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Abstract

Despite their successful application to a variety of tasks, neural networks remain limited,
like other machine learning methods, by their sensitivity to shifts in the data: their perfor-
mance can be severely impacted by differences in distribution between the data on which
they were trained and that on which they are deployed. In this article, we propose a new
family of representations, called MAGDiff, that we extract from any given neural network
classifier and that allows for efficient covariate data shift detection without the need to train
a new model dedicated to this task. These representations are computed by comparing the
activation graphs of the neural network for samples belonging to the training distribution
and to the target distribution, and yield powerful data- and task-adapted statistics for the
two-sample tests commonly used for data set shift detection. We demonstrate this empiri-
cally by measuring the statistical powers of two-sample Kolmogorov-Smirnov (KS) tests on
several different data sets and shift types, and showing that our novel representations induce
significant improvements over a state-of-the-art baseline relying on the network output.

1 Introduction

During the last decade, neural networks (NN) have become immensely popular, reaching state-of-the-art
performances in a wide range of situations. Nonetheless, once deployed in real-life settings, NN can face
various challenges such as being subject to adversarial attacks (Huang et al., |2017)), being exposed to out-
of-distributions samples (samples that were not presented at training time) (Hendrycks & Gimpel, [2016)), or
more generally being exposed to a distribution shift: when the distribution of inputs differs from the training
distribution (e.g., input objects are exposed to a corruption due to deterioration of measure instruments such
as cameras or sensors). Such distribution shifts are likely to degrade performances of presumably well-trained
models (Wiles et al., |2021b)), and being able to detect such shifts is a key challenge in monitoring NN once
deployed in real-life applications. Though shift detection for univariate variables is a well-studied problem,
the task gets considerably harder with high-dimensional data, and seemingly reasonable methods often end
up performing poorly (Ramdas et al., [2014).

In this work, we introduce the Mean Activation Graph Difference (MAGDiff), a new approach that harnesses
the powerful dimensionality reduction capacity of deep neural networks in a data- and task-adapted way.
The key idea, further detailed in Section 4] is to consider the activation graphs generated by inputs as
they are processed by a neural network that has already been trained for a classification task, and to
compare such graphs to those associated to samples from the training distribution. The method can thus be
straightforwardly added as a diagnostic tool on top of preexisting classifiers without requiring any further
training ; it is easy to implement, and computationally inexpensive. As the activation graphs depend on
the network weights, which in turn have been trained for the data and task at hand, one can also hope for
them to capture information that is most relevant to the context. Hence, our method can easily support,
and benefit from, any improvements in deep learning.

Our approach is to be compared to Black boz shift detection (BBSD), a method introduced in [Lipton et al.
(2018); Rabanser et al.[(2019) that shares a similar philosophy. BBSD uses the output of a trained classifier to
efficiently detect various types of shifts (see also Section; in their experiments, BBSD generally beats other
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methods, the runner-up being a much more complex and computationally costly multivariate two-sample
test combining an autoencoder and the Maximum Mean Discrepancy statistic (Gretton et al., 2012).

Our contributions are summarized as follows.

1. Given any neural network classifier, we introduce a new family of representations MAGDiff, that is
obtained by comparing the activation graphs of samples to the mean activation graph of each class
in the training set.

2. We propose to use MAGDiff as a statistic for data set shift detection. More precisely, we combine
our representations with the statistical method that was proposed and applied to the Confidence
Vectors (CV) of classifiers in [Lipton et al.| (2018), yielding a new method for shift detection.

3. We experimentally show that our shift detection method with MAGDiff outperforms the state-of-
the-art BBSD with CV on a variety of datasets, covariate shift types and shift intensities, often by
a wide margin. Our code is provided in the Supplementary Material and will be released publicly.

2 Related Work

Detecting changes or outliers in data can be approached from the angle of anomaly detection, a well-studied
problem (Chandola et al.,[2009), or out-of-distribution (OOD) sample detection (Shafaei et al.,|2018)). Among
techniques that directly frame the problem as shift detection, kernel-based methods such as Maximum Mean
Discrepancy (MMD) (Gretton et al., 2012} Zaremba et al.,|2013)) and Kernel Mean Matching (KMM) (Gretton,
et al., 2009; Zhang et al.,|2013) have proved popular, though they scale poorly with the dimensionality of the
data (Ramdas et al., 2014). Using classifiers to test whether samples coming from two distributions can be
correctly labeled, hence whether the distributions can be distinguished, has also been attempted; see, e.g.,
Kim et al| (2021). The specific cases of covariate shift (Jang et al., [2022; [Uehara et al., 2020 [Rabanser et al.
2019) and label shift (Storkey, 2009} Lipton et al), [2018) have been further investigated, from the point
of view of causality and anticausality (Scholkopf et all |2012). Moreover, earlier investigations of similar
questions have arisen from the fields of economics (Heckman), |1977) and epidemiology (Saerens et al., 2002).

Among the works cited above, Lipton et al| (2018) and Rabanser et al.| (2019)) are of particular interest to
us. In [Lipton et al. (2018), the authors detect label shifts using shifts in the distribution of the outputs
of a well-trained classifier; they call this method Black Box Shift Detection (BBSD). In [Rabanser et al]
, the authors observe that BBSD tends to generalize very well to covariate shifts, though without the
theoretical guarantees it enjoys in the label shift case. Our method is partially related to BBSD. Roughly
summarized, we apply similar statistical tests—combined univariate Kolmogorov-Smirnov tests—to different
features—Confidence Vectors (CV) in the case of BBSD, distances to mean activation graphs (MAGDiff) in
ours. Similar statistical ideas have also been explored in |Alberge et al|(2019) and Bar-Shalom et al. (2022),
while neural network activation graph features have been studied in, e.g., Lacombe et al.| (2021)) and [Horta]
. The related issue of the robustness of various algorithms to diverse types of shifts has been
recently investigated in |Wiles et al.| (2021a).

3 Background

3.1 Shift Detection with Two-Sample Tests

There can often be a shift between the distribution Py of data on which a model has been trained and
tested and the distribution P; of the data on which it is used after deployment; many factors can cause
such a shift, e.g., a change in the environment, in the data acquisition process, or the training set being
unrepresentative. Detecting shifts is crucial to understanding, and possibly correcting, potential losses in
performance; even shifts that do not strongly impact accuracy can be important symptoms of inaccurate
assumptions or changes in deployment conditions.
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Additional assumptions can sometimes be made on the nature of the shift. In the context of a classification
task, where data points are of the shape (z,y) with z the feature vector and y the label, a shift that
preserves the conditional distribution p(z]y) (but allows the proportion of each label to vary) is called label
shift. Conversely, a covariate shift occurs when p(y|z) is preserved, but the distribution of p(z) is allowed to
change. In this article, we focus on the arguably harder case of covariate shifts. See Section [f] for examples
of such shifts in numerical experiments.

Shifts can be detected using two-sample tests: that is, a statistical test that aims at deciding between the
two hypotheses
Ho :POZ]Pl and H1 ZPQ#PD

given two random sets of samples, Xy and X7, independently drawn from two distributions Py and P;. To
do so, many statistics have been derived, depending on the assumptions made on Py and P;. In the case
of distributions supported on R, one such test is the univariate Kolmogorov-Smirnov (KS) test, of which
we make use in this article. Given, as above, two sets of samples Xg, X7 C R, consider the empirical
distribution functions F;(z) := m > wex,; la<e for i = 0,1 and z € R. Then the statistic associated
with the KS test and the samples is T' = sup,cp |Fo(z) — Fi(2)]. If Py = Py, the distribution of T is
independent of Py and converges to a known distribution when the sizes of the samples tend to infinity
(under mild assumptions) (Smirnov, [1939)). Hence approximate p-values can be derived. The KS test can
also be used to compare multivariate distributions: if Py and P; are distributions on R?, a p-value p; can be
computed from the samples by comparing the i-th entries of the vectors of Xy, X7 C R using the univariate
KS test, for i = 1,...,D. A standard and conservative way of combining those p-values is to reject H
if min(p1,...,pp) < a/D, where « is the significance level of the test. This is known as the Bonferroni
correction (Voss & George, [1995). Other tests tackle the multidimensionality of the problem more directly,
such as the Maximum Mean Discrepancy (MMD) test, though not necessarily with greater success (see, e.g.,
Ramdas et al.| (2014)).

3.2 Neural Networks

We now recall the basics of neural networks (NN), which will be our main object of study. We define a
neural networkﬂ as a (finite) sequence of functions called layers fi,..., f of the form fy: R™ — R™+1 x
oe(Wy - x + by), where the parameters W, € R™+1*" and b, € R™+1 are called the weight matrix and the
bias vector respectively, and o, is an (element-wise) activation map (e.g., sigmoid or ReLU). The neural
network encodes a map F': R? — RP given by F = f; o---0 f;. We sometimes use F to refer to the neural
network as a whole, though it has more structure.

When the neural network is used as a classifier, the last activation function oy, is often taken to be the
softmax function, so that F(z); can be interpreted as the confidence that the network has in = belonging to
the i-th class, for ¢ = 1,..., D. For this reason, we use the terminology confidence vector (CV) for the output
F(x) € RP. The true class of x is represented by a label y = (0,...,0,1,0,...,0) € R that takes value
1 at the coordinate indicating the correct class and 0 elsewhere. The parameters of each layer (Wy,by) are
typically learned from a collection of training observations and labels {(x,,,)})_; by minimizing a cross-
entropy loss through gradient descent, in order to make F(x,) as close to y, as possible on average over the
training set. The prediction of the network on a new observation x is then given by argmax,_;  p F'(x);,
and its (test) accuracy is the proportion of correct predictions on a new set of observations {(z7,,v,)}N_,,
that is assumed to have been independently drawn from the same distribution as the training observations.
In this work, we consider NN classifiers that have already been trained on some training data and that
achieve reasonable accuracies on test data following the same distribution as training data.

3.3 Activation Graphs

Given an instance z = 2o € R%, a trained neural network fi,..., fr with o1 = fo(ze) = o¢e(Wy - 24 + by)
and a layer f,: R™ — R™+! we can define a weighted graph, called the activation graph Ge(z) of x

1While our exposition is restricted to sequential neural networks for the sake of concision, our representations are well-defined
for other types of neural nets (e.g., recurrent neural nets).
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for the layer fy, as follows. We let V = V, U V4 for two sets V; and Vp41 of cardinality ny and ngqq
respectively. The edges are defined as F := V; x Vp11. To each edge (i,j) € E,, we associate the weight
w; j(x) = Wi(4,9) - z¢(i), where x¢(i) (resp. We(j,7)) denotes the i-th coordinate of z, € R™ (resp. entry
(4,%) of W, € R™+1%™¢) The activation graph Gy(z) is the weighted graph (V, E, {w; ;(z)}), which can be
conveniently represented as a my X ngy; matrix whose entry (4,7) is w; j(z). Intuitively, these activation
graphs—first considered in (Gebhart et al.[(2019)—represent how the network “reacts” to a given observation
x at inner-level, rather than only considering the network output (i.e., the Confidence Vector).

4 Two-Sample Statistical Tests using MAGDiff

4.1 The MAGDiff representations

Let Py and P; be two distributions for which we want to test Hy : Py = IP;. As mentioned above, two-sample
statistical tests tend to underperform when used directly on high-dimensional data. It is thus common
practice to extract lower-dimensional representations W(x) from the data x ~ P;, where ¥: supp Py U
supp P; — RY. Given a classification task with classes 1,..., D, we define a family of such representations
as follows. Let T': supp Py Usupp P; — V be any map whose codomain V is a Banach space with norm
|l - |lv. For each class i € {1,...,D}, let Py ; be the conditional distribution of data points from Py in class
1. We define
W,(2) = |T(2) — Bz, [T()] v

for z € supp PoUsupp P;. Given a fixed finite dataset z1,..., %, id Py, we similarly define the approximation

m;

U(2) = ||T(z) - mi > Tl
) j=1

i
m;

where x%,...,2¢ are the points whose class is 7. This defines a map W : supp Py Usupp P; — RP.

The map T': supp Pg Usupp P; — V could a priori take many shapes. In this article, we assume that we
are provided with a neural network F' that has been trained for the classifying task at hand, as well as a
training set drawn from Py. We let T" be the activation graph G of the layer f; of F represented as a matrix,
so that the expected values Ep, ,[G¢(2")] (for ¢ = 1,..., D) are simply mean matrices, and the norm || - ||y
is the Frobenius norm || - ||2. We call the resulting D-dimensional representation Mean Activation Graph
Difference (MAGDiff):

. LS
MAGDiff(z); = ||Ge(x) — o 2 Go(zh)|2,
J:
fori=1,...,D, where 2%, ... ,x}n are, as above, samples of the training set whose class is i. Therefore, for

a given new observation x, we derive a vector MAGDiff(z) € R” whose i-th coordinate indicates whether x
activates the chosen layer of the network in a similar way “as training observations of the class ¢”.

Many variations are possible within that framework. One could, e.g., consider the activation graph of several
consecutive layers, use another matrix norm, or apply Topological Data Analysis techniques to compute a
more compact representation of the graphs, such as the topological uncertainty (Lacombe et all |2021). In
this work, we focus on MAGDiff for dense layers, though it could be extended to other types.

4.2 Comparison of distributions of features with multiple KS tests

Given as above a (relatively low-dimensional) representation W: supp Py U supp P; — R and samples
[ id Py and zi,..., ), i P, one can apply multiple univariate (coordinate-wise) KS tests with
Bonferroni correction to the sets ¥(z1),...,¥(z,) and ¥(z}),...,¥(z,,), as described in Section |3 If ¥ is
well-chosen, a difference between the distributions Py and Py (hard to test directly due to the dimensionality
of the data) will translate to a difference between the distributions ¥(z) and ¥(z’) for z ~ Py and 2/ ~ Py
respectively. Detecting such a difference serves as a proxy for testing Hy : Py = P;. In our experiments,
we apply this procedure to the MAGDiff representations defined above (see Section for a step-by-step

description). This is a reasonable approach, as it is a simple fact that a generic shift in the distribution
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of the random variable  ~ Py will in turn induce a shift in the distribution of ¥(z), as long as ¥ is not
constanﬂ however, this does not give us any true guarantee, as it does not provide any quantitative result
regarding the shift in the distribution of ¥(x). Such results are beyond the scope of this paper, in which we
focus on the good experimental performance of the MAGDiff statistic.

4.3 Differences from BBSD and motivations

The BBSD method described in |Lipton et al| (2018) and Rabanser et al| (2019) is defined in a similar
manner, except that the representations ¥ on which the multiple univariate KS tests are applied are simply
the Confidence Vectors (CV) F(z) € RP of the neural network F' (or of any other classifier that outputs
confidence vectors), rather than our newly proposed MAGDiff representations. In other words, they detect
shifts iriE‘lche distribution of the inputs by testing for shifts in the distribution of the outputs of a given
classifie

Both our method and theirs share advantages: the features are task- and data-driven, as they are derived from
a classifier that was trained for the specific task at hand. They do not require the design or the training of an
additional model specifically geared towards shift detection, and they have favorable algorithmic complexity,
especially compared to some kernel-based methods. In particular, combining the KS tests with the Bonferroni
correction spares us from having to calibrate our statistical tests with a permutation test, which can be costly
as shown in [Rabanser et al.| (2019). A common downside is that the Bonferroni correction can be overly
conservative; other tests might offer higher power. The main focus of this article is the relevance of the
MAGDiff representations, rather than the statistical tests that we apply to them, and it has been shown
in [Rabanser et al.| (2019) that KS tests yield state-of-the-art performances; as such, we did not investigate
alternatives, though additional efforts in that direction might produce even better results.

The nature of the construction of the MAGDiff representations is geared towards shift detection since it is
directly based on encoding differences (i.e., deviations) from the mean activation graphs (of Py). Moreover,
they are based on representations from deeper within the NN, which are less compressed than the CV -
passing through each layer leads to a potential loss of information. Hence, we can hope for the MAGDiff to
encode more information from the input data than the CV representations used in [Rabanser et al.| (2019)
which focus on the class to which a sample belongs to, while sharing the same favorable dimensionality
reduction properties. Therefore, we expect MAGDiff to perform particularly well with covariate shifts, where
shifts in the distribution of the data do not necessarily translate to strong shifts in the distribution of the
CV. Conversely, we do not hope for our representations to bring significant improvements over CV in the
specific case of label shifts; all the information relative to labels available to the network is, in a sense,
best summarized in the CV, as this is the main task of the NN. These expectations were confirmed in our
experiments.

5 Experiments

This experimental section is devoted to showcasing the use of the MAGDiff representations and its benefits
over the well-established baseline CV when it comes to performing covariate shift detection. As detailed in
Section [5.1} we combine coordinate-wise KS tests for both these representations. Note that in the case of
CV, this corresponds exactly to the method termed BBSDs in Rabanser et al.| (2019). Our code is provided
in the Supplementary Material, as well as a more thorough presentation of the datasets and parameters used.

5.1 Experimental Settings

Datasets. We consider the standard datasets MNIST (LeCun et al., [1998), FashionMNIST (FMNIST)
(Xiao et all [2017)), CIFAR-10 (Krizhevsky & Hintonl [2009), SVHN (Netzer et al., |2011)), as well as a lighter
version of ImageNet (restricted to 10 classes) called Imagenette (Imal, 2023)).

2See the Supplementary Material, Section 3 for an elementary proof.
3This corresponds to the best-performing variant of their method, denoted as BBSDs (as opposed to, e.g., BBSDh) in
Rabanser et al.| (2019)).
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Architectures. For MNIST and FMNIST, we used a simple CNN architecture consisting of 3 convolutional
layers followed by 4 dense layers. For CIFAR-10 and SVHN, we considered (a slight modification, to account
for input images of size 32 x 32, of) the ResNet18 architecture (He et all |2015)). For Imagenette, we used
a pretrained ResNet18 model provided by Pytorch (Resl 2018). With these architectures, we reached a
test accuracy of 98.6% on MNIST, 91.1% on FMNIST, 94.1% on SVHN, 81% on CIFAR-10 and 99.2% for
Imagenette, validating the “well-trained” assumption mentioned in Section [l Note that we used simple
architectures, without requiring the networks to achieve state-of-the-art accuracy.

Shifts. We applied three types of shift to our datasets: Gaussian noise (additive white noise), Gaussian
blur (convolution by a Gaussian distribution), and Image shift (random combination of rotation, translation,
zoom and shear), for six different levels of increasing intensities (denoted by I, II,... ,VI), and a fraction of
shifted data § € {0.25,0.5,1.0}. For each dataset and shift type, we chose the shift intensities in such a
manner that the shift detection for the lowest intensities and low § is almost indetectable for both methods
(MAGDiff and CV), and very easily detectable for high intensities and values of §. Details (including the
impact of the shifts on model accuracy) and illustrations can be found in the Supplementary Material.

Sample size. We ran the shift detection tests with sample sizesﬂ {10, 20, 50, 100, 200, 500, 1000} to assess
how many samples a given method requires to reliably detect a distribution shift. A good method should be
able to detect a shift with as few samples as possible.

Experimental protocol. In all of the experiments below, we start with a neural network that is pre-
trained on the training set of a given dataset. The test set will be referred to as the clean set (CS). We
then apply the selected shift (type, intensity, and proportion §) to the clean set and call the resulting set
the shifted set SS; it represents the target distribution P; in the case where Py # Py.

As explained in Section [4} for each of the classes i = 1,..., D (for all of our datasets, D = 10), we compute
the mean activation graph of a chosen dense layer f; of (a random subset of size 1000 of all) samples in the
training set whose class is 7; this yields D mean activation graphs G1,...,Gp. We compute for each sample
x in CS and each sample in SS the representation MAGDiff(z), where MAGDiff(x); = ||Ge(z) — G;l2 for
t=1,...,D and G(z) is the activation graph of x for the layer f; (as explained in Section . Doing so,
we obtain two sets {MAGDiff(z) | z € C'S} and {MAGDiff(x') | 2’ € SS} of D-dimensional features with the
same cardinality as the test set.

Now, we estimate the power of the test for a given sample sizeﬂ m and for a type I error of at most 0.05;
in other words, the probability that the test rejects Hy when H; is true and when it has access to only
m samples from the respective datasets, and under the constraint that it does not falsely reject Hy in
more than 5% of cases. To do so, we randomly sample (with replacement) m elements ...,z from
5SS, and consider for each class i = 1,..., D the discrete empirical univariate distribution g; of the values
MAGDiff(z});,...,MAGDiff(x],),;. Similarly, by randomly sampling m elements from C'S, we obtain another
discrete univariate distribution p; (see Figure |1| for an illustration). Then, for each i = 1,..., D, the KS test
is used to compare p; and ¢; to obtain a p-value A;, and reject Hy if min(\y,...,Ap) < «/D, where « is the
threshold for the univariate KS test at confidence 0.05 (cf. Section . Following standard bootstrapping
protocol, we repeat that experiment (independently sampling m points from CS and SS, computing p-
values, and possibly rejecting Hp) 1500 times; the percentage of rejection of Hy is the estimated power of
the statistical test (since Hp is false in this scenario). We use the asymptotic normal distribution of the
standard Central Limit Theorem to compute approximate 95%-confidence intervals on our estimate.

To illustrate that the test is well calibrated, we repeat the same procedure while sampling twice m elements
from CS (rather than m elements from S.S and m elements from CS), which allows us to estimate the type
I error (i.e., the percentage of incorrect rejections of Hy) and assert that it remains below the significance
level of 5% (see, e.g., Figure[2).

4That is, the number of elements from the clean and shifted sets on which the statistical tests are performed; see the
paragraph Experimental protocol for more details.
5The same sample size that is mentioned in the Sample size paragraph.
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Figure 1: Empirical distributions of MAGDiff; for the 10,000 samples of the clean and shifted sets (MNIST, Gaussian
noise, § = 0.5, last dense layer). For the clean set, the distribution of the component MAGDiff; of MAGDiff exhibits a
peak close to 0. This corresponds to those samples whose distance to the mean activation graph of (training) samples
belonging to the associated class is very small, i.e., these are samples that presumably belong to the same class as
well. Note that, for the shifted set, this peak close to 0 is substantially diminished, which indicates that the activation
graph of samples affected by the shift is no longer as close to the mean activation graph of their true class.

We experimented with a few variants of the MAGDiff representations: we tried reordering the coordinates
of each vector MAGDiff(x) € RP in increasing order of the value of the associated confidence vectors. We
also tried replacing the matrix norm of the difference to the mean activation graph by either its Topological
Uncertainty (TU) (Lacombe et al.| 2021)), or variants thereof. Early analysis suggested that these variations
did not bring increased performances, despite their increased complexity. Experiments also suggested that
MAGDiff representations brought no improvement over CV in the case of label shift. We also tried to
combine (7.e., concatenate) the CV and MAGDiff representations, but the results were unimpressive, which
we attribute to the Bonferroni correction getting more conservative the higher the dimension. We thus only
report the results for the standard MAGDiff.

Competitor. We used multiple univariate KS tests applied to CV (the method BBSDs from
) as the baseline, which we denote by “CV” in the figures and tables, in contrast to our method
denoted by “MAGDiff”. The similarity in the statistical testing between BBSDs and MAGDiff allows us to
easily assess the relevance of the MAGDiff features. We chose them as our sole competitors as it has been
convincingly shown in [Rabanser et al. (2019) that they outperform on average all other standard methods,
including the use of dedicated dimensionality reduction models, such as autoencoders, or of multivariate
kernel tests. Many of these methods are also either computationally more costly (to the point where they
cannot be practically applied to more than a thousand samples) or harder to implement (as they require an
additional neural network to be implemented) than both BBSDs and MAGDiff.

5.2 Experimental results and influence of parameters.

We now showcase the power of shift detection using our MAGDiff representations in various settings and
compare it to the state-of-the-art competitor CV. Since there were a large number of hyper-parameters
in our experiments (datasets, shift types, shift intensities, etc.), we started with a standard set of hyper-
parameters that yielded representative and informative results according to our observations (MNIST and
Gaussian noise, as in [Rabanser et al|(2019)), 6 = 0.5, sample size 100, MAGDiff computed with the last layer
of the network) and let some of them vary in the successive experiments. We focus on the well-known MNIST
dataset to allow for easy comparisons, and refer to the Supplementary Material for additional experimental
results that confirm our findings on other datasets.

Sample size. The first experiment consists of estimating the power of the shift detection test as a function
of the sample size (a common way of measuring the performance of such a test) using either the MAGDiff or
the baseline CV representations. Figure [2| shows the powers of the KS tests using the MAGDiff (red curve)
and CV (green curve) representations with respect to the sample size for the MNIST dataset. Here, we
choose to showcase the results for Gaussian noise of intensities II, IV and IV with shift proportion § = 0.5.
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Power as a Function of Sample Size
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Figure 2: Power and type I error of the statistical test with MAGDiff (red) and CV (green) representations w.r.t. sample
size (on a log-scale) for three different shift intensities (II, IV, VI) and fixed 6 = 0.5 for the MNIST dataset, Gaussian
noise and last layer of the network, with estimated 95%-confidence intervals.

It can clearly be seen that MAGDiff consistently and significantly outperformed the CV representations.
While in both cases, the tests achieved a power of 1.0 for large sample sizes (m = 1000) and/or high shift
intensity (VI), MAGDiff was capable of detecting the shift even with much lower sample sizes. This was
particularly striking for the low intensity level II, where the test with CV was completely unable to detect
the shift, even with the largest sample size, while MAGDiff was capable of reaching non-trivial power already
for a medium sample size of 100 and exceptional power for large sample size. Note that the tests were always
well-calibrated. That is, the type I error remained below the significance level of 0.05, indicated by the
horizontal dashed black line in the figures.

To further support our claim that MAGDiff outperforms CV on average in other scenarios, we provide, in
Table [I, averaged results over all parameters except the sample size. Though the precise values obtained
are not particularly informative (due to the aggregation over very different sets of hyper-parameters), the
comparison between the two rows remains relevant. In the Supplementary Material, a more comprehensive
experimental report (including, in particular, the CIFAR-10 and Imagenette datasets) further supports our
claims.

Averaged power (%)
Sample size 10 20 50 100 200 500 1000

MAGDiff 74 171 276 40.7 54.7 714 804
CV 4.0 98 15.6 24.7 353 49.7 59.2

Table 1: Averaged test power of MAGDiff and CV over all hyper-parameters except sample size (dataset, shift type,
d, shift intensity). A 95%-confidence interval for the averaged powers has been estimated via bootstrapping and is,
in all cases, strictly contained in a +0.1% interval.

Shift intensity. The first experiment suggests that MAGDiff representations perform particularly well
when the shift is hard to detect. In the second experiment, we further investigate the influence of the shift
intensity level and § (which is, in a sense, another measure of shift intensity) on the power of the tests. We
chose a fixed sample size of 100, which was shown to make for a challenging yet doable task. The results
in Figure 3| confirm that our representations were much more sensitive to weak shifts than the CV, with
differences in power greater than 80% for some intensities.

Shift type. The previous experiments focused on the case of Gaussian noise; in this experiment, we
investigate whether the results hold for other shift types. As detailed in Table [2] the test with MAGDiff
representations reacted to the shifts even for low intensities of I, I, and III for all shift types (Gaussian blur
being the most difficult case), while the KS test with CV was unable to detect anything. For medium to
high intensities III, IV, V and VI, MAGDiff again significantly outperformed the baseline and reaches powers
close to 1 for all shift types. For the Gaussian blur, the shift remained practically undetectable using CV.
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MNIST: Gaussian noise, sample size: 100
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Figure 3: Power and type I error of the test with MAGDiff (red) and CV (green) features w.r.t. the shift intensity for
Gaussian noise on the MNIST dataset with sample size 100 and § = 0.25 (left), 6 = 0.5 (middle), § = 1.0 (right), for
the last dense layer. The estimated 95%-confidence intervals are displayed around the curves.

Impact of Shift Type

Power of the test (%)

Shift intensity

Shift  Feat. I IT T v % VI
ox M 72513 203423 619+25 033+13 989£05 100.0—00
CV 00402 01401 15+06 17.6+1.9 723423 98.9+05
ag ™ 87+10 43+10 277+£23 631424 850+18 924+13
CV  00+02 00402 00+02 04403 13406 53+1.1
g "™ 10315 327424 535425 785421 906+15 989E05
CV  00+02 01402 21+07 11.5+16 370424 863+1.7

Table 2: Power of the two methods (our method, denoted as MD,

and CV) as a function of the shift intensity for

the shift types Gaussian noise (GN), Gaussian blur (GB) and Image shift (IS) on the MNIST dataset with § = 0.5,
sample size 100, for the last dense layer. Red indicates that the estimated power is below 10%, blue that it is above
50%. The 95%-confidence intervals have been estimated as mentioned in Section

MAGDiff with respect to different layers. The NN ar-
chitect we used with MNIST and FMNIST consisted had
several dense layers before the output. As a variation of our
method, we investigate the effect on the shift detection when
computing our MAGDiff representations with respect to dif-
ferent layeraﬂ More precisely, we consider the last three
dense layers denoted by £_1, £_5 and ¢_3, ordered from the
closest to the network output (¢_1) to the third from the
end (¢_3). The averaged results over all parameters and
noise types are in Table 3]

In the case of MNIST we only observe a slight increase in
power when considering layer ¢_3 further from the output of

Choice of Layer
Averaged power (%)

Features
Dataset o 1, (. 1.
MNIST 25.1 51.9 53.0 56.4
FMNIST 46.2 44.9 476 53.7

Table 3: Averaged performance of the various
layers for MAGDiff over all other parameters (for
MNIST and FMNIST), compared to BBSD with
CV. A 95% confidence interval for the averaged
powers was estimated and is in all cases contained
in a £0.1% interval.

the NN. In the case of FMNIST, on the other hand, we clearly see a much more pronounced improvement
when switching from ¢_; to ¢_3. This hints at the possibility that features derived from encodings further
within the NN can, in some cases, be more pertinent to the task of shift detection than those closer to the

output.

6Since ResNet18 only has a single dense layer after its convolutional layers, there is no choice to be made in the case of

CIFAR-10, SVHN and Imagenette.
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6 Conclusion

In this article, we derive new representations MAGDiff from the activation graphs of a trained NN classifier.
We empirically show that using MAGDiff representations for data set shift detection via coordinate-wise KS
tests (with Bonferroni correction) significantly outperforms the baseline given by using confidence vectors
established in|Lipton et al.[(2018), while remaining equally fast and easy to implement, making MAGDiff rep-
resentations an efficient tool for this critical task.

Our findings open many avenues for future investigations. We focused on classification of image data in this
work, but our method is a general one and can be applied to other settings. Moreover, adapting our method
to regression tasks as well as to settings where shifts occur gradually is feasible and a starting point for future
work. Finally, exploring variants of the MAGDiff representations—considering several layers of the network
at once, extending it to other types of layers, extracting finer topological information from the activation
graphs, weighting the edges of the graph by backpropagating their contribution to the output, etc.—could
also result in increased performance.
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A Appendix

A.1 Additional Information on the Experimental Procedures.

Datasets. The number of samples in the clean sets (i.e., the test sets) of the datasets we investigated are
as follows:

o MNIST, FMNIST and CIFAR-10: 10’000,
o SVHN: 26’032.

o Imagenette: 3'925.

A sample from each dataset can be seen in Figure [4

Figure 4: Sample images from all datasets used in the paper. From left to right: MNIST, FashionMNIST, CIFAR-10,
SVHN and Imagenette.

Shifts. In order to illustrate the effect of the shift types described in Section [5.1] of the main article, we
show the effects of the shifts and their intensities on the MNIST dataset in Flgure For the detailed
parameters of each shift intensity (per dataset) we refer to the associated code.

clean

717171717]
II
717717171711

Figure 5: Illustration of intensities of the shift types — Gaussian noise (top row), Gaussian blur (middle row) and
Image shift (bottom row) — on a sample from the MNIST dataset.
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MNIST
. Sample size
Shift Int.Feat. 10 20 50 100 200 500 1000
y "™ 27+08 77E13 112516 293+23 559+25 O47ELl 99.9+01
CV 00402 01401 00402 01401 03403 15+06 6.1+1.2
oy oy M 8614 261422 60.9425 933413 100.0—0.0 100.0—00 100.0 - 0.0
CV 01402 10405 38410 17.6+1.9 584425 993404 100.0—0.0
yp M 165419 542425 935+13 100.0-0.0 100.0-0.0 100.0—00 100.0-0.0
CV  37+1.0 204420 656424 98.9+05 100.0—0.0 100.0—0.0 100.0 — 0.0
[ M 19%07 27408 33+09 43E10 99+15 22221 40725
CV 00402 01401 00402 00402 00402 01401 01401
ap 1y M 4811 131+17 303423 631424 939412 100.0-00 100.0 - 0.0
CV 00402 00402 01402 03403 15+06 11.3+16 449+25
yi M 92515 251422 575425 924413 100.0—0.0 100.0—00 100.0 - 0.0
CV 01401 05404 14406 51+1.1 221+21 83.5+16 100.0— 0.0
4 ™ 35%09 86414 I51+18 327424 663424 98007 100000
CV 00402 00402 00402 01402 07+04 69+13 284+23
s v M 56£12 185420 421425 785421 980407 100.0-0.0 100.0 - 0.0
CV 01402 09405 24408 155+1.8 500425 99.5+0.3 100.0—0.0
yi M 104E15 340424 726+£23 989405 100.0—0.0 100.0-00 100.0 - 0.0

CVvV 1.3£06 73+13 31.7+24 833+19 100.0-0.0 100.0—-0.0 100.0—-0.0

Table 4: Power of the statistical test with MAGDiff (abbreviated as MD) and CV representations for the shift types
Gaussian noise (GN), Gaussian blur (GB) and Image shift (IS), three different shift intensities (II, IV, VI) and fixed
0 = 0.5 for the MNIST dataset. The estimated 95%-confidence intervals are indicated.

A.2 Additional Experimental Results

Sample size. To further support our claims, we include comprehensive results of the power with respect
to the sample size for the MNIST, Imagenette and CIFAR-10 datasets in Tables 4 [ and [§] We provide all
results for the shift intensities I, IV and VI, for all shift types, and fixed § = 0.5 for MNIST, CIFAR-10,
respectively § = 1.0 for Imagenette (the § were chosen so that the task is comparatively easy at high shift
intensity and hard at low shift intensity for both methods).

Shift intensity. In Figures[0] [7]and 8 we collect the plots of the estimated powers of the test for multiple
cases, in addition to the one presented in the main article. Note that the only situation in which MAGDiff
is very slightly outperformed by the baseline CV, is the case of FMNIST, when we consider MAGDiff repre-
sentations of layer [_;. In all other cases, shift detection using MAGDiff representations clearly outperforms
the baseline of CV by a large margin.

Model accuracy. In Figure[J] we show the impact of the shift type and intensity on the model accuracy.
It is interesting to note that, even in cases where the model accuracy is only minimally impacted (e.g., for
Gaussian blur on the MNIST and FMNIST datasets), our method can still reliably detect the presence of
the shift.

Norm variations. As mentioned in the main paper, many variations of MAGDiff are conceivable. Here, we
present some experimental results for variations on the type of norm that is used to construct the MAGDiff
representations. In Figure we show the results where, instead of the Frobenius-norm, we consider the
spectral norm as well as the operator norm || - || induced by the sup-norm on vectors. The spectral norm
is equal to the largest singular value and || - ||oo is defined by:

o M
HM”OO T Sl;ép || H 1<z<mz|m”|

14



Under review as submission to TMLR

Imagenette
. Sample size

Shift Int. Feat. 10 20 50 100 200 500 1000
@ M 07+04 22407 6312 167+19 462425 933413 999£0.1
CV 24408 45+1.1 27408 41410 42410 73+13 103+15
an v M 09405 36409 T3+£13 221421 60.7+£25 985+0.6 100.0—00
CV 16406 41410 32409 39410 47411 75+13 101+15
v M 09405 36409 73+£13 221421 60.7+25 985+06 100.0-0.0
CV 22407 49411 35409 53+1.1 68+13 155+18 335424
;™ 05%03 25+£08 41+10 153+18 406525 OL7+14 09.9402
CV 21407 37410 32409 37410 7.0+13 11.3+16 182420
ap v M 10£05 35409 91415 203423 679424 99.1+£05 100.0-00
CV 23408 45+10 374+1.0 45+1.1 63412 131417 26.9+22
v M 13£06 50411 172419 505425 89.9+15 100.0—0.0 100.0—- 0.0
CV 21407 35409 31409 50+1.1 69+13 185420 46.8+25
™ 05+04 11+£05 19+£07 4711 13.6%17 445+25 831+19
CV 25408 37410 39410 31409 43+10 63+12 99+15
s v M 03£03 19407 29409 01+15 281+£23 751422 983407
CV 17407 30409 36409 39+1.0 48+1.1 83+14 128+17
v M 06404 25408 50411 149418 443425 935412 99.9+0.1
CV 20407 39410 19407 46+1.1 61+12 83+14 155418

Table 5: Power of the statistical test with MAGDiff (abbreviated as MD) and CV representations for the shift types
Gaussian noise (GN), Gaussian blur (GB) and Image shift (IS), three different shift intensities (II, IV, VI) and fixed

d = 1 for the Imagenette dataset. The estimated 95%-confidence intervals are indicated.

CIFAR-10
. Sample size

Shift Int. Feat. 10 20 50 100 200 500 1000
y ™ 1807 53+L1 16719 47.0£25 869+ 17 100.0—0.0 1000 0.0
CV 23408 45411 69413 191420 383425 883+1.6 99.940.1
ox v M 25408 111416 367424 811420 993404 100.0—00 100.0—00
CV 25408 67413 11.74+1.6 299423 634424 993404 100.0—0.0
yp M0 27408 14718 492425 912414 99.9£01 100.0—0.0 1000 - 0.0
CV 27408 73+13 142418 375425 77.3+21 99.940.2 100.0— 0.0
g ™ 0805 28408 66+13 189420 49525 932+13 1000 0.0
CV 26408 40+10 34409 68413 11.1+1.6 304+23 589+25
g pv M L8E0T 57412 195420 497425 89.6+15 99.940.1 1000 - 0.0
CV 25408 64412 73413 1394+1.7 359424 840+1.9 99.8+0.2
yp M 21407 63412 234421 625424 96.1+1.0 100.0-0.0 100.0 0.0
CV 30409 89414 147418 442425 855+ 1.8 100.0 —0.0 100.0 — 0.0
; ™ 03%03 13406 36%09 67+13 196+20 601+25 92613
CV 25408 33409 25408 444+1.0 79+1.4 165+1.9 31.5+24
s qv M 06£04 24+08 39410 161419 39.9425 882416 99.940.1
CV 20407 39+10 29409 67+1.3 108+1.6 254+22 53.1+25
yp M0 13406 39410 89414 228+21 574+25 977408 1000 - 0.0
CV 20407 46411 44410 95+1.5 155+1.8 445425 83.2+1.9

Table 6: Power of the statistical test with MAGDiff (abbreviated as MD) and CV representations for the shift types
Gaussian noise (GN), Gaussian blur (GB) and Image shift (IS), three different shift intensities (II, IV, VI) and fixed

0 = 0.5 for the CIFAR-10 dataset. The estimated 95%-confidence intervals are indicated.

15



Under review as submission to TMLR

1.

power estimation
o o o o

o

1.0

0.8

0.6

power estimation

0.2

0.0

Figure 6: Power and type I error of the test with MAGDiff (red) and CV (green) representations w.r.t. the shift
intensity for various shift types on the MNIST dataset with § = 0.5, sample size 100, for layers £_; (top row) and

MNIST: Gaussian noise, sample size: 100 MNIST: Gaussian blur, sample size: 100 MNIST: Image shift, sample size: 100
0 —y 1.0 - =
o )
c 0.8 < 0.8 3
8 ha o
T B
6 E06 £06
g g
4 « 0.4 = 0.4
] [
3 3
) o
2 ¥ 2.0.2 0.2
e e L]
0 ¥ 0.01 # ¥ " 0.0
| Il 1l v \Y \ | I 1]} \2 \% VI | ] ] v \ \
shift intensity shift intensity shift intensity
MNIST: Gaussian noise, sample size: 100 MNIST: Gaussian blur, sample size: 100 MNIST: Image shift, sample size: 100
1.0 @ powerCV. - 1.0 « power CV
-+ power MAGDiIff ' """ <we power MAGDIff
- Type | error CV & « TypelerrorCV & s
§ c 0877 .. Type | error MAGDIff # c 0817 e Type | error MAGDIff 7%
.2 .2
power CV , ‘é 06 ‘é 06
¢ power MAGDiff = =
- Type | error CV ¢ 3
. 0.4 04
‘f ------- Type | error MAGDiIff g g §
o o
Q Q
; 0.2 024 &
& # f %
R i SRR i 0.0 2 00 >
1 1 ] Y \ \ I 1] Y \ \ 1 I n Y v \

shift intensity

£_3 (bottom row).
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for M € R™*". Comparing to Figure@, we observe that the results for the Frobenius-norm and the spectral
norm are almost identical. However, while the results for the || - ||« are still better (in almost all cases) than
those of the baseline CV, they are less powerful than those of the Frobenius norm.
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Figure 7: Power and type I error of the test with MAGDiff (red) and CV (green) representations w.r.t. the shift
intensity for various shift types on the FMNIST dataset with § = 0.5, sample size 100, for layers £_; (top row) and
£_3 (bottom row).

A.3 Theoretical observations regarding the preservation of shift distributions by continuous functions

In the main article, we mentioned the fact that under generic conditions, two distinct distributions remain
distinct under the application of a non-constant continuous function (though this does not necessarily trans-
late to good quantitative guarantees). In this section, we make this assertion more formal and provide an
elementary proof.

Let X be a separable metric space, and denote by P(X) the set of probability measures on X equipped
with its Borel o-algebra. Let C(X) be the real bounded continuous functions on X. We consider the weak
convergence topology on P(X); remember that a subbase for this topology is given by the sets

Ufap = {,u € P(X)] /X fdu E]mb[} ,

for f € Cp(X) and a < b € R (see for example Kallianpur| (1961))).

Now let X, Y be two such separable metric spaces with their Borel o-algebra. Any measurable map F': X —
Y induces a map

F, P(X)— P(Y)
w Fi(p),

where F,(u) is the pushforward of p by F, that is the measure on P(Y') characterized by Fi(u)(A) =
w(F~1(A)) for any Borel set A C Y.

Fact 1. If F : X — Y is continuous, then F, : P(X) — P(Y) is continuous for the weak convergence
topology.

Proof. Given f € Cp(X) and a < b € R, we see that F; ' (Uf.q.5) = Ufor,ap, which is enough to conclude by
the definition of subbases. ]
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Figure 8: Power and type I error of the test with MAGDiff (red) and CV (green) representations w.r.t. the shift
intensity for various shift types on the CIFAR-10, SVHN (with § = 0.5) and Imagenette (with 6 = 1) datasets.
Sample sizes and values of § were chosen to make the plots as expressive as possible (low power for low shift intensity,
high power for high shift intensity), as the difficulty of the task varies depending on the shift type and dataset.

The following result follows from standard arguments; we give an elementary proof for the convenience of
the reader.

Proposition 1. Let F' : X — R be continuous and non-constant for X a separable metric space, and let
v € F.(P(X)) C P(R). Then the complement F71({v})¢ = P(X)\F,1({v}) of the set F71({v}) is a dense
open set of P(X) for the weak topology.

Proof. As R is separable and metric, it is easy to show that the singleton {v} € P(R) is closed (see for
example (Kallianpur} 1961, Thm 4.1)). As we know from Fact [1] that F, is continuous, we conclude that
F1({v}) is closed and F_ 1 ({v})¢ is open.

It remains to show that it is dense in P(X). Let u belong to F,1({r}), and let V C P(X) be an open set
containing . We have to show that F,'({v})° NV is non-empty. Thanks to the definition of the weak
topology, we can assume (by potentially taking a subset of V') that

n

V= n {ﬂ € P(X) s.t. /X fidp G]aivbi[}

i=1
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for some f1,...,fn € Cp(X) and ay1,b1,...,an,b, € R with a; < b; for all i. Let x1 be any point in the
support of p. Then pu(B(z1,6)) > 0 for all 6 > 0 by definition of the support. As F' is non-constant, there
exists 29 € X such that F(x2) is not equal to F(z1). Let us assume that F(x1) > F(x2) (the proof is similar
if F(xzq) > F(z1)). By continuity, there exists € > 0 such that F(z) > F(x2) for any © € B(x1,¢). Define
m := u(B(z1,€)) > 0. For t €]0, 1], we define a new measure p; as follows : for any measurable set A, we let

pe (A) = p(A\B(z1,€)) + (1 = )u(B(z1,€) N A) +tmls,ea.
For any such ¢ €]0, 1], observe that

Fi(pe) (F (22), +00[) = pe(F~1 (| F (w2), +00])

= Fu(p)(JF (22), +-00[) — tp(B(z1,€))
< Fu(p)(JF(22), +00]),
which shows that Fi () # F.(u), hence that u, € F7-H({v})e.

On the other hand, we see that | [y fidus — [y fidu| < 2tm||fillc for i = 1,...,n. Since p €
V = Nl {fieP(X)st. [y fidii€la;,b;[}, thus g, € V for t €]0,1[ small enough. This shows that
V N F 1 ({v})¢ is non-empty, and thus we conclude that F;!({r})¢ is dense in P(X).

O

As a direct corollary, we get the following statement, where generic, as above, means that the property is true
for any random variable x’ whose distribution belongs to a fixed dense open set of the space of distributions
on R" :

Corollary 1. Let F : R” — R* be a non-constant continuous function represented by a neural network, and

let  be a random variable on R™. For a generic random variable x’' on R™, the distribution of F(x') will be
different from that of F(z).

Proof. R™ is a separable metric space, and if F' is non-constant, so is at least one of its coordinate functions
F; : R™ — R, to which Proposition 1] then applies. If the distribution of F;(2’) is different from that of F;(x),
then the distribution of F'(z’) is different from that of F(x). O
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Figure 9: The impact of the shift type and intensity on the model accuracy for §
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Figure 10: Power and type I error of the test with MAGDiff (red) w.r.t. the Frobenius norm, used in all other
experiments, (top row), the spectral-norm (middle row) and || - [|oc (bottom row) and CV (green) representations
w.r.t. the shift intensity for various shift types on the MNIST dataset with § = 0.5, sample size 100, for layer £_;.
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