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ABSTRACT

The rapid progress of large language models (LLMs) has laid the foundation for
multimodal models. Nevertheless, visual language models (VLMs) still face sig-
nificant computational overhead when scaled from images to the video domain.
When video data is too large (due to high frame rates and long durations), the
inference cost of models increases sharply. This severely hinders their deployment
and application in environments that require rapid responses and have limited
computation resources. Token compression for input videos is one of the promising
directions, as effective compression schemes can significantly reduce computa-
tional overhead. Most existing compression methods are based on training-free
token merging strategies in either the spatial or temporal dimension. Although
these methods reduce computational overhead, their training-free nature inevitably
leads to information loss during token compression, resulting in a significant per-
formance drop. To address these challenges, we propose a Memory-Augmented
Reinforcement Learning-based Token Compression (MARC) method for efficient
video understanding that integrates structured retrieval with RL-based distillation.
Our proposed MARC is a retrieve then compress method, which employs a Vi-
sual Memory Retriever (VMR) tool and a Compression Group Relative Policy
Optimization (C-GRPO) training strategy. The Visual Memory Retriever first
segments videos into event-level fragments and selects query-relevant clips. The
C-GRPO distills reasoning ability from a Teacher Network to a Student Network
by encouraging the output of the student network to match the performance of
the teacher network. Extensive experiments on six video benchmarks demonstrate
that our compression method achieves nearly identical accuracy to the 64-frame
Qwen2.5-VL-3B baseline while using only one frame’s worth of tokens as input,
resulting in a 95% reduction in visual tokens. Moreover, our approach reduces GPU
memory usage by 72% and generation latency by 23.9%. These results demonstrate
the strong potential of our compression method as a robust solution for RL-based
post-training compression of large-scale models, enabling practical deployment
in latency-sensitive and resource-constrained applications such as real-time video
question answering, surveillance, and autonomous driving.

1 INTRODUCTION

Recent advances in large language models (LLMs) have enabled visual language models (VLMs)
to reason over multimodal inputs that combine text and images (Liu et al., 2023; Zhu et al., 2025;
Bai et al., 2025). Although early applications primarily targeted short context image tasks, the
demand for long context video understanding has dramatically increased computational costs. A
single image may necessitate thousands of tokens; this computational load is further magnified when
extending the model to high frame rate, long-duration video content. This overhead introduces
significant latency and memory bottlenecks, hindering the deployment of VLMs in latency-sensitive
and resource-constrained applications such as autonomous driving and surveillance systems. To
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mitigate these challenges, token compression techniques have been explored, with training-free visual
token compression as one of the most effective strategies (Li et al., 2025a; Yang et al., 2025b; Zhang
et al., 2024). Despite the fact that these methods reduce computational overhead, their training-free
approach inherently causes a considerable amount of information loss during token compression,
leading to a significant drop in performance.

To overcome these challenges, we propose MARC, a Memory-Augmented RL Token Compression
method for efficient video understanding. Our approach is a retrieve and then compress method,
which first uses a visual memory retriever (VMR) to identify the most relevant event segments from
a video. Following this, we introduce a novel deep compression technique, Compression Group
Relative Policy Optimization (C-GRPO), to further compress these retrieved visual memories.
This enables us to reduce each video to a token count equivalent to that of a single image while
maintaining performance comparable to the uncompressed video.

Specifically, the design of our Visual Memory Retriever (VMR) was inspired by insights from
cognitive science and neuroimaging. Most existing methods handle temporal and spatial redundancy
independently (Wang et al., 2024a; Liu et al., 2025; Song et al., 2024), overlooking the temporally
organized and context-aware characteristics of human visual memory. Cognitive science suggests
that humans segment continuous experiences into discrete events and recall them through episodic
memory, reinstating both low and high-level perceptual features (James et al., 1890; Hebb, 1968;
Damasio, 1989; McClelland et al., 1995). Neuroimaging studies further show reengagement of
visual cortical regions during memory retrieval (Favila et al., 2022), while event segmentation theory
emphasises contextual shifts as natural anchors for recall (Li et al., 2025b). Motivated by these
principles, we propose a Visual Memory Retriever that partitions videos into semantically coherent
event-level segments and retrieves query-relevant fragments. These fragments are rearranged and
sampled, functioning as structured “episodic memories” for downstream reasoning and enabling more
human-like temporal processing. By adopting this retrieve-then-compress approach, it dramatically
reduces the computational burden and mitigates the negative effects of redundant information on
compression quality.

To reduce a video’s token count to that of a single frame while ensuring maximum performance after
compression, we proposed a post-training compression algorithm based on reinforcement learning,
Compression Group Relative Policy Optimization (C-GRPO), which is applied after finding the
most relevant memory fragments. The traditional GRPO (Shao et al., 2024) algorithm is used to
enhance the model’s reasoning capabilities. We have customized and improved its training framework,
reward design, and training strategy, and for the first time, propose C-GRPO. This allows the Student
Network to retain Teacher-level reasoning ability under aggressive compression, ensuring robustness
while drastically lowering computational cost. Specifically, our C-GRPO transfers reasoning ability
from a Teacher Network with 64 frames as input, to the Student Network with just one frame’s worth
of tokens as input. By integrating structured retrieval with RL-based compression, our framework
bridges efficiency and accuracy, providing both cognitive grounding and practical scalability.

We conduct extensive experiments across six benchmarks covering both video reasoning and general
video understanding. Our framework achieves nearly identical mean performance to the 64-frame
Qwen2.5-VL-3B baseline (42.20 vs. 42.21) while using only a single frame, corresponding to just
4.71% of the original visual tokens. Ablation studies further validate the role of each component:
Visual Memory Retriever alone boosts baseline accuracy, while C-GRPO ensures stable performance
retention under extreme compression. Combined, they yield superior results, with substantial gains
on challenging benchmarks such as TempCompass and MVBench. Moreover, efficiency evaluations
demonstrate a 72% reduction in GPU memory usage and 23.9% lower generation latency, enabling
deployment in real-world scenarios with strict resource constraints.

In summary, our contributions are threefold:

• We propose MARC, a novel framework for efficient video understanding. By deftly
integrating a structured visual retrieval mechanism with a powerful reinforcement learning
based token compression algorithm, our approach achieves exceptional efficiency while
preserving high performance.

• We propose Compression Group Relative Policy Optimization (C-GRPO), the first
post-training reinforcement learning (RL) strategy specifically designed for video token
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compression. C-GRPO transfers the complex reasoning ability from a high token "Teacher"
network to a low token "Student" network.

• Our extensive experiments across six benchmarks demonstrate that MARC achieves both
superior performance and exceptional efficiency. By reducing GPU memory usage by
72% and cutting generation latency by 23.9%, our approach maintains performance while
enabling deployment in resource-constrained applications.

2 RELATED WORK

Video Compression for Large Language Models. Recent advances in multimodal large language
models (MLLMs) have greatly expanded their applicability to a wide range of video understanding
tasks (Bai et al., 2025; Li et al., 2024a). These models generally process videos by employing powerful
pre-trained visual encoders such as CLIP (Radford et al., 2021) and SigLIP (Zhai et al., 2023) to
transform sampled video frames into visual tokens that can be fed into the language model. This design
allows MLLMs to integrate visual and textual information effectively, enabling tasks such as video
captioning, temporal reasoning, and question answering. However, when dealing with long or high-
resolution videos, practical limitations such as restricted context length, GPU memory constraints,
and increased computational cost create a challenging trade-off between the number of tokens per
frame and the total number of frames processed. To address these challenges, prior approaches have
explored compression techniques (Song et al., 2024), adaptive pruning mechanisms (Wang et al.,
2024a), and frame selection strategies during inference (Wang et al., 2024b). While these methods
can alleviate computational overhead, they often suffer from substantial performance degradation,
particularly when critical temporal or spatial information is discarded. In contrast, our work proposes
a novel reinforcement learning based distillation framework that substantially reduces the required
number of visual tokens without sacrificing accuracy. By aligning compressed representations with
the reasoning ability of a 1fps sampling teacher model, our approach results in faster inference, lower
GPU memory usage, and improved efficiency for real world video understanding applications.

Video Retrieval Augmented Generation. Video-RAG is a specialized branch of MM-RAG, with its
core function being the utilization of video corpora for knowledge retrieval and subsequent generation
(Lewis et al., 2020; Jeong et al., 2025). Based on the primary methods for integrating videos with
vLLMs, we can categorize existing Video-RAG architectures into the following: Auxiliary Text
Enhancement: This category of methods aims to circumvent the challenges of directly processing
dense video frames by converting video content into concise, query-auxiliary text (Wang et al., 2022;
Edge et al., 2024; Pan et al., 2023). This auxiliary text can be spoken content generated by Automatic
Speech Recognition (ASR), on-screen text extracted via Optical Character Recognition (OCR), or
visual descriptions produced by object detection. This "text-based" concept greatly simplifies the
ingestion process and significantly reduces computational overhead, thereby making long video
comprehension possible. Corpus Retrieval: This paradigm focuses on dynamically retrieving video
clips or entire videos from a large video corpus that are relevant to a given query. These retrieved
contents are then fed to a generator as a knowledge source (Luo et al., 2021; Ren et al., 2025). This
method is particularly suited for queries that require finding specific events or information from
a massive video library. Agent-Based Systems: These frameworks, exemplified by VideoAgent
(Wang et al., 2024b) and M3-Agent (Long et al., 2025), use a large language model (LLM) as a core
agent to mimic a human’s multi-round reasoning process. The LLM agent iteratively plans, retrieves,
and refines information from the video, using tools such as Visual Language Models (VLMs) and
Contrastive Language Image Pretraining (CLIP) to assist in decision-making until the question is
fully answered. This approach is especially effective for long video question answering that requires
complex, multi-step reasoning. In this paper, we adopt the video corpus retrieval scheme. By using
efficient video segmentation and retrieval, we can effectively and significantly reduce the number of
input tokens and minimize unnecessary computational overhead.

3 MEMORY-AUGMENTED RL DISTILLATION

3.1 VISUAL MEMORY RETRIEVER

The core principle of the Visual Memory Retriever is to prioritize the retrieval of the most task-
relevant video segments before subsequent compression. This retrieve then compress strategy
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significantly reduces the computational burden while effectively eliminating the negative impact of
redundant information on compression quality. This retriever is engineered to transform a continuous
video stream into a structured, searchable memory bank, enabling efficient retrieval of relevant visual
information to support complex downstream tasks such as video based question answering.

3.1.1 EVENT-BASED VIDEO SEGMENTATION

Unlike conventional methods that rely on fixed length temporal windows, our approach employs
an event based video segmentation module (Soucek & Lokoc, 2024) to partition long videos into
semantically coherent short clips. This module leverages a deep event detection network that analyzes
the video stream to identify significant temporal boundaries, such as scene changes, topic shifts, or
the commencement of new actions. Each resulting clip, or visual memory fragment, encapsulates
a complete and meaningful event, thereby preserving the contextual integrity of the original video.
This event-centric approach dramatically reduces the search space for subsequent retrieval steps and
ensures that each retrieved fragment is a complete and self contained unit of information.

3.1.2 MEMORY RETRIEVAL

The next stage is the retrieval of memory. We map both the inferred query representation and
the visual memory fragments into a shared, high-dimensional latent space using an embedding
model (Bolya et al., 2025). This space is learned using a contrastive learning framework, ensuring
that semantically similar query fragment pairs are located in close proximity. The search process is
performed across the entire corpus of visual memory fragments that are semantically related to the
query. This step utilizes a highly optimized nearest neighbor search algorithm on the pre-indexed
fragment embeddings, allowing for efficient filtering. The final output is an ordered list of the top-k
visual memory fragments, which are then passed to a downstream compression model. This retriever
provides the LLM with the precise visual evidence required to ground its response, thereby mitigating
hallucination and enabling true video-based reasoning.

3.2 RL-BASED VIDEO TOKEN COMPRESSION

Building on the Visual Memory Retriever (VMR) in Section 3.1, which transforms long videos into
a small set of query-relevant, event-level segments, we first introduce a memory-aware temporal
compression layer that is tailored to these retrieved segments. Then, we propose the Compression
Group Relative Policy Optimization to maintain performance despite extreme token compression.

3.2.1 MEMORY-AWARE TEMPORAL COMPRESSION LAYER

Rather than treating compression as a generic, training-free pre-processing step, our design exploits
the structure imposed by VMR: we first preserve short-range temporal coherence inside each re-
trieved segment, then perform cross-segment consolidation. This memory-first strategy ensures that
compression removes redundancy where it is most prevalent (nearby frames within the same episode)
while keeping the event evidence that VMR deemed relevant for downstream reasoning. Concretely,
we extend cosine similarity based frame merging (in the spirit of prior temporal ToMe methods such
as MovieChat (Song et al., 2024)) into a two stage, memory aware procedure that (i) merges highly
similar consecutive frames inside each short-term segment to retain local dynamics and (ii) applies a
global, light weight consolidation only when the token budget still exceeds the target. This coupling
to VMR is key: the compressor is not a standalone heuristic but an intent-aligned module that respects
the event boundaries and ranking produced by VMR, thereby preserving the most causally useful
frames for QA.

As shown in Figure 1, we first obtain k top-ranked segments from VMR and uniformly sample them
at 1 fps to obtain N frames. Each frame is encoded by a visual encoder (e.g., ViT) into patch-level
hidden states. Let

H = {h1,h2, . . . ,hT }, hi ∈ Rd, (1)

denote the sequence of T visual tokens, where T = N · P and P is the number of patches per frame.
We then partition H along the temporal axis into short-term memory windows of length m frames
(intuitively, contiguous frames within one episode); the j-th window contains frames indexed from
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Figure 1: Left: Visual Memory Compression. We processed the original video using two approaches:
(1) Employing a visual memory retriever to search the video, subsequently reconstructing a new
video and compressing its visual features; (2) Also employing a visual memory retriever to search the
video, then sampling the original video before feeding it into a visual encoder to obtain uncompressed
visual features. Right: Compression Group Relative Policy Optimization (C-GRPO) Distillation
Framework. Here, O denotes the outputs from different groups, R the corresponding rewards, and A
the normalized advantages. A compression reward rc is introduced to encourage compressed inputs
to retain the reasoning ability of the uncompressed teacher model.

(j−1)m+ 1 to jm (inclusive):

Sj = {H(j−1)m+1, . . . ,Hjm}, j = 1, . . . ,
⌈
N
m

⌉
, (2)

where each Ht ∈ RP×d stacks the P patch tokens of frame t. Inside each Sj we iteratively merge the
two most similar consecutive frame embeddings Ha and Hb (consecutive in time), where similarity
averages patch-aligned cosine scores (the ViT grid provides a natural patch correspondence):

sim(Ha,Hb) =
1

P

P∑
p=1

h
(p)
a · h(p)

b

∥h(p)
a ∥∥h(p)

b ∥
. (3)

The two frames are replaced by their mean representation,

Hmerge =
1
2 (Ha +Hb), (4)

and this process repeats until the retained frames in Sj reach the budget

nj = max(1, ⌊(1− ρ) · |Sj |⌋) , (5)

where ρ ∈ (0, 1) is the overall compression ratio (smaller ρ keeps more frames). Finally, we
concatenate all compressed segments into H′ = {H′

1, . . . ,H
′
N ′}; if N ′ > Ntarget = ⌊(1− ρ)N⌋, we

perform a light cross segment merge (same averaging rule) so that local episode structure is preserved
first and global pruning acts only as a last resort. The resulting H′ is thus a temporally compressed,
memory aware token sequence (with updated grid THW′) that is well aligned with the VMR selected
evidence and ready for subsequent transformer layers.
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3.2.2 COMPRESSION GROUP RELATIVE POLICY OPTIMIZATION (C-GRPO)

We formulate the compression process as a distillation problem: a full-frame teacher provides the
reference behaviour, while a single-frame student learns to match its reasoning quality under an
aggressively reduced token budget. Standard GRPO (Shao et al., 2024) enforces answer correctness
and format but does not explicitly couple student performance to its full-frame counterpart; in
contrast, our C-GRPO adds a retention alignment reward that directly encourages compressed inputs
to preserve teacher-level performance, as illustrated in Figure 1. Formally, let afull be the average
reward with 64 frame inputs and acomp the reward with the compressed input; the retention ratio

η =
acomp

afull
, (6)

quantifies how much of the teacher’s performance the student retains under compression. We then
shape the objective with a compression reward

rc = α ·max(0, η − τ), (7)

where τ specifies the minimum acceptable retention and α scales the incentive. Intuitively, τ trades
off stability and ambition: too low a threshold tolerates under retention; too high makes positive
signals sparse and slows learning. In practice, we set τ = 0.6 as a balanced choice validated by
ablations (it yields the best mean across benchmarks while maintaining stable training), and we defer
full sensitivity analysis to our ablation section. To avoid rewarding confidently wrong behaviours and
amplifying spurious patterns, we gate this bonus by correctness:

Ri = ri + 1[correct] rc, (8)

So only semantically valid generations can earn retention credit. This gating reduces reward hack-
ing, stabilises learning signals, and focuses policy updates on trajectories that already satisfy task
constraints. We normalise advantages within each group to reduce variance,

Ai =
Ri − R̄

σR
, (9)

and optimise the clipped objective with a KL anchor to a reference policy:

LC-GRPO = E

[
1

G

G∑
i=1

(
clip

(
πθ(oi | q)
πθold(oi | q)

, 1− ϵ, 1 + ϵ

)
Ai

)
− βKL

(
πθ ∥πref

)]
. (10)

Together with the memory-aware compressor, C-GRPO turns compression into an alignment problem,
retaining the teacher’s reasoning where it matters rather than a purely geometric token reduction
heuristic, yielding both efficiency and robustness under extreme temporal compression.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Benchmarks. To evaluate the effectiveness of our method, we conduct experiments on a suite of
six widely used benchmarks: VSI-Bench (Yang et al., 2025a), VideoMMMU (Hu et al., 2025),
MMVU (Zhao et al., 2025), MVBench (Li et al., 2024b), TempCompass (Liu et al., 2024), and
VideoMME (Fu et al., 2025). Figure 2 illustrates the evaluation benchmarks, showing the distribution
based on the number of QA samples in each dataset.

Implementation details. For all benchmark evaluations, videos are first uniformly sampled at 1 fps,
then subsampled to ensure that no more than 64 frames are processed per video. We adopt top_p =
0.001 and temperature = 0.01 to achieve greedy decoding. Flash Attention 2 (Dao, 2023) is used as the
efficient attention operator. All benchmark evaluations are performed on NVIDIA A6000 GPUs with
48GB of memory. Appendix A includes more details. Our baseline experiments are conducted using
Qwen2.5-VL-3B (Bai et al., 2025). We further evaluate on several widely used small-scale vLLMs,
including Gemma3 (Team et al., 2025), InternVL-3.5-2B, and InternVL-3.5-4B (Wang et al., 2025). In
addition, we compare our approach against representative training-free token compression strategies,
namely ByteVideoLLM (Wang et al., 2024a), MovieChat (Song et al., 2024), and VidCom (Liu et al.,

6



Published as a conference paper at ICLR 2026

Models Frames
Video Reasoning Benchmark Video General Benchmark

VSI-Bench VideoMMMU MMVU (mc) MVBench TempCompass VideoMME (w/o sub) mean

Qwen2.5-VL-3B (Bai et al., 2025) 64 32.93 35.33 48.64 44.77 38.05 53.55 42.21
Qwen2.5-VL-3B (Bai et al., 2025) 16 27.63 30.78 45.28 43.89 37.95 44.37 38.32

InternVL3.5-2B (Wang et al., 2025) 64 14.65 15.56 22.88 14.71 23.63 4.26 15.95
InternVL3.5-4B (Wang et al., 2025) 64 28.96 33.33 47.51 44.71 58.34 39.15 42.00

Gemma-3-4B (Team et al., 2025) 64 26.83 26.78 41.76 36.82 55.04 46 38.87

ByteVideoLLM-3B (Wang et al., 2024a) 64 21.33 22.33 28.63 22.56 35.55 22.7 25.52
MovieChat-3B (Song et al., 2024) 1 25.14 25.78 39.35 37.1 38.79 26.41 32.10

VidCom2-3B (Liu et al., 2025) 64 25.5 23.89 31.08 29.88 35.23 21.48 27.84

MARC-3B 1 27.55 33.11 51.99 45.82 55.34 39.44 42.20

Table 1: Performance of different models/methods on benchmarks. We evaluated three mod-
els (Qwen2.5-VL, InternVL3.5, and Gemma-3) and three compression methods (ByteVideoLLM,
MovieChat, and VidCom2) using a unified set of parameters. All models and methods employ 1fps
sampling, but the maximum frame rate is capped (as indicated in the frame column). Note: The
"Frame" column indicates the number of visual tokens comparable to how many frames’s token that
are fed into the LLM decoder before generation, not the raw video sampling rate.

TempCompass
36.0%

VSI-Bench

24.6%

MVBench
19.1%

VideoMME

12.9%

VideoMMMU

4.3%

MMVU

3.0%

MARC

Evaluation Dataset

Figure 2: Distribution of benchmarks
based on the number of QA samples.

LLaVA-Video-178K

31.4%

Knowledge

14.1%

Math

14.0%

Chart

8.2%

Spatial
7.7%

OCR
6.0%

General

5.7%

STAR
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CLEVRER

3.1%

NeXT-QA

2.9%

PerceptionTest

2.4%

MARC

Training Dataset

Figure 3: Distribution of training dataset
based on number of QA samples.

2025). We reproduce their methods on Qwen2.5-VL-3B. For temporal compression methods (e.g.,
MovieChat), inputs are compressed to a single frame, yielding the same effective input length as
our method. For spatial or mixed compression methods (e.g., VidCom and ByteVideoLLM), we
ensure that the average number of vision tokens is approximately 120, equivalent to the number in our
method. Only the MARC-3B experiments employ VMR for benchmark processing, with top-k = 3.
Further implementation details are included in Appendix A.

Training data. For training, we utilize the Video-R1-260K dataset (Feng et al., 2025), which is
sampled from a variety of public datasets. We only randomly sampled 5K instances from this dataset,
consisting of videos and images, for C-GRPO training. While the image data will not contribute
to compression reward, it serves to help models develop generalized reasoning abilities in static
contexts (Feng et al., 2025). The data distribution is listed in Figure 3. Appendix B contains more
details regarding the training data.

Training details. We adopt Qwen2.5-VL-3B as the backbone model for training. The training dataset
is first pre-processed using the Visual Memory Retriever. During C-GRPO training, the full-frame
teacher model processes videos with 64 frames, while the student model operates on the compressed
single-frame input. The ordered group size G is set to 8. Additional implementation details are
provided in Appendix B.
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4.2 MAIN COMPARISON

Performance Comparison. Table 1 presents the results on six benchmarks, covering both video
reasoning and general video understanding tasks. Before compression, the mean number of visual
tokens per sample across all benchmarks (64 frames) is 2589.93. After compression, this number
is reduced to 122.69 tokens (a 95% reduction). Our method demonstrates competitive performance
across all benchmarks compared with the baselines. Specifically, relative to the Qwen2.5-VL-3B
baseline (64 frames), our model achieves nearly identical mean performance (42.20 vs. 42.21) while
using only 4.71% of the visual tokens, as shown in Figure 4.

Notably, the average score of MARC-3B
also surpasses that of larger models such
as InternVL3.5-4B and Gemma-3-4B.
Among the six benchmarks, our method
outperforms the Qwen2.5-VL-3B base-
line on MMVU, MVBench, and Temp-
Compass. The substantial improvement
on TempCompass can be attributed to
the enhanced instruction-following abil-
ity obtained through our training process,
which effectively addresses the weak-
ness of small-scale (3B) models.
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Figure 4: Vision tokens for each benchmark and MARC
compared with the baseline performance.

For long video evaluation on VideoMME, our model inevitably incurs some performance loss due
to extreme compression, retaining 74% of the baseline performance while processing only 3.21%
of the original visual tokens. Nevertheless, even under this challenging setting, our approach still
outperforms larger models such as InternVL3.5-4B, underscoring the effectiveness of C-GRPO in
balancing efficiency and accuracy. Extensive analysis of this can be found in Appendix A.4.

Our method substantially outperforms prior compression strategies. Compared to DynamicVLM,
MovieChat, and VidCom, our approach improves mean accuracy by 65%, 31%, and 52%, respec-
tively. MovieChat also employs short-term memory for temporal compression, and performs best
among these methods, achieving results close to ours on VSI-Bench; however, it lags significantly on
the other five benchmarks. VidCom adopts a selective token retention strategy, which has a similar
effect to VMR, but still falls short of our model. These results indicate that naive compression
strategies suffer from performance degradation under aggressive compression ratios.

Efficiency Comparison. Figure 5 reports the real-world inference efficiency of different compression
strategies. We evaluate GPU peak memory usage and inference latency on MMVU multiple-choice
samples using a single NVIDIA A6000 GPU. To ensure robustness of the comparison, we fix the
inference prompt and set the maximum output length to generate only the answer. More details are
included in Appendix A. With a batch size of 15, the baseline Qwen2.5-VL with 64 frames occupies
41.63 GB out of 48 GB of GPU memory. When applying our compression framework, the memory
usage is reduced to 11.48 GB, corresponding to a 72.4% reduction.

In terms of latency, input compression substan-
tially reduces the number of tokens required dur-
ing LLM generation, resulting in a 23.9% re-
duction in generation latency. This improvement
leads to a 15.9% reduction in overall model gen-
eration latency. Consequently, the end-to-end
latency for processing a single MMVU sample
is reduced by 11.1%. These results confirm that
our method achieves substantial improvements in
memory efficiency and inference speed, enabling
faster and more resource-efficient deployment of
vLLMs in practice.
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Models Frames VSI-Bench VideoMMMU MMVU (mc) MVBench TempCompass VideoMME (w/o sub) mean

Qwen2.5-VL-3B(baseline) 64 32.93 35.33 48.64 44.77 38.05 53.55 42.21
Qwen2.5-VL-3B(VMR) 64 34.02 34.33 55.52 57.24 40.38 51.85 45.56
Qwen2.5-VL-3B(SFT+VMR) 1 26.71 31.00 47.83 43.91 53.76 37.77 40.16
Qwen2.5-VL-3B(SFT) 1 25.70 28.33 45.76 39.48 54.05 37.72 38.50
MARC-3B-0.6(VMR) 1 27.55 33.11 51.99 45.82 55.34 39.44 42.20

Table 2: Comparative experiments evaluating the effect of the Visual Memory Retriever (VMR) and
contrasting our proposed MARC distillation framework with conventional supervised fine-tuning.

Models τ Frames VSI-Bench VideoMMMU MMVU (mc) MVBench TempCompass VideoMME (w/o sub) mean

MARC-3B 0.4 1 28.27 31.66 49.12 45.21 54.72 39.07 41.34
MARC-3B 0.6 1 27.55 33.11 51.99 45.82 55.34 39.44 42.20
MARC-3B 0.8 1 28.23 31.78 49.34 45.89 54.12 39.03 41.40

Table 3: Ablation study results of MARC-3B with different τ .

4.3 ABLATION STUDIES

In comparison to training-based compression using SFT. To evaluate the overall effectiveness
of our framework, we first train a model using standard SFT on 10K samples from Video-R1-COT-
165K (Feng et al., 2025), and evaluate it on the same benchmarks (implementation details are provided
in Appendix B). Table 2 shows the result. Comparing MARC-3B-0.6 with this SFT baseline, we
observe consistent improvements across all benchmarks. In terms of mean performance, our model
achieves 42.20 compared to 38.50, yielding a relative gain of +9.6%. Furthermore, even against a
stronger SFT+VMR variant, our method still delivers higher scores across all benchmarks (increasing
mean score by 5%. These results demonstrate that the integration of C-GRPO with VMR is crucial
for boosting performance under extreme temporal compression.

Ablation studies on the effect of τ in C-GRPO. Table 3 presents the ablation study results for
different threshold values τ during C-GRPO training. Recall from Equation 7 that τ specifies the
minimum acceptable retention ratio relative to the teacher model’s performance. We evaluate three
values of τ (0.4, 0.6, and 0.8) using the same benchmarks and experimental setup described in
Section 4.1. We observe that setting τ = 0.6 achieves the best overall performance, with a mean
score of 42.20 across six benchmarks. A lower threshold (τ = 0.4) makes the reward constraint too
lenient, resulting in insufficient incentive to retain the teacher model’s full performance. Conversely,
a higher threshold (τ = 0.8) imposes an overly strict constraint, triggering the additional compression
reward less frequently. This limits effective learning signals, restricts divergence from the baseline,
and slightly reduces performance. These results suggest that a moderate τ strikes the right balance: it
provides sufficient incentive for the model to preserve performance under compression while avoiding
the overly conservative behaviour induced by stricter constraints.

Ablation studies on VMR’s effectiveness. First, we conduct an experiment using Qwen2.5-VL-3B
model without training and compression, and evaluate it with VMR benchmarks (top-k = 3). The
result is shown in Table 2. It achieves a mean score of 45.56, compared to 42.21 for the baseline,
demonstrating that the VMR could boost performance. For MVBench, the increase is as high as
27.85%. This is because, for videos with many clips, instead of sampling uniformly for 64 frames, we
only sample in the top 3 important clips; therefore, more important frames are kept during evaluation.
This could further explain MARC’s effectiveness. It combines both the effect of VMR and C-GRPO,
so that the model’s reasoning ability rises, and we kept more important frames before compression.
This combination achieves optimal performance. The effectiveness is further established by the result
between SFT+VMR and SFT, we can see that the mean score increases by 4.3%. For VideoMMU
and MVBench, this increase reaches more than 10%.

5 CONCLUSION

MARC is a memory-augmented reinforcement learning framework for efficient video understanding
with high compression. It uses a Visual Memory Retriever to select key video segments and C-GRPO
to distill knowledge from a 64-frame teacher model to a 1-frame student. This approach reduces
visual tokens by 95% while maintaining strong performance, even outperforming the baseline on
specific benchmarks. MARC is a practical solution for real-world applications in resource-constrained
environments, such as real-time video question answering, surveillance, and autonomous driving.
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REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of our work, we provide detailed implementation information corre-
sponding to the results reported in this paper. The settings for the main results (Figure 4 and Table 1)
are described in Appendix A.1, Appendix A.2, and Section 4.1. For the efficiency experiments (Fig-
ure 5), implementation details are provided in Appendix A.3. A detailed description and processing
steps of the training dataset (Figure 3) are included in Appendix B.1. Finally, the implementation
details of C-GRPO and SFT training are presented in Appendix B.1 and Appendix B.2, respectively.
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A BENCHMARK EVALUATION DETAILS

A.1 IMPLEMENTATION

For the six benchmarks, each video is sampled at 1FPS and then subsampled to a maximum of 64
frames. Each frame is further capped to a resolution of 128×28×28, ensuring that the Qwen2.5-
VL visual processor produces an integer number of 14×14 patches. Decoding is configured to
approximate greedy behavior with top_p= 0.001 and temperature= 0.01, and the maximum output
length is set to 1024 tokens.

We adopt the prompt from Video-R1 (Feng et al., 2025) for both evaluation and training. This prompt
follows a Chain-of-Thought design, with additional formatting and output-type control to facilitate
clearer reasoning and more reliable scoring.

The prompt is:

QUESTION_TEMPLATE = (
"{Question}\n"
"Please think about this question as if you were a human
pondering deeply. "
"Engage in an internal dialogue using expressions such as
’let me think’, ’wait’, "
"’Hmm’, ’oh, I see’, ’let’s break it down’, etc., or
other natural language "
"thought expressions. It’s encouraged to include
self-reflection or verification "
"in the reasoning process. Provide your detailed
reasoning between the <think> "
"and </think> tags, and then give your final answer
between the <answer> and "
"</answer> tags."

)

TYPE_TEMPLATE = {
"multiple choice": " Please provide only the single
option letter (e.g., A, B, C, D, etc.) within the
<answer> </answer> tags.",
"numerical": " Please provide the numerical
value (e.g., 42 or 3.14) within the <answer>
</answer> tags.",
"OCR": " Please transcribe text clearly
and provide your answer within the <answer> </answer> tags.",
"free-form": " Please provide your text answer
within the <answer> </answer> tags.",
"regression": " Please provide the numerical
value (e.g., 42 or 3.14) within the <answer> </answer> tags."

}

Table 4 summarizes the statistics for each benchmark, reporting the average number of visual tokens
per sample under three settings: 64 frames, 16 frames, and compression to a single frame. Since
MVBench and TempCompass contain many short videos of only a few seconds, their average token
counts are lower than those of the other benchmarks.

Models Frames VSI-Bench VideoMMMU MMVU (mc) MVBench TempCompass VideoMME (wo sub) mean

video token number 64 3917.61 3849.23 2364.87 1005.06 668.84 3733.96 2589.93
video token number 16 1040 963.70 937.60 640.28 609.79 959.82 858.53
video token number 1 130 120.46 121.51 124.07 120 120.08 122.69

Table 4: Average vision token numbers per sample for all six benchmarks under settings of 64, 16
and 1 frame.
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A.2 IMPLEMENTATION OF OTHER COMPRESSION STRATEGIES

In order to compare the efficiency of our method from other compression strategies, we reproduce their
method on Qwen2.5-VL-3B. VidCom (Liu et al., 2025) compresses tokens within each frame based
on their importance both locally (within the frame) and globally (across frames), while maintaining
a global budget on the final token count via a retention ratio. For fair comparison, we adjust the
retention ratio according to Table 4, ensuring that the average number of tokens for each benchmark
after VidCom compression remains around 120 for each benchmark. For ByteVideoLLM (Wang
et al., 2024a), which applies spatial pooling when vision tokens pass through the Vision Transformer,
we similarly adjust the pooling ratio so that the resulting token count is approximately 120. For
MovieChat (Song et al., 2024), which compresses short-term memory before consolidating into
long-term memory, we follow its workflow: short-term memories are first compressed to two frames,
and then further compressed into a single long-term memory frame. The resulting token count is thus
aligned with our method. These adjustments ensure that all baselines operate under a comparable
token budget, making the evaluation fair and consistent.

A.3 IMPLEMENTATION OF EFFICIENCY EXPERIMENT

To evaluate the efficiency of MARC, we fix the prompt template such that the model outputs only the
final answer to ensure a fair comparison of inference cost. Evaluation is conducted on MMVU samples
with a batch size of 15 in order to maximize GPU memory utilization. We use 1 NVIDIA A6000
GPU to evaluate. All other evaluation settings are kept identical to those used in the performance
experiments.

A.4 ANALYSIS ON FAILURE CASE

From Table 2, comparing Qwen2.5-VL-3B (baseline) and Qwen2.5-VL-3B (VMR), we observe that
VideoMME does not benefit from VMR, with the score dropping from 53.55 to 51.85. A key factor
lies in the nature of the benchmark. VideoMME contains significantly longer videos: one third are of
medium length with an average of 515 seconds, and another third are long videos averaging 2466
seconds. By contrast, the longest among the other benchmarks, VideoMMMU, averages 506 seconds.
Notably, VideoMMMU also shows a slight drop under VMR. Since longer videos are divided into
more clips, restricting retrieval to the top-3 inevitably discards critical information, whereas the four
shorter benchmarks, with fewer clips and shorter durations, benefit consistently from VMR. Attempts
to increase from top 3 to more clips doesn’t simply solve this, because for longer videos the number
of clips could reach more than 100.

MARC, despite distilling stronger video understanding abilities from the 64-frame teacher, still falls
short on very long videos compared to short ones, as it cannot recover information once most of
the temporal chain has been discarded. As a result, it retains only 74% of baseline performance on
VideoMME. This is consistent with the VideoMME paper, which reports that increased sparsity in
frame sampling reduces effective input information (Fu et al., 2025).

A potential mitigation strategy is to incorporate a temporal Q-Former that adaptively identifies key
frames for compression, which could be further explored.

Overall, these findings suggest that our compression framework works very well for short clips
(MMVU, MVBench, TempCompass), performs reasonably on medium-length videos (VSI-Bench,
VideoMMMU), but sacrifices some performance on long-duration videos (VideoMME).

B TRAINING DETAILS

B.1 MORE DETAILS OF C-GRPO

The 5K training dataset, illustrated in Figure 3, contains both video and image sources. Apart from
the specific video datasets shown, the composition of the categories in the figure is as follows:

• Knowledge: TQA, AI2D, ScienceQA, PMC-VQA, VQA-RAD, GVLQA, ArxivQA,
EXAMS-V, AI2D-gpt4v.

14



Published as a conference paper at ICLR 2026

Method MARC (1 frame) MARC (8 frames) Qwen (16 frames) Qwen (64 frames)
VideoMME Result 39.44 45.33 44.37 53.55

Table 5: Performance comparison on the VideoMME benchmark under different visual token budgets.
MARC maintains competitive performance under aggressive compression while using significantly
fewer visual tokens compared to native multi-frame baselines.

• Math: CLEVR-Math, GEOS, Geometry3K, GeoQA+, UniGeo, Multimath-300K, Super-
CLEVR.

• Chart: FigureQA, DVQA, PlotQA, ChartQA, MapQA, TabMWP, Chart2Text, RoBUT,
SQA, VisualWebInstruct.

• Spatial: OpenSpaces, Spacellava.

• OCR: TextVQA, HME100k, ChromeWriting, IAM, Rendered Text, TextCaps, TextOCR.

• General: A-OKVQA, IconQA, ShareGPT4V, Visual7W, ShareGPT4o.

This 5K training dataset is sampled from the Video-R1-260K dataset (Feng et al., 2025), preserving
the same category proportions. After sampling, we apply VMR to process the 5K dataset, retaining
only the top-3 most important clips in each video. This is supported by Table 2, which shows that
applying VMR generally leads to improved performance.

Qwen2.5-VL-3B serves as the backbone model for our C-GRPO training. Each frame is capped
at a maximum resolution of 128 × 28 × 28 pixels. The ordered group size is set to G = 8, and
the maximum completion length is limited to 768 tokens. We adopt the Adam optimizer with a
learning rate of 1× 10−6 and a weight decay of 0.01. We set β, the KL divergence term of the GRPO
objective, to 0.04. DeepSpeed ZeRO-3 is used for memory-efficient distributed optimization.

B.2 DETAILS OF TRAINING-BASED COMPRESSION USING SFT

For SFT, we sample 10K instances from the Video-R1-COT-165K dataset (Feng et al., 2025), which
is constructed by leveraging Qwen2.5-VL-72B-Instruct (Bai et al., 2025) to generate chain-of-thought
(CoT) rationales for samples in Video-R1-260K, followed by filtering.

We then fine-tune the Qwen2.5-VL-3B-Instruct model using SFT. Training is conducted on 4 NVIDIA
H100 GPUs with the Adam optimizer, using a learning rate of 1× 10−6 and gradient clipping at 5.
We use bfloat16, and employ DeepSpeed ZeRO-2.

C THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were employed solely to assist with polishing the writing, such as
improving grammar and refining wording. They were not used for ideation or for generating original
content, and no sections of text were produced purely by LLMs.

D ADDITIONAL RESULTS IN ICLR 2026 REBUTTAL

D.1 EFFECTIVENESS OF ADJUSTABLE COMPRESSION AND CLARIFICATION ON
PERFORMANCE TRADE-OFFS

Table 5 presents additional results on the VideoMME benchmark under different compression ratios.
To further analyse the impact of visual token allocation, we evaluate MARC under both single-frame
equivalent compression and reduced compression (8-frame equivalent compression), and compare
with native multi-frame baselines.

Under single-frame equivalent compression, MARC achieves a score of 39.44 on VideoMME. It is
worth noting that VideoMME contains substantially longer videos compared to typical benchmarks.
Approximately one third of the videos fall into the medium-length regime (average 515 seconds),
while another third have an average duration of approximately 2,466 seconds. Under such extreme
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Frame Configuration Model Generation Latency (s) Token Number
Before Compressed Decrease Before Compressed

512 frames, 256× 28× 28 pixels/frame 18.36 7.65 58.30% 64,512 1,008
256 frames, 256× 28× 28 pixels/frame 8.26 4.55 44.90% 32,256 504
128 frames, 128× 28× 28 pixels/frame 2.80 2.29 18.20% 7,689 120
64 frames, 128× 28× 28 pixels/frame (ours) 2.51 2.11 15.90% 3,840 120

Table 6: Inference latency comparison under a fixed compression ratio (retaining approximately 5%
of visual tokens) across different input scales. The acceleration benefit becomes more pronounced as
the total visual token count increases.

temporal sparsity, aggressive compression inevitably removes information that cannot be fully
recovered.

When the compression ratio is reduced to 8-frame equivalent compression, performance improves
to 45.33 while still using only 12.8% of the visual tokens. In comparison, the native Qwen model
achieves 44.37 points at 16 frames and 53.55 points at 64 frames. These results indicate that the RL
distillation framework effectively improves performance when moderate visual token budgets are
allocated, while maintaining substantially lower token cost compared to native baselines.

Overall, the observed performance differences reflect a controllable trade-off between token budget
allocation and temporal information preservation, rather than intrinsic limitations of the compression
framework itself.

These findings further suggest a natural extension toward dynamic compression strategies. In
particular, token budgets could be adaptively allocated based on video duration or content complexity
to better preserve critical temporal dependencies. Exploring adaptive token allocation mechanisms
remains an important direction for future work.

D.2 LATENCY IMPROVEMENTS DEPEND ON TOKEN SCALE

Table 6 provides additional analysis of inference latency under a fixed compression ratio (approxi-
mately 5% visual token retention) across different input scales. We measure model generation latency
before and after compression to study the relationship between token count and latency reduction.

In high-token regimes (e.g., 512 frames corresponding to 64,512 tokens), compression reduces
inference latency from 18.36 seconds to 7.65 seconds, corresponding to a 58.3% speedup. Similarly,
in the 256-frame setting, compression achieves a 44.9% latency reduction. As the total token count
decreases, the relative acceleration also decreases, with only 15.9% speedup observed in the 64-frame
setting.

This behaviour can be explained by the transition between different system bottleneck regimes. When
the number of uncompressed input tokens is small, the system operates outside the visual-token
bottleneck regime, and compression provides limited relative speedup. In contrast, when the input
token count is large, inference latency becomes increasingly dominated by LLM decoding and
attention computation costs. In this regime, reducing visual token count leads to substantial latency
reduction.

It is also worth noting that the relatively modest token counts used in our main experiments are
primarily determined by training-time computational constraints, including frame number and per-
frame spatial resolution. In real-world long-video scenarios, where visual token counts can be
significantly larger, compression-based methods are expected to provide more substantial acceleration
benefits.

Overall, these results demonstrate that the efficiency gain of the proposed framework scales favourably
with input token count, making it particularly suitable for long-video understanding scenarios with
high visual token budgets.
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