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Abstract

With the widespread application of causal inference, it is increasingly important to have
tools which can test for the presence of causal effects in a diverse array of circumstances.
In this vein we focus on the problem of testing for distributional causal effects, where the
treatment affects not just the mean, but also higher order moments of the distribution, as
well as multidimensional or structured outcomes. We build upon a previously introduced
framework, Counterfactual Mean Embeddings, for representing causal distributions within
Reproducing Kernel Hilbert Spaces (RKHS) by proposing new, improved, estimators for
the distributional embeddings. These improved estimators are inspired by doubly robust
estimators of the causal mean, using a similar form within the kernel space. We analyse these
estimators, proving they retain the doubly robust property and have improved convergence
rates compared to the original estimators. We then use the proposed estimators as test
statistics in a new permutation based test for distributional causal effects. Finally, we
experimentally and theoretically demonstrate the validity of these tests.

1 Introduction
In this work we focus on the problem of testing for distributional treatment effects (Bellot & van der Schaar,
2021; Park et al., 2021; Chikahara et al., 2022), where the aim is to test for causal effect which manifest as
something other than a mean shift. This can be especially useful when the target variable is high dimensional
or structured as a network, since in these cases there is no natural mean to compare. Our contributions are
as follows:

1. We introduce new estimators to be used within the Counterfactual Mean Embeddings framework,
based upon the doubly robust estimator of the causal mean from semi-parametric statistics (Bang &
Robins, 2005; Tsiatis, 2006). These may be applied to estimate kernelised versions of the average
treatment effect and effect of treatment on the treated. We prove these estimators inherit the double
robustness properties of well established semi-parametric estimators of causal effects and that they
converge to the correct value if either of the models underlying them converge to the true model.
This shows that they have theoretically improved convergence results when compared to the previous
counterfactual mean embedding estimators.

†Work mainly done while the authors were with the Department of Statistics, University of Oxford.



2. We apply these new estimators to permutation testing for distributional causal effects. We propose
a new permutation approach which allows for doubly robust trainable statistics to be used within
permutation testing and prove that these tests are valid.

3. We experimentally validate the performance of our test on synthetic, semi-
synthetic and real data. An implementation of our approach can be found at:
https://github.com/Jakefawkes/DR_distributional_test.

1.1 Related work
Our work builds upon the counterfactual mean embeddings framework introduced in Muandet et al. (2021),
which we detail further within Section 2.3. This falls under the general area of applying kernels to test for
distributional causal effects of which Bellot & van der Schaar (2021) is an early example, whose test statistic
arises as a special case of our own for the distributional effect of treatment on the treated. In a concurrent
work, Martinez-Taboada et al. (2023) develop a similar approach using doubly robust statistics (Robins &
Rotnitzky, 1995) within kernel spaces. However, by applying the work of Shekhar et al. (2022) they are able
to take a permutation free approach to testing distributional causal effects. Due to the concurrency and
current lack of publicly available code we do not compare against this method. This work has also been built
to estimate counterfactual densities in Martinez-Taboada & Kennedy (2023). In more general applications
of kernel spaces to testing distributional causal effectsPark et al. (2021) develop a statistic targeting the
conditional average treatment effect (CATE) using conditional mean embeddings to estimate the RKHS
distance between the expected potential outcomes. Chikahara et al. (2022) use tests for distributional causal
effects to find which features are relevant to difference in treatment effects. Testing for causal distributional
effects falls within long tradition of using kernel spaces for hypothesis testing as they faithfully capture all
features of a distribution (Gretton et al., 2005; 2012). Kernel methods have also been widely applied within
the larger causality literature. For example, to instrumental variables (Singh et al., 2019; Muandet et al.,
2020), to causal learning with proxies and unmeasured confounders (Singh et al., 2020; Mastouri et al., 2021),
and to the orientation of causal edges (Mitrovic et al., 2018).

2 Background and Notation
2.1 Causal Set Up

T Y

X

Figure 1: Assumed DAG

Throughout, we will let Y denote the outcome, which is affected by a binary
treatment T in the presence of additional covariates X. We will use the
potential outcome notation (Rubin, 1997) so that Y (t) corresponds to the
outcome observed when T is given the value t. We assume that the causal
relationships between these variables are given by the basic confounding
DAG in Figure 1 1.

The Propensity Score and Overlap Throughout we will make reference
to the propensity score, which is the probability of treatment given a set of
covariates: P (T = 1 | X = x). For a flexible notation we will use e(x, t) to
denote P (T = t | X = x), however as we are using binary treatment we will have that e(x, t) = 1 − e(x, t′)
if t + t′ = 1. We will also make use of the inverse propensity odds which we will denote w(x, t) = 1−e(x,t)

e(x,t) .
Finally ê(x, t) and ŵ(x, t) will be used to denote finite sample estimates of these quantities.

An important assumption for causal inference from observational data is that of overlap. This ensures that
there are treated and untreated individuals we can compare and it written formally as:

Definition 1. We say there is overlap for T = t if we have 0 < e(X, t) with probability 1. We say the
overlap is two-sided if it holds for both t and one-sided otherwise. Any overlap is strict if there is some
δ > 0 such that δ ≤ e(X, t) again with probability 1.

Under the one-sided overlap assumption that e(x, t) > 0 and the causal DAG in Figure 1, the distribution
of the interventional quantity Y (t) is uniquely identified (Pearl, 2009; Richardson & Robins, 2013) from

1We make us of the SWIG framework to combine causal graphical models with potential outcomes. More details can be
found in Richardson and Robins Richardson & Robins (2013)
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observational data as follows:

P (Y (t) = y) = EP (X) [P (Y = y | X, T = t)] .

This allows us to estimate causal quantities of interest from observational distributions alone, such as the
average treatment effect (ATE):

E[Y (1) − Y (0)].

It is important to note that both-sided overlap is required for the identification of the average treatment
effect, as each interventional distribution requires overlap at a different T = t for identification. In the case
where we are only likely to have one-sided overlap, such as when an experimental new medical treatment
is only given to the most severe cases, practitioners instead focus on the effect of treatment on the treated
(ETT):

E[Y (1) − Y (0) | T = 1].

This quantity is identified from observational data whenever e(x, 0) > 0 for almost all x, so all individuals
have some probability of not being treated. This allows us to still get some estimate of treatment efficacy in
cases where both-sided overlap is violated. It is also worth noting that overlap is a testable assumption, with
a test developed for example in Lei et al. (2021).

2.2 Kernel Background
We use kernel embeddings of distributions to construct our test statistics and so we now briefly introduce the
relevant background material and notation. For a more thorough engagement with this material we refer the
reader to Muandet et al. (2017).

Reproducing Kernel Hilbert Spaces Let X be some non-empty space. A real-valued RKHS,
(HX , ⟨·, ·⟩HX ), is a complete inner product space of functions f : X → R such that the evaluation function
is continuous for all x ∈ X . Due to the Riesz representer theorem we have that for all x ∈ X there is a
function kx ∈ HX which satisfies the reproducing property, that f(x) = ⟨f, kx⟩ for all f ∈ Hk. The function
k(x, x′) = ⟨kx, kx′⟩ is known as the reproducing kernel for the space HX . Conversely, via the Moore-Aronszajn
Theorem (Aronszajn, 1950), any symmetric positive definite function K on X defines a unique RKHS. We
will suppose access to an RKHS on X and Y denoted by HX and HY , with with kernels k and ℓ respectively.

Further, for a random variable X on X with distribution PX we can define the mean embedding of X as:

µX = EPX
[k(X, ·)].

Under the intergrability condition that
∫

X

√
k(x, x)dPX(x) < ∞ we have that µX ∈ HX . If we have two

random variables, X, X ′, over X with distributions PX , PX′ respectively, with a slight abuse of notation we
denote the maximum mean discrepancy (MMD) by:

MMD[X, X ′, HX ] :=
∥∥µPX

− µPX′

∥∥
HX

.

The kernel k is known as characteristic if MMD[X, X ′, HX ] = 0 if and only if PX
d= PX′ . Many popular

kernels such as the Gaussian and Matérn are charecteristic kernels. The MMD between two distributions
can be estimated from finite samples by computing the MMD between the empirical distributions. This was
shown in Gretton et al. (2012) to converge to the true MMD at the paramteric convergence rate, OP (n− 1

2 ).
For this reason the MMD is often used for efficiently testing equality of distributions.

Conditional Mean Embedding RKHSs also allow us to represent conditional distributions through the
Conditional Mean Embedding (CME) (Song et al., 2009; Muandet et al., 2017), given by:

µY |X=x = E[ℓ(Y, ·) | X = x].
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In order to estimate this Grünewälder et al. (2012) propose to take a regression point of view, seeing the
CME as the solution to the following regression problem:{

C∗ = arg minC∈B2(HX ,HY )EP(Y,X) ∥ℓ(Y, ·) − Ck(X, ·)∥HY

µY |X=x = C∗K(x, ·)
,

where B2(HX , HY) is the space of Hilbert-Schmidt operators HX → HY . This interpretation leads to an
estimate of the CME from a finite dataset, D = {xi, yi}n

i=1 as:
Ĉ∗ = arg min

C∈B2(HX ,HY )

1
n

n∑
i=1

∥ℓ(yi, ·) − Ck(xi, ·)∥2
HY

+ γ∥C∥2
B2

= ℓ⊤Wk
µ̂Y |X=x = ℓ⊤Wk(x)

. (1)

where ℓ = (ℓ(yi, ·))n
i=1 , k = (k(xi, ·))n

i=1, and W = (K + λIn)−1 for K = (k(xi, xj))n
i,j=1. We will often make

use of the CME conditional on a particular value of T , so µY |X=x,T =t. In that case we let ℓt, Wt and kt

denote the respective matrices used in the estimation of µ̂Y |X=x,T =t.

2.3 Counterfactual Mean Embeddings
Our work builds upon the counterfactual mean embeddings framework of Muandet et al. (2021). They
demonstrate that under the causal structure in Section 2.1 and with the one-sided overlap e(x, t) > 0, the
mean embedding of the potential outcome, Y (t), can be written as:

µY (t) = EP(Y,X,T )

[
ℓ(Y, ·)1{T = t}

e(X, t)

]
,

which may be seen as the kernel equivalent of the inverse probability weighting estimator for the causal mean.
Given a finite sample, {(ti, xi, yi)}n

i=1, and access to the true propensity score, this quantity can be estimated
as:

µ̂Y (t) = 1
n

n∑
i=1

ℓ(yi, ·)1{ti = t}
e(xi, t) .

Muandet et al. (2021) prove that this converges to the true embedding at rate OP (n− 1
2 ). If we have both-sided

overlap both µ̂Y (1) and µ̂Y (0) are therefore identified from data and we can use MMD[Y (1), Y (0), HY ] to
measure any distributional effects of treatment. Furthermore, if the kernel is characteristic we have that
MMD[Y (1), Y (0), HY ] = 0 if and only if Y (1) d= Y (0) . Finally, this quantity can be estimated from finite
samples at rate OP (n− 1

2 ) by:

M̂MD[Y (1), Y (0), HY ] =
∥∥µ̂Y (1) − µ̂Y (0)

∥∥
HY

.

This leads to a permutation test for distributional causal effects following the conditional permutation scheme
for testing for causal effects (Rosenbaum, 1984), and using the estimated MMD between the potential
outcomes as a test statistic. Throughout we will refer to M̂MD[Y (1), Y (0), HY ] as the distributional average
treatment effect (DATE), due to the similarity between this and the average treatment effect statistic in
Section 2.1.

Analogously to the average treatment effect, the distributional average treatment effect is only identified from
data under both-sided overlap. Therefore we now introduce a second target based of the effect of treatment
on the treated, the distributional effect of treatment on the treated (DETT):

MMD
[
Y (1){T =1}, Y (0){T =1}, HY

]
:=
∥∥µ{Y (1)|T =1} − µ{Y (0)|T =1}

∥∥
HY

.

Estimation this quantity requires estimation of the embeddings µ{Y (0)|T =1}, µ{Y (1)|T =1}. Since P (Y (1) | T =
1) = P (Y | T = 1) we can estimate the latter embedding using observed samples of Y for individuals with
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T = 1. This means the only challenge is the estimation of µ{Y (0)|T =1} which Muandet esimtate using the fact
that:

µY (0)|T =1 = EP (X|T =1)
[
µY |X,T =0

]
.

This means a finite sample estimate of the conditional mean embedding from Section 2.2 can be used to
compute a finite sample estimate of the mean embedding.

Alternatively, Bellot & van der Schaar (2021) also target the distributional effect of treatment on the treated
using the fact that:

µY (0)|T =1 = E [ℓ(Y, ·)1{T = 0}w(X, 0)] .

Both of these estimators lead to test statistics based on the distributional effect of treatment on the treated.

3 Doubly Robust Counterfactual Mean Embeddings
In this section we build on previous methodology by considering estimators for the causal mean embeddings
that are built on doubly robust (DR) estimators of causal effects (Robins & Rotnitzky, 1995). We propose
new estimators for the distributional average treatment effect and the distributional effect of treatment on the
treated. We prove that both of these estimators have the doubly robust property and so they will converge
to the true causal mean embedding if either of the two models underlying them converges to the true model.
We call this set of approaches Doubly Robust Counterfactual Mean Embeddings.

3.1 Doubly robust estimator of the distributional average treatment effect (DATE)
Firstly, based on the doubly robust estimator of the average treatment effect we note that the embedding of
the potential outcome, Y (t), can also be written as:

µY (t) = E[ℓ(Y (t), ·) − µY |X,T =t] + E[µY |X,T =t]

= E

[
1{T = t}

(
ℓ(Y, ·) − µY |X,T =t

)
e(X, t)

]
+ E[µY |X,T =t]

= E

[
1{T = t}

(
ℓ(Y, ·) − µY |X,T =t

)
e(X, t) + µY |X,T =t

]
.

This is a kernelised version of the doubly robust estimator of the treatment mean (Robins & Rotnitzky,
1995); it can be estimated from finite samples by fitting models ê(x, t), µ̂Y |X=x,T =t on a training set and then
averaging them over the test set as:

µ̂DR
Y (t) = 1

n

n∑
i=1

{
1{ti = t}

(
ℓ(yi, ·) − µ̂Y |X=xi,T =t

)
ê(xi, t) + µ̂Y |X=xi,T =t

}
. (2)

Take a constant train/test split and let ên(X, t) and µ̂
(n)
Y |X,T =t be the models that arise from a total sample of

size n. Now under the assumption that the propensity and estimated propensity are uniformly bounded, the
following theorem shows that µ̂DR

Y (t) has the doubly robust property that it converges to the true embedding as
long as either of the propensity model or the conditional mean embedding converges. Furthermore, it is also
doubly rate robust, in the sense that it achieves a convergence rate that is the product of the convergence
rates of these working models.

Theorem 1. Assuming that e(x, t) is strongly bounded away from zero, as well as additional overlap
assumptions in Appendix A.1, we have that if the estimators ên(X, t) and µ̂

(n)
Y |X,T =t satisfy the following:

∥ên(X, t) − e(X, t)∥2 = OP (γe,n),
∥∥∥∥∥∥∥µ̂

(n)
Y |X,T =t − µY |X,T =t

∥∥∥
HY

∥∥∥∥
2

= OP (γr,n)

with γe,n = O(1) and γr,n = O(1). Then:∥∥∥µY (t) − µ̂DR
Y (t)

∥∥∥
HY

= OP (max{n− 1
2 , γr,nγe,n}).
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Therefore, if γr,nγe,n = O(n− 1
2 ) we obtain the parametric convergence rate.

These statistics can be used to form a doubly robust estimator of the distributional average treatment effect
as:

M̂MDDR[Y (1), Y (0), HY ] =
∥∥∥µ̂DR

Y (1) − µ̂DR
Y (0)

∥∥∥
HY

.

We derive the closed form of this statistic squared in Appendix B.1. This will converge to the correct MMD
if both µ̂DR

Y (1) and µ̂DR
Y (0) converge to the true embedding at a rate that is a maximum of both their rates.

3.2 Doubly robust estimator of the Distributional Effect of Treatment on the Treated (DETT)
We now turn to estimating the distributional effect of treatment on the treated2, again we form a kernel
version of the standard doubly robust estimator of the distributional effect of treatment on the treated
(Moodie et al., 2018). This leads from the fact that the mean embedding of the counterfactual distribution
P (Y (t) | T = t′) can be written as:

µY (t)|T =t′ = E[ℓ(Y (t), ·)]
= E[ℓ(Y (t), ·) − µY |X,T =t | T = t′] + E[µY |X,T =t | T = t′]

= E
[

e(X, t′)P (T = t)
e(X, t)P (T = t′)

(
ℓ(Y, ·) − µY |X,T =t

)
| T = t

]
+ E[µY |X,T =t | T = t′]

= E
[

P (T = t)
P (T = t′)w(X, t)

(
ℓ(Y, ·) − µY |X,T =t

)
| T = t

]
+ E[µY |X,T =t | T = t′],

where w(x, t) = 1−e(x,t)
e(x,t) .

By fitting models ŵ(x, t) and µ̂Y |X=x,T =t on training samples we get a finite sample estimate of the
distributional effect of treatment on the treated as:

µ̂DR
Y (t)|T =t′ = 1

nt′

n∑
i=1

(
1{ti = t} ŵ(xi, t)

(
ℓ(yi, ·) − µ̂Y |X=xi,T =t

)
+ 1{ti = t′} µ̂Y |X=xi,T =t

)
where nt =

∑
i 1{ti = t}. Again letting ên(x, t) and3 µ̂

(n)
Y |X,T =t be the respective models trained on a set of

size n we have that:

Theorem 2. Under overlap assumptions given in the appendix, we have that if the estimators ên(X, t) and
µ̂

(n)
Y |X,T =t satisfy the following:

∥ên(X, t) − e(X, t)∥2 = OP (γe,n),
∥∥∥∥∥∥∥µ̂

(n)
Y |X,T =t − µY |X,T =t

∥∥∥
HY

∥∥∥∥
2

= OP (γr,n)

where γe,n = O(1) and γr,n = O(1) then:∥∥∥µY (t)|T =t′ − µ̂DR
Y (t)|T =t′

∥∥∥
HY

= OP (max{n− 1
2 , γr,nγe,n}).

Applying this we can now estimate the relevant MMD for between treated and untreated for this population
as:

M̂MDDR

[
Y (1){T =1}, Y (0){T =1}, HY

]
=
∥∥∥∥∥µ̂DR

Y (t)|T =t′ − 1
nt′

n∑
i=1

1{ti = t′} ℓ(yi, ·)
∥∥∥∥∥

HY

Which has the same convergence rate as µ̂DR
Y (t)|T =t′ . Therefore, we only need strict one-sided overlap for

convergence, as µ̂DR
Y (t)|T =t′ just requires e(x, t) > ϵ. Again we derive the squared statistic and give it in closed

form in Appendix B.2.
2We leave the t arbitrary, so if t = 1 this would form an effect of treatment on the control. For simplicity we do not distinguish

the two cases.
3Any model for w(x, t) leads to a model for e(x, t) directly.
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4 Permutation testing for Distributional Treatment Effects
We now apply both test statistics to the problem of testing for distributional treatment effects, taking a
permutation based approach. As is standard in this context we test against Fisher’s sharp null (Fisher, 1936;
Rosenbaum, 2002)4:

H0 : Yi(1) = Yi(0).

In order to apply a permutation algorithm, we must choose permutations such that the treatment vector is
exchangeable under them. That is, if we let n be the size of our dataset D = (X, Y, T) and Symn be the
permutation group of size n we want to restrict to permutations, σ ∈ Symn, such that:

(X, Y, T) d= (X, Y, Tσ) ,

where Tσ =
(
Tσ(i)

)n

i=1 is the permuted treatment vector.

A standard way to ensure that the permutations have this property is to through matching (Stuart, 2010),
where we split the data into matched sets, such that within each set we have one treated individual. These
matched sets are formed using some measure of ‘similarity’ of individuals, such as the Mahalanobis distance on
covariates, or through the propensity score. Rosenbaum (2002) argues that if this matching is exact, so that
there are no differences in propensity between matched individuals, then the treatment is exchangeable under
permutations that preserve the matched sets. That is if we let M ⊂ Symn be the subset of permutations
that only permute within matched sets and sample some σ ∈ M , then T is exchangeable under σ. Therefore
if we fix a statistic S, in our case either the DATE or DETT statistic, and randomly sample σ1, . . . , σm from
M , we have that:

S (X, Y, T) , S (X, Y, Tσ1) , . . . , S (X, Y, Tσm
) are exchangeable.

This allows means that we can define the p-value of the test as:

p = 1 +
∑m

i=1 1{S (X, Y, Tσi
) ≥ S (X, Y, T)}

m + 1 ,

where this is now a valid p-value in the sense that P (p ≤ α) ≤ α under the null. However, permuting in this
way creates computational challenges when S is one of the proposed statistics. Namely, the calculation of
these statistics requires the fitting of a propensity model and conditional mean embedding, and this would
need to be repeated for every permutation.

To resolve this we first form the matched sets, and then randomly split into train/test sets, DTr, DTe, such
that each matching set is fully contained in one of the datasets. Now let M|DTr| be the set of permutations
on D which leave DTe fixed and preserve the matching on DTr, and vice versa for DTe. We then sample N
random permutations {σ1, . . . , σN } from M|DTr|, and form the set M̃ of permutations as:

M̃N = {σ ◦ π : σ ∈ {Id} ∪ {σ1, . . . , σN }, π ∈ MDTe} ,

Then the following demonstrates by applying results from Ramdas et al. (2023) that we can form a valid
permutation test by randomly sampling permutations from M̃ :

Proposition 1. Under exact matching, if we sample τ0, . . . , τm from M̃N we have that the following is a
valid p-value:

p = 1 +
∑m

i=1 1{S (X, Y, Tτi
) ≥ S (X, Y, T)}

m + 1

for any statistic S and number of sampled permutations N .
4We note that while the test must be formulated against Fisher’s sharp null, it will generally have power against alternatives

which show distributional causal effects, so Y (1)
d

̸= Y (0).
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This alleviates the computational challenges associated with using the DATE or DETT statistics as there is
now a controllable parameter N which determines how many models must be trained. Increasing N will mean
training more models and so will decrease the variance in p, however it will incur greater computational cost.

To our knowledge, this is the first time this permutation strategy has appeared in the literature. Moreover,
this procedure could be applied to efficiently use other trainable test statistics within permutation testing,
such as standard doubly robust estimators of the causal mean or more general permutation tests for assessing
the performance of predictive models as in Ojala & Garriga (2010).

The result in Proposition 1 relies on exact matching, which is a common assumption in proving the validity
of conditional permutation tests Rosenbaum (2002). However recent results in the area have shown that
p-values arising from matched permutations are approximately valid under inexact matching (Berrett et al.,
2020; Pimentel, 2022). We expect and empirically observe that similar results hold in our case.

5 Experiments
5.1 Fit tests for Doubly Robust Counterfactual Mean Embeddings
To demonstrate the convergence properties implied by our theoretical results in Section 3 we fit our statistics
on simulated data from the following data generating processes:

X ∼ N (0, I9) p =
(

1
1 + exp (a⊤X)

)2
− EX

[(
1

1 + exp (a⊤X)

)2
]

T ∼ Ber(p) Y = b⊤X + βT + ϵ,

where ϵ ∼ N (0, σ2) and the values of a, b ∈ R9 and β, σ ∈ R are given in Appendix C. This is similar to the
setting in Muandet et al. (2021). We also simulate from:

T ∼ Ber X ∼ N (0, (1 + αT )I10) Y = fT (X) + ϵ′ ϵ′ ∼ N (0, (σ′)2)

where f0, f1 : R10 → R and α, σ′ are given in the Appendix. The setting here is the same as in Bellot &
van der Schaar (2021). For both settings we fit a linear logistic regression for the propensity score so that
the model is incorrectly specified. In first data generating process we have both-sided overlap in the true
propensity and so plots (a) and (b) in Figure 2 demonstrate that the doubly robust embeddings converge
for both interventional values. Due to an incorrectly specified propensity model the counterfactual mean
embeddings of Muandet et al. (2021) do not converge.

For the second data generating process, increasing the value of b creates a setting where the overlap is more
one-sided. As such plots (c) and (d) in Figure 2 demonstrate that only µ̂DR

Y (1) and µ̂DR
Y (1)|T =0 converge quickly

to the true embeddings.

Plots of the true propensity for both simulations can be found in Appendix C.1.

5.2 Testing For Distributional Effects on Simulated Data
We now apply these statistics to the testing of distributional causal effects where the data is simulated from:

X ∼ N (0, I9), p =
(

1
1 + exp (a⊤X)

)
, (3)

T ∼ Ber(p), Y = b⊤X + β(2Z − 1)T + ϵ, ϵ ∼ N (0, σ2) (4)

Where α, β ∈ R9 and σ ∈ R are as in Section 5.1 and the variable Z is 1, a Ber( 1
2 ) or Unif([0, 1]). The second

two settings capture when there is a distributional causal effect which does not shift the causal means.

In Figure 3 we plot the rejection rate of the tests based on four statistics, the DATE and DETT statistics
estimated without conditional mean embeddings, and the DATE and DETT statistics estimated with
conditional mean embeddings denoted by DR-DATE and DR-DETT respectively. The matching for all
statistics is done via logistic regression and we apply the permutation from Section 4. We compare our
methods against Double Machine Learning (Chernozhukov et al., 2018) and Targeted Maximum Likelihood

8



Figure 2: These plots demonstrate the convergence of the doubly robust estimators when the propensity
model is misspecified. The left plots show the embeddings required for DATE, whilst the right plots show
those needed for DETT. We vary between two data generating process given in Section 5.1, aiming to show
both sided and one sided overlap of the propensity score.

Estimation (Van Der Laan & Rubin, 2006) as baselines to effectively pick up a shift in causal means. We run
these experiments with 2000 data points, rejecting at the 0.05 significance level. Power plots showing the
rejection rates over 100 re-runs of this experiment are displayed in Figure 3.

In this experiment we observe similar performance for all distributional test statistics. We believe this is due
to the fact that both the true and estimated propensities are linear functions of the covariates, and so all
statistics will correctly fit the causal mean embeddings. Plot (a) demonstrates that when the shift is in the
mean, as expected our methods will perform worse than the baselines. This is due to the cost of targeting
distributional effects over simply mean shifts. However, plots (b) and (c) demonstrate that when the causal
effect is only distributional, our statistics can correctly reject the null, unlike these traditional methods.

5.3 Semi-Synthetic and Real World Data

Finally, to evaluate the performance of our tests within more realistic settings we evaluate on a selection of
semi-synthetic data. We evaluate on two standard semi-synthetic tasks, the infant health and development
program (IDHP) introduced in Hill (2011), the linked births and deaths data (LBIDD) (Shimoni et al., 2018).

As both of these datasets are semi-synthetic, we have access to the counterfactuals and so can simulate
realistic data under the null hypothesis. In order to prevent problems with extreme propensity scores we
remove any data for which e(x, t) < 0.03 for any value of t. We again use logistic regression matching and
weights model.
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Figure 3: Simulated tests for distributional causal effects where the β parameter controls the size of the effect.
In plot (a), β introduces a shift in the mean only, whereas in (b) and (c) the shift only affects higher moments
of the distribution. All simulations with n = 2000 samples.

Table 1: Rejection rates at the 0.05 level on semi-synthetic datasets.

Dataset Hypothesis DATE DR-DATE DETT DR-DETT DML

IDHP (n = 747) H0 0.02 ±0.03 0.05 ±0.04 0.01 ±0.02 0.03 ±0.03 0.04 ±0.04
H1 1.00 ±0 1.00 ±0 1.00 ±0 0.99 ±0.03 1.00 ±0

LBIDD (n = 1000) H0 0.02 ±0.03 0.03 ±0.03 0.00 ±0 0.00 ±0 0.17 ±0.10
H1 0.85 ±0.07 0.82 ±0.07 0.13 ±0.06 0.08 ±0.06 1.00 ±0

LBIDD (n = 2500) H0 0.03 ±0.03 0.03 ±0.03 0.00 ±0 0.00 ±0 0.00 ±0
H1 0.82 ±0.08 0.75 ±0.09 0.19 ±0.08 0.13 ±0.06 1.00 ±0

The results can be found in Table 1, which shows all kernel based test statistics produce valid p-values under
the null hypothesis. Further the DATE based test statistics demonstrate strong power against the alternative
for all three datasets. The DETT test statistic on the other hand only shows a good level of power on the
IDHP dataset, with more samples required to reject on the LBIDD dataset.

6 Conclusion
We have proposed new doubly robust estimators for the kernel mean embedding of causal distributions.
Our theoretical experimental results show that these converge in a wider array of circumstances than the
original estimators of these quantities. Further, we applied these embeddings to the problem of testing for
distributional causal effects. We used a permutation based approach for testing, and proposed a permutation
that allows us to use our doubly robust statistics within permutation testing. We prove the validity of this
permutation under exact matching and experimentally validate this approach under inexact matching. The
results show that our test statistics are able to pick up causal effects that only manifest as distributional
shifts, where traditional mean shift methods fail.

10



References
Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American mathematical society, 68

(3):337–404, 1950.

Heejung Bang and James M. Robins. Doubly robust estimation in missing data and causal inference models.
Biometrics, 61(4):962–973, 2005.

Alexis Bellot and Mihaela van der Schaar. A kernel two-sample test with selection bias. In Uncertainty in
Artificial Intelligence, pp. 205–214. PMLR, 2021.

Thomas B Berrett, Yi Wang, Rina Foygel Barber, and Richard J Samworth. The conditional permutation
test for independence while controlling for confounders. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 82(1):175–197, 2020.

Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey,
and James Robins. Double/debiased machine learning for treatment and structural parameters. The
Econometrics Journal, 21(1):C1–C68, 01 2018. ISSN 1368-4221. doi: 10.1111/ectj.12097. URL https:
//doi.org/10.1111/ectj.12097.

Yoichi Chikahara, Makoto Yamada, and Hisashi Kashima. Feature selection for discovering distributional
treatment effect modifiers. arXiv preprint arXiv:2206.00516, 2022.

Ronald Aylmer Fisher. Design of experiments. British Medical Journal, 1(3923):554, 1936.

Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring statistical dependence
with hilbert-schmidt norms. In International conference on algorithmic learning theory, pp. 63–77. Springer,
2005.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola. A kernel
two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

Steffen Grünewälder, Guy Lever, Luca Baldassarre, Sam Patterson, Arthur Gretton, and Massimilano
Pontil. Conditional mean embeddings as regressors. In Proceedings of the 29th International Coference on
International Conference on Machine Learning, pp. 1803–1810, 2012.

Jennifer L Hill. Bayesian nonparametric modeling for causal inference. Journal of Computational and
Graphical Statistics, 20(1):217–240, 2011.

Edward H Kennedy, Zongming Ma, Matthew D McHugh, and Dylan S Small. Non-parametric methods for
doubly robust estimation of continuous treatment effects. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 79(4):1229–1245, 2017.

Lihua Lei, Alexander D’Amour, Peng Ding, Avi Feller, and Jasjeet Sekhon. Distribution-free assessment of
population overlap in observational studies. Technical report, Working paper, Stanford University, 2021.

Diego Martinez-Taboada and Edward H Kennedy. Counterfactual density estimation using kernel stein
discrepancies. arXiv preprint arXiv:2309.16129, 2023.

Diego Martinez-Taboada, Aaditya Ramdas, and Edward H Kennedy. An efficient doubly-robust test for the
kernel treatment effect. arXiv preprint arXiv:2304.13237, 2023.

Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt Kusner, Arthur Gretton,
and Krikamol Muandet. Proximal causal learning with kernels: Two-stage estimation and moment
restriction. In International conference on machine learning, pp. 7512–7523. PMLR, 2021.

Jovana Mitrovic, Dino Sejdinovic, and Yee Whye Teh. Causal inference via kernel deviance measures. Advances
in neural information processing systems, 31, 2018.

Erica EM Moodie, Olli Saarela, and David A Stephens. A doubly robust weighting estimator of the average
treatment effect on the treated. Stat, 7(1):e205, 2018.

11

https://doi.org/10.1111/ectj.12097
https://doi.org/10.1111/ectj.12097


Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, Bernhard Schölkopf, et al. Kernel mean
embedding of distributions: A review and beyond. Foundations and Trends® in Machine Learning, 10(1-2):
1–141, 2017.

Krikamol Muandet, Arash Mehrjou, Si Kai Lee, and Anant Raj. Dual instrumental variable regression.
Advances in Neural Information Processing Systems, 33:2710–2721, 2020.

Krikamol Muandet, Motonobu Kanagawa, Sorawit Saengkyongam, and Sanparith Marukatat. Counterfactual
mean embeddings. Journal of Machine Learning Research, 22(162):1–71, 2021.

Markus Ojala and Gemma C Garriga. Permutation tests for studying classifier performance. Journal of
machine learning research, 11(6), 2010.

Junhyung Park, Uri Shalit, Bernhard Schölkopf, and Krikamol Muandet. Conditional distributional treatment
effect with kernel conditional mean embeddings and u-statistic regression. In International Conference on
Machine Learning, pp. 8401–8412. PMLR, 2021.

Judea Pearl. Causal inference in statistics: An overview. 2009.

Samuel D Pimentel. Covariate-adaptive randomization inference in matched designs. arXiv preprint
arXiv:2207.05019, 2022.

Aaditya Ramdas, Rina Foygel Barber, Emmanuel J Candès, and Ryan J Tibshirani. Permutation tests using
arbitrary permutation distributions. Sankhya A, pp. 1–22, 2023.

Thomas S. Richardson and James M. Robins. Single world intervention graphs (SWIGs): A unification of the
counterfactual and graphical approaches to causality. Center for the Statistics and the Social Sciences,
University of Washington Series. Working Paper, 128(30):2013, 2013.

James M Robins and Andrea Rotnitzky. Semiparametric efficiency in multivariate regression models with
missing data. Journal of the American Statistical Association, 90(429):122–129, 1995.

Paul R Rosenbaum. Conditional permutation tests and the propensity score in observational studies. Journal
of the American Statistical Association, 79(387):565–574, 1984.

Paul R Rosenbaum. Observational studies. In Observational Studies, pp. 1–17. Springer, 2002.

Donald B Rubin. Estimating causal effects from large data sets using propensity scores. Annals of internal
medicine, 127(8_Part_2):757–763, 1997.

Shubhanshu Shekhar, Ilmun Kim, and Aaditya Ramdas. A permutation-free kernel two-sample test. Advances
in Neural Information Processing Systems, 35:18168–18180, 2022.

Y. Shimoni, C. Yanover, E. Karavani, and Y. Goldschmnidt. Benchmarking Framework for Performance-
Evaluation of Causal Inference Analysis. ArXiv preprint arXiv:1802.05046, 2018.

Rahul Singh, Maneesh Sahani, and Arthur Gretton. Kernel instrumental variable regression. Advances in
Neural Information Processing Systems, 32, 2019.

Rahul Singh, Liyuan Xu, and Arthur Gretton. Generalized kernel ridge regression for nonparametric structural
functions and semiparametric treatment effects. arXiv e-prints, pp. arXiv–2010, 2020.

Le Song, Jonathan Huang, Alex Smola, and Kenji Fukumizu. Hilbert space embeddings of conditional
distributions with applications to dynamical systems. In Proceedings of the 26th Annual International
Conference on Machine Learning, pp. 961–968, 2009.

Elizabeth A Stuart. Matching methods for causal inference: A review and a look forward. Statistical science:
a review journal of the Institute of Mathematical Statistics, 25(1):1, 2010.

Anastasios A. Tsiatis. Semiparametric Theory and Missing Data. Springer, 2006.

Mark J Van Der Laan and Daniel Rubin. Targeted maximum likelihood learning. The international journal
of biostatistics, 2(1), 2006.

12



A Proofs
For ease of writing, throughout this appendix we will let:

r(x, t) := µY |X=x,T =t (5)

r̂n(x, t) := µ̂
(n)
Y |X=x,T =t (6)

A.1 Proof of Theorem 1
This proof follows under the following standard assumptions5:

• The propensity is uniformly bounded away from zero. So there exist an ϵ > 0 such that e(x, t) > ϵ for all x
in the support of the covariates.

• We assume that the estimated propensity score is uniformly bounded away from 0 and 1 on the support of
P (X). So for all x in the support of P (X) and for all n we have δ < ên(x, t) for some δ > 0.

Now let m be the size of the test set we average over. So m = O(n) where n is the sample size.

First note due to the consistency property we can write k(yi, ·)1{ti = t} = k(yi(t), ·)1{ti = t}. This allows us to
rewrite the DR estimator as:

µ̂DR
Y (t) = 1

m

m∑
i=1

{
ℓ(yi(t), ·) + (1{ti = 1} − ên(xi, t)) (ℓ(yi(t), ·) − r̂n(xi, t))

ên(xi, t)

}
.

Now letting:

ϵDR
Y (t) = 1

m

m∑
i=1

(1{ti = t} − ên(xi, t)) (ℓ(yi(t), ·) − r̂n(xi, t))
ên(xi, t) ,

we can write:

∥∥µY (t) − µ̂DR
Y (t)
∥∥

HY
≤

∥∥∥∥∥µY (t) − 1
m

m∑
i=1

ℓ(yi(t), ·)

∥∥∥∥∥
HY

+
∥∥ϵDR

Y (t)
∥∥

HY
.

As 1
m

∑m

i=1 ℓ(yi(t), ·) is an unbiased estimator for µY (t) with parametric convergence rate O(m− 1
2 ) = O(n− 1

2 ), the
convergence rate of our estimator is entirely determined by the convergence rate of

∥∥ϵDR
Y (t)

∥∥
HY

so consider:

E
∥∥ϵDR

Y (t)
∥∥2

HY

= E

[
1

m2

m∑
i,j=1

(1{ti = t} − ên(xi, t)) (1{tj = t} − ên(xj , t)) ⟨yj(t) − r̂n(xj , t), yi(t) − r̂n(xi, t)⟩HY

ên(xi, t)ên(xj , t)

]

= E

[
1

m2

∑
i ̸=j

(1{ti = t} − ên(xi, t)) (1{tj = t} − ên(xj , t)) (⟨yj(t) − r̂n(xj , t), yi(t) − r̂n(xi, t)⟩HY )
ên(xi, t)ên(xj , t) (7)

+ 1
m2

∑
i=j

{ (1{ti = t} − ên(xi, t)) ∥yi(t) − r̂n(xi, t)∥HY

ên(xi, t)

}2
]

(8)

Now let (X, T, Y (t)) be a random sample. We may write the term (8) as:

1
m

E
{ (1{T = t} − ên(X, t)) ∥Y (t) − r̂n(X, t)∥HY

ên(X, t)

}2

.

5These are the same as in for example Kennedy et al. (2017)
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By applying bounded propensity and bounded kernels we have that this expectation is bounded, which gives the term
is bounded by C1/n. Now for the first term let (X̃, T̃ , Ỹ (t)) be a second independent sample. We may write (7) as:

m − 1
m

E

[
(1{T = t} − ên(X, t))

(
1{T̃ = t} − ên(X̃, t)

) 〈
Y (t) − r̂n(X, t), Ỹ (t) − r̂n(X̃, t)

〉
HY

ên(X, t)ên(X̃, t)

]

=m − 1
m

E

[
E

[
(1{T = t} − ên(X, t))

(
1{T̃ = t} − ên(X̃, t)

) 〈
Y (t) − r̂n(X, t), Ỹ (t) − r̂n(X̃, t)

〉
HY

ên(X, t)ên(X̃, t)

∣∣∣∣∣X, X̃

]]

=m − 1
m

E

[
E

[
(1{T = t} − ên(X, t))

(
1{T̃ = t} − ên(X̃, t)

)
ên(X, t)ên(X̃, t)

∣∣∣∣∣X, X̃

]
E
[〈

Y (t) − r̂n(X, t), Ỹ (t) − r̂n(X̃, t)
〉

HY

∣∣∣X, X̃
]]

=m − 1
m

E

[
(e(X, t) − ên(X, t))

(
e(X̃, t) − ên(X̃, t)

)
ên(X, t)ên(X̃, t)

〈
r(X, t) − r̂n(X, t), r(X̃, t) − r̂n(X̃, t)

〉
HY

]

≤m − 1
m

(
E

[(
(e(X, t) − ên(X, t))

(
e(X̃, t) − ên(X̃, t)

)
ên(X, t)ên(X̃, t)

)2]
E
[〈

r(X, t) − r̂n(X, t), r(X̃, t) − r̂n(X̃, t)
〉2

HY

]) 1
2

≤m − 1
m

E

[(
e(X, t) − ên(X, t)

ên(X, t)

)2
]
E
[
∥r(X, t) − r̂n(X, t)∥2

HY

]
≤C2E

[
(e(X, t) − ên(X, t))2]E [∥r(X, t) − r̂n(X, t)∥2

HY

]
.

Therefore we have:

E
∥∥ϵDR

Y (t)
∥∥2

HY
≤ C1

m
+ C2E

[
(e(X, t) − ên(X, t))2]E [∥r(X, t) − r̂n(X, t)∥2

HY

]
.

This gives that the rate of convergence is controlled by E (e(X, t) − ên(X, t))2 and E ∥Y (t) − r̂n(X, t)∥2
HY

. By applying
Jensen’s inequality we have E

∥∥ϵDR
Y (t)

∥∥
HY

= O(γr,nγe,n) and so by Markov’s inequality
∥∥ϵDR

Y (t)

∥∥
HY

= OP (γr,nγe,n).

A.2 Proof of Theorem 2

The proof follows a similar structure to that of Theorem 1 where we now have:

∥∥µY (t)|t=t′ − µ̂DR
Y (t)|t=t′

∥∥
HY

≤

∥∥∥∥∥µY (t) − 1
nt′

n∑
i=1

1

{
ti = t′} ℓ(yi(t), ·)

∥∥∥∥∥
HY

+

∥∥∥∥∥
(

1
nt′

n∑
i=1

1

{
ti = t′} ℓ(yi(t), ·)

)
− µ̂DR

Y (t)|t=t′

∥∥∥∥∥ .
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Now we have:(
1

nt′

n∑
i=1

1{ti = t′}ℓ(yi(t), ·)

)
− µ̂DR

Y (t)|t=t′

= 1
nt′

n∑
i=1

{
1

{
ti = t′} ℓ(yi(t), ·) −

(
1{ti = t} w(xi, t) (ℓ(yi(t), ·) − r(xi, t)) + 1{ti = t′}r(xi, t)

)}
= − 1

nt′

n∑
i=1

{
1{ti = t} w(xi, t) (ℓ(yi(t), ·) − r(xi, t)) + 1{ti = t′} (r(xi, t) − ℓ(yi(t), ·))

}
= − 1

nt′

n∑
i=1

{
(ℓ(yi(t), ·) − r(xi, t))

(
1{ti = t} w(xi, t) − 1

{
ti = t′})}

= − 1
nt′

n∑
i=1

{
(ℓ(yi(t), ·) − r(xi, t))

(
1{ti = t} w(xi, t) − 1{ti = t′}

)}
= 1

nt′

n∑
i=1

{
(ℓ(yi(t), ·) − r(xi, t))

[
1{ti = t}

(
1 − e(xi, t)

e(xi, t)

)
− 1{ti = t′}e(xi, t)

e(xi, t)

]}
= 1

nt′

n∑
i=1

{
(ℓ(yi(t), ·) − r(xi, t)) 1{ti = t} − 1{ti = t} e(xi, t) − 1{ti = t′} e(xi, t)

e(xi, t)

}
= 1

nt′

n∑
i=1

{
(ℓ(yi(t), ·) − r(xi, t)) 1{ti = t} − e(xi, t)

e(xi, t)

}
= nt′

n
ϵDR

Y (t)

Now as nt′ /n converges to a constant at rate n− 1
2 the convergence rate just depends on the rate that ϵDR

Y (t) tends to
zero. Therefore the analysis in the previous proof establishes the rate.

A.3 Proof of Proposition 1
Ramdas et al. (2023) demonstrate that we can test the null hypothesis

H0 : X1, . . . , Xn are exchangeable

from a fixed set of permutations S ⊂ Symn (not necessarily a group) using a statistic T by randomly sampling
permutations σ0, . . . , σM from S uniformly and computing:

p =
1 +

∑M

i=1 1

{
T (X

σi◦σ−1
0

) ≥ T (X)
}

M + 1 , (9)

where Xσ =
(
Xσ(1), . . . , Xσ(n)

)
is the permuted data. Ramdas et al. show that p is a valid p-value in the sense that

P (p ≤ α) ≤ α under the null hypothesis.

In our method the data is placed into bins, denoted by Bi, where i ranges over the total number of bins k, and under
the assumption of exact matching the null hypothesis is:

H0 : TBi1
, . . . , TBin

are exchangeable for each i.

Further we have split the bins into training a BTr = {B1, . . . , Bm} and BTe = {Bm+1, . . . , Bk}. For Bi ∈ BTe we
set the possible permutations to be S|Bi| i.e. the full set of permutations on Bi. For each set Bj ∈ BTe we sample
σ1j , . . . , σN+1 from S|Bj | and set Sj = {σ1j , . . . , σN+1}. We then set the total set of permutations S to be:

S =

(
m×

j=1

Sj

)
×

(
k×

j=m+1

S|Bi|

)
As the samples in each bin are exchangeable, and samples in distinct bins are independent, we have that our data
is exchangeable under the permutations in S. Therefore we can sample from S as in (9) to produce a valid p-value
under H0.

To go from this to the form in the proof note that sampling the random permutations for Sj , choosing a random
permutation σ0 from Sj and then taking σi ◦ σ−1

0 is equivalent to sampling N random permutations, σ1j , . . . , σN and
then sampling a random permutation from S̃ = {Id, σ1j , . . . , σN }.
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B Derivation of Test Statistics

B.1 Derivation of M̂MD
2
DR[Y (1), Y (0), HY ]

To derive (M̂MDDR[Y (1), Y (0), HY ])2 we let e(x) = e(x, 1) = P (T = 1 | X = x). We now write:

µ̂DR
Y (1) − µ̂DR

Y (0) = 1
m

m∑
i=1

{
ti (ℓ(yi, ·) − r̂(xi, 1))

ê(xi)
+ r̂(xi, 1) −

(
(1 − ti) (ℓ(yi, ·) − r̂(xi, 0))

1 − ê(xi)
+ r̂(xi, 0)

)}
= 1

m

m∑
i=1

ti − e(xi)
e(xi)(1 − e(xi))

(ℓ(yi, ·) − (1 − e(xi))r̂(xi, 1) + e(xi)r̂(xi, 0)) .

Now we have r̂(xi, 1) = k⊤
1 (xi)W1ℓ1 and r̂(xi, 0) = k⊤

0 (xi)W0ℓ0. Further for ease of writing we let:

k̃⊤
0 (xi) = e(xi)k⊤

0 (xi),

k̃⊤
1 (xi) = (1 − e(xi))k⊤

1 (xi),

α(xi) = (ti − e(xi))
(e(xi)(1 − e(xi))

.

This allows us to write the above as

= 1
m

m∑
i=1

α(xi)
(
ℓ(yi, ·) + k̃⊤

0 (xi)W0ℓ0 − k̃⊤
1 (xi)W1ℓ1

)
,

and plugging this in we obtain

(M̂MDDR[Y (1), Y (0), HY ])2 :=
∥∥µ̂DR

Y (1) − µ̂DR
Y (0)

∥∥2
HY

=
∑
i,j

α(xi)α(xj)
〈
ℓ(yi, ·) + k̃⊤

0 (xi)W0ℓ0 − k̃⊤
1 (xi)W1ℓ1, ℓ(yj , ·) + k̃⊤

0 (xj)W0ℓ0 − k̃⊤
1 (xj)W1ℓ1

〉
=
∑
i,j

α(xi)α(xj)
(
ℓ(yi, yj) + k̃⊤

0 (xi)W0ℓ0(yj) + k̃⊤
0 (xj)W0ℓ0(yi) − k̃⊤

1 (xi)W1ℓ1(yj) − k̃⊤
1 (xj)W1ℓ1(yi)

)
+
∑
i,j

α(xi)α(xj)
(
k̃⊤

0 (xi)W0L0W0k̃0(xj) + k̃⊤
1 (xi)W1L1W1k̃1(xj) − k̃⊤

0 (xi)W0L0,1W1k̃1(xj) − k̃⊤
1 (xi)W1L0,1W0k̃0(xj)

)
.

Now we introduce some new notation: for a variable we will use a subscript to denote the value of T we condition
and a superscript to denote if the variable is in training or test. So XTe

0 is the test points with T = 0. Further let
K(X, X̃) = (k(xi, x̃j))i=nX ,j=nX̃

i,j=1 , so the kernel matrix where rows. This allows us to write the test statistic as:

α⊤
(

L(Y Te, Y Te) + 2diag(e)K(XTr
0 , XTe)⊤W0L(Y Tr

0 , Y Te) − 2diag(1 − e)K(XTr
1 , XTe)⊤W1L(Y Tr

1 , Y Te)

+ diag(e)K(XTr
0 , XTe)⊤W0L(Y Tr

0 , Y Tr
0 )W0K(XTr

0 , XTe)diag(e)

+ diag(1 − e)K(XTr
1 , XTe)⊤W1L(Y Tr

1 , Y Tr
1 )K(XTr

1 , XTe)W1diag(1 − e)

− 2diag(e)K(XTr
0 , XTe)⊤W0L(Y Tr

0 , Y Tr
1 )K(XTr

1 , XTe)W1diag(1 − e)
)

α.
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B.2 Derivation of M̂MDDR

[
{Y (1) | T = 0} , {Y (0) | T = 0} , HY

]
We now derive the closed form of the estimator based on the effect of treatment on the treated for the case of a binary
treatment. Again we begin by deriving a simpler form of the difference between mean embeddings:

µ̂{Y (1)|T =0} − µ̂{Y (0)|T =0} = µ̂{Y (1)|T =0} − µ̂{Y |T =0}

= 1
n0

n∑
i=1

(
tiŵ(xi, 1) (ℓ(yi, ·) − r̂(xi, 1)) + (1 − ti) r̂(xi, 1)

)
− 1

n0

n∑
i=1

(1 − ti) ℓ(yi, ·)

= 1
n0

n∑
i=1

(tiŵ(xi, 1) − (1 − ti)) (ℓ(yi, ·) − r̂(xi, 1))

= 1
n0

n∑
i=1

(
ti − e(xi)

e(xi)

)
(ℓ(yi, ·) − r̂(xi, 1))

Now we have that r̂(xi, 1) = µY |X=x,T =1 = k⊤
1 (x)W1l1 and we also let:

β(xi) = t − e(xi)
e(xi)

Then we can write the full test stat as:

∥∥µ̂{Y (1)|T =0} − µ̂{Y (0)|T =0}
∥∥2 = 1

n2
0

∑
i,j

β(xi)β(xj)
〈
ℓ(yi, ·) − k⊤

1 (xi)W1l1, ℓ(yj , ·) − k⊤
1 (xj)W1l1

〉
= 1

n2
0

∑
i,j

β(xi)β(xj)
(
ℓ(yi, yj) − k⊤

1 (xi)W1l1(xj) − k⊤
1 (xi)W1l1(xi) +

+ k⊤
1 (xj)W1L1,1W1k⊤

1 (xj)
)

,

giving the full test statistic as:

β⊤ (L(Y Te, Y Te) − 2K(XTr
1 , XTe)⊤W1L(Y Tr

1 , Y Te) + K(XTr
1 , XTe)⊤W1L(Y Tr

1 , Y Tr
1 )W1K(XTr

1 , XTe)
)

β.

C Simulation Details
For the simulation in Section 5.1 we select:

a = [0.1, 0.2, 0.3, 0.4, 0.5, 0.1, 0.2, 0.3, 0.4]
b = [0.5, 0.4, 0.3, 0.2, 0.1, 0.4, 0.3, 0.2, 0.1]
σ = 0.2
β = 3,

and for the second experiment we let:

f0(x) = x1 f1(x) = x2
1

α = 0.3 σ = 0.2.

C.1 Fit Experiment Plots
Here we include the propensity plots for the simulated data in the fit plots:

17



We can see in the second plot with one sided overlap a much higher proportion of datapoints are concentrated at
extreme propensities.

C.2 Simulated Distributional Test Plots
Here we include some plots for the distribution in the experiments testing for causal effects on simulated data:

And also the distribution over propensity scores:
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