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ABSTRACT

In the traditional federated learning setting, a central server coordinates a net-
work of clients to train one global model. However, the global model may serve
many clients poorly due to data heterogeneity. Moreover, there may not exist a
trusted central party that can coordinate the clients to ensure that each of them
can benefit from others. To address these concerns, we present a novel decentral-
ized framework, FedeRiCo, where each client can learn as much or as little from
other clients as is optimal for its local data distribution. Based on expectation-
maximization, FedeRiCo estimates the utilities of other participants’ models on
each client’s data so that everyone can select the right collaborators for learning.
As a result, our algorithm outperforms other federated, personalized, and/or de-
centralized approaches on several benchmark datasets, being the only approach
that consistently performs better than training with local data only.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017) offers a framework in which a single server-side
model is collaboratively trained across decentralized datasets held by clients. It has been success-
fully deployed in practice for developing machine learning models without direct access to user data,
which is essential in highly regulated industries such as banking and healthcare (Long et al., 2020;
Sadilek et al., 2021). For example, several hospitals that each collect patient data may want to merge
their datasets for increased diversity and dataset size but are prohibited due to privacy regulations.
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Figure 1: Left: Noisy data points generated for each client along a sine curve (solid magenta line)
where the x-axis and y-axis correspond to input and output respectively. The corresponding model
learned by FedAvg (dotted line) fails to adapt to the local data seen by each client, in contrast to
the models learned by each client using our FedeRiCo (dashed lines). Right: The weights used by
FedeRiCo to average participant outputs for each client. As the client index increases, the data is
generated from successive intervals of the sine curve, and collaborator weights change accordingly.

Traditional FL methods like Federated Averaging (FedAvg) (McMahan et al., 2017) can achieve
noticeable improvement over local training when the participating clients’ data are homogeneous.
However, each client’s data is likely to have a different distribution from others in practice (Zhao
et al., 2018; Adnan et al., 2022). Such differences make it much more challenging to learn a global
model that works well for all participants. As an illustrative example, consider a simple scenario
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where each client seeks to fit a linear model to limited data, on an interval of the sine curve as
shown in Fig. 1. This is analogous to the FL setting where several participating clients would like
to collaborate, but each client only has access to data from its own data distribution. It is clear that
no single linear model can be adequate to describe the entire joint dataset, so a global model learned
by FedAvg can perform poorly, as shown by the dotted line. Ideally, each client should benefit from
collaboration by increasing the effective size and diversity of data, but in practice, forcing everyone
to use the same global model without proper personalization can hurt performance on their own data
distribution (Kulkarni et al., 2020; Tan et al., 2022).

To address this, we propose Federating with the Right Collaborators (FedeRiCo), a novel framework
suitable for every client to find other participants with similar data distributions to collaborate with.
Back to our illustration in Fig. 1. FedeRiCo enables each client to choose the right collaborators as
shown on the plots on the right-hand side: each client is able to correctly leverage information from
the neighboring clients when it is beneficial to do so. The final personalized models can serve the
local distributions well, as demonstrated in the left plot.

More specifically, our FedeRiCo assumes that each client has an underlying data distribution, and
exploits the hidden relationship among the clients’ data. By selecting the most relevant clients, each
client can collaborate as much or as little as they need, and learn a personalized mixture model to
fit the local data. Additionally, FedeRiCo achieves this in a fully decentralized manner that is not
beholden to any central authority (Li et al., 2021a; Huang et al., 2021; Kalra et al., 2021).

Our contributions We propose FedeRiCo, a novel decentralized and personalized FL frame-
work derived based on expectation-maximization (EM). Within this framework, we propose a
communication-efficient protocol suitable for fully-decentralized learning. Through extensive ex-
periments on several benchmark datasets, we demonstrate that our approach finds good client col-
laboration and outperforms other methods in the non-i.i.d. data distributions setting.

Paper outline The rest of the paper is organized as follows. In Section 2 we discuss related
approaches towards decentralized federated learning and personalization. Section 3 describes our
algorithm formulation and its relationship to expectation-maximization, and an efficient protocol for
updating clients. We provide experimental results in Section 4, and conclude in Section 5.

2 RELATED WORK FOR PERSONALIZED FL

Meta-learning Federated learning can be interpreted as a meta-learning problem, where the goal is
to extract a global meta-model based on data from several clients. This meta-model can be learned
using, for instance, the well-known Federated Averaging (FedAvg) algorithm (McMahan et al.,
2017), and personalization can then be achieved by locally fine-tuning the meta-model (Jiang et al.,
2019). Later studies explored methods to learn improved meta-models. Khodak et al. (2019) pro-
posed ARUBA, a meta-learning algorithm based on online convex optimization, and demonstrates
that it can improve upon FedAvg’s performance. Per-FedAvg (Fallah et al., 2020) uses the Model
Agnostic Meta-Learning (MAML) framework to build the initial meta-model. However, MAML
requires computing or approximating the Hessian term and can therefore be computationally pro-
hibitive. Acar et al. (2021) adopted gradient correction methods to explicitly de-bias the meta-model
from the statistical heterogeneity of client data and achieved sample-efficient customization of the
meta-model.

Model regularization / interpolation Several works improve personalization performance by reg-
ularizing the divergence between the global and local models (Hanzely & Richtárik, 2020; Li et al.,
2021b; Huang et al., 2021). Similarly, PFedMe (T Dinh et al., 2020) formulates personalization as
a proximal regularization problem using Moreau envelopes. FML (Shen et al., 2020) adopts knowl-
edge distillation to regularize the predictions between local and global models and handle model
heterogeneity. In recent work, SFL (Chen et al., 2022) also formulates the personalization as a
bi-level optimization problem with an additional regularization term on the distance between local
models and its neighbor models according to a connection graph. Specifically, SFL adopts GCN to
represent the connection graph and learns the graph as part of the optimization to encourage useful
client collaborations. Introduced by Mansour et al. (2020) as one of the three methods for achiev-
ing personalization in FL, model interpolation involves mixing a client’s local model with a jointly
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trained global model to build personalized models for each client. Deng et al. (2020) further derive
generalization bounds for mixtures of local and global models.

Multi-task learning Personalized FL naturally fits into the multi-task learning (MTL) framework.
MOCHA (Smith et al., 2017) utilizes MTL to address both systematic and statistical heterogeneity
but is restricted to simple convex models. VIRTUAL (Corinzia et al., 2019) is a federated MTL
framework for non-convex models based on a hierarchical Bayesian network formed by the central
server and the clients, and inference is performed using variational methods. SPO (Cui et al., 2021)
applies Specific Pareto Optimization to identify the optimal collaborator sets and learn a hypernet-
work for all clients. While also aiming to identify necessary collaborators, SPO adopts a centralized
FL setting with clients jointly training the hypernetwork. In contrast, our work focuses on decen-
tralized FL where clients aggregate updates from collaborators, and jointly make predictions.

In a similar spirit to our work, Marfoq et al. (2021) assume that the data distribution of each client
is a mixture of several underlying distributions/components. Federated MTL is then formulated as
a problem of modeling the underlying distributions using Federated Expectation-Maximization (Fe-
dEM). Clients jointly update a set of several component models, and each maintains a customized
set of weights, corresponding to the mixing coefficients of the underlying distributions, for predic-
tions. One shortcoming of FedEM is that it uses an instance-level weight assignment in training
time but a client-level weight assignment in inference time. As a concrete example, consider a client
consisting of a 20%/80% data mixture from distributions A and B. FedEM will learn two models,
one for each distribution. Given a new data point at inference time, the client will always predict
0.2 ·predA+0.8 ·predB , regardless of whether it came from distribution A or B. This is caused by the
mismatched behaviour between training and inference time. On the contrary, FedeRiCo naturally
considers a client-level weight assignment for both training and inference in a decentralized setting.

Other approaches Clustering-based approaches are also popular for personalized FL (Sattler et al.,
2020; Ghosh et al., 2020; Mansour et al., 2020). Such personalization lacks flexibility since each
client can only collaborate with other clients within the same cluster. FedFomo (Zhang et al., 2021)
interpolates the model updates of each client with those of other clients to improve local perfor-
mance. FedPer (Arivazhagan et al., 2019) divides the neural network model into base and personal-
ization layers. Base layers are trained jointly, whereas personalization layers are trained locally.

3 FEDERATED LEARNING WITH THE RIGHT COLLABORATORS

3.1 PROBLEM FORMULATION

We consider a federated learning (FL) scenario with K clients. Let [K] := {1, 2, . . . ,K} de-
note the set of positive integers up until K. Each client i ∈ [K] consists of a local dataset
Di = {(x(i)

s , y
(i)
s )}ni

s=1 where ni is the number of examples for client i, and the input xs ∈ X
and output ys ∈ Y are drawn from a joint distribution Di over the space X × Y .

The goal of personalized FL is to find a prediction model hi : X 7→ Y that can perform well on the
local distribution Di for each client. One of the main challenges in personalized FL is that we do
not know if two clients i and j share the same underlying data distribution. If their data distributions
are vastly different, forcing them to collaborate is likely to result in worse performance compared
to local training without collaboration. Our method, Federating with the Right Collaborators (Fed-
eRiCo), is designed to address this problem so that each client can choose to collaborate or not,
depending on their data distributions. FedeRiCo is a decentralized framework (i.e. without a central
server). For better exposition, Section 3.2 first demonstrates how our algorithm works in a hypo-
thetical all-to-all communication setting, an assumption that is then removed in Section 3.3 which
presents several practical considerations for FedeRiCo to work with limited communication.

3.2 FEDERICO WITH ALL-TO-ALL COMMUNICATION Φ∗ Di zi

K Clients

Figure 2: Graphical model

Note that every local distribution Di can always be repre-
sented as a mixture of {Dj}Kj=1 with some client weights πi=

[πi1, . . . , πiK ] ∈ ∆K , where ∆K is the (K−1)-dimensional
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simplex1. Let zi be the latent assignment variable of client i, and Π := [π1, . . . ,πK ]⊤ be the
prior Πij = Pr(zi = j). Suppose that the conditional probability pi(y|x) satisfies − log pi(y|x) =
ℓ(hϕ∗

i
(x), y) + c for some parameters ϕ∗

i ∈ Rd, loss function ℓ : Y × Y 7→ R+, and normalization
constant c. By using the stacked notation Φ∗ = [ϕ∗

1, . . . ,ϕ
∗
K ] ∈ Rd×K , Fig. 2 shows the graphical

model of how the local dataset is generated. Our goal is to learn the parameters Θ := (Φ,Π) by
maximizing the log-likelihood:

f(Θ) :=
1

n
log p(D; Θ) =

1

n

K∑
i=1

log p(Di; Θ) =
1

n

K∑
i=1

log

K∑
zi=1

p(Di, zi; Θ). (1)

where D := ∪iDi and n :=
∑

i ni. One standard approach to optimization with latent variables is
expectation maximization (EM) (Dempster et al., 1977). The corresponding variational lower bound
is given by (all detailed derivations of this section can be found in Appendix A)

L(q,Θ) :=
1

n

∑
i

Eq(zi)[log p(Di, zi; Θ)] + C, (2)

where C is a constant not depending on Θ. To obtain concrete objective functions suitable for
optimization, we further assume that pi(x) = p(x),∀i ∈ [K]. Similar to Marfoq et al. (2021), this
assumption is required due to technical reasons and can be relaxed if needed. With this assumption,
we perform the following updates at each iteration t:

• E-step: For each client, find the best q, which is the posterior p(zi = j|Di; Θ
(t−1)) given the

current parameters Θ(t−1):

w
(t)
ij := q(t)(zi = j) ∝ Π

(t−1)
ij exp

[
−

ni∑
s=1

ℓ
(
h
ϕ

(t−1)
j

(x(i)
s ), y(i)s

)]
. (3)

• M-step: Given the posterior q(t) from the E-step, maximize L w.r.t. Θ = (Φ,Π):

Π
(t)
ij = w

(t)
ij and Φ(t) ∈ argmin

Φ

1

n

K∑
i=1

L̂w,i(Φ) (4)

where L̂w,i(Φ) :=

K∑
j=1

w
(t)
ij

ni∑
s=1

ℓ
(
hϕj

(x(i)
s ), y(i)s

)
. (5)

Bear in mind that each client can only see its local data Di in the federated setting. The E-step is
easy to compute once the models from other clients ϕj , j ̸= i are available. Π

(t)
ij is also easy to

obtain as the posterior w(t)
ij is stored locally. However, Φ(t) is trickier to compute since each client

can potentially update Φ towards different directions due to data heterogeneity amongst the clients.
To stabilize optimization and avoid overfitting from client updates, we rely on small gradient steps
in lieu of full optimization in each round. To compute Φ(t) algorithmically, each client i:

1. Fixes w(t)
ij and computes the local gradient ∇L̂w,i(Φ

(t−1)) on local Di.
2. Broadcasts ∇L̂w,i(Φ

(t−1)) to and receives ∇L̂w,j(Φ
(t−1)) from other clients j ̸= i. The models

are updated based on the aggregated gradient with step size η > 0:

Φ(t) = Φ(t−1) − η

K∑
j=1

∇L̂w,j(Φ
(t−1)). (6)

Each client uses ĥi(x) =
∑

j w
(t)
ij h

ϕ
(t)
j
(x) for prediction after convergence.

Remark 1 The posterior w
(t)
ij (or equivalently the prior in the next iteration Π

(t)
ij ) reflects the

importance of model ϕj on the data Di. When w
(t)
ij is one-hot with a one in the ith position, client i

can perform learning by itself without collaborating with others. When w
(t)
ij is more diverse, client i

1One-hot πi is always feasible, but other mixing coefficients may exist.
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can find the right collaborators with useful models ϕj . Such flexibility enables each client to make
its own decision on whether or not to collaborate with others, hence the name of our algorithm.

Remark 2 Unlike prior work (Mansour et al., 2020; Marfoq et al., 2021), our assignment variable z
and probability Π are on the client level. If we assume that all clients share the same prior (i.e., there
is only a vector π instead of a matrix Π), the algorithm would be similar to HypCluster (Mansour
et al., 2020). Marfoq et al. (2021) used a similar formulation as ours but their assignment variable
z is on the instance level: every data point (instead of client) comes from a mixture of distributions.
Such an approach can cause several issues at inference time, as the assignment for novel data point
is unknown. We refer the interested readers to Section 2 and Section 4 for further comparison.

Theoretical Convergence Under some regularity assumptions, our algorithm converges as follows:
Theorem 3.1. [Convergence] Under Assumptions E.1-E.6, when the clients use SGD with learning
rate η = a0√

T
, and after sufficient rounds T , the iterates of our algorithm satisfy

1

T

T∑
t=1

E∥∇Φf(Φ
t,Πt)∥2F ≤ O

(
1√
T

)
,

1

T

T∑
t=1

∆Πf(Φ
t,Πt) ≤ O

(
1

T 3/4

)
, (7)

where the expectation is over the random batch samples and ∆Πf(Φ
t,Πt) := f(Φt,Πt) −

f(Φt,Πt+1) ≥ 0.

Due to space limitations, further details and the complete proof are deferred to Appendix E. The
above theorem shows that the gradient w.r.t. the model parameters Φ and the improvement over the
mixing coefficients Π becomes small as we increase the round T , thus converging to a stationary
point of the log-likelihood objective f .

3.3 COMMUNICATION-EFFICIENT PROTOCOL

So far, we have discussed how FedeRiCo works in the all-to-all communication setting. In prac-
tice, FedeRiCo does not require excessive model transmission, and this subsection discusses several
practical considerations to ensure communication efficiency. Specifically, we tackle the bottlenecks
in both the E-step (3) and the M-step (4) since they require joint information of all models Φ. Due
to space constraint, the pseudocode is provided in Algorithm 1, Appendix B.

E-step For client i, the key missing quantity to compute (3) without all-to-all communication is
the loss ℓ(ϕ(t−1)

j ), or likelihood p(Di|zi = j; Φ(t−1)), of other clients’ models ϕj , j ̸= i. Since the

models Φ are being updated slowly, one can expect that ℓ(ϕ(t−1)
j ) will not be significantly different

from the loss ℓ(ϕ(t−2)
j ) of the previous iteration. Therefore, each client can maintain a list of losses

for all the clients, sample a subset of clients in each round using a sampling scheme S (e.g., ϵ-greedy
sampling as discussed later), and only update the losses of the chosen clients.

M-step To clearly see how Φ is updated in the M-step, let’s focus on the update to a specific client’s
model ϕi. According to (5) and (6), the update to ϕi is given by

−η

K∑
j=1

w
(t)
ji

nj∑
s=1

∇ϕi
ℓ
(
hϕi

(x(j)
s ), y(j)s

)
. (8)

Note that the aggregation is based on w
(t)
ji instead of w(t)

ij . Intuitively, this suggests ϕi should be
updated based on how the model is being used by other clients rather than how client i itself uses it.
If ϕi does not appear to be useful to all clients, i.e. w(t)

ji = 0, ∀j, it does not get updated. Therefore,
whenever client i is sampled by another client j using the sampling scheme S, it will send ϕi to
j, and receives the gradient update gij := w

(t)
ji

∑nj

s=1 ∇ϕi
ℓ
(
hϕi

(x
(j)
s ), y

(j)
s

)
from client j. One

issue here is that gij is governed by w
(t)
ji , which could be arbitrarily small, leading to no effective

update to ϕi. We will show how this can be addressed by using an ϵ-greedy sampling scheme.

Sampling scheme S We deploy an ϵ-greedy scheme where, in each round, each client uniformly
samples clients with probability ϵ ∈ [0, 1] and samples the client(s) with the highest posterior(s) oth-
erwise. This allows a trade off between emphasizing gradient updates from high-performing clients
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(small ϵ), versus receiving updates from clients uniformly to find potential collaborators (large ϵ).
The number M of sampled clients (neighbors) per round and ϵ can be tuned based on the specific
problem instance. We will show the effect of varying the hyperparameters in the experiments.

Tracking the losses for the posterior The final practical consideration is the computation of
the posterior w(t)

ij . From the E-step (3) and the M-step (4), one can see that w(t)
ij is the softmax

transformation of the negative accumulative loss L(t)
ij :=

∑t−1
τ=1 ℓ

(τ)
ij over rounds (see Appendix A

for derivation). However, the accumulative loss can be sensitive to noise and initialization. If one
of the models, say ϕj , performs slightly better than other models for client i at the beginning of
training, then client i is likely to sample ϕj more frequently, thus enforcing the use of ϕj even when
other better models exist. To address this, we instead keep track of the exponential moving average
of the loss with a momentum parameter β ∈ [0, 1), L̂(t)

ij = (1−β)L̂
(t−1)
ij +βl

(t)
ij , and compute w(t)

ij

using L̂
(t)
ij . This encourages clients to seek new collaborators rather than focusing on existing ones.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We conduct a range of experiments to evaluate the performance of our proposed FedeRiCo with
multiple datasets. Additional experiment details and results can be found in Appendix D.

Datasets We compare different methods on several real-world datasets. We evaluate on
image-classification tasks with the CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and Office-
Home2 (Venkateswara et al., 2017) datasets. Particularly, we consider a non-IID data partition
among clients by first splitting data by labels into several groups with disjoint label sets. Each
group is considered a distribution, and each client samples from one distribution to form its local
data. For each client, we randomly divide the local data into 80% training data and 20% test data.

Baseline methods We compare our FedeRiCo to several federated learning baselines. Fe-
dAvg (McMahan et al., 2017) trains a single global model for every client. We also compare to other
personalized FL approaches including FedAvg with local tuning (FedAvg+) (Jiang et al., 2019),
Clustered FL (Sattler et al., 2020), FedEM (Marfoq et al., 2021)3, FedFomo (Zhang et al., 2021), as
well as a local training baseline. All accuracy results are reported in mean and standard deviation
across different random data split and random training seeds. Unless specified otherwise, we use 3
neighbors with ϵ = 0.3 and momentum β = 0.6 as the default hyperparamters for FedeRiCo in all
experiments. For FedEM, we use 4 components, which provides sufficient capacity to accommo-
date different numbers of label groups (or data distributions). For FedFomo, we hold out 20% of
the training data for client weight calculations. For FedAvg+, we follow Marfoq et al. (2021) and
update the local model with 1 epoch of local training.

Training settings For all models, we use the Adam optimizer with learning rate 0.01. CIFAR
experiments use 150 rounds of training, while Office-Home experiments use 400 rounds. CIFAR-
10 results are reported across 5 different data splits and 3 different training seeds for each data
split. CIFAR-100 and Office-Home results are reported across 3 different data splits with a different
training seed for each split.

4.2 PERFORMANCE COMPARISON

The performance of each FL method is shown in Table 1. Following the settings introduced by
Marfoq et al. (2021), each client is evaluated on its own local testing data and the average accuracies
weighted by local dataset sizes are reported. We observe that FedeRiCo has the best performance
across all datasets and number of data distributions. Here, local training can be seen as an indicator
to assess if other methods benefit from client collaboration as local training has no collaboration
at all. We observe that our proposed FedeRiCo is the only method that consistently outperforms
local training, meaning that FedeRiCo is the only method that consistently encourages effective

2This dataset has been made publically available for research purposes only.
3We use implementations from https://github.com/omarfoq/FedEM for Clustered FL and Fe-

dEM
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Table 1: Accuracy (in percentage) with different number of data distributions. Best results in bold.

CIFAR-10 # of distributions CIFAR-100 # of distributions Office-Home # of distributions

Method 2 3 4 2 3 4 2 3 4
FedAvg 11.44 ± 3.28 11.73 ± 3.68 13.93 ± 5.74 21.28 ± 5.04 17.41 ± 3.27 18.36 ± 3.68 66.58 ± 1.88 53.36 ± 4.21 51.25 ± 4.37

FedAvg+ 12.45 ± 8.46 29.86 ± 17.85 45.65 ± 21.61 29.95 ± 1.07 35.33 ± 1.77 36.17 ± 3.27 80.21 ± 0.68 81.88 ± 0.91 84.50 ± 1.37

Local Training 40.09 ± 2.84 55.27 ± 3.11 69.03 ± 7.05 16.60 ± 0.64 25.99 ± 2.38 31.05 ± 1.68 76.76 ± 0.23 83.30 ± 0.32 88.05 ± 0.44

Clustered FL 11.50 ± 3.65 15.24 ± 5.79 16.43 ± 5.17 20.93 ± 3.57 23.15 ± 7.04 15.15 ± 0.60 66.58 ± 1.88 53.36 ± 4.21 51.25 ± 4.37

FedEM 41.21 ± 10.83 55.08 ± 6.71 63.61 ± 9.93 26.25 ± 2.40 24.11 ± 7.36 19.23 ± 2.58 22.59 ± 1.95 28.72 ± 1.83 22.46 ± 3.99

FedFomo 42.24 ± 8.32 59.45 ± 5.57 71.05 ± 6.09 12.15 ± 0.57 20.49 ± 2.90 24.53 ± 2.77 78.61 ± 0.78 82.57 ± 0.24 87.86 ± 0.77

FedeRiCo 56.61 ± 2.51 69.76 ± 2.25 78.22 ± 4.80 30.95 ± 1.62 39.19 ± 1.64 41.41 ± 1.07 83.56 ± 0.49 90.28 ± 0.75 93.76 ± 0.12

client collaborations. Notably, both FedEM and FedFomo performs comparably well to FedeRiCo
on CIFAR-10 but worse when the dataset becomes more complex like CIFAR-100. This indicates
that building the right collaborations among clients becomes a harder problem for more complex
datasets. Moreover, FedEM can become worse as the number of distributions increases, even worse
than local training, showing that it is increasingly hard for clients to participate effectively under the
FedEM framework for complex problems with more data distributions.

In addition, Clustered FL has similar performance to FedAvg, indicating that it is hard for Clustered
FL to split into the right clusters. In Clustered FL (Sattler et al., 2020), every client starts in the same
cluster and cluster split only happens when the FL objective is close to a stationary point, i.e. the
norm of averaged gradient update from all clients inside the cluster is small. Therefore, in a non-
i.i.d setting like ours, the averaged gradient update might always be noisy and large, as clients with
different distributions are pushing diverse updates to the clustered model. As a result, the cluster
splitting rarely happens which makes clustered FL more like FedAvg.

4.3 CLIENT COLLABORATION
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Figure 3: Client weights over time of FedeRiCo with CIFAR100 data and four different client dis-
tributions. Clients are color coded by their private data’s distribution.

In this section, we investigate client collaboration by plotting the personalized client weights w(t)
ij of

FedeRiCo over training. With different client data distributions, we show that FedeRiCo can assign
more weight to clients from the same distribution. As shown in Fig. 3, we observe that clients with
similar distributions collaborate to make the final predictions. For example, clients 3, 4 and 7 use a
mixture of predictions from each other (in light blue) whereas client 0 only uses itself for prediction
since it is the only client coming from distribution 0 (in dark blue) in this particular random split.

On the contrary, as shown in Fig. 4, even with 4 components, FedEM fails to use all of them for
predictions for the 4 different data distributions. In fact, clients 2, 3, 4, 6 and 7 coming from two
different distributions are using only the model of component 3 for prediction, whereas component
0 is never used by any client. Based on this, we find FedeRiCo better encourages the clients to
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Figure 4: Component weights over training for FedEM with 4 components, on CIFAR100 data with
4 different client distributions. Clients are color coded by their private data’s distribution.

collaborate with other similar clients and less with different clients. Each client can collaborate
as much or as little as they need. Additionally, since all the non-similar clients have a weight of
(almost) 0, each client only needs a few models from their collaborators for prediction.

4.4 EFFECT OF USING EXPONENTIAL MOVING AVERAGE LOSS
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(a) Client weights with accumulative loss.
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(b) Client weights with exponential moving average.

Figure 5: Effect on client weights with different implementations. The client weights on CIFAR-10
with 2 different client distributions are reported.

Here, we visualize the effect of using the exponential moving average loss by plotting client weights
with both accumulative loss and exponential moving average loss in Fig. 54. We observe that with
the accumulative loss in Fig. 5a, the client weights quickly converge to one-hot, while with the
exponential moving average loss in Fig. 5b, the client weights are more distributed to similar clients.
This corresponds to our expectation stated in Section 3.3: the clients using exponential moving
average loss are expected to seek for more collaboration compared to using accumulative loss.

4.5 HYPERPARAMETER SENSITIVITY

In this section, we explore the effect of hyperparameters of our proposed FedeRiCo.

Effect of ϵ-greedy sampling Here we show the effect of different ϵ values. Recall that each client
deploys an ϵ-greedy selection strategy. The smaller the value of ϵ, the more greedy the client is
in selecting the most relevant collaborators with high weights, leading to less exploration. Fig. 6a
shows the accuracy along with training rounds with different ϵ values on the Office-Home dataset.
One can see that there is a trade-off between exploration and exploitation. If ϵ is too high (e.g., ϵ =
1, uniform sampling), then estimates of the likelihoods/losses are more accurate. However, some
gradient updates will vanish because the client weight is close to zero (see Section 3.3), resulting

4We used uniform sampling for Fig. 5a (ϵ = 1) as most of the client weights are 0 after a few rounds.
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Figure 6: Test accuracy with different hyperparameters.

in slow convergence. On the other hand, if ϵ is too small, the client may miss some important
collaborators due to a lack of exploration. As a result, we use a moderate ϵ = 0.3 in all experiments.

Effect of number of sampled neighbors We plot accuracy with number of neighbors M ∈
{0, 1, 3, 5, 7} on CIFAR100 with 4 different client distributions, where M = 0 is similar to Local
Training as no collaboration happens. As shown in Fig. 6b, when the number of neighbors increases,
FedeRiCo converges more slowly as each client is receiving more updates on other client’s models.
While a smaller number of neighbors seems to have a lower final accuracy, we notice that even with
M = 1, we still observe significant improvement compared to no collaboration. Therefore, we use
M = 3 neighbors in our experiments as it has reasonable performance and communication cost.
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Figure 7: Client weights (client 0) with different momentum values β on the client weight update.
Effect of client weight momentum We plot the overall test accuracy of client 0 on the Office-Home
dataset with 4 different data distributions over β ∈ {0.1, 0.3, 0.6, 0.9} in Fig. 6c and similarly for
the client weights in Fig. 7. With smaller β, as shown in Fig. 7, we observe a smoother update
on the client weights, which is expected as the old tracking loss dominates the new one. Although
various values produce similar final client weights, a bigger β can lead to more drastic changes in
early training. However, one shouldn’t pick a very small β just because it can produce smoother
weights. As shown in Fig. 6c, the algorithm may converge more slowly with smaller β. Therefore,
we use β = 0.6 as it encourages smoother updates and also maintains good convergence speed.

5 CONCLUSION AND DISCUSSION

In this paper, we proposed FedeRiCo, a novel framework for decentralized and personalized FL
derived from EM for non-i.i.d client data. We evaluated FedeRiCo across different datasets and
demonstrated that FedeRiCo outperforms multiple existing personalized FL baselines and encour-
ages clients to collaborate with similar clients, i.e., the right collaborators.

Decentralized FL provides an alternative architecture in the absence of a commonly trusted server.
For example, CB-DEM ()forero2008consensus studies the distributed EM algorithm for classifica-
tion in wireless networks with local bridge sensors to ensure all sensors reach consensus. Compared
to our decentralized communication-efficient protocol, CB-DEM requires global information every
round for the consensus synchronization. While decentralized FL removes the risk of single point
failure compared to centralized FL by using peer-to-peer communication, it also raises concerns
about security risks with the absence of a mutually trusted central server. Therefore, a promising
direction is to incorporate trust mechanisms long with decentralization (Kairouz et al., 2019), such
as blockchain frameworks (Qin et al., 2022). Additionally, FL schemes do not provide an explicit
guarantee that private information will not be leaked. However, most FL frameworks, including
ours, are compatible with privacy-preserving training techniques such as differential privacy, which
is another promising and interesting research direction (Wei et al., 2020; Truex et al., 2020).
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