of N'(0, I,) up to degree k
and slack 1. Then, we have that for any multi-index o with || < k we have

]

Ex~p [X]] < V/]a]

Proof. We have that
[Ex~p [X]] < [Eyano.r,) YT +1

< |Ezn(0,1) [Zla\} |+1

<14 0 if || is odd
- (la] = )N otherwise
x|
<Vlal
which is what we wanted to proof. O

Fact (Restatement of Fact 23). Foranyi € [d], j € [n;] and ¢ < k/d, we have that
Ex~or [Pryj(X)] < By exo,) [Prg(¥)] + /2,

Proof. Writing P; ; as in Fact 22
P j(x) = Zagﬁ-)xﬁ,
B

we can compute Exp/ [P, ;(X)¢] as follows

Exp [Pi,j(X)e] _ Z aggl) . agiz)EXND/ [X51+~~BIZ] )
B1s---,Be
Now, since X is n-approximately moment matching, we have that (note that P; ; has degree at most
d and thus any term in the sum that degree at most d¢ < k and thus the moment matching applies)
Ex.p [Xﬁﬁruﬂz] _ EYNN(O,In,) [Yﬁﬁr-.ﬂz] + 1.

Combining this with the above, we get

Ex~pr [P (X)!] < Byonor,) [P (V)] +0 (D |0l

B

By Fact 22, we thus get that

Ex~p [Pij(X)"] € Byno,1,) [Pig (V)] +nnt/?
as wanted. O

Finally, we show two facts about the Gaussian distribution. First, we want to give a bound on the
moments of a Gaussian random vector that has not necessarily independent entries and for which
we only know that the variances are at most 1. If Z were independent, then the bound we show
would follow directly by the formulas for the moments of a standard Gaussian. Second, we show
Fact 36 that shows how many samples m of A/(0, I,,) we need such that the empirical moments up to
degree k match the actual moments of N'(0, I,,) up to slack 7.
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Fact 42. Let Z be a (multivariate) Gaussian random variable with mean 0 and variances at most 1.
Then, for any multi-index [3, we have that

|E [Z/BH < |ﬂ|\ﬁ|/2.

Proof. We want to show that for any random variables W7, ..., W, we have
¢

4 14
E HWj SHE[WJK]'
j=1 j=1

To prove this, we use induction and Holder’s inequality. The case ¢ = 1 follows directly and for
¢ > 2 we can compute using Holder’s inequality, since —— + ¢ = 1,

—1

¢ 0—1 ¢
B|[Iw:| < (e |[IIw"|] - @W)
j=1

j=1

[

Thus, we get, using the induction hypothesis,

4 -1
14 -1 14
ETIw | ) < (|IIw7| ) = <Il=w).
Jj=1 j=1 j=1

We now use this result with £ = |3| and the W7, ..., W, being the Z;, where every entry Z; occurs
B; times. Then we get

)=

Bj
27 = | ]I (®[Z])
J
Since E [Z;] = 0 and Var [Z;] < 1, we have that
E[zf] < ¢*/?

and thus we get
[ [27]] < ¢/ = || 71/2. O

Fact (Restatement of Fact 36). Given m > Q((2kn)*n=2) samples of N'(0, I,,), we have that with
high probability the empirical distribution matches the moments of N'(0, I,) up to degree k and slack

n.

Proof. Given m samples from N (0, I,,), we want to compute the probability that for some « with
|a| < k we have that the empirical moment is close to the moment with high probability. We can
compute using Chebyshev’s inequality, where c,, is the a-moment of A/(0, I,,) and ¢, is the empirical
moment, that

(2]e])

1 Var {Yllaq
m 2

Var ¢, 1 Var [Y*
Pllea — ca| > 1] < ar[c]:7 ar | ]S

(2k)*
n? m - n? '

2

IA

<

1 1
m n m.on m.n

To be able to use a union-bound, we need this to be smaller than O(n’k), i.e. we need
k
m > Q ((2]67;)> . O
n
C.2 Remaining proofs

In this section, we prove several lemmas that follow closely [21]. Some of these lemmas are also
proven in [21], but we include them here for completeness. We first prove Lemmas 26 and 27, which

we need in order to show that the expectation of f is close under the moment-matching distribution
and the Gaussian distribution.
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Lemma (Restatement of Lemma 26). Let € > 0. Suppose that D' approximately matches the
moments of N'(0, I,) up to degree k and slack n, where k > Q4 (574d'7d> andn < ﬁ. Then, we
have that _

Ex~p [If(X) = T(P(X))]] < O(¢)
As mentioned earlier, this proof follows closely [21, Proof of Proposition 8]. In particular, we also
need the following lemma from [21].
Lemma 43 ([21, Proposition 6]). We have that, for x € R",

d i || P.()|| T
T(P(@) ~ F(P@)] <] (1 N C||P()||2> L

The C; and m; are again as in [21], i.e. we choose C; = Oy (5*7”) and m; = Oq4 (5’3'7”). For

the proof, we furthermore need the bound on the expectation of |P; ;(X)| from Fact 23.

Proof of Lemma 26. We have by Lemma 43 that

AR

d
(P - FP) < ] (1+

As in [21, Proof of Proposition 8], the RHS of this inequality is the sum over all non-empty subsets
S C{1,2,...,d} of the following term

I (e,

€S

Continuing exactly as in [21, Proof of Proposition 8], we want to show that any of these 2¢ — 1 terms
is at most O(g/2%). By the inequality of arithmetic and geometric means, we get that this term is at

most 5|
LZ Gt IP ()"
|S] 4 m '
€S

|
it

Thus, it remains to bound E x .p/ {HPi(X) ||§’] , where £; = m;|S|. We do this as follows

] <\ [IRCOIR]

IN

Ex~pr [HPz‘(X)

£;

Ex~p || Y Pij(X)? :
j=1

where we used the Cauchy-Schwarz inequality in the first step. Continuing further by applying
Jensen’s inequality to the (convex) function g(a) = a*, we get

L 14

g 1 ng ‘ » 1 Mg v
D PGP = (= P07 ) <Y P(X)
j=1 (et

n:
(3 j=1

Combining these two, we get

. 1
Ex~p ["Pi(X) é} < nflﬁzEXW’ [P j(X)24].
1 ]:1

The next step is now different to [21] since we only have an approximately moment-matching
distribution. By Fact 23, we get that

Ex~p [Pi,j(X)%i] < Ey~no,1,) [Pz‘,j(Y)m] +
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assuming that k > 2d?m; (this ensures that 2¢; = 2m;|S| < 2m;d is at most k/d as required in
Fact 23). This condition is slightly different to [21], but it does not change the (asymptotic) definition
of k as in (7). By Lemma 21, we now have that

Ey A (0,1,) [Pi,j(Y)%i] <0, (\/2—&)2&- _o, <\/Z) 20;

for any j. Combining this with the above, we can conclude that

m;|S|
< Oq ( nzm1|S‘> )

Ex~p [ IP(X)

using that < —. This is true since ¢; = m;|S| < m;d < k and thus n < dk implies 1) < —a7-
The rest of this proof is again the same as in [21, Proof of Proposition 8]. We can compute
Ex~p [IT(P(X)) = F(P(X))]]
o P; 15|
B | L3 ( PO >
w#scm 1S =
omils| ——ar\ ™!
max max
Q);ASC[d] i€S mvim\SI

m;Ss
ze[d] sem{ d( NG ) }

By choice of m;, exactly as in [21], we can conclude that

Exopr [\T(P(X)) _ f(P(X))@ < 929 exp (_ minmi> < 0(e),

i€[d]
which completes the proof. O
Lemma (Restatement of Lemma 27). For any multi-index o = (a1, ..., aq) € N X ... x N,
we have
d
0) < [
i=1

Proof. As mentioned earlier, the ideas of the following proof are based on [21, Proof of Lemmas 5
and 7]. We have that

|0%(F * p)| = |(F * 3“p)(0)] (property of convolution)
< [Fl=ll0%pl L2
< [|0%pl| 1 (F maps to [—1, 1]).

Thus, it remains to bound ||0p|| 1. Using the product structure of p, we have that

2n

10%pll Ly = H [l

First, we compute a bound for ||0% ps|| 1. We generalize this afterwards to pc,. Recall that

B(¢) = {1 — llll3 it figll2 < 1

0 else

and R )
|B(z)|

pg(.]?) = ;

B3
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where B is the Fourier transform of B. We first note that
B(z) - B(z) = |B(x)|*.
Thus, we can apply the product rule to get the following formula for the derivative

e 1 Qy 8 1 i—B P
0 = g, 2 <6>(8 B)@™8)

L? B<a;
1 Q5 ~ a5
=1z & ()@ ne 7B,
L? g<a;

where we used that the conjugate of the derivative is the derivative of the conjugate. We thus get the
following by triangle inequality

@ @l < e 5 (5 [[@Bwe 8w

L? B<a;

A

We now want to analyze (8° B)(z). We have
(0°B)(x) = F(2"B()),

where F(-) = * stands for the Fourier transform and we used a fact about the derivative of the Fourier
transform. Thus, we get furthermore that

(0% p2) (@)2+ < ”;HBZ (Og) Fla Ba)FrB@)||,
IIBlllimg @) o Ba)r B[
SE Py (3) @],
-2 (%)
_ gl

The second step uses the Parseval identity; the third step uses that B(x) # 0 implies that
lz]|oo < ||lz||2 < 1; the fourth step uses that || B(z)B(z)||1: = ||B(z)||3.

11 as follows. Recall that

For an arbitrary C;, we can bound [|0% p¢,

pc,(x) = (g) ’ p2 (sz> :

We can compute, using the chain rule that

@ = (5) 0 (Se) ((’;)'

To illustrate how the chain rule implies this, we can compute

(gre) 0= (3) 5 (557) (5) (5 [~ =] 0
-(3) 2 () 5 {7 W

J
C‘ n+1
-(%)



Doing this iteratively, we get the formula above. Now, we want to compute the L'-norm of that
function. We get

1= [ @ pe)a)da

B (C;)nﬂai /n(aa'ipz) (C;x> dx
_ (i)la /"(8%2)(2/) dy (y - 21’)

Ci i o
~(5) eaaln

Using the bound from above on ||0% ps|1, we thus get

||8Otipci

6% pe [l < €1, (22)
Combining (21) and (22) completes the proof. O

Next, we prove how we can generalize from

[y a0t [F(¥)] — Exepr [F(X)]] < O()
to the fooling condition we need

|Ey (0,1, Lf (V)] = Ex~pr [f(X)]] < Oule).

This proof is based on [21, Proof of Proposition 2]. It turns out that this part of [21] does not need
that X is k-Gaussian but works on the following, weaker assumptions.

Lemma (Restatement of Lemma 29). Ler ¢ > 0. Suppose that D' is a distribution such that the
following holds

¢ Evanion [FV)) — Exwo [f(X0)]]| < OG), and
e Px.p [31,] : |P13(X)‘ > By] < 0(6)

Then, we have that
Ey n(0.2,) [f(Y)] = Ex~pr [f(X)] ]| < Oale).

In the proof of this lemma, we use the following theorem about anti-concentration of a polynomial of
a Gaussian random variable. Importantly, it is enough to have this result for the Gaussian random
variable Y and we do not need it for the moment-matching distribution.

Theorem 44 (Carbery and Wright, see [21, Theorem 13] or [7, Theorem 8]). Let p be a degree d
polynomial. Suppose that By .1,y [p(Y)?] = 1. Then, for e > 0,

Py n(0,1,) [IP(Y)] < €] < Oq(de/?).

Proof of Lemma 29. Note that [21, Lemma 12 and proof of Proposition 14] and the second condition
in the lemma imply that

E[/(X)] 2 E[f(X)] - O(c) = 2P [~Ou(e") < p(X) < 0]

and

E[f(X)] E [f(X)] +O(e) + 2P [0 < p(X) < Oa(=")] -
Using these and the first assumption of the lemma we get that

E[f(X)] > E[f(Y)] - O(e) — 2P [-O4(c?) < p(X) < 0]

and
E[f(X)] < E[f(Y)] + O() + 2P [0 < p(X) < Oa(c")] -

31



We have furthermore that
E [sign(p(X))] 4 2P [-0a(e?) < p(X) < 0] = E [sign(p(X) + Oa(e?)]

and

E [sign(p(X))] — 2P [0 < p(X) < Od(sd)] =E [sign(p(X) — Od(sd)] .
The reason for this is that adding or subtracting the two probability terms can be interpreted as
changing the sign for values of X in (—Og4(g?),0) respectively (0,04(¢?)), which the same as
shifting the polynomial. Thus, when combining this with the above we get that

E [sign(p(X) + Oa(?))] = E[sign(p(Y))] - O(e)

and
E [sign(p(X) — Oa(e?))] < E [sign(p(Y))] + O(e).

Now we apply this result not to the polynomial p, but to the polynomial p F Og(c?). This shifts the
additional factor from the X -side to the Y-side and we get

E [sign(p(X))] > E [sign(p(Y) — O4(e?))] — O(e)
as well as
E [sign(p(X))] < E [sign(p(Y) + Od(ad))} + O(e).
Combining these two inequalities we get that
E [sign(p(Y) — Oa(e?))] = O(e) < E[f(X)] < E [sign(p(Y) + Oa(")] + Ofe).
For Y, we have that (since the inequality hold point-wise)

E [sign(p(Y) — Oa(e?))] <E[f(Y)] < E [sign(p(Y) + Oa(e?))] -

Now, the two function sign(p(Y) — O4(e?)) and sign(p(Y") + O4(e?)) differ by at most 2 and only
when [p(Y)| < O4(c?). We now use an anti-concentration result for Y (the standard Gaussian).
Namely, we can use Theorem 44 to conclude that this happens with probability at most Oy/(¢).
Note that we have By ar(0,1,,) [p(Y)Q] = 1 since we assumed that the sum of the squares of the

coefficients of p, which is exactly Ey. (0,1, ) [p(Y)?] for multilinear p, is 1. Thus,
|IE [sign(p(Y) + Od(ed))] — E [sign(p(Y) — Od(ed))} | < 204(g) = Oq4(e).
Thus, since both E [f(X)] and E[f(Y)] are between the values E [sign(p(Y) — Oq(c?))] and
E [sign(p(Y) 4+ Oa(e))] (up to O(e) for E[f(X)]), we can conclude that also
E[f(X)] - E[fY)]] < Oale),

as wanted. O
Next, we want to prove Proposition 30 that follows closely [21, Proof of Theorem 1]. This proposition
shows the fooling condition for arbitrary PTFs. In the proof we need Proposition 20 about the fooling

condition for multilinear PTFs and Lemma 31 that, given an arbitrary PTF p, constructs a multilinear
PTF p; that is close to p.

Proposition (Restatement of Proposition 30). Let ¢ > 0. Suppose that D' approximately matches the
moments of N'(0, I,)) up to degree k and slack n, where k > Qg (5’4(1'7(1), and ) < n~2a (k) =Qa(k)
Then, we have that for any f € Fprr 4

By an(0,1,) [f (V)] = Ex~p [f(X)]] < Oale).

Proof. As already before, we assume without loss of generality that the polynomial is normalized in
the sense that the sum of the squares of the coefficients is 1 (this does not change the PTF). We set

()

We first want to show that the condition on 7 in this lemma ensures that we can apply both Lemma 31
to construct the multilinear polynomial ps and Proposition 20 to get the fooling condition for ps.
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The condition for Lemma 31 is < 694 p =2 E=F  Note that by our choice of &, we have
g0a(1) < =) Thys, for our choice of d, the condition on n needed for Lemma 31 is satisfied by
our assumption on 7 in this lemma. For Proposition 20, we need 7 = (2k)*/2p < k=%a(k)p=Qa(k)|
which is also satisfied by our condition on 77. Note that we need this condition for 7} (and not 1) since
the new random variable X is only moment-matching up to slack 7.
We now want to show that P [p(X) > 0] — P [p(Y) > 0]| < Og4(e). Note that
E [sign(p(X))] = P[p(X) = 0] = P [p(X) < 0]
=P[p(X) = 0] - (1 -P[p(X) = 0])
=2P[p(X) = 0] -1
and the same holds for Y. Thus, |P [p(X) > 0] — P[p(Y") > 0]| < Og4(e) will be enough since then
|E [sign(p(Y"))] — E [sign(p(X))]| = 2|P[p(Y) > 0] = P[p(X) > 0]| < Oa(e).
By Lemma 31, we have that
Pp(X)>0]>P [pg(X) > 5} —4.
Since p; is multilinear, we can apply Proposition 20 to ps — 4 to get that
P[p(X) > 0] > P [ps(¥) = 6] - Oule)
since 6 < O(e). Note that we can apply Proposition 20 to P [p(X) > 0] instead of E [sign(p(X))]
by the relation E [sign(p(X))] = 2P [p(X) > 0] — 1 from above. By Carbery-Wright (Theorem 44),
we get that P {|p5(f’)| < 5} < O(e), thus we further have that

Pp(X) 2 0] = P [ps(¥) = =8| — Oule).
Applying again Lemma 31, we get that
P[p(X) 2 0] = P[p(Y) = 0] — Ou(c).
By an analogous calculation, we get that P [p(X) > 0] < P [p(Y) > 0] + Oq4(e), which completes
the proof. [

>
<

We now want to prove Lemmas 32 and 33 that show that the construction of X respectively Y
preserve the assumptions on the distribution. The latter lemma is also proved in [21, Lemma 15], but
we include it here for completeness.

Lemma (Restatement of Lemma 32). Suppose X approximately matches the moments of N'(0, I,)

up to degree k and slack . Then, X approximately matches the moments of N'(0, I,n) up to degree k
and slack 1) = (2k)*/?n.

Proof. For a multi-index «, let ¢, be the a-moment of a Gaussian. We want to show that
£ [] - ca

< 7 for any « with || < k. We can compute the following, by writing Z; ; = ZJ@,

R n N L
‘E {Xa} —co| = |E i:1j21X2‘;,.7 —c,
= |E _ﬁﬂ <1Xi+Zw>a” — Ca
i=1j=1 VN

UL Q5 5 1 " Q=T
I () () 2 e




In the second step we used the definition of X and in the last step, we used that Z and X are

independent. Now, , ,
()] -2[)]

since X matches the moments of A/(0, I,) up to degree k and slack 7. Thus, we get

E <n

[ -el- |2 () [( Y ez
SAICCONEE (CON R
B Ol
: () e

> (5) EE+ 3 (5)e
_ ;(

> E[Z*7P]|+ |E[Y?] — cal

B
03 (5) Bl

The second-to-last step is the same computation from above but backwards (note that the moments of

7' used for the construction of Y are the same as those of Z used for the construction of X ) and the
last step used that Y is Gaussian and thus E [Y®] = ¢,. We can furthermore compute

=03 (5) Rl
-3 (§) 2]

0> ()T (T2 ||

i=1 j=1

’E [x°] - ca

where the third step uses that the Z; ; are independent for different ¢. We now get that, using Fact 42,
N
e\ [125 || <8
j=1
Thus, continuing with the above, we get

.|5“_|/2S\/E|5i,»|

where 1 is the all-ones vector. This completes the proof. O
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Lemma (Restatement of Lemma 33). If Y ~ N(0,1,,), then Y ~ N(0, I, ).

Proof. Since Y is a linear transformation of the Gaussian vector (Y, Z’), it is jointly Gaussian and

thus to show the lemma, it is enough to show that the expectation of Y is 0 and the covariance matrix
is the identity.

.ps 40 . .
Writing as above Z] ; = Z;'", we have for any i € [n], j € [N] that

Eﬁ@}:E[an+ig]=v%,o+oza
Furthermore, for any 7 € [n], j € [IN] we have that, by independence of Y and Z’,
Var[f/m}—NVar[ i+ Var [Z; ;] = ;/;1—&—(1—;{):1.
For any i € [n], j1 # j2 € [IN] we get that

VAR = / /
Cov |:}/17J17Y;7]z E[(\/NY+ZZ]1> (\/NY+Z,]2>:|

1, 1
= [NK} [ YZ@J+E{¢NYzE}+EVijJ

1
— o+ofﬁ

L 2H

Finally, for any i1 # i2 € [n], j1, j2 € [N] we have that
Cov |Viy g1 Vi ] =0

by independence of Y;, j, = Y;, + Z}, ;, and Yiyin = Yi, + Zi, i, foriy # is.

1,71

Thus, as argued in the beginning, this shows that Y ~ N (0, I,y) and completes the proof. O

Finally, we want to provide the details of the missing parts in the proof of Lemma 31 about the
existence of the polynomial ps. For this, it remains to prove Lemmas 34 and 35, which we restate
below. First, recall our definition of ¢’ in (13).

, ) 5d+1 6d+1
¢’ = min {Mn’@d (n&i/?)} =0y <n3d/2) . (restatement of 13)

In the proof of Lemma 31, we then used the following lemma that allows to replace a factor X/ by a
multilinear polynomial in the new variable X.

Lemma (Restatement of Lemma 34). Let ¢’ > 0. Let i € [n] and ¢ € [d]. Assume that each of the
following conditions holds with probability 1 — %

N A~
Xl o1
= < — (restatement of 10)
ZEJN 5
N X 2
Z L) 1] < it (restatement of 11)
=AVN
N/ o\
Z (ﬁ) s V3 <a<d. (restatement of 12)
j=1

Then, there is a multilinear polynomial in )A(q;,j that is within O4(0") of X with probability 1 — §'.

35



We prove this lemma below. Before that, we want to prove Lemma 35 that states that we can use the
above lemma for our choice of ¢’.

Lemma (Restatement of Lemma 35). Let &’ as in (13). Assuming n < §94(Mp ==k there is a
choice of N (independent of i or £) such that (10), (11) and (12) hold, each with probability 1 — %.

The proof of this lemma is a combination of the following lemmas.
Lemma 45. Assuming
1
== —1
< 6,d
T= N2k

we have with probability 1 — % that

Lemma 46. Assuming

we have with probability 1 — % that

Note that for the above condition on 7 to be meaningful (we need n > 0), we also need to ensure that

2d

N> 6/2d+3'

Lemma 47. Assuming
1

< -
n= (Qk.)k/Q

and )
100d
N2> §/2d+3

we have for any 3 < a < d with probability 1 — %/ that

N ~ a
Z Xi; < gt
VN |~

Jj=1

Using these three lemmas, we are now able to prove Lemma 35.

Proof of Lemma 35. It remains to argue that there is a choice of N such that the condition on 7 in
the lemma statement ensures that the conditions on 7 in Lemmas 45, 46 and 47 are satisfied. We
argue below that the following choice of NV is enough, which will complete the proof,

1 1 3d(2d+3)/2
N =8y (5/2d+3) =64 (5(d+1)(2d+3)> : (23)

1

For Lemma 45, we need n < N“’i)_kl/z Plugging in the value of N and &', it is enough for 7 to satisfy
504D

( d
2k
(note that = — 1 > 1 since ¢’ is small) < Oy (W

o'd
n < §0a() = (V) .k

), which holds since by assumption
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§5/2d+3 2
For Lemma 46, we need < Séki)’“; and N > 5,227‘1”. The latter is clearly satisfied by the choice
of N as in (23). For the former, plugging in again the values of N and ¢’, it is enough for 7 to satisfy
50a(1)

n < Oy (W)’ which again holds since n < §9¢(Np =D~k

100d?

For Lemma 47, we need N > 57355 and ) < The former is again directly satisfied by the

1
choice of N. Furthermore, also the latter is true, again since we assume 7 < 50~k O

Next, we want to prove Lemmas 45, 46 and 47.

Proof of Lemma 45. Using Markov’s inequality, we get that
1 N % 2
E N (Zj:l Xi.,j)
132 ’
(5)

Since, X approximates the moments of A/(0, I,,5) up to degree k and error 7}, we can compute the
above expectation as follows

2

N
E (DX ::E:(?)E{Xﬁ}gﬁNUV—l}+ﬂ+ﬁﬂV:ﬁN2+N.

lor]=2

N 4
X 1

P (2¥) > = <

j; N o

Here, we used that the expectation E [X f‘} is at most 1) if some a; = 1 (for such « the expectation

of N'(0, I,,y) is 0) and at most 1 + 7) otherwise (since the expectation of N'(0, I,, ) is 1 for such «).
Thus, we get that

NoXolo1 5
P Tl s | < (AN +1)6% < =
Z;VN > 5| SON+1)8% <

1 _
since by assumption we have that /) = (2k)*/?n < “’dTl O

Proof of Lemma 46. We again use Markov’s inequality to get

e[(3 (z52) -]

§/2d+2

N
1 -2 1d+1
Plly | 22X -1 > <
j=1

. 2
We are thus interested in E {(Zy_l (Xf’j — 1)) ] . We can expand this as follows

=00 |- 2 ()elee )]

If some a; = 1, then the expectation will be, for some j; # jo € [N],

B[(X2, 1) (%2, -1)| =B [%2, X2, | -B[%2, | -E[%2,] +1
<l+—QA-0)—(1-7)+1
= 317.
As for the proof of Lemma 45, this is true since the corresponding Gaussian moments are all 1. If no
a; =1, we get

B|(x2-1)"] £ [%4) -2 [12] 41
<3+7n—-21-7)+1
=2+ 24,
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since the second and fourth moment of a Gaussian are 1 and 3 respectively. Summarized we get that

2
N

ElY (Xﬁj - 1) < N2+ 27) + N(N — 1)3)

j=1
= 2N — N#j + 3N%j.
Together with the above we get that

N
1 59 1d+1 2N—Nﬁ+3N2ﬁ
P N ZXi’j —11>4 < N2§72d+2
j=1

2430
< yadz
6/
d )
§/2d+3 o
since by assumption we have that 77 = (2k)*/? < — L2 O

<

Proof of Lemma 47. For any 3 < a < d, similar to before, we compute using Markov’s inequality

2
1 N v a
1 >a rd+1 E{(szlei’j) ]
P Na/2 ZXM >4 < 572d+2 :
J

—1

L N\2
We thus need to bound E {(Z;vl X{fj) ] . We get
2

N
. 2 R
E a = aal < N2 a
> X 3 <a>E [X } < N%(2a)
j=1 |a]=2
since for any o we have E {X’fo‘} < (2a)® by Fact 41, since by assumption we have 7 < W or
in other words 7) < 1. Combining this with the above, we get
N2(2a)® (2a)®

N
1 a 1d+1
P Na/2 ZXLJ' >0 < Na§r2d+2 — Na—2§2d+2°
j=1

We have for any a > 3 that ((2a)®) a2 < 100a and thus we get that

N
1 >a rd+1 (100a)*—*
P Na/2 ZXM >0 < Na—2§2d+2
j=1

_(100a\"? 1
- N §/2d+-2

5/2d+3 a—2 1
< d §/2d+2

6/
d

<

. . 2
In the third step we used that by assumption we have that N > 51,%0% and d > a. In the last step, we
O

. 12d+3
then used that a — 2 > 1, together with 9 — < 1.

Finally, it remains to prove Lemma 34.
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Proof of Lemma 34. By the assumptions, the conditions (10), (11) and (12) hold snnultaneously
with probability 1 — d5 = 1 — ¢’. We want to construct a multilinear polynomial in X; .j such that
conditioned on (10), (1 1) and (12) it is within O4(d") of Xf This will complete the proof.

The construction follows [21, Proof of Lemma 15]. First, note that by construction we have

N ¢
N2 Z

Expanding the sum and grouping the terms according together according how the power of ¢ is
partitioned to different X; ;, we get

‘ as
szz Z c(ay,...,a.) Z H( ’]S>

r=11<a1<---<a, J1,- ,jre[N]S 1
Sas=¢t dlstmcl
where the c(ay, ..., a,) are constants that capture how often the latter terms occur if we multiply the

product out. More precisely,

C(al,...,ar)—( )H|{s as =t}

The strategy is now as follows. We want to approximate the terms

Qs
> H( )
J15--,Jr€[N] s=1

dlstmcl

separately by multilinear polynomials. If a,, = 1, then the terms is already multilinear and there is
nothing to do. Note that if / = 1, then we only have this case, so from now on we assume ¢ > 2. If
a, = 2, then we want to show that

> H( ) SN 2| <048, (24)
Jiye-dr€[N] 8=1 -Jr€[N] s=1
dlstmct dlstlnct

where here and also later 7 is the largest s € [r] such that a; = 1 (we assume here and throughout this
proof that in case no as, = 1, i.e. we have an empty sum and an empty product, the second term on
the LHS is 1; the reason for this is that, intuitively, we want to make the term multilinear by removing
all powers higher than 1, which leaves 1 in case no a; = 1). If a,- > 3, then we want to show that

> H( J) < 04(0"). (25)

J1 JTG[N] s=1
dlstmct

Once we have shown these, the idea is to remove all terms with a,, > 3 and replace the terms for
a, = 2 by the multilinear term on the LHS of (24). We get that X/ is within O4(8') of

¢
Z Z clay,...,a) Z H 7']3

r=11<a,<-<a, I
Sas=¢L d1slmct
a,<2

which is multilinear. The Oy here directly also covers that we need to multiply the O4(4”) from above
with the constants c(az, . .., a,) and then sum over the choices of ay, . .., a, and over r. This then
completes the proof.
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Thus, it remains to prove (24) and (25). We do this using the assumptions of the lemma and by
induction on r (and technically also over /; the base case for ¢ = 1 was already covered above). We

also inductively show that
1 T
. (26)
= ()

> IS

J1,--,dr€[N] s=1
distinct

This will be needed to prove (24) and (25).

Base case » = 1. If » = 1, then

~ 4

i,Js Xi,jl)

J1,- ,]ZE[N sl_Il < ) le ( \/N
distinct

In this case, we have a, = £. If / = 2, we need to show (24) and this follows directly from (11)
(since 0’1 < 04(8")). If £ > 3, then we need to show (25), which follows again directly from (12).
Also note that (26) holds since 1 < Oy (%)

Induction step. We now assume that r > 2 and that we have proven the result for all values smaller
than r. The goal is to now show the result for ». We compute

> (% )

J1sesdr€
dlstmct
1/ as N . ar A ar
_ 3 (Xz‘,gg) 3 (Xu> - ¥ (Xm,,)
jl""éj"fle[N] s=1 VN Jr=1 VN Jr€{jt,dr—1} VN
1stinct

Jiyeeesjr—1€[N] s=1
distinct

as Xi,jr ar
92 &) e

Jr€{d1,sdr—1}

Jiyeensjr—1€[N] 8= 1<
distinct

We first want to analyze the second term. Note that this term is equal to

t=1ji,....5r—1 €[N
distinct

Now, note that all terms in this sum have been considered in the induction hypothesis. Also note that
at + a, > 3 (since a, > 2, otherwise there is nothing to prove) and thus every term in the above sum
over ¢ is at most O4(d”) in absolute value by (25). Thus, we also get that

as X ar
2 i) ) <o.8). 8
x O L (3R) e e
J1seesdr—1€[N Jr€{J1sensdr_1}

distinct

In the following it thus remains to analyze the first term in order to show (24) respectively (25)

as N A Qr
3 H ( ,gﬁ> 3 (Xi,j,,-
) : vV N
Jiseesdr—1€[N Jjr=1

distinct
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We now need to distinguish the cases a,, > 3 (in which case we need to show (25)) and a,, = 2 (in
which case we need to show (24)).

Case I: a,, > 3, proof of (25). In this case, we have, by (12), that

N 5 ar
3 (Xi,jr> < g+
Jr=1 VN

To analyze the term

> (%)

Jiseenjr—1€[N] s=1
distinct

we want to apply the induction hypothesis. We need to again distinguish three cases, namely a,_1 > 3
(in which case we can use (25)), a,.—1; = 2 (in which case we can use (24)) and a,._1 = 1 (in which
case the term on the LHS of (24) are in fact equal). We do this in the following.

If a,_1 > 3, then, by the induction hypothesis for (25),

5 H() < 0u#)

J1seeesJr—
dlstmct

and thus we get, using the decomposition (27) and the bound (28) on the second term,

Z H( m) | < 0a(6")8"" ! + 04 (8') < 0u(d").

J1sesJr€
dlstmct

If a,—1 = 2, then, by the induction hypothesis for (24), we have that

> (% ) Y (1% <o

Jisesdr—1€[N] s=1 jr€[N] s=1
distinct dlstmcl

By the induction hypothesis on (26), we get

3 H <od<<61,)”>.

J1,--537 €[N] s=1
dlstmct

Combining these two, we get

,;ﬁwlsl_ll ( %)% = 0ul0) <(51/>T1> .

distinct

Ji,-

Thus, we get (note that » < d), using again the decomposition (27) and the bound (28) on the second

term,
Z H < st) < (Od( "+ 0y <<51/)T )) §ra+1 + 04(8") < 04(0").
15 [N]s=1

7.77‘
dlstmcl

Ifa,_; = 1, then # = r — 1 and thus
> (%) -

Jseejr—1€[N] J1se-sdr €[N 8=1
distinct distinct
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As above, we get that, by the induction hypothesis on (26),

s g e(G) )

J1seesJr€
distinct

Again by using the decomposition (27) and the bound (28) on the second term, we get

Z H( ,Jé> <o, ((;/)T_>5/d+1+0d(6/)§0d(5/)-

Ji,--dr€[N] s=1
distinct

Thus, for all three cases, we get that (25) still holds for 7.
Case II: a,. = 2, proof of (24). In this case, we have, by (11), that

N ~ a
3 (f

] _1l < 6/d+1'
) < N) a

Jr=1

For the term

jlv“-ajrfl E[N] s=1
distinct

we again need to distinguish two cases, namely a,—; = 2 and a,_; = 1.

If a,._1 = 2, then we have, as above, by the induction hypothesis for (24),

~ as
§ H ( 7]5) _ § H 7]5 6/)
Jiseensdr—1€[N] s=1 Jr€[N] s=1

distinct dlstln(,l

Also as above, by the induction hypothesis on (26), we get

> M%< (G))

J1yeens Jr€
distinct

Combining these, we have that

as N ~ ar T O

Z H < u;) Z (Xi,jr _ Z H Xij,

‘ vVN ) - vN

Jiseesjr—1€[N] 8=1 Jr=1 J1,-,37€[N] 8=1
distinct distinct

r—l X S\ N X S\ 4
< his _ Us i,9r
| ( VN ) > H P> ( m)
Jiseensdr—1€[N] s=1 J1se-JrE[N] s=1 jr=1
distinct distinct

T A N S ar
+ §ﬁ H i Z( JT) -1
J1seesJi € Jr=1
dlstmct

r—1
S Od((sl)(l + 5/d+1) + Od <<;/) ) 5/d+1.
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Thus, we get that, using again the decomposition (27) and the bound (28) on the second term,

as
x (%) T
J1yeens Jr€
dmlmct dmtmct

r—1
< Od((;/)(l +5/d+1) + Od <<;/) ) 5/d+1 JFOd((S/)

r—1
= 04(8") + 04(6") """ + Oqg ((51,) ) 5+ 0q(6")
< Od((;/).

Ifa,_1 =1, then we get

as PN
3 H ( w5> - Y I Xijs
, A VN’
Jiyeesdr—1€[N J1ye-,Jr€[N] s=1

distinct distinct

Again, by the induction hypothesis on (26), we get

x| = () )

dlslmct

As above, we get that

s 0 (E0) ), 2

J1,-eJr—1€[N] s=1 =1\ V""" / )] g1,
distinct distinct
N S ar
} : H Aiyjs 2 : (Xim 1
- : VN
J1se-,Jr€[N] s=1 Jr=1

distinct

1 r—1
§ Od <<6l> ) 6/d+1'

Thus, we can conclude that, exactly as above by the decomposition (27) and the bound (28) on the
second term,

> (%) -

J1se-,Jr€[N] 5=1 Jr€E[N] s=1
dlstmcl dlstmct
1 r—1
<0y ((5) ) S 4 04(8)
< 04(8").

Hence, for both cases, we get that (24) still holds for r.

Proof of (26). We can also analogously show (26). First note that if # < r — 1, then (26) follows
directly from the induction hypothesis since the term

> H’“

Ji,e-dr€[N] 8=1
dlstmcl
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already appeared for » — 1 by using

o — s ifs<r—1
s ar_1+a, ifs=r-—1

and we can directly apply the induction hypothesis. Thus, we only need to show (26) for 7 > r — 1
and in particular # > 1. If # = 1, then by (10), the term is at most 5, < Oy ((%)T) Otherwise, © > 2
and we can do a similar expansion as above to get

P N & .
_ S I Xijo 3 Xigi 3
. - v IN : N vV IN
G,y jr€[N] s=2 Jj1=1 J1€{d2,sdr}
distinct
_ Z H Xije Z Xig | Z H Xijo 3 Xi
. 5 ., VN
J2,--,J7€ Ji=1 250, J7 €[N] 6=2 J1€{j2,...d7}
dlslmct dlbtlnCl

The first term is then, by the induction hypothesis and (10), at most O, ((%)T_l) 3 in absolute
value. The second term can be expanded as above and is thus equal to

s v qi(%)

t=2 ja,....jr €[N] s=2
distinct

By (24) for r — 1, we get that this is within O4(d") of

P

> 2 H

=2 Gz, sjem1,de 10 jr €[N] 55 2
distinct

(again if 7 = 2, then the above term should be interpreted as 1). This term now is, by (26) for r — 2,
Oy ((%)PQ) . Note that for r = 2 (and thus 7 = 2) we cannot apply the induction hypothesis but
the term is 1 and thus the bound still holds.

Combing these result, we get that

’Z Hi(/i <04 <(;)_1> ;,+od(5)+od<(§1,)r_2>

dmmct
1 r
< ((7))

By induction, we have now shown (24) and (25) for all r and as argued above, this completes the
proof of this lemma. O

This is exactly (26) for r.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: For the main claims made in the abstract and introduction we give a proof
overview in Section 2 and complete proofs in the appendices.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in the corresponding part of Section 1.2.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: For all the theoretical results, we give a proof in the main part of the paper or
in the appendices. For the main results, we give a proof overview in Section 2.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: Since this paper discusses theoretical results only and does not contain experi-
ments, this question does not apply.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: Since this paper discusses theoretical results only and does not contain experi-
ments, this question does not apply.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: Since this paper discusses theoretical results only and does not contain experi-
ments, this question does not apply.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Since this paper discusses theoretical results only and does not contain experi-
ments, this question does not apply.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: Since this paper discusses theoretical results only and does not contain experi-
ments, this question does not apply.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this papers conforms with the NeurIPS Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper discussed general theoretical results and algorithms and has as such
no immediate societal impact.

Guidelines:
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» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: Since this paper discusses theoretical results only and does not contain experi-
ments, this question does not apply.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA] .

Justification: Since this paper discusses theoretical results only and does not contain experi-
ments, this question does not apply.

Guidelines:
* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: Since this paper discusses theoretical results only and does not contain experi-
ments, this question does not apply.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Since this paper discusses theoretical results only and does not contain experi-
ments, this question does not apply.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Since this paper discusses theoretical results only and does not contain experi-
ments, this question does not apply.

Guidelines:
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The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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