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Abstract—This paper presents a hybrid evolutionary algo-
rithms and deep reinforcement learning (EA–DRL) optimisation
framework for fast-settling multi-stage all-digital phase-locked
loops (ADPLL). To address the coupled trade-offs among lock
time, phase noise, overshoot, and robustness, a structure-aware
NSGA-III algorithm (SA-NSGA-III) is developed to generate
high-quality Pareto optimal static parameters that preserve the
physical consistency of two-stage ADPLL dynamics. Based on
this optimised baseline, a DRL controller based on twin delayed
deep deterministic policy gradient (TD3) is used to fine-tuning
the loop gain in real time to enhance transient convergence
and steady-state accuracy. Experimental results demonstrate that
the proposed framework achieves significant improvements in
settling speed, jitter performance, and robustness to process,
supply voltage, and temperature (PVT) variation compared
to conventional static designs, reducing lock time by up to
98% during frequency transitions and substantially improving
dynamic response performance.

Index Terms—EA, DRL, ADPLL

I. INTRODUCTION

High-performance phase-locked loops (PLLs) are essential
in modern communication systems, clock generation, and
radar platforms [1], which enable frequency synthesis and
phase synchronisation by converting stable reference frequen-
cies to tunable outputs with similar stability [2]. In dynamic
environments such as 5G networks [3] and agile radars [4],
the performance of PLL affects acquisition speed, frequency-
tracking accuracy, and resistance to jamming and multipath.
As systems advance to higher millimetre wave frequencies [5],
stricter demands require optimising bandwidth, phase noise,
power efficiency, and settle time.

Traditional PLL designs that employ static parameter con-
figurations face an inherent trade-off among acquisition speed,
locking accuracy, and environmental robustness [6]. To over-
come these trade-offs, multistage or gear-shifted PLL topolo-
gies have been proposed [7], [8]. However, parameter selec-
tion in these architectures often relies on complex analytical
derivations or empirical heuristics, which can be cumbersome
and may not yield optimal results. Furthermore, real-world
operating conditions introduce persistent disturbances, includ-
ing fluctuations in process, supply voltage, and temperature

(PVT) variation, and external noise, all of which continuously
affect loop dynamics [9]. Static optimisation methods that
lack adaptive mechanisms are inadequate for addressing these
variations, leading to significant performance degradation and
an inability to meet the reliability requirements of mission-
critical applications.

Researchers have increasingly adopted various methods to
improve the performance of PLL [10]. The evolution algorithm
(EA) is effective in optimising non-convex PLL parameters
in multimodal, high-dimensional spaces, as demonstrated in
applications such as jitter-power trade-offs and non-linear
dynamics tuning using genetic algorithms and particle swarm
optimisation [11], [12]. However, EA provide only static solu-
tions, which are insufficient for addressing runtime PVT drifts.
Deep reinforcement learning (DRL) addresses this limitation
by obtaining real-time policies through interaction with the
environment [13]. During the past decade, DRL has improved
response in power electronics [14] and adaptive phase locking
for beam combining [15]. Despite these advances, standard
DRL methods still face some challenges in learning PLL
parameters, including slow convergence and sensitivity to
initialisation.

This paper proposes a hybrid optimisation framework to
address the parameter optimisation and adaptive control prob-
lems of multi-stage PLL under high dynamic conditions. The
main contributions are as follows.

• A hybrid evolutionary algorithm and deep reinforce-
ment learning (EA-DRL) framework addresses the high-
dimensional multi-objective trade-off problem in high-
performance PLL by integrating static evolutionary algo-
rithm optimisation with dynamic DRL control, thereby
alleviating the slow convergence and sensitivity to initial
conditions in traditional DRL in practical applications.

• An improved NSGA-III algorithm with structure-
awareness for PLL dynamics adjusts the exploration and
convergence weights of each loop stage via adaptive
crossover mutation, reference point selection, and em-
bedded mode switching to achieve a better set of Pareto
optimal parameters.



• The hybrid EA-DRL framework enables real-time PLL
parameter tuning through a DRL agent for multi-stage
control, outperforming static benchmarks under fre-
quency hopping, PVT variations, and thereby enhancing
system robustness and reliability.

The remainder of this paper is organised as follows. Section
II introduces the multi-stage PLL architecture and constructs
a 6 objective static optimisation model. Section III proposes
the adaptive SA-NSGA-III algorithm and derives the optimal
parameter set as the baseline. Section IV describes the hybrid
EA-DRL architecture in detail. Section V presents the exper-
imental results. Section VI gives the conclusion.

II. MULTI-STAGE PLL OPTIMIZATION MODEL

A. PLL Basic Concepts

PLL is a typical negative feedback synchronisation system
whose basic function is to keep the oscillator output phase
consistent with the reference signal [2]. A conventional PLL
comprises a phase detector (PD), a loop filter (LF), a voltage-
controlled oscillator (VCO) and a feedback divider, as illus-
trated in Fig. 1.
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Fig. 1. Traditional PLL Block Diagram Consisting of PFD, LF, VCO, and
Frequency Divider [2].

PLL operates as follows. PD measures the phase difference
eϕ(t).

eϕ(t) = ϕref(t)− ϕdiv(t) (1)

u(t) = Kpeϕ(t) +Ki!

∫
eϕ(τ), dτ (2)

The loop filter applies proportional-integral control (PI) to the
error signal, generating a control signal u(t) for the voltage-
controlled oscillator. The phase output fout(t) of the oscillator
is divided and returned to the PD, creating a closed loop.

fout(t) = ffree +Kvcou(t) (3)

The following conditions must be met for the system to remain
locked.

fout =
R

N
fref , ϕref(t) = ϕdiv(t) (4)

The performance of a PLL is commonly evaluated using
three primary metrics [6]. The first metric, lock time tlock, is
the time it takes the system to regain stability at the target
frequency after a frequency jump or an initial offset.

tlock = min {t : |fout(t)− ftarget| < ∆f, |eϕ(t)| < ∆ϕ}
(5)

The second metric is phase noise, or timing jitter tj , which is
determined by the relationship between the root-mean-square
(RMS) of the phase error and the carrier frequency.

tj =
ϕRMS

2πfout
(6)

The third set of metrics, ∆fcap and ∆flock, describes the
frequency acquisition range and the robustness of the locked
state of PLL, respectively. Specifically, ∆fcap indicates the
maximum initial frequency offset ∆f0 for which the PLL can
achieve lock, while ∆flock represents the maximum reference
frequency step δf that the locked PLL can withstand without
losing lock.

∆fcap = max {∆f0 : the PLL can acquire lock} (7)
∆flock = max {δf : the PLL maintains lock} (8)

Traditional PLL faces two primary limitations [16]. The first
is the bandwidth-noise trade-off: increasing loop bandwidth
accelerates lock-in and reduces settling time, but also amplifies
in-loop noise transmission to the output. This degradation in
phase noise performance complicates achieving both rapid
acquisition and low-noise steady-state operation. The second
limitation arises from hardware non-linearities, particularly
the significant variation in VCO tuning gain across control
voltages.

B. ADPLL Model and Optimization Objective

To address the identified limitations, a two-stage all-digital
PLL (ADPLL) architecture is implemented to achieve perfor-
mance decoupling. The structure diagram is as follows Fig. 2.
This architecture employs two simultaneous control paths
with distinct bandwidths. Stage-A provides rapid acquisition
through higher gain and broader bandwidth, while Stage B
uses lower bandwidth and a smaller digital oscillator gain Kdco

to achieve steady-state, low-noise tracking.
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Fig. 2. Two-Stage ADPLL Architecture with Reconfigurable PD, Dual Loop
Filters, and Event-Driven Switching.

The phase errors e(i)[n] of the two stages and the corre-
sponding digital PI controller output u(i)[n] are given by

e(i)[n] = ϕref[n]− ϕdiv[n], i ∈ {A,B}, (9)



and

u(i)[n] = Kp,i e
(i)[n] +Ki,i Tu

n∑
k=n−W+1

e(i)[k], (10)

where Tu denotes the control update period.
A natural transition between phases during the locking pro-

cess is achieved on the basis of error statistics. The transition
is triggered when either the phase error RMS within the sliding
window of length W satisfies below the predefined threshold
εϕ: √√√√ 1

W

n∑
k=n−W+1

e2ϕ[k] < εϕ, (11)

or the output frequency remains within a tolerance band
around the target frequency for a continuous period:∣∣fout[n]− ftarget

∣∣ < ρfftarget, (12)

where ρf denotes the normalised frequency-tracking tolerance.
Once either criterion is met, the loop enters a dwell period of

Tdwell samples to ensure the stability of the current stage before
initiating the transition. After the dwell period, a smooth blend
from Stage-A to Stage-B is performed. To prevent abrupt
variations in the control word, a half-cosine window [17] is
used to generate a time-varying blending factor α[n], defined
as

α[n] =
1

2

(
1− cos

(
π
n− ns

Nsw

))
, α[n] ∈ [0, 1], (13)

where ns is the starting index of the switching window and
Nsw denotes the total number of transition samples.

The effective loop control signal is then expressed as a
weighted combination of the Stage-A and Stage-B control
outputs:

ueff[n] = (1− α[n])uA[n] + α[n]uB [n]. (14)

Finally, the output frequency of the digitally controlled
oscillator (DCO) is updated using the effective control word:

fout[n] = ffree +Kdco,eff[n] ueff[n]. (15)

Kdco,eff[n] is obtained by dynamic interpolation of the two-
stage parameters using the same hybrid weighting scheme.
With this architecture, all tunable parameters can be uniformly
expressed in vector form

P =

 PDA, KpA, KiA, KdcoA

PDB , KpB , KiB , KdcoB

Switch: εϕ, ρf , Tsw, γpreset

 .

The design incorporates several adjustable and tunable param-
eters, including the PD type and gain, control gain, digitally
controlled oscillator gain, and switching mechanism. These
parameters collectively influence acquisition speed, steady-
state noise, robustness, and switching smoothness, thereby
defining the decision space for subsequent multi-objective op-
timisation. To comprehensively characterise the performance
of the multi-stage ADPLL, six static optimisation objectives
were established as Table I.

TABLE I
STATIC PERFORMANCE OBJECTIVES OF THE MULTI-STAGE ADPLL

Objective Definition
Index Expression Unit Note
F1 tlock s Lock time
F2 (fmax − fß)/fß – Overshoot ratio
F3 E[|ϕerr|] rad Steady-state phase error
F4 ϕRMS/(2πftarget) s Phase jitter
F ∗
5 ∆fcap/fBW,B – Normalized capture range

F ∗
6 ∆flock/fBW,B – Normalized lock range

Two-stage ADPLL provides greater flexibility in balanc-
ing performance trade-offs than single-stage PLL. However,
optimising all six performance metrics simultaneously still
requires careful consideration of inherent trade-offs. A wider
capture range generally requires a higher proportional gain
KpA in Stage-A together with a relaxed loop bandwidth, while
extending the lock range favours a stronger integral gain KiA

and a lower noise floor. Similarly, reducing the Stage-B loop
bandwidth effectively suppresses locked-state phase noise but
compromises both capture and lock robustness. Conventional
single-objective tuning approaches are insufficient for navigat-
ing this high-dimensional design space.

III. STRUCTURE-AWARE MULTI-OBJECTIVE
OPTIMIZATION

In order to identify the optimal initial parameters in the six-
objective space,this study develops a SA-NSGA-III algorithm
based on the standard NSGA-III [18]. The proposed algorithm
integrates the strengths of NSGA-III and adaptive sensing op-
erators [19], [20] for multi-objective optimisation, while also
incorporating the structural features of a two-stage ADPLL.

A. Standard NSGA-III

The widespread adoption of NSGA-III in multi-objective
optimisation is attributed to its three-stage procedure:

• fast non-dominated ranking;
• construction of uniformly distributed reference points on

a M -dimensional hyperplane;
• preservation of population diversity through extreme

point identification, normalisation, and association of
reference vectors.

However, as the number of objectives increases to M = 6,
NSGA-III, despite outperforming NSGA-II in distribution
control, still faces challenges. the Pareto front of the multi-
stage ADPLL exhibits a highly non-convex geometry, leading
to fixed reference points that do not align well with the
underlying manifold. In this system, Stages A (fast acquisition)
and B (steady-state optimisation) are connected using an event-
triggered mechanism. As shown in Fig. 2, the two loops blend
via α-weighted fusion, producing a distinct piecewise manifold
structure in the performance landscape.

B. Adaptive Operator

SA-NSGA-III adaptively adjusts the crossover rate Pc and
mutation rate Pm according to spread [21] and hypervolume



(HV) [22]. When hypervolume improvements stagnate or pop-
ulation spread collapses, potentially indicating convergence
to a local optimum, the algorithm increases Pm to enhance
exploration. In contrast, if the Pareto front expands consis-
tently and the hypervolume growth remains stable, both Pc

and Pm are reduced to facilitate convergence. Furthermore,
the adaptive operator can also select strategies based on the
structural characteristics of the two-stage ADPLL.

• large fluctuations in Stage-A-dominated objectives (e.g.,
lock time) increase the mutation priority for Stage-A
parameters (KpA, KiA, PD type);

• when Stage-B-dominated objectives (phase noise, steady-
state error) dominate convergence, local search is inten-
sified on Stage-B parameters;

• poor cross-stage behaviour (e.g., overshoot) triggers
stronger mutations in transition-related parameters such
as the α-curve, fade-in and fade-out window, and preset
integrator state.

C. Reference Point Refinement

SA-NSGA-III implements a reference point refinement
mechanism.

• reference points are adaptively redistributed around re-
gions of high curvature on the current Pareto front,
emphasising performance inflexion zones;

• independent reference point densities are maintained in
the Stage-A-dominated and Stage-B-dominated regions
to avoid structural imbalance;

• event-driven dimensions (e.g., ρf ,Tsw) are weighted more
heavily to improve sensitivity to switching mechanisms.

D. Static Optimization Procedure of SA-NSGA-III

The static optimisation process as shown in Algorithm 1
consists of three structure-aware phases: initialisation, adaptive
evolution, and Pareto front construction.

1) Structure-Aware Population Initialization: The initial
population is generated within a physically valid ADPLL pa-
rameter region. This includes setting a valid PD configuration,
defining a suitable operating range KV CO, selecting feasible
two-stage PI gains, and applying constraints to event-driven
parameters.

2) Adaptive and Structure-Guided Evolution: During the
evolutionary process, the SA-NSGA-III algorithm jointly mon-
itors population spread, hypervolume, and interactions be-
tween the two-stage parameters. Adaptive crossover and muta-
tion operators are employed, together with a refined reference
point. Optimisation is conducted for different objectives. Stag-
nation in lock-time improvement increases exploration of first-
stage parameters, saturation of noise-related metrics prompts
abrupt changes in Stage-B parameters, and anomalous over-
shoot amplifies perturbations in transition-related parameters.

3) Pareto Solutions with Consistent Structure: The final
Pareto front balances all six objectives and maintains con-
sistency with the two-stage ADPLL architecture. PI gains in
stages A and B evolve naturally from capture to tracking,

Algorithm 1 Proposed SA-NSGA-III for Multi-Stage ADPLL
Input: Population size N , generations G, reference set D, ADPLL

simulator.
Output: Pareto-optimal parameter archive A.
1: Structure-aware initialization of P0 (Stage A/B gains, KV CO ,

PD type, events).
2: Evaluate P0; initialize archive A← non-dominated members

of P0.
3: for g = 0 to G−1 do
4: Adapt (Pc, Pm) based on HV/Spread.
5: Generate offspring C by selection, SBX crossover, and

structure-aware mutation.
6: Evaluate C; merge Pall = Pg ∪ C.
7: Perform fast non-dominated sorting; fill Pg+1 with entire

fronts.
8: If needed, apply NSGA-III niching w.r.t. D to complete

Pg+1.
9: Update archive A and recompute HV/Spread.
10: If HV stagnates, refine reference directions D.
11: end for
12: Return archive A.

switching, and PD parameters, facilitating smooth event trig-
gering, and KV CO remains aligned with the steady-state error
constraint.

IV. HYBRID EA-DRL OPTIMIZATION FRAMEWORK

Multi-stage ADPLL require the global optimisation of static
parameters and the real-time correction of dynamic behaviour.
To address these requirements, a hybrid EA-DRL framework is
introduced. Initially, SA-NSGA-III explores the global param-
eter space to establish a static physically consistent baseline.
Subsequently, a twin delayed deep deterministic policy gra-
dient (TD3) [23] DRL model performs real-time fine-tuning
relative to this baseline to correct transient deviations during
operation.

A. Framework Structure

1) Static Baseline Generation: SA-NSGA-III is used to
investigate the six-dimensional objective landscape of the two-
stage ADPLL, considering lock time, overshoot, steady-state
error, noise, capture range, and lock range. The algorithm
generates a Pareto set that maintains a consistent two-stage
structure, allowing the identification of a knee solution or a
weighted-best solution. P∗

base is selected as the static baseline.
This baseline ensures stable locking without DRL assistance
and narrows the DRL search region to a physically valid
domain, allowing DRL to focus on local refinements rather
than global exploration.

2) Real-Time Dynamic Correction: During online step by
step simulation, the DRL agent outputs incremental PI-gain
corrections:

∆P(t) =
(
∆KpA,∆KiA,∆KpB ,∆KiB

)
, (16)

These parameters are applied to the two-stage PI controller.
The DRL policy operates near the structure-consistent opti-
mum determined by SA-NSGA-III and avoids unsafe config-
urations. During training, P∗

base is established in the environ-
ment as the initial parameter set and the corresponding metrics
serve as a baseline for the comparison of rewards.
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B. State Space Design
The state vector is defined as

St =
[
ϕe(t), ϕ̇e(t), Switched, K̂pA, K̂iA, K̂pB , K̂iB

]
,

(17)
where ϕe(t) is instantaneous phase error, ϕ̇e(t) its rate of
change, Switched indicates a Stage-A/B transition, and the
last four elements are normalised PI gains. This design pro-
vides both transient observability and controller-awareness.

C. Action Space Design
The agent outputs a four-dimensional continuous action:

At = [apA, aiA, apB , aiB ] ∈ [−1, 1]4, (18)

mapped to PI gains through log-domain scaling:

K(t+1) = K(t) · exp(ηa), (19)

where η is a learning-rate factor. Parameter updates are further
bounded around P∗

base to ensure physical validity and prevent
instability.

D. Reward Function Design
The reward consists of immediate (stage-dependent) rewards

and a final trajectory-based reward.
1) Stage-A and Stage-B Immediate Rewards: Stage-A (fast

acquisition, Switched = 0) emphasises rapid error reduction:

r
(A)
t = wdrop ·max(|ϕe(t−1)|−|ϕe(t)|, 0)−wabs|ϕe(t)|. (20)

Stage-B (steady-state refinement, Switched = 1) empha-
sises purity and stability:

r
(B)
t = −wabs|ϕe(t)| − wrate|ϕ̇e(t)| − wovr · Overshoot. (21)

2) Final Reward: The terminal reward considers lock time,
overshoot, mean error, and RMS noise:

Rterminal =
wT

1 + tlock
−wovr·Overshoot−wmean·Mean−wrms·RMS.

(22)
If the SA-NSGA-III baseline is provided, a differential

bonus is added:

Rbaseline = wlock
(
tbase

lock − tlock
)
, (23)

Rfinal = Rterminal +Rbaseline. (24)

3) Total Reward:

Rtotal =

T∑
t=0

rt +Rfinal. (25)

This reward formulation allows the DRL policy to enhance
both transient dynamics and overall P∗

base final performance .

V. EXPERIMENTAL STUDIES

The experiment included two phases: static multi-objective
optimisation and dynamic online control, to comprehensively
evaluate the SA-NSGA-III and Hybrid EA-DRL frameworks.
All experiments were run on a Personal Machine: 13th Gen
Intel(R) Core(TM) i9-13900KF 3.00 GHz, 32.0 GB RAM, and
Microsoft Windows 11 Professional Edition. The simulation
code was compiled in Python 3.13.2 using Visual Studio Code
1.106.2.

A. Static Performance Analysis

To assess algorithmic performance, we compared NSGA-
II [24], NSGA-III [18], and SA-NSGA-III on the ADPLL
six-objective optimisation problem. Spread [21], hypervolume
[22], and the proposed Intra-Population Quality Score (IPQS)
are used to comprehensively evaluate the performance of
multi-objective optimisation methods. Spread measures the
distribution density of Pareto solutions, where a lower value in-
dicates a more uniformly spread front. Hypervolume quantifies
both convergence and diversity by measuring the volume of
the objective space dominated by the Pareto front, with larger
values indicating better overall multi-objective performance. In
contrast, IPQS assesses the internal quality of each algorithm’s
Pareto set by evaluating the consistency of the solution’s
approximation to the algorithm’s optimal performance region
across all objectives.

The two-stage ADPLL was simulated with a 50 MHz loop
clock and reference, a 1.9 GHz free-running DCO, and a 40×
multiplier. The NSGA-III optimiser explored a 14-dimensional
decision space comprising Stage-A/B phase detector types,
loop gains, proportional–integral coefficients, DCO gains, and
switching-control parameters, including frequency tolerance
ratio, phase-error threshold, switching time, and preset scale.
A population size of 180 was maintained over 120 generations
and six objective functions were evaluated for each solution.
A bounded external archive was used to maintain the non-
dominated set. The complete configuration is provided in
Table II.

A comparative analysis of NSGA-II [24], NSGA-III [18],
and the proposed SA-NSGA-III highlights the advantages
of the structure-aware design. As shown in Fig.4 Left, SA-
NSGA-III exhibits the fastest hypervolume growth and main-
tains the highest hypervolume throughout evolution, while
Fig.4 Right shows that its spread value remains the lowest and
most stable, indicating a more uniformly distributed and better-
converged Pareto front. The quantitative statistics in TableIII,
where SA-NSGA-III achieves a final HV of 644.7 (enhancing
NSGA-II by 73.5% and NSGA-III by 58.7%, an HV-AUC of
628 (improving NSGA-II by 52.8% and NSGA-III by 10.2%),



TABLE II
SUMMARY OF SIMULATION AND OPTIMIZATION SETTINGS

Global System Parameters (ADPLL Simulation)
Loop update frequency (fs,loop) 50MHz
Reference frequency (fref ) 50MHz
Simulation duration (Tsim) 100µs
Free-running DCO frequency (fdco,free) 1.9GHz
Divider ratio (Ndiv) 40
Target output frequency (fout) 2.0GHz

General Evolution Settings (NSGA Optimization)
Population size 180
Number of generations 500
Number of objectives 6
Decision space dimension 14
Archive size (|Amax|) 540 (3× population)

and the smallest spread (0.006956), representing a reduction
of 64.2% and 63.1%, respectively. To explain, AUC (Area
Under the Curve) represents the integral of the metric across
all generations, measuring the overall performance throughout
the optimisation process.

In addition to convergence behaviour, Fig.5 presents the
IPQS distribution, calculated using min-max normalisation
per-population with equal sample sizes across all algorithms.
SA-NSGA-III yields a distribution that is both more con-
centrated and shifted toward higher values, indicating su-
perior internal solution quality and more balanced multi-
objective trade-offs. Statistical analysis supports this finding:
SA-NSGA-III achieves a mean score of 0.7687 and a median
of 0.7817, surpassing NSGA-II by 32.21% and NSGA-III by
13.09%. These results demonstrate that even under relative
normalisation, SA-NSGA-III consistently produces a higher
proportion of high-quality Pareto solutions.

Together, the evidence from hypervolume, spread, and IPQS
shows that SA-NSGA-III achieves faster convergence, higher
solution quality, and substantially improved distribution uni-
formity compared to NSGA-II and NSGA-III, demonstrating
the effectiveness of the proposed structure-aware enhance-
ments.

TABLE III
COMPARISON OF HYPERVOLUME, SPACING (STD), AND CONVERGENCE

ITERATIONS

Algorithm HV (final) ↑ HV (AUC) ↑ Spread ↓
NSGA-II 371.5 411.1 0.01954
NSGA-III 406.3 569.9 0.01847
SA-NSGA-III 644.7 628 0.006956
Note: AUC refers to the Area Under the Curve

The Pareto front generated by the proposed SA-NSGA-
III algorithm shows the trade-offs between metrics such as
lock-in time, phase noise, overshoot, and frequency range.
The pairwise scatter plot reveals three main solution regions:
the fastest lock-in, the lowest-noise, and the knee point. The
knee-point solution offers the most balanced performance: its
lock-in time is substantially shorter than the noise-optimal
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solution, its phase noise is much lower than the lock-in-time-
optimal solution, and it also provides improved acquisition
and lock-in ranges. Parallel coordinate visualisation confirms
that the knee-point solution balances all six objectives. This
solution will serve as the basis P∗

base for upcoming dynamic-
optimisation experiments.

Fig. 6. Comparison of Normalized Objective Values for Knee Point and Best
Individual Objectives.

B. Dynamic Performance Analysis

In the dynamic experiment, the TD3 agent was trained
using the Stable Baselines3 library [25], which offers robust
PyTorch implementations of DRL algorithms. The policy
network comprises two hidden layers with 256 units each and
employs a ReLU activation function. The learning rate decays
linearly from 3×10-4 to 10%. The replay buffer size is set
to 8×105, the training begins after 2,000 steps, and the batch



Fig. 7. Pareto Front Distribution and Optimal Trade-off Solutions(Left: Lock
Time vs Steady-State Phase Noise RMS; Right: Capture Range vs Overshoot).

size is 512. The target network is updated with τ = 0.005 and
the policy delay is set to 2. Gaussian exploration noise decays
from 0.20 to 0.05 during training. The training environment
is a two-stage stepwise ADPLL simulation that replicates the
behaviour of the baseline PLL model, including TDC, PI, and
DCO updates, stage switching logic, and lock detection.

Fig. 8. Frequency-hop response of the two-stage ADPLL: baseline static
control vs. RL-enhanced TD3 control.

TABLE IV
POST-FREQUENCY-HOP PERFORMANCE COMPARISON

Objective P∗
base DRL

Lock time (µs) 24.04 0.52
Overshoot ratio 0.00177 0.06112

Phase error (rad) 1.3487 0.1327
Phase jitter (ps) 114.06 27.266

As shown in Fig. 8 and Table IV, when the reference
frequency rises from 50 MHz to 60 MHz (corresponding to
a 400 MHz output shift with N = 40), the TD3-controlled
ADPLL achieves substantially faster dynamic recovery and
superior steady-state precision compared to the static two-
stage baseline P∗

base. The reset time is reduced from 24.04 µs
to 0.52 µs (a 97.8% improvement), and the steady-state phase

error decreases from 1.3487 rad to 0.1327 rad (a reduction
of 90.2%). Although the reinforcement-learning controller
introduces a higher transient overshoot (0.06112 vs. 0.00177),
the loop remains well anchored and rapidly convergent. Fur-
thermore, the phase-jitter level improves from 114.06 ps to
27.266 ps (a reduction of 76.1%, reflecting enhanced loop
stability and noise suppression in the fine-lock regime.

TABLE V
PVT CORNER COMPARISON OF STATIC PLL AND RL-CONTROLLED

ADPLL

PVT Method tlock (µs) Overshoot E[ϕerr] (rad) RMS (ps)
Nominal Static 0.212 0.015 0.000 0.0796
Nominal RL 0.420 0.065 0.193 41.43

Fast Static 13.816 0.845 -0.015 1.67
Fast RL 0.816 0.000 0.050 16.23

Low-VDD Static 0.432 0.016 -0.000 0.0796
Low-VDD RL 0.928 0.025 0.378 66.13

High-Temp Static 1.892 0.015 -0.000 0.0796
High-Temp RL 0.560 0.079 0.230 55.53

To assess the robustness of PVT variations, we con-
ducted simulations applying proportional scaling to stage-
A/B DCO gains and the loop time-constant parameter τres to
construct Nominal (1.0,1.0,1.0), Fast (1.4,1.4,0.6), Low-VDD

(0.6,0.6,1.0) and High-Temperature (0.95, 0.95, 1.4) corners.
This introduces roughly ±40% variations in the dominant loop
parameters while ensuring identical perturbations for static and
RL-controlled loops. As shown in Table V, the TD3-controlled
ADPLL maintains strong robustness under non-nominal condi-
tions, achieving substantial reductions in relock time 94.1% in
the fast corner (13.816 µs to 0.816 µs) and 70.4% in the high-
temperature corner (1.892 µs to 0.560 µs) while preserving
stable steady-state behaviour. These gains demonstrate the
ability of the learnt policy to generalise to unseen loop-gains
and delay variations. Although the Low corner VDD yields
an elevated steady-state error due to severely reduced DCO
sensitivity not present in training, the RL loop remains stable
and within lock. In general, TD3-controlled ADPLL offers
improved dynamic resilience across the most challenging PVT
variations compared to static baseline.

VI. CONCLUSION

This study introduces a hybrid evolutionary algorithm–deep
reinforcement learning (EA–DRL) optimisation framework
that integrates global static parameter exploration with real-
time adaptive control for multi-stage all-digital phase-locked
loop (ADPLL) systems. Incorporating a structure-sensitive
NSGA-III variant enables efficient identification of high-
quality, physically consistent Pareto solutions, providing ro-
bust baselines for subsequent dynamic learning. Subsequently,
a twin-delayed deep deterministic policy gradient (TD3) agent
further refines the transient response and steady-state accuracy
through online fine-tuning. Experimental results indicate that
the proposed approach achieves faster settling times, reduced
jitter, and substantially improved resilience to PVT variations
and large frequency steps compared to static two-stage PLL
configurations. Future efforts will train the RL controller under
richer stochastic and non-linear environments to improve gen-
eralisation, and will validate the proposed framework through



hardware-in-the-loop experiments and FPGA prototypes for
practical deployment.
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