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Abstract

Bias and explainability are growing topics which are extremely important to help
us understand large language models and how they perform. Understanding how
these models work provides insights that aid in training them more efficiently
and effectively, in addition to designing more factual and less ambiguous models.
In this study we propose the use of parameter-efficient fine-tuning (PEFT) for
measuring bias, which is both accessible and computationally affordable. We
design two datasets with identical questions and contrasting young and old oriented
answers. By designing experiments and analyzing them, we demonstrate the value
of PEFT in measuring bias and helping us take a step in unveiling the black box
nature of large language models. Our experiments across three models (Qwen
1.8B, Llama 7B, and Yi 6B) demonstrated consistent bias patterns, with models
typically converging faster on the old oriented dataset, although with discernible
convergence margins. Additionally, we validated the results using statistical tests
to highlight the robustness of our methodology. This approach could be valuable
especially for models employed in sensitive domains such as law and healthcare
where consistent logical reasoning regardless of demographics is essential.

1 Introduction

Large Language Models (LLMs) are progressively becoming a part of our daily lives [1l]. They
facilitate tasks including writing, automation, and complex reasoning, yet a fundamental issue remains:
the black-box nature of these models [2]. The internal mechanisms that lead to an LLM’s outputs are
not transparent, which makes the task of evaluating and understanding them quite challenging. There
is still no widespread or accepted method to measure this bias, a problem that creates a real risk to
fair performance and trustworthy deployment.
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Bias detection is critical in reasoning tasks, as biased models are more likely to make mistakes and
lead to flawed and unreliable outputs, which would be hazardous in critical applications. This is
an especially challenging task in LLMs. LLMs are fundamentally different from other models, as
they are probabilistic models with a vast output space. This means that, if we were to consider a
task of classifying some items into A and B groups, the model would either be biased towards the A
group or the B group; however, LLM outputs simply do not work this way. Given this, even defining
what bias means in this context requires careful consideration and study. Another issue stems from
the diverse domains that LLMs cover. A model could perform well in one domain and be biased
in another. There are complicated issues that can emerge from the sophisticated methods of LLM
training and their training datasets [3| 14].

The field of explainable artificial intelligence (Al) offers methods to examine these complex systems.
Tools such as SHapley Additive exPlanations (SHAP) [5] and Local Interpretable Model Agnostic
Explanation (LIME) [6] and other parameter-efficient approaches can provide valuable post-hoc
insights; they give us some ability to understand why a model made a specific prediction. Yet, this
local form of explainability does not adequately address the challenge of systemic bias. They reveal
little about the general tendencies of a model. The lack of a definitive measure for bias in LLMs
leaves significant room for research into alternative metrics and improved detection methods.

This paper proposes a computationally efficient strategy for measuring bias in large models. We
investigate whether LLM bias can be measured through PEFT performance metrics, using training
dynamics as indicators of underlying representational preferences. Our intuition is that LLMs exhibit
cognitive-like biases through their learned statistical representations, similar to how humans show
systematic preferences. We hypothesize that a model will adapt with greater efficiency to a domain
that aligns with its pre-existing biases or will exhibit measurable “resistance” when it must adapt to
contradictory or conflicting data. Our work, therefore, re-frames the convergence time during PEFT
as a quantitative measure to gain insights into the underlying mechanisms of LLMs.

Many methods in explainable Al rely solely on the model outputs; however, this work proposes that
the training dynamics themselves can serve as a direct measure of bias. We utilize PEFT to create a
controlled experimental environment, where metrics such as loss trajectories and convergence rates
can be used to measure the model’s quantifiable “resistance” to a contrasting dataset. The use of
PEFT makes this approach computationally efficient and highly modular; adapters can be swapped
to measure different biases in a controlled manner, which is a significant advantage compared to
other, less structured evaluations. The implications of this methodology are practical and far-reaching,
particularly for sensitive domains such as healthcare, finance, and law, where any bias, including
demographic biases, could compromise the model’s reasoning capabilities and reliability. This
research lays the groundwork for a scalable compliance check, as well as a critical tool for the regular
auditing and updating of models in sensitive and more delicate industries.

2 Related work

Huang & Huang [7]] emphasize that the generative models can have widespread, unexpected, and
uninterpretable biases. They suggest that these biases do not merely reflect human biases in training
but can be the product of different machine learning processes. Researchers [8] discuss how changing
the model’s decoding settings (such as number of tokens, temperature, and top-k) can change a
model’s bias. This shows us why measuring the bias of a model solely based on its output could
be a misleading practice. As with many other deep learning methods, LLMs are inherently black
box models, so researchers use different interpretability techniques to address this problem. For
example, Topko et al. [9], use LIME to flag words responsible for bias in the text and replace them.
Some researchers [[10] categorize biases into two categories: fine-grained local biases and high-level
global biases. Local biases represent the predictions generated at a particular time step relating to
undesirable associations, while global biases are related to entire generated sentences across multiple
phrases.

On the other hand, there is also local and global analysis of models in explainable LLMs [[L1]. Based
on this categorization, SHAP and LIME would fall into the local group of explainability, since these
methods alter input features to observe changes in the outputs. Global analysis aims to understand
knowledge encoded in the hidden states of a particular model. Two primary approaches for global
analysis of models include knowledge probing methods and mechanistic interpretability. An example



of knowledge probing methods is structural probe for finding syntax in word representations [12]. The
authors propose a structural probe which evaluates whether syntax trees are systematically embedded
in a neural network representation space. Another work in this area is COPEN: Probing Conceptual
Knowledge in Pre-trained Language Models [13]]. COPEN, which aims to understand what pre-
trained language models know, probes conceptual knowledge and considers three probing tasks:
conceptual similarity judgment (CSJ), conceptual property judgment (CPJ) and conceptualization
in contexts (CiC). This type of probing helps to reveal the internal knowledge structure of models.
Circuit-based mechanistic interpretability is another method used for unveiling global bias in LLMs.
Wang et al. use a mechanistic interpretability technique called circuit analysis to understand how
an LLM performs during fine-tuning, especially in cases when models perform poorly. The authors
employ Edge Attribution Patching with Integrated Gradients (EAP-IG), and introduce a “robustness”
metric to measure the circuit stability, and they analyze circuit evolution at different checkpoints
during fine-tuning. They introduce circuit-aware Low-Rank Adaptation (LoRA) which achieves
2.46% improvement over standard LoRA with a similar number of parameters and demonstrate that
mechanistic interpretability can be used to enhance the current fine-tuning methods.

3 Methodology

We begin with the creation of the datasets, which will be used for fine-tuning. We start by curating a
set of 100 questions across different domains, including management, sales, and technical operations.
The distribution of these question categories is detailed in Figure[I] For each of the 100 questions,
we generate two distinct, contrasting answers, guided by the specific age-associated terms shown
in Figure 2] We used Claude Sonnet 4 (Anthropic, 2025) to generate these datasets. The first set of
answers formed the Old dataset, which used vocabulary associated with older generations, while the
second set formed the Young dataset, which used vocabulary associated with younger generations.
For example, to the question, “What makes someone good at market research?”, the Old dataset
provided the answer, “Experienced researchers who understand traditional market dynamics and
proven research methodologies.” In contrast, the Young dataset answered, “Fresh researchers who
understand modern consumer behavior and contemporary market analysis techniques.”
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Figure 1: Categories of the dataset questions

For our experiments, we used a Qwen 1.8B parameter model [13], a Llama 2 7B [16] and Yi 6B
[17]]. We chose Llama and Yi because Yi utilizes the same architecture as Llama (with some minor
differences); however, it is trained using diversity-focused training methods to ensure balanced
performance across different domains. Additionally, we tested our model on Qwen to show how
this approach works in different models. We fine-tuned these models using the parameter-efficient
LoRA method [18]]. The LoRA configuration used a rank of 8, an alpha of 32, an effective batch
size of 16, and a learning rate of 4 x 1075 for the Qwen model and 1 x 1075 for Llama and Yi,



implemented with the ms-swift library [19]. The LoRA method updates the pre-trained weights (11)
by the addition of a low-rank decomposition (AW = BA), which keeps the original weights frozen.

To assess our hypothesis, we designed an experiment with two distinct phases. In the first phase,
which we call direct fine-tuning, we trained the base model separately on the Old and Young datasets
(Figure[3). In the second phase, sequential fine-tuning, a model was first trained on one dataset, and
its parameters were then merged with the base model before it was trained on the opposite dataset.

To quantify the bias from our experimental results, we defined two metrics based on the training
steps required to reach the desired accuracy threshold. The first, the Bias Score, measures the effort
required to converge to the young oriented dataset relative to the old oriented dataset. It is calculated
with the following formula:

StepsYoung - Stepsold

Bias Score =
Stepsoiq

ey

The second metric, the Asymmetry Ratio, quantifies the model’s asymmetry in convergence rate for
sequential training on the contrasting datasets. It is calculated as:

Steps
Asymmetry Ratio = M_
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Young-associated: Old-associated:

teenager, millennial, young adult, senior, elderly, retiree, boomer, vet-
Gen Z, college student, intern, junior, eran, experienced, mature, seasoned,
emerging, fresh, new graduate elder, golden years

Figure 2: Age-associated terms used for generating answers.

4 Results

We conducted two experiments using the Young and OlId datasets on each of the models. The first
experiment is designed to demonstrate bias in LLMs and the second experiment which is conducted
on Qwen 1.8B is designed to show that the results are reliable and to validate reproducibility.

Qwen 1.8B Results In the first experiment, we measured how many training steps were required
and how long it took each model to reach 85% accuracy. The results in Figure fa] show that the model
trained first on the young dataset, then on the old dataset (My _, o) reached 85% accuracy the fastest,
in about 50 training steps and 358 seconds. On the other hand, the model trained on the young dataset
(My) had the largest number of training steps and reached 85% accuracy in 100 training steps and
716 seconds. The other two models performed between these extremes: the model trained only on the
old dataset (M) and the model trained first on the old dataset, then on the young dataset (Mo _,y).
The Mo model took about 75 training steps and 539 seconds, while the Mo _,y model took about 85
steps and 608 seconds. The total training time for each model in this experiment is presented in Table

The second experiment was done with the same scheme but for a fixed 10 epochs and repeated five
times with random seeds. The results of this experiment are shown in Figure [5] which plots the
mean token accuracy and the confidence interval from these 5 experiments. These results show that
the My _,o model converges fastest, consistent with the previous experiment, followed by the Mo,
Mo—_v, and finally My . Additionally, similar to the first experiment, we can see that Mo_,y starts
out with faster initial accuracy, but Mo eventually catches up and reaches a better final accuracy.

We also performed a statistical significance test on the 5 runs of the second experiment to ensure
reproducibility. As shown in Figure[5] the narrow 98% confidence intervals demonstrate consistent
results across runs for each model. Additionally, the non-overlapping intervals between different
models confirm statistically significant performance differences between the four training conditions.

To understand if the observed differences in our results are statistically significant, we used two
statistical tests: Analysis of Variance (ANOVA) [20] and Tukey’s honestly significant difference
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Figure 3: Summary of experiment one: The base model is trained on dataset Y (Young dataset) or
dataset O (Old dataset), producing My and My, which are then trained on the opposite dataset to
yield My 0 and Mo_,y.
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Figure 4: Experiment one with four configurations for Qwen, Llama 2, and Yi.

(HSD) test [21]. We first utilized a one-way ANOVA test to determine if any significant performance
variation exists across the four training conditions. The null hypothesis (HO) for this test was that the
mean final accuracies of all four groups are equal. The results showed an F-statistic of 2779.1 with a p-
value < 0.001, which leads us to reject the null hypothesis. This confirms that a statistically significant
difference exists somewhere among the four conditions. To identify which specific pairs of conditions
differ, we then applied Tukey’s HSD test. The results of this post-hoc analysis demonstrated that all
six pairwise comparisons were statistically significant (p < 0.05), as every comparison rejected the
null hypothesis of equal means. This provides strong evidence that the model performs distinctly in
each of the four cases, supporting the interpretation that the model exhibits biased behavior toward
age-associated language patterns.

Llama 7B Results Similar to the example of Qwen 1.8B, here we also run the first experiment
with young and old datasets and report the results on the number of steps it takes for each setting to
reach 85% accuracy. Results in Figure 4b|show that the model trained first on the young dataset, then
on the old dataset (My _, o) reached 85% accuracy the fastest, in 30 training steps and 641 seconds.
On the other hand, the model trained on the young dataset (My-) had the largest number of training
steps and reached 85% accuracy in about 45 training steps and 1068 seconds. The other two models
performed between these two. The Mo model took about 35 training steps and 746 seconds, while
the Mo _y model took 40 steps and 861 seconds to reach the 85% threshold.

Yi 6B Results The Yi model was trained with diverse and balanced instruction-tuning data, which
may contribute to its more uniform performance across domains. The results show that unlike other
two models, Yi 6B converges with the same number of steps (about 55 steps and 1400 seconds) on the
young and old datasets, as shown in figure [dc] This indicates balanced treatment of both young My
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Figure 5: Results of Experiment two with four configurations across 5 random seeds, including mean
performance and a confidence interval of 98%.

and old My, datasets and minimal preference in sequential fine-tuning approaches (40 steps and 809
seconds in the young then old model and 45 steps and 1003 seconds in the old then young model).

5 Discussion

Table 1: Time to Reach (TTR) accuracy at 85% in seconds, and mean training speed (iter/s). The
accuracy is defined as the number of correctly predicted tokens divided by the total number of tokens.

Model Qwen 1.8B Llama 2 7B Yi 6B

Dataset TTR 85% Speed TTR85% Speed TTR85% Speed
Old 539.0 0.139 746.0  0.047 1401.0  0.050
Young 716.0 0.139 1068.0  0.047 1403.0 0.050
Old — Young 608.0 0.140 861.0 0.046 1003.0  0.050
Young — Old 358.0 0.139 641.0 0.047 809.0 0.049

Our analysis reveals distinct bias patterns across architectures. Both Qwen 1.8B (33% Bias Score,
1.88 asymmetry) and Llama 7B (28% Bias Score, 1.33 asymmetry) demonstrate clear preference
for “old” vocabulary, with faster convergence and lower training steps required. In contrast, Yi 6B
shows balanced behavior (zero Bias Score, 1.12 asymmetry), suggesting similar treatment of both
vocabulary sets. This variation across models validates our methodology’s ability to detect both the
presence and absence of bias, which makes it a reliable tool for model evaluation and selection. The
results suggest that the Yi model exhibited less bias in our experiments compared to other models.
Given that Yi uses a similar architecture to Llama 2, we hypothesize that this performance may
arise from Yi’s balanced instruction tuning and high-quality dataset. This has two implications: first,
training data composition and training methods may play a stronger role than architecture in shaping
bias. Second, our method could potentially be used to evaluate the data quality of different models in
the future.

The consistency between Qwen and Llama, combined with Yi’s balanced performance, demonstrates
that our PEFT-based approach successfully captures genuine representational preferences rather than
random variation or task difficulty differences. Understanding these bias patterns has important impli-
cations for reasoning reliability. Models exhibiting demographic biases may produce inconsistent
conclusions when reasoning about identical scenarios presented with different age-associated vocabu-
lary. In domains like healthcare or legal analysis, such inconsistencies could lead to systematically
different recommendations based on implicit demographic assumptions rather than logical merit.

The modular nature of PEFT also suggests this approach could be extended to test other forms of
bias that might similarly affect reasoning consistency. This could establish a comprehensive bias
evaluation framework for critical applications.



6 Conclusion & Future Work

We proposed a new method to measure bias in LLMs using PEFT with two contrasting datasets and
evaluated the method on three language models. This approach contributes to explainability in large
models while remaining computationally efficient, since PEFT methods are designed to require fewer
resources. Additionally, measuring bias from model outputs is challenging, often requiring human
evaluation for precise conclusions.

We acknowledge that the scope of this work is limited to age-related vocabulary bias and a synthetic
dataset that might not sufficiently represent the full scope of bias in language models. The proposed
method can, however, become an initial stepping stone in the study of bias in large models through
language proxies like the dataset types used here. This can serve as a basis for future work, which
will potentially lead to a comprehensive method to study bias and the debiasing of models.

Studying different PEFT methods, exploring efficiency techniques [22]], and normal fine-tuning, as
well as using more diverse datasets including real-world opposing data, are some of the potential
directions to explore. Future work could also examine how these bias detection methods relate to
reasoning consistency, testing whether models with lower bias scores exhibit more reliable reasoning
across demographic contexts. This approach can also be used to evaluate the training methodology of
language models and potentially serve as a reliable tool in assessing and auditing evolving models
such as those regularly updated in healthcare scenarios. We hope this work will help establish more
explainable approaches, along with more balanced methods for training and evaluation, while keeping
such approaches efficient and accessible.
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