
Fast Reinforcement Learning without Rewards or
Demonstrations via Auxiliary Task Examples

Trevor Ablett1, Bryan Chan2, Jayce Haoran Wang1, Jonathan Kelly1

1University of Toronto, 2University of Alberta

Abstract:
An alternative to using hand-crafted rewards and full-trajectory demonstrations in
reinforcement learning is the use of examples of completed tasks, but such an ap-
proach can be extremely sample inefficient. We introduce value-penalized auxil-
iary control from examples (VPACE), an algorithm that significantly improves ex-
ploration in example-based control by adding examples of simple auxiliary tasks
and an above-success-level value penalty. Across both simulated and real robotic
environments, we show that our approach substantially improves learning effi-
ciency for challenging tasks, while maintaining bounded value estimates. Prelim-
inary results also suggest that VPACE may learn more efficiently than the more
common approaches of using full trajectories or true sparse rewards. Project site:
https://papers.starslab.ca/vpace/.

1 Introduction

Figure 1: Example-based control (EBC) is inef-
ficient due to poor exploration. Auxiliary con-
trol from examples (ACE) resolves this via explo-
ration of auxiliary tasks, but can have unbounded
value error. VPACE combines ACE with above-
success-level value penalization (VP).

Example-based control (EBC), in which example
states of completed tasks are used as feedback in re-
inforcement learning [1], can be far less laborious
than designing a reward function or gathering trajec-
tories. Unfortunately, excluding information on how
goal states are reached can lead to highly inefficient
learning (e.g., an example of a loaded dishwasher
provides no information about the long sequence of
actions required to complete the task). Can we speed
up example-based control?

We introduce value-penalized auxiliary control from
examples (VPACE), where we leverage the sched-
uled auxiliary control (SAC-X) [2] framework to in-
troduce a set of simple and reusable auxiliary tasks,
in addition to the main task, that help the agent to
explore the environment. In this work, the full set
of auxiliary tasks that we use across all main tasks
are reach, grasp, lift, and release. For each auxiliary
task there is a corresponding auxiliary policy that learns to match the set of examples. A scheduler
periodically chooses and executes the different auxiliary policies, in addition to the main policy,
generating a more diverse set of data to learn from.

We find that the naı̈ve application of SAC-X to EBC can result in overestimated values, leading
to sample inefficiency and poor performance. We present experiments across four environments
with 19 simulated and two real tasks to show the improved sample efficiency and final performance
of VPACE over EBC, inverse reinforcement learning, an exploration bonus, and the use of full
trajectories and true sparse rewards.

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://papers.starslab.ca/vpace/

Related Work. In inverse RL (IRL), a reward function is recovered from demonstrations, and a
policy is learned either subsequently [3] or simultaneously via adversarial imitation learning (AIL)
[4, 5, 6, 7]. In example-based control (EBC), an agent is only provided successful example states
[8, 9, 10, 1]. Hierarchical reinforcement learning (HRL) aims to leverage multiple levels of abstrac-
tion in long-horizon tasks [11], improving exploration in RL [12, 13, 14]. Scheduled auxiliary con-
trol (SAC-X, [2]) combines a scheduler with semantically meaningful and simple auxiliary sparse
rewards or auxiliary full expert trajectories (LfGP, [15, 16, 17]). [18] combined EBC with hierarchi-
cal learning, but their approach required a symbolic planner at test time. Regularization and clipping
techniques have been applied to off-policy RL to address various problems such as stabilizing the
bootstrapping target [19, 20] and preventing overfitting and out-of-distribution samples [21, 22].

2 Example-Based Control with Value-Penalization and Auxiliary Tasks

Problem Setting. In example-based control (EBC), we are given a set of example states of a com-
pleted task: s∗ ∈ B∗, where B∗ ⊆ S and |B∗| < ∞. The goal is to (i) leverage B∗ and B
to learn or define a state-conditional reward function R̂ : S → R that satisfies R̂(s∗) ≥ R̂(s)
for all (s∗, s) ∈ B∗ × B, and (ii) learn a policy π̂ that maximizes the expected return π̂ =

argmaxπ Eπ

[∑∞
t=0 γ

tR̂(st)
]
, where γ is a discount factor.

For any policy π, we can define the value function and Q-function respectively to be V π(s) =
Eπ [Q

π(s, a)] and Qπ(s, a) = R̂(s) + γEP [V π(s′)], corresponding to the return-to-go from state
s (and action a). Given a reward model R̂(·), we can say R̂(s∗), s∗ ∈ B∗, indicates reward
for successful states and R̂(s), s ∈ B, for all other states. Assuming that s∗ transitions to it-
self, then for policy evaluation with mean-squared error (MSE), we can write the temporal dif-
ference (TD) targets for non-successful and successful states, y : S × S → R, of Q-updates as

y(s, s′) = R̂(s) + γEπ [Q(s′, a′)] , (1) y(s∗, s∗) = R̂(s∗) + γEπ [Q(s∗, a′)] . (2)

Learning a Multitask Agent from Examples. We alleviate the challenging exploration problem
of EBC by introducing auxiliary control from examples (ACE), an application of the scheduled
auxiliary control framework [2, 15]. A task T is defined by a task-specific example buffer B∗

T .
EBC methods aim to exclusively complete the main task Tmain, while ACE adds auxiliary tasks
Taux = {T1, . . . , TK} during learning. We refer the set of all tasks as Tall = Taux ∪ {Tmain}. ACE
agents have intentions and a scheduler, described next.

Intentions. For each task T ∈ Tall, the corresponding intention consists of a task-specific policy πT ,
Q-function QT , and state-conditioned reward model R̂T . ACE optimizes the task-specific policies
by maximizing the policy optimization objective L(π; T) = EB,πT [QT (s, a)]. The task-specific
Q-functions are optimized via minimization of the Bellman residual

L(Q; T) =EB,πT

[
(QT (s, a)− yT (s, s

′))2
]
+ EB∗

T ,πT

[
(QT (s

∗, a)− yT (s
∗, s∗))2

]
, (3)

where yT are Eqs. (1) and (2) with task-specific reward R̂T . Intuitively, each πT aims to maximize
the estimated task-specific value QT .

Figure 2: An example of fixed-period scheduler choices through-
out an Unstack-Stack exploratory episode.

Scheduler. A scheduler periodically
selects a policy πT to execute within
an episode (see Fig. 2). We use a
weighted random scheduler (WRS)
with hyperparameter pTmain where the
probability of choosing the main task

or an auxiliary task is pTmain and pTk
= (1− pTmain)/K, respectively. Following [15], we combine a

WRS with a small set of simple handcrafted high-level trajectories (e.g., reach then grasp then lift).
At test time, the scheduler is unused, and only πmain is evaluated.

Value Penalization in Example-Based Control. A scheduled multitask agent exhibits far more
diverse behaviour than a single-task agent [2, 15]. We show in Figs. 5a and 5b that the buffer gener-

Figure 3: Samples from initial-state distribution ρ0, auxiliary task examples B∗
aux, and main task examples B∗

main
for all tasks. The simulated Panda tasks additionally share B∗

release and B∗
lift.

ated by this behavior, consisting of transitions resulting from multiple policies, can result in highly
overestimated Q-values in EBC. This overestimation leads the policy to maximize an incorrect ob-
jective. Notice that regressing to TD targets Eqs. (1) and (2) will eventually satisfy the Bellman
equation, but in the short term the TD targets do not satisfy y(s, s′) ≤ y(s∗, s∗). We resolve this
issue with a penalty for our TD updates for s ∈ B. We add a minimum and a maximum Qπ(s, a) as
Qπ

min = R̂min/(1− γ) and Qπ
max = EB∗ [V π(s∗)], where R̂min ≤ R̂(s) for all s ∈ B. Then, the value

penalty is defined to be

Lπ
pen(Q) = λEB[(max(Q(s, a)−Qπ

max, 0))
2
+ (max(Qπ

min −Q(s, a), 0))
2
], (4)

where λ ≥ 0 is a hyperparameter. When λ → ∞, Eq. (4) becomes a hard constraint. It immediately
follows that y(s, s′) ≤ y(s∗, s∗) holds with TD updates Eqs. (1) and (2). We add value penalization
Lπ

pen(Q) to the MSE loss as a regularization term for learning the Q-function.

3 Experiments

We aim to answer the following questions through our experiments: (RQ1) How does the sample
efficiency of VPACE compare to EBC, inverse RL, and exploration-bonus baselines? (RQ2) How
important is it to include value penalization (VP) with ACE? (RQ3) How does VPACE compare to
algorithms that use full trajectories and true sparse rewards?

Baselines. We consider many baselines, including an approach based on recursively classifying
examples (RCE, [1]), a learned reward model for off-policy RL (DAC, [4]), a defined reward model
for off-policy RL (SQIL, [5]), and a combination of the best performing baseline (SQIL) with a
method that provides an exploration bonus to unseen data (RND, [23, 24]). VPACE refers to SQIL
with both VP and ACE applied, while ACE refers to SQIL with ACE and without VP applied.

Environments. We conduct experiments in a large variety of tasks and environments, including
those originally used in LfGP [15] and RCE [1]. Specifically, the tasks in [15] involve a simulated
Franka Emika Panda arm, a blue and green block, a fixed “bring” area for each block, and a small slot
with <1 mm tolerance for inserting each block. This environment provides various manipulation
tasks that share the same state-action space. The tasks in [1] are a modified subset of those from
[25], involving a simulated Sawyer arm, and three of the Adroit hand tasks originally presented in
[26]. We also generate three modified delta-position (dp) Adroit hand environments. Finally, we
study drawer and door opening tasks with a real Franka Emika Panda.

Implementation Details. All simulated tasks use 200 examples per task, while the real world tasks
use 50 examples per task. All implementations are built on LfGP [15, 28] and SAC [29]. For more
environment and implementation details, see appendix or our open-source code.

Main Task VP and ACE Benefits. To answer RQ1, we compare VPACE with existing EBC,
inverse RL, and exploration-bonus approaches on all tasks and evaluate their success rates. Fig. 4a
shows that VPACE has significant improvement over other approaches in both sample efficiency
and final performance. We can observe that VPACE can consistently solve all tasks, while other
EBC methods have significantly wider confidence intervals, especially in the Panda environment.

0 2 4 6 8 10
0.0

0.5

1.0
Panda (Avg)

0 1 2 3 4 5
0.0

0.5

1.0

R
et

u
rn

(n
or

m
) Sawyer (Avg)

0 3 6 9 12 15
0.0

0.5

1.0
Adroit (Avg)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Env. Steps (×100k)

S
u

cc
es

s
R

at
e

VPACE

SQIL

RCE

DAC

RND

(a) Performance across simulated main tasks.

0 1 2 3 4 5
0.0

0.5

1.0
Unstack-Stack

0 2 4 6 8 10
0.0

0.5

1.0
Insert

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Env. Steps (×100k)

S
u

cc
es

s
R

at
e

VPACE

+Trajs

+Trajs
& Acts

SAC-X

(b) Changes in the form of feedback.

Figure 4: Average across-task results separated by simulated environment, as well as feedback change results.
Performance is an interquartile mean (IQM) across 5 evaluation timesteps and 5 seeds with shaded regions
showing 95% stratified bootstrap confidence intervals [27].

(a) ACE without VP overestimates Q.

U
ns
ta
ck
-S
ta
ck

V
P
A
C
E

A
C
E

OOD

(b) Q(st, at) − EB∗ [V π(s∗)] for parts of episodes
used to generate the results from Fig. 5a.

Figure 5: In Unstack-Stack and Insert, VP resolves Q overestimation.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.5

1.0
RealDrawer

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0
RealDoor

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Env. Steps (×100k)

S
u

cc
es

s
R

at
e

VPACE SQIL

Figure 6: Real robot results.

We furthermore tested VPACE on real-life tasks (two
right columns of Fig. 3), with results shown in Fig. 6.
RealDrawer is learned by VPACE in about 100 minutes,
while RealDoor is learned in about 200 minutes. The
real world examples of success, for both main tasks and
auxiliary tasks, are collected in less than a minute.

Q-Value Overestimation and Value Penalization. To
answer RQ2 and verify that VP enforces y(s, s′) ≤
y(s∗, s∗), we took snapshots of each learned Unstack-Stack and Insert agent, for both VPACE
and ACE, at 300k steps and ran each policy for a single episode, recording per-timestep Q-values.
Instead of showing Q-values directly, in Figs. 5a and 5b, we show Q(st, at) − Es∗∼B∗ [V (s∗)],
which should be at most 0. ACE clearly violates y(s, s′) ≤ y(s∗, s∗), while VPACE does not.
Furthermore, Fig. 5b shows examples of the consequences of overestimated Q-values: for out-of-
distribution (OOD) (st, at) pairs, Q(st, at) − Es∗∼B∗ [V (s∗)] > 0, and the policy reaches these
states instead of the true goal.

Comparison to Full Demonstrations and True Rewards. To answer RQ3, we test two variants of
using full trajectories: a buffer containing both 200 examples and 200 (s, a) pairs from expert trajec-
tories of states only (+Trajs), and the same for both states and actions (+Trajs & Acts), resulting in
two variants of LfGP [15] with VP. For sparse rewards, we use the provided sparse-reward function
from the task (SAC-X). Fig. 4b shows that the peak performance is reduced when learning with
expert trajectories. We hypothesize that the divergence minimization objective leads to an effect,
previously shown to occur in inverse RL [15], known as reward hacking [30]. Furthermore, the use
of sparse rewards alone results in no success at all.

4 Conclusion

In this work, we presented VPACE—value-penalized auxiliary control from examples, where we
coupled scheduled auxiliary control with value penalization in the example-based setting to signif-
icantly improve learning efficiency. Opportunities for future work include the further investigation
of learned approaches to scheduling, as well as autonomously generating auxiliary task definitions.

Acknowledgments

We gratefully acknowledge the Digital Research Alliance of Canada and NVIDIA Inc., who pro-
vided the GPUs used in this work through their Resources for Research Groups Program and their
Hardware Grant Program, respectively.

References
[1] B. Eysenbach, S. Levine, and R. Salakhutdinov. Replacing Rewards with Examples: Example-

Based Policy Search via Recursive Classification. In Advances in Neural Information Process-
ing Systems (NeurIPS’21), Virtual, Dec. 2021.

[2] M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave, T. Wiele, V. Mnih, N. Heess,
and J. T. Springenberg. Learning by Playing Solving Sparse Reward Tasks from Scratch. In
Proceedings of the 35th International Conference on Machine Learning (ICML’18), pages
4344–4353, Stockholm, Sweden, July 2018.

[3] A. Ng and S. Russell. Algorithms for inverse reinforcement learning. In International Con-
ference on Machine Learning (ICML’00), pages 663–670, July 2000. ISBN 1-55860-707-2.
doi:10.2460/ajvr.67.2.323.

[4] I. Kostrikov, K. K. Agrawal, D. Dwibedi, S. Levine, and J. Tompson. Discriminator-Actor-
Critic: Addressing Sample Inefficiency and Reward Bias in Adversarial Imitation Learning.
In Proceedings of the International Conference on Learning Representations (ICLR’19), New
Orleans, LA, USA, May 2019.

[5] S. Reddy, A. D. Dragan, and S. Levine. SQIL: Imitation Learning Via Reinforcement Learning
with Sparse Rewards. In International Conference on Learning Representations (ICLR’20),
Apr. 2020.

[6] J. Ho and S. Ermon. Generative Adversarial Imitation Learning. In Advances in Neural Infor-
mation Processing Systems (NIPS’16), Barcelona, Spain, Dec. 2016.

[7] J. Fu, K. Luo, and S. Levine. Learning Robust Rewards with Adverserial inverse Reinforce-
ment Learning. In Proceedings of the International Conference on Learning Representations
(ICLR’18), Vancouver, BC, Canada, Apr. 2018.

[8] J. Fu, A. Singh, D. Ghosh, L. Yang, and S. Levine. Variational Inverse Control with Events:
A General Framework for Data-Driven Reward Definition. In Advances in Neural Information
Processing Systems (NeurIPS’18), Montreal, Canada, Dec. 2018.

[9] A. Singh, L. Yang, K. Hartikainen, C. Finn, and S. Levine. End-to-End Robotic Reinforcement
Learning without Reward Engineering. In Robotics: Science and Systems (RSS’19), Freiburg
im Breisgau, Germany, Apr. 2019.

[10] K. B. Hatch, B. Eysenbach, R. Rafailov, T. Yu, R. Salakhutdinov, S. Levine, and C. Finn. Con-
trastive Example-Based Control. In N. Matni, M. Morari, and G. J. Pappas, editors, Learning
for Dynamics and Control (L4DC’23), volume 211 of Proceedings of Machine Learning Re-
search, pages 155–169, Philadelphia, PA, USA, June 2023. PMLR.

[11] R. S. Sutton, D. Precup, and S. Singh. Between MDPs and Semi-MDPs: A Framework for
Temporal Abstraction in Reinforcement Learning. Artificial Intelligence, 112(1-2):181–211,
Aug. 1999. ISSN 00043702. doi:10.1016/S0004-3702(99)00052-1.

[12] A. Robert, C. Pike-Burke, and A. A. Faisal. Sample Complexity of Goal-Conditioned Hi-
erarchical Reinforcement Learning. In Advances in Neural Information Processing Systems
(NeurIPS’23), New Orleans, LA, USA, Dec. 2023.

http://dx.doi.org/10.2460/ajvr.67.2.323
http://dx.doi.org/10.1016/S0004-3702(99)00052-1

[13] O. Nachum, H. Tang, X. Lu, S. Gu, H. Lee, and S. Levine. Why Does Hierarchy (Some-
times) Work So Well in Reinforcement Learning? In Proceedings of the Neural Information
Processing Systems (NeurIPS’19) Deep Reinforcement Learning Workshop, Sept. 2019.

[14] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel. Overcoming Explo-
ration in Reinforcement Learning with Demonstrations. In Proceedings of the 2018 IEEE In-
ternational Conference on Robotics and Automation (ICRA’18), pages 6292–6299, Brisbane,
Australia, May 2018. doi:10.1109/ICRA.2018.8463162.

[15] T. Ablett, B. Chan, and J. Kelly. Learning From Guided Play: Improving Exploration for
Adversarial Imitation Learning With Simple Auxiliary Tasks. IEEE Robotics and Automation
Letters, 8(3):1263–1270, Mar. 2023. ISSN 2377-3766. doi:10.1109/LRA.2023.3236882.

[16] T. Ablett, B. Chan, and J. Kelly. Learning from Guided Play: A Scheduled Hierarchical Ap-
proach for Improving Exploration in Adversarial Imitation Learning. In Proceedings of the
Neural Information Processing Systems (NeurIPS’21) Deep Reinforcement Learning Work-
shop, Dec. 2021.

[17] G. Xiang, S. Li, F. Shuang, F. Gao, and X. Yuan. SC-AIRL: Share-Critic in Adversarial Inverse
Reinforcement Learning for Long-Horizon Task. IEEE Robotics and Automation Letters, 9(4):
3179–3186, Apr. 2024. ISSN 2377-3766. doi:10.1109/LRA.2024.3366023.

[18] B. Wu, S. Nair, L. Fei-Fei, and C. Finn. Example-Driven Model-Based Reinforcement Learn-
ing for Solving Long-Horizon Visuomotor Tasks. arXiv:2109.10312 [cs], Sept. 2021.

[19] M. Andrychowicz, D. Crow, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
P. Abbeel, and W. Zaremba. Hindsight Experience Replay. In Advances in Neural Information
Processing Systems (NIPS’17), Long Beach, CA, USA, Dec. 2017.

[20] J. Adamczyk, V. Makarenko, S. Tiomkin, and R. V. Kulkarni. Boosting Soft Q-Learning by
Bounding. Reinforcement Learning Journal, 1(1), 2024.

[21] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative Q-Learning for Offline Reinforce-
ment Learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.-F. Balcan, and H.-T. Lin, editors,
Advances in Neural Information Processing Systems (Neurips’20), Dec. 2020.

[22] S. James, K. Wada, T. Laidlow, and A. J. Davison. Coarse-to-Fine Q-Attention: Efficient
Learning for Visual Robotic Manipulation Via Discretisation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 13739–13748, 2022.

[23] Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by Random Network Distilla-
tion. In International Conference on Learning Representations (ICLR’19), New Orleans, LA,
USA, May 2019. arXiv. doi:10.48550/arXiv.1810.12894.

[24] J. C. Balloch, R. Bhagat, G. Zollicoffer, R. Jia, J. Kim, and M. O. Riedl. Is Exploration All
You Need? Effective Exploration Characteristics for Transfer in Reinforcement Learning, Apr.
2024. arXiv:2404.02235.

[25] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-World: A
Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning. In Conference
on Robot Learning (CoRL’19), volume 100 of Proceedings of Machine Learning Research,
pages 1094–1100, Osaka, Japan, Oct. 2019. PMLR.

[26] A. Rajeswaran*, V. Kumar*, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.
Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demon-
strations. In Proceedings of Robotics: Science and Systems (RSS’18), Pittsburgh, PA, USA,
June 2018.

http://dx.doi.org/10.1109/ICRA.2018.8463162
http://dx.doi.org/10.1109/LRA.2023.3236882
http://dx.doi.org/10.1109/LRA.2024.3366023
http://dx.doi.org/10.48550/arXiv.1810.12894

[27] R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and M. Bellemare. Deep Reinforce-
ment Learning at the Edge of the Statistical Precipice. In Advances in Neural Information
Processing Systems (Neurips’21), volume 34, 2021.

[28] B. Chan. RL sandbox. https://github.com/chanb/rl sandbox public, 2020.

[29] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft Actor-Critic: Off-Policy Maximum En-
tropy Deep Reinforcement Learning with a Stochastic Actor. In Proceedings of the 35th Inter-
national Conference on Machine Learning (ICML’18), pages 1861–1870, Stockholm, Sweden,
July 2018.

[30] J. Skalse, N. Howe, D. Krasheninnikov, and D. Krueger. Defining and characterizing reward
gaming. In Advances in Neural Information Processing Systems (NeurIPS’22), New Orleans,
LA, USA, Dec. 2022.

[31] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and M. Marı́n-Jiménez. Automatic
generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogni-
tion, 47(6):2280–2292, June 2014. ISSN 00313203. doi:10.1016/j.patcog.2014.01.005.

[32] Y. Lin, A. S. Wang, G. Sutanto, A. Rai, and F. Meier. Polymetis.
https://facebookresearch.github.io/fairo/polymetis/, 2021.

[33] S. K. S. Ghasemipour, R. S. Zemel, and S. S. Gu. A Divergence Minimization Perspective on
Imitation Learning Methods. In Conference on Robot Learning (CoRL’19), 2019.

[34] F. Pardo, A. Tavakoli, V. Levdik, and P. Kormushev. Time Limits in Reinforcement Learn-
ing. In J. G. Dy and A. Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pages 4042–4051. PMLR, 2018.

[35] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Mastering Visual Continuous Control: Improved
Data-Augmented Reinforcement Learning. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

[36] S. Sinha, A. Mandlekar, and A. Garg. S4RL: Surprisingly Simple Self-Supervision for Offline
Reinforcement Learning. In Conference on Robot Learning (CoRL’21), London, UK, Nov.
2021.

[37] X. Chen, C. Wang, Z. Zhou, and K. Ross. Randomized Ensembled Double Q-Learning: Learn-
ing Fast Without a Model. arXiv:2101.05982 [cs], Mar. 2021.

[38] K. Hatch, T. Yu, R. Rafailov, and C. Finn. Example-Based Offline Reinforcement Learning
without Rewards. In Advances in Neural Information Processing Systems (NeurIPS’21) Offline
Reinforcement Learning Workshop, Dec. 2021.

http://dx.doi.org/10.1016/j.patcog.2014.01.005

Figure 7: Learned VPACE-SQIL policies at the final training step for, from top to bottom, door-human-v0,
door-human-v0-dp, hammer-human-v0, and hammer-human-v0-dp. Although the original versions of the
environments are solved, the absolute position action space allows policies to execute very coarse actions that
exploit the simulator (above, hitting the handle without grasping it and throwing the hammer, respectively), and
would almost certainly cause damage to a real environment.

A Additional Environment, Algorithm, and Implementation Details

The following sections contain further details of the environments, tasks, auxiliary tasks, algorithms,
and implementations used in our experiments.

A.1 Additional Environment Details

Compared with the original Panda tasks from LfGP [15], we switch from 20Hz to 5Hz control (find-
ing major improvements in performance for doing so), improve handling of rotation symmetries
in the observations, and remove the force-torque sensor since it turned out to have errors at low
magnitudes. Crucially, these modifications did not require training new expert policies, since the
same final observation states from the full trajectory expert data from [15] remained valid. Com-
pared with the original LfGP tasks, we also remove Move-block as an auxiliary task from Stack,
Unstack-Stack, Bring and Insert, since we found a slight performance improvement for doing
so, and add Reach, Lift, and Move-block as main tasks. The environment was otherwise identical
to how it was implemented in LfGP, including allowing randomization of the block and end-effector
positions anywhere above the tray, using delta-position actions, and using end-effector pose, end-
effector velocity, object pose, object velocity, and relative positions in the observations. For even
further details of the original environment, see [15].

Since the Sawyer tasks from [1, 25] only contain end-effector position and object position by default,
they do not follow the Markov property. To mitigate this, we train all algorithms in the Sawyer tasks
with frame-stacking of 3 and add in gripper position to the observations, since we found that this, at
best, improved performance for all algorithms, and at worst, kept performance the same.

A.2 Delta-Position Adroit Hand Environments

The Adroit hand tasks from [26] use absolute positions for actions. This choice allows even very
coarse policies, with actions that would be unlikely to be successful in the real world, to learn to
complete door-human-v0 and hammer-human-v0, and also makes the intricate exploration re-
quired to solve relocate-human-v0 very difficult. Specifically, VPACE-SQIL and several other
baselines achieve high return in door-human-v0 and hammer-human-v0, but the learned policies
use unrealistic actions that exploit simulator bugs. As well, no methods are able to achieve any
return in relocate-human-v0 in 1.5M environment steps.

In the interest of solving relocate-human-v0 and learning more skillful policies, we gener-
ated modified versions of these environments with delta-position action spaces. Furthermore, in

Figure 8: Experimental setup for our real environment and our RealDrawer and RealDoor tasks. The robot
has a force-torque sensor attached, but it is not used for our experiments.

relocate-human-v0-najp-dp, the action space rotation frame was changed to be in the palm,
rather than at the elbow, and, since relative positions between the palm, ball, and relocate goal
are included as part of the state, we removed the joint positions from the state. In our experi-
ments, these modified environments were called door-human-v0-dp, hammer-human-v0-dp, and
relocate-human-v0-najp-dp. See Fig. 7 for a comparison of learned policies in each version of
these environments.

A.3 Real World Environment Details

Fig. 8 shows our experimental platform and setup for our two real world tasks. In both RealDrawer

and RealDoor, the observation space contains the end-effector position, an ArUco tag [31] to pro-
vide drawer or door position (in the frame of the RGB camera; we do not perform extrinsic calibra-
tion between the robot and the camera), and the gripper finger position. Observations also include
two stacked frames, in lieu of including velocity, to better follow the Markov property. The action
space in both contains delta-positions and a binary gripper command for opening and closing. The
action space for RealDrawer is one-dimensional (allowing motion in a line), while the action space
for RealDoor is two-dimensional (allowing motion in a plane). The initial state distribution for
RealDrawer allows for initializing the end-effector anywhere within a 10 cm line approximately
25 cm away from the drawer handle when closed. For RealDoor, the initial state distribution is a
20 cm × 20 cm square, approximately 20cm away from the door handle when closed. Actions are
supplied at 5 Hz.

For both environments, for evaluation only, success is determined by whether the drawer or door is
fully opened, as detected by the absolute position of the ArUco tag in the frame of the RGB cam-
era. Our robot environment code is built on Polymetis [32], and uses the default hybrid impedance
controller that comes with the library. To reduce environmental damage from excessive forces and
torques, we reduced Cartesian translational stiffness in all dimensions from 750 N/m to 250 N/m,
and the force and torque limits in all dimensions from 40 N and 40 Nm to 20 N and 20 Nm.

A.4 Additional Task Details

Success examples for the Panda environments were gathered by taking sT from the existing datasets
provided by [15]. Success examples for main tasks from the Sawyer environments were generated
using the same code from [1], in which the success examples were generated manually given knowl-
edge of the task. Auxiliary task data was generated with a similar approach. Success examples for
the Adroit hand environments were generated from the original human datasets provided by [26].
Success examples for our real world tasks were generated by manually moving the robot to a small
set of successful positions for each auxiliary task and main task. All Panda main tasks use the the
auxiliary tasks release, reach, grasp, and lift.

There are two specific nuances that were left out of the main text for clarity and brevity: (i) the
Reach main task only uses release as an auxiliary task (since it also acts as a “coarse” reach), and
(ii) half of the release dataset for each task is specific to that task (e.g., containing insert or stack
data), as was the case in the original datasets from [15]. For the Sawyer, Hand, and real Panda
environments, because the observation spaces are not shared, each task has its own separate reach
and grasp data.

A.5 Additional Algorithm Details

Algorithm 1 Value-Penalized Auxiliary Control from Examples (VPACE)
Input: Example state buffers B∗

main,B∗
1 , . . . ,B∗

K , scheduler period ξ, sample batch size N and N∗,
and discount factor γ
Parameters: Intentions πT with corresponding Q-functions QT (and optionally discriminators
DT), and scheduler πS (e.g. with Q-table QS)

1: Initialize replay buffer B
2: for t = 1, . . . , do
3: # Interact with environment
4: For every ξ steps, select intention πT using πS

5: Select action at using πT
6: Execute action at and observe next state s′t
7: Store transition ⟨st, at, s′t⟩ in B
8:
9: # Optionally update discriminator DT ′ for each task T ′

10: Sample {si}Ni=1 ∼ B
11: for each task T ′ do
12: Sample {s∗i }N

∗

i=1 ∼ B∗
k

13: Update DT ′ using GAN + Gradient Penalty
14: end for
15:
16: # Update intentions πT ′ and Q-functions QT ′ for each task T ′

17: Sample {(si, ai)}Ni=1 ∼ B
18: for each task T ′ do
19: Sample {s∗i }N

∗

i=1 ∼ B∗
T ′

20: Sample a∗i ∼ πT ′(s∗i) for i = 1, . . . , N∗

21: Compute rewards R̂T ′(si) and R̂T ′(s∗j) for i = 1, . . . , N and j = 1, . . . , N∗

22: # Compute value penalization terms, see Appendix A.6.1
23: Compute Q

πT ′
max = 1

N∗

∑N∗

j=1 Q(s∗j , a
∗
j)

24: Compute Q
πT ′
min = min(∧N

i=1R̂T ′(si),∧N∗

j=1R̂T ′(s∗j))/(1− γ)
25: end for
26: Update π following Eq. (5)
27: Update Q following Eq. (3) with value penalization Eq. (4)
28:
29: # Optional Update learned scheduler πS

30: if at the end of effective horizon then
31: Compute main task return GTmain using reward estimate from Dmain
32: Update πS (e.g. update Q-table QS using EMA and recompute Boltzmann distribution)
33: end if
34: end for

Algorithm 1 shows a summary of VPACE, built on LfGP [15] and SAC-X [2]. As a reminder, our
multi-policy objective function is

L(π; T) = EB,πT [QT (s, a)] , (5)

and our minimum and and maximum Q values are

Qπ
min = R̂min/(1− γ), (6)

Algorithm Value
Penalization

Sched. Aux.
Tasks

Reward Model TD Error Loss Source

VPACE ✓ ✓ SQIL MSE Ours
ACE ✗ ✓ SQIL MSE Ours
VPACE-DAC ✓ ✓ DAC MSE Ours
ACE-RCE ✗ ✓ RCE BCE Ours
VP-SQIL ✓ ✗ SQIL MSE Ours
DAC ✗ ✗ DAC MSE Ours
SQIL ✗ ✗ SQIL MSE Ours
RCE ✗ ✗ RCE BCE Ours
SQIL+RND ✗ ✗ SQIL MSE Ours
RCE (theirs) ✗ ✗ RCE BCE [1]
SQIL-BCE ✗ ✗ SQIL BCE [1]

Table 1: Major differences between algorithms studied in this work. MSE refers to mean squared error, while
BCE refers to binary cross entropy.

and
Qπ

max = EB∗ [V π(s∗)] . (7)

Table 1 shows a breakdown of some of the major differences between all of the algorithms studied
in this work.

A.6 Additional Implementation Details

In this section, we list some specific implementation details of our algorithms. We only list param-
eters or choices that may be considered unique to this work, but a full list of all parameter choices
can be found in our code. We also provide the VPACE pseudocode in Algorithm 1, with blue text
only applying to learned discriminator-based reward functions.

Whenever possible, all algorithms and baselines use the same modifications. Table 2 also shows our
choices for common off-policy RL hyperparameters as well as choices for those introduced by this
work.

DAC reward function: for VPACE-DAC and VP-DAC, although there are many options for reward
functions that map D to R̂ [33], following [15, 4, 7], we set the reward to R̂T (s) = log (DT (s))−
log (1−DT (s)).

n-step returns and entropy in TD error: following results from [1], we also add n-step returns
and remove the entropy bonus in the calculation of the TD error for all algorithms in all Sawyer and
Adroit environments, finding a significant performance gain for doing so.

Absorbing states and terminal states: for all algorithms, we do not include absorbing states (in-
troduced in [4]) or terminal markers (sometimes referred to as “done”), since we found that both of
these additions cause major bootstrapping problems when environments only terminate on timeouts,
and timeouts do not necessarily indicate failure. Previous work supports bootstrapping on terminal
states when they are caused by non-failure timeouts [34].

SQIL labels for policy data: The original implementation of SQIL uses labels of 0 and 1 for TD
updates. We found that changing the label from 0 to -1 improved performance.

Reward Scaling of .1: we use a reward scaling parameter of .1 for all implementations. Coupled
with a discount rate γ = 0.99 (common for much work in RL), this sets the expected minimum and
maximum Q values for SQIL to −.1

1−γ = −10 and .1
1−γ = 10.

No multitask weight sharing: intuitively, one may expect weight sharing to be helpful for multitask
implementations. We found that it substantially hurt performance, so all of our multitask methods do
not share weights between tasks or between actor and critic. However, the multitask discriminator in
VPACE-DAC does have an initial set of shared weights due to its significantly poorer performance
without this choice.

Table 2: Hyperparameters shared between all algorithms, unless otherwise noted.

General
Total Interactions Task-specific (see Appendix B)
Buffer Size Same as total interactions
Buffer Warmup 5k
Initial Exploration 10k
Evaluations per task 50 (Panda), 30 (Sawyer/Adroit)
Evaluation frequency 25k (Panda), 10k (Sawyer/Adroit)

Learning
γ 0.99
B Batch Size 128
B∗ Batch Size 128
Q Update Freq. 1 (sim), 4 (real)
Target Q Update Freq. 1 (sim), 4 (real)
π Update Freq. 1 (sim), 4 (real)
Polyak Averaging 1e-3
Q Learning Rate 3e-4
π Learning Rate 3e-4
D Learning Rate 3e-4
α Learning Rate 3e-4
Initial α 1e-2
Target Entropy −dim(a)
Max. Gradient Norm 10
Weight Decay (π,Q,D) 1e-2
D Gradient Penalty 10
Reward Scaling 0.1
SQIL Labels (Appendix A.6 (−1, 1)
Expert Aug. Factor (Appendix A.6.3) 0.1

Value Penalization (VP)
λ 10
Qπ

max, Qπ
min num. filter points (Appendix A.6.1) 50

Auxiliary Control (ACE) Scheduler (Ap-
pendix A.6.2)
Num. Periods 8 (Panda), 5 (Sawyer/Adroit)
Main Task Rate 0.5 (Panda), 0.0 (Sawyer/Adroit)
Handcraft Rate 0.5 (Panda), 1.0 (Sawyer/Adroit)

B∗ sampling for Q: in SQIL, DAC and RCE, we sample from both B and B∗ for Q updates, but not
for π updates (which only samples from B). The original DAC implementation in [4] only samples
B∗ for updating D, sampling only from B for updating Q.

All other architecture details, including neural network parameters, are the same as [15], which our
own implementations are built on top of. Our code is built on top of the code from [15], which was
originally built using [28].

A.6.1 Maintaining Qπ
max, Qπ

min Estimates for Value Penalization

Our approach to value penalization requires maintaining estimates for or choosing Qπ
max and Qπ

min.
In both DAC and SQIL, the estimate of Qπ

max comes from taking the mini-batch of data from B∗,
passing it through the Q function, taking the mean, and then using a median moving average filter
to maintain an estimate. The “Qπ

max, Qπ
min num. filter points” value from Table 2 refers to the size of

this filter. We chose 50 and used it for all of our experiments. We set Qπ
min to

Qπ
min =

rew. scale ×min(R̂(s))

1− γ
, (8)

where in SQIL, min(R̂(s)) = R̂(s) is set to 0 or -1, and in DAC, we maintain an estimate of the
minimum learned reward min(R̂) using a median moving average filter with the same length as the
one used for Qπ

max .

0 1 2 3 4 5
0.00

0.25

0.50

0.75

1.00
Unstack-Stack

0.0 0.2 0.4 0.6 0.8 1.0

Env. Steps (×100k)

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e VPACE

No Ex. Aug.

10 Examples

10 Ex., No EA

Figure 9: Variations of example augmentation. Our example augmentation scheme provides a small but notice-
able bump in performance, which is magnified with when fewer expert examples are used.

A.6.2 Scheduler Choices

Our ACE algorithms use the same approach to scheduling from [15]. Specifically, we use a weighted
random scheduler (WRS) combined a small set of handcrafted high-level trajectories. The WRS
forms a prior categorical distribution over the set of tasks, with a higher probability mass pTmain

(Main Task Rate in Table 2) for the main task and pTmain
K for all other tasks. Additionally, we choose

whether to uniformly sample from a small set of handcrafted high-level trajectories, instead of from
the WRS, at the Handcraft Rate from Table 2.

Our selections for handcrafted trajectories are quite simple, and reusable between main tasks within
each environment. In the Panda tasks, there are eight scheduler periods per episode and four auxil-
iary tasks (reach, grasp, lift, release), and the handcrafted trajectory options are:

1. reach, lift, main, release, reach, lift, main, release

2. lift, main, release, lift, main, release, lift, main

3. main, release, main, release, main, release, main, release

In the Sawyer and Adroit environments, we actually found that the WRS was unnecessary to ef-
ficiently learn the main task, and simply used two handcrafted high-level trajectories. In these
environments, there are five scheduler periods per episode and two auxiliary tasks (reach, grasp),
and the handcrafted trajectory options are:

1. reach, grasp, main, main, main

2. main, main, main, main, main

A.6.3 Expert Data Augmentation

We added a method for augmenting our expert data to artificially increase dataset size. The approach
is similar to other approaches that simply add Gaussian or uniform noise to data in the buffer [35, 36].
In our case, we go one step further than the approach from [36], and first calculate the per-dimension
standard deviation of each observation in B∗, scaling the Gaussian noise added to each dimension of
each example based on the dimension’s standard deviation. For example, if a dimension in B∗ has
zero standard deviation (e.g., in Insert, the pose of the blue block is always the same), it will have
no noise added by our augmentation approach. The parameter “Expert Aug. Factor” from Table 2
controls the magnitude of this noise, after our per-dimension normalization scheme.

In Fig. 9, we show the results of excluding expert augmentation, where there is a clear, if slight,
performance decrease when it is excluded, which is even more pronounced with a smaller B∗

T size.
All methods and baselines from our own implementation use expert data augmentation.

A.6.4 Other Ablation Details

In our ablation experiments, we included two baselines with full trajectory data, in addition to suc-
cess examples. We added 200 (s, a) pairs from full expert trajectories to make datasets comparable
to the datasets from [15], where they used 800 expert (s, a) pairs, but their environment was run

at 20Hz instead of 5Hz, meaning they needed four times more data to have roughly the same total
number of expert trajectories. We generated these trajectories using high-performing policies from
our main experiments, since the raw trajectory data from [15] would not apply given that we changed
the control rate from 20Hz to 5Hz.

A.6.5 Real Panda Implementation Details

While most of the design choices in Appendix A.6 apply to all environments tested, our real Panda
environment had some small specific differences, mostly due to the complications of running rein-
forcement learning in the real world. We list the differences here, but for an exhaustive list, our open
source code contains further details.

Maximum episode length: The maximum episode length for both RealDrawer and RealDoor

is 1000 steps, or 200 seconds in real time. This was selected to reduce how often the environment
had to be reset, which is time consuming. Running episodes for this long, and executing actions
at 5 Hz, our environments complete 5000 environment steps in roughly 20 minutes. The extra
time is due to the time to reset the environment after 1000 steps or after a collision. VPACE took
approximately 100 minutes to learn to complete RealDrawer consistently, and about 200 minutes
to learn to complete the more difficult RealDoor.

Shorter initial exploration: To attempt to learn the tasks with fewer environment samples, we
reduce buffer warmup to 500 steps, and initial random exploration to 1000 steps.

Frame stack: For training, we stacked two regular observations to avoid state aliasing.

Ending on success: We ended episodes early if they were determined to be successful at the
main task only. Although this is not necessary for tasks to be learned (and this information was not
provided to the learning algorithm), it gave us a way to evaluate training progress.

Extra gradient steps: To add efficiency during execution and training, we completed training steps
during the gap in time between an action being executed and an observation being gathered. Instead
of completing a single gradient step at this time, as is the case for standard SAC (and VPACE), we
completed four gradient steps, finding in simulated tasks that this gave a benefit to learning efficiency
without harming performance. Previous work [15], [37] has found that increasing this update rate
can reduce performance, but we hypothesize that our value penalization scheme helps mitigate this
issue.

Collisions: If the robot is detected to have exceeded force or torque limits (20 N and 20 Nm in
our case, respectively), the final observation prior to collision is recorded, and the environment is
immediately reset. There are likely more efficient ways to handle such behaviour, but we did not
investigate any in this work.

B Additional Performance Results

In this section, we expand upon our performance results and our Q-value overestimation analysis.

B.1 Expanded Main Task Performance Results

Fig. 10 shows expanded results for our simulated environments, with each baseline shown for each
individual environment.

B.2 ACE Reward Model Comparison

The SAC-X framework, which we describe as ACE when used with example states only, is agnostic
to the choice of reward model. Therefore, we also completed experiments in each of our simulated
environments with DAC and with RCE as the base reward model, instead of SQIL, which was used
for all of our main VPACE results. The results are shown in Fig. 11, where it is clear that VPACE
with SQIL learns more efficiently than VPACE with DAC and with higher final performance than

Figure 10: Sample efficiency performance plots for main task only for all simulated main tasks, including
baselines not shown in the main text. Methods introduced in this work have solid lines, while baselines are
shown with dashed lines. Performance is an interquartile mean (IQM) across 5 timesteps and 5 seeds with
shaded regions showing 95% stratified bootstrap confidence intervals [27].

Figure 11: Comparison of underlying reward models when used with ACE. Our main results (VPACE) used
SQIL as the reward model. VPACE-DAC eventually reaches similar performance to VPACE-SQIL, but tends
to take longer, and ACE-RCE often has far poorer performance than both.

ACE with RCE. We do not use value penalization (VP) for RCE, since RCE uses a classification
loss for training Q that would not benefit from the use of value penalization.

B.3 Single-task Reward Model Comparison

We compare SQIL, DAC, and RCE , without adding value penalization (VP) or auxiliary control
from examples (ACE) in Fig. 14, with two additional, more recent EBC baselines: EMBER [18] and
RCE combined with conservative Q-learning (RCE-CQL)[21], [38]). We find that both EMBER
and RCE-CQL perform quite poorly, and much more poorly than SQIL, DAC, and RCE, further
justifying their use as our primary reward models in our main experiments.

B.4 Single-task Value Penalization

Our scheme for value penalization, while initially motivated by the use of ACE, can be used in the
single task regime. In Fig. 12, we compare the performance of VPACE, SQIL, and SQIL with value
penalization, but without auxiliary tasks (VP-SQIL). VP-SQIL either has no effect on performance
or results in an improvement over SQIL, as expected, but is still strongly outperformed by VPACE
on the more complicated tasks, such as Stack, Unstack-Stack, Insert, sawyer box close,
sawyer bin picking, and the dp variant of relocate-human-v0.

Figure 12: Comparison of different variants of SQIL: both VP and ACE (VPACE), VP-only (VP-SQIL), or
SQIL alone. VP-SQIL generally either results in an improvement or has no effect on performance, compared
with SQIL, but the exclusion of ACE results in far poorer performance than VPACE, especially for the most
complex tasks.

M

Figure 13: Comparison of different variants of SQIL: both VP and ACE (VPACE), VP-only (VP-SQIL), or
SQIL alone. VP-SQIL generally either results in an improvement or has no effect on performance, compared
with SQIL, but the exclusion of ACE results in far poorer performance than VPACE, especially for the most
complex tasks.

0 1 2 3 4 5

0

50

100

Unstack-Stack

0 2 4 6 8 10

0

50

100

Insert

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Env. Steps (×100k)

E
p

is
od

e
R

et
u

rn

SQIL

RCE

DAC

EMBER

RCE-CQL

Figure 14: Results for different reward models for EBC, excluding the use of both value penalization (VP) and
auxiliary control from examples (ACE).

0 1 2 3 4 5

0

100

Unstack-Stack

0 2 4 6 8 10

0

50

100

Insert

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Env. Steps (×100k)

E
p

is
od

e
R

et
u

rn

VP

CQL

C2F

Figure 15: Results for different example-based approaches to regularizing Q estimates. We measure perfor-
mance using return instead of success rate as the alternatives achieved no success at all.

0 1 2 3 4 5
0.0

0.5

1.0
Unstack-Stack

0 2 4 6 8 10
0.0

0.5

1.0
Insert

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Env. Steps (×100k)

S
u

cc
es

s
R

at
e

200 Ex.,
λ = 10
λ = 1

λ = 100

10 Ex.

100 Ex.

Figure 16: Variations of success example quantity and λ value.

B.5 Q-Value Overestimation and Penalization – All Environments

Fig. 13 shows the same value overestimation analysis plots shown in the original paper for all tasks
in. The results for other difficult tasks also show clear violations of y(s, a) ≤ y(s∗, a∗), and tasks
in which this rule is violated also often have poorer performance. Intriguingly, although the rule is
severely violated for many Adroit hand tasks, ACE without VP still has reasonable performance in
some cases. This shows that highly uncalibrated Q estimates can still, sometimes, lead to adequate
performance. We hypothesize that this occurs because these tasks do not necessarily need sT ∼ B
to match s∗ ∼ B∗

main to achieve high return, but we leave investigating this point to future work.

B.6 Alternative Q-Value Regularization Approaches

To understand the importance of the y(s, s′) ≤ y(s∗, s∗) constraint, we investigate other choices
of regularization techniques (RQ3), in particular a L2 regularizer on Q-values (C2F, [22]) and a
regularizer that penalizes the Q-values of out-of-distribution actions (CQL, [21]). Fig. 15 indicates
that using other existing regularization techniques does not enable ACE to perform well. We suspect
that the L2 regularizer may be too harsh of a penalty on all learning, while [21] does not have any
penalization on the magnitudes of Q-values in general, meaning that they can potentially still have
uncontrollable bootstrapping error.

B.6.1 Expert Data Quantity and λ Value

Finally, to examine the robustness of our approach, we also compare various values for the quantity
of examples of success (200 / task for main experiments) as well as the value of λ, which controls the
strength of value penalization (10.0 for main experiments). Fig. 16 shows that changing the value of
λ to 1 and 100 has no effect on performance. Dropping from 200 to 100 examples has only a minor
negative impact on performance in Insert, while the drop to 10 examples has a significant negative
effect. However, even with only 10 examples, performance on Unstack-Stack still far exceeds all
other baselines.

	Introduction
	Example-Based Control with Value-Penalization and Auxiliary Tasks
	Experiments
	Conclusion
	Additional Environment, Algorithm, and Implementation Details
	Additional Environment Details
	Delta-Position Adroit Hand Environments
	Real World Environment Details
	Additional Task Details
	Additional Algorithm Details
	Additional Implementation Details
	Maintaining Q-pi-max, Q-pi-min Estimates for Value Penalization
	Scheduler Choices
	Expert Data Augmentation
	Other Ablation Details
	Real Panda Implementation Details

	Additional Performance Results
	Expanded Main Task Performance Results
	ACE Reward Model Comparison
	Single-task Reward Model Comparison
	Single-task Value Penalization
	Q-Value Overestimation and Penalization – All Environments
	Alternative Q-Value Regularization Approaches
	Expert Data Quantity and Lambda Value

