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Abstract—In this work, we present 3DCOMPAT**, a multi-
modal 2D/3D dataset with 160 million rendered views of more
than 10 million stylized 3D shapes carefully annotated at the part-
instance level, alongside matching RGB point clouds, 3D textured
meshes, depth maps, and segmentation masks. 3DCOMPAT**
covers 42 shape categories, 275 fine-grained part categories, and
293 fine-grained material classes that can be compositionally
applied to parts of 3D objects. We render a subset of one million
stylized shapes from four equally spaced views as well as four
randomized views, leading to a total of 160 million renderings.
Parts are segmented at the instance level, with coarse-grained
and fine-grained semantic levels. We introduce a new task,
called Grounded CoMPaT Recognition (GCR), to collectively
recognize and ground compositions of materials on parts of
3D objects. Additionally, we report the outcomes of a data
challenge organized at the CVPR conference, showcasing the
winning method’s utilization of a modified PointNet++ model
trained on 6D inputs, and exploring alternative techniques for
GCR enhancement. We hope our work will help ease future
research on compositional 3D Vision. The dataset and code have
been made publicly available at https://3dcompat-dataset.org/v2/.

Index Terms—3D vision, dataset, 3D modeling, multimodal
learning, compositional learning.

I. INTRODUCTION

ULTIPLE datasets have been proposed to facilitate 3D

visual understanding including ShapeNet [1], Model-
Net [2], and PartNet [3]. High-quality datasets like OmniOb-
ject3D [4] and ABO [5] were introduced in an attempt to
provide 3D assets with high-resolution, realistic textures. 3D-
Future [6] was also proposed and contains 10K industrial
3D CAD shapes of furniture with textures developed by
professional designers. More recently, Objaverse [7] and its
larger counterpart Objaverse-XL [8] were introduced, which
contain more than 10 million artist-designed 3D objects with
high-quality textures. Despite these notable efforts to advance
3D understanding, recent object-centric 3D datasets (e.g. [1],
[2], [71, [8]) and 3D scene datasets (e.g. [9], [10]) lack part-
level annotations. ShapeNet-Part [11] was proposed as an
extension to ShapeNet [ 1] with part-level annotations, but only
contains coarse-grained part segmentations extracted using a
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deep active learning framework. In contrast, PartNet [3] builds
on ShapeNet [!] and provides fine-grained part segmentation
labels, but similarly does not contain material information.
Material information offers several distinct advantages. First,
it provides extra semantic information about an object, which
enables a variety of important 3D object understanding tasks.
Second, it helps create more realistic renderings, making
the models better suited for transferring from synthetic
to real scenarios. Finally, applying different materials to
the same geometric 3D shape can be treated as a special
form of training data augmentation. Current datasets lack
part-level material information which underscores the need
for a new resource. Our dataset fills this gap and invites
researchers to explore new challenges and opportunities in
3D visual understanding. 3DCOMPAT** is an extension of
the 3DCoMPaT [12] dataset, which was previously published
at a conference.

We introduce a new richly annotated multimodal 2D/3D large-
scale dataset: 3DCOMPAT™**, standing for Compositions of
Materials on Parts of 3D Things. Our dataset comprises 10
million stylized 3D shapes rendered from 8 views, across 42
shape categories, 275 unique fine-grained part names and 43
coarse-grained part names, and 293 unique materials from 13
material classes. We sample object-compatible combinations
of part-material pairs to create 1000 styles per shape. Each
object with the applied part-material composition is rendered
from 4 equally spaced views and 4 random views. We
render images for a 1000 total compositions, leading to 160
million' total rendered views. Examples of some rendered
compositions and views are provided in Figures 5 and 6
respectively.

Dataset. To create our dataset, we start with 10K unique
geometries which we segment at a fine-grained part level into
a total of 275 segmented parts (leading to 9.86 average part
instances per shape). For each part of each shape, human
experts determine a list of compatible/applicable materials.
Then, we generate a stylized model by sampling over the
compatible materials of each part with a limit of 1000 styles
per shape, leading to 10 million stylized shapes.

Previous work. Our proposed dataset differs from previous
work in numerous ways. Our dataset contains a diverse set
of high-quality materials: for each part found in every 3D

IFigure detail: 10000 (#shapes) x 1000 (#styles) x 8 (#views)
X 2 (#part semantic levels) = 160M views
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Data provided for each stylized shape. For 3D: RGB pointclouds, textured shapes, and point-wise/triangle-wise part labels and material labels. For

2D: RGB images, depth maps, and corresponding part masks and material masks. Part and material annotations in 2D and 3D are provided in both coarse
and fine semantic levels. In Figure 19 of the appendix, we show additional style variants for various shapes.
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Fig. 2. Grounded CoMPaT Recognition (GCR). Given an input shape,
here: a chair, the task consists of (a) recognizing the shape category and (b)
segmenting the part-material pairs composing it.

shape, we annotate possible compatible materials that may be
applied to each part, allowing us to generate multiple material
combinations for a single shape (we refer to a combination
of materials (composition) applied to a model as a style).
We also enrich our dataset with 2D renders, depth maps,
part masks, and material masks for each rendered view, and
hierarchical part and material annotations in both the 2D and
3D modalities.

In summary, our 3DCOMPAT** dataset can be distinguished
from existing datasets by the following four key aspects:

(a) Human-generated vs. 3D scanned geometry. ScanNet [9]
and Matterport3D [10] datasets are scanned 3D geometry
datasets. Conversely, ShapeNet [1] and our 3DCOMPAT**
dataset are human-created, mostly by professional 3D model-
ers. Human-created geometry is generally of higher quality and
has fewer artifacts, but is however more expensive and time-
consuming to collect. For the Objaverse [7], [8] dataset, the

authors thus propose to scrape 3D models from well-known
web repositories which are mostly created by artists. However,
the quality of these models is not guaranteed, and models
are not annotated with part-level information. The realism
of the collected objects is also not a given, as models in
these repositories are not designed to be realistic, but rather
to be visually appealing as they are typically targeted at the
video game industry. Our dataset is human-generated and is
designed to be realistic, and comprises high-quality textures
and geometry.

(b) Part segmentation information. For some datasets, none or
only a subset of the shapes have segmented part information,
which is an important feature of datasets like PartNet [3] and
is also a core characteristic of our dataset. We provide part
segmentation information following two semantic levels, in
both 2D and 3D modalities.

(¢) Texture coordinates, textures, and materials. A key fo-
cus of our work lies in the stylization of 3D shapes with
appropriate texture coordinates, textures, and materials. To
achieve a superior level of quality when rendering numerous
material compositions on each shape, our models are equipped
with human-verified texture coordinates and part-wise material
compatibility information. While previous attempts have been
made to enhance a subset of ShapeNet with part-wise material
information [13], it falls short in comparison to our work
in terms of the number of shapes (3080 vs. 10000), shape
classes (3 vs 42), and materials (6 vs. 13, and 293 fine-grained
annotated classes).

(d) Automatically generated vs. human-generated annotations.
3DCOMPAT** shapes are annotated manually by a team
of trained humans. Part names are consistent across and
within categories, and are defined in shape category-specific
guidelines. Each guideline is defined by a team of researchers
and professional modelers, and contains rigorous definitions
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Fig. 3. Comparison with PartNet. Part instances per shape distributions compared to PartNet [3] (left), Density plots depicting the distribution of vertex
counts, edge counts, and face counts across 3D shapes extracted from both the 3DCOMPAT** and ShapeNet datasets (right). We show significantly higher

numbers of vertices, edges, and faces in 3DCOMPAT**

and examples for each part that may occur within a given
shape category. All models are manually segmented at
a part level rather than with deep learning models like
OpenRooms [14] or ShapeNet-Part [11].

Grounded CoMPaT Recognition. We introduce a novel task
called CoMPaT recognition, which focuses on collectively
recognizing and grounding shape categories along with the
associated part-material pairs composing them. In Figure 2,
we illustrate the task with an example. Given an input shape,
the task aims to recognize both the shape category and all
part-material pairs composing it. In the example shown, an
agent first needs to identify the shape as a chair, and then all
part-material pairs, such as a ”seat” made of “leather” and a
“backrest” made of “fabric”. This novel task, compatible with
both 2D and 3D modalities, goes beyond recognition with a
grounded variant requiring the precise segmentation of parts
alongside the recognition of associated materials.

Contributions. Our work introduces a new dataset, and in-
troduces the GCR recognition task. The contributions of this
work can be summarized in the following points:

e We propose a new dataset comprised of 10 million
stylized models to study the composition of materials on
parts of 3D objects. Our dataset contains (a) a diverse
set of 293 materials for 3D shapes, where (b) material
assignment is done at a coarse and fine-grained part-
level; (c) segmentation masks in 2D and 3D, alongside
(d) human-verified texture coordinates.

o We validate our dataset with experiments covering 2D
and 3D vision tasks, including object classification, part
recognition and segmentation, material tagging and shape
generation.

¢ We also propose Grounded CoMPaT Recognition (GCR),
a novel task aiming at collectively recognizing and
grounding compositions of materials on parts of 3D
objects. We introduce two variants of this task, and
leverage 2D/3D state-of-the-art methods as baselines for
this problem.

shapes compared to ShapeNet. All annotated shapes in PartNet originate from ShapeNet.

II. RELATED WORK

Early efforts. Several datasets have been initially proposed
to facilitate 3D visual understanding, such as ShapeNet [1],
ModelNet [2], and PartNet [3]. ModelNet [2] is one of the
first datasets of 3D objects, and includes 40 shape categories
and 12K unique 3D shapes. ShapeNet [1] is a large-scale
dataset of 3D textured objects, with 55 shape categories
and 51K unique 3D shapes. ShapeNet is annotated at the
shape-level, and categories are extracted from WordNet [19].
It has emerged as an important benchmark for deep learning-
based modeling, representation, and generation of 3D shapes.
ObjectNet3D [17] is an object-centric dataset of 3D CAD
models with 100 shape categories and 90K unique 3D shapes,
and approximate 2D-3D image alignments. ModelNet,
ShapeNet and ObjectNet3D are object-centric datasets, and
do not contain part-level annotations.

Part-understanding. In an attempt to bridge this gap,
ShapeNet-Part [11] was first proposed as an extension to
ShapeNet [1] with part-level annotations. It contains 16 shape
categories and 31K 3D shapes, but part annotations are only
provided at a coarse-grained semantic level, and are extracted
using a deep active learning framework instead of human
annotation. PhotoShape [15] is one of the earliest efforts in
gathering 3D shapes with high-quality textures. It contains
5.8K 3D shapes from 29 shape categories, and proposes to
transfer material properties regressed from real images to
untextured 3D shapes. PartNet [3] was built as a large-scale
dataset of 3D shapes annotated with fine-grained, instance-
level, and hierarchical part segmentations. PartNet is also
created on top of ShapeNet [1] and contains 26K 3D shapes
from 24 shape categories. PartNet is a valuable resource for
advancing research in 3D shape analysis and understanding.
Our work stands apart from PartNet in three main ways:

e (a) We provide both coarse-grained and fine-grained
material information for each part of each shape.

e (b) We enrich 3D shapes with 2D renders, part masks,
material masks, and depth maps.

e (c) We use a human verification process to ensure the
compatibility of sampled materials with each part of each
shape.

High-resolution datasets. In an effort to provide high-quality
and realistic shapes and textures, OmniObject3D [4] and
ABO [5] datasets introduced 3D assets with rich, high-quality



TABLE I
COMPARISON OF 3DCOMPAT** WITH EXISTING 3D DATASETS. Multi-level INDICATES WHETHER THE DATASET CONTAINS HIERARCHICAL PART

SEMANTICS. Alignment INDICATES WHETHER THE DATASET CONTAINS ALIGNED 2D/3D DATA. WE DENOTE BY

MISSING ANNOTATIONS, e.g. CASES

WHERE THE DATASET CONTAINS TEXTURED SHAPES, BUT DOES NOT INCLUDE MATERIAL ANNOTATIONS. AMONG DATASETS WITH PART-LEVEL
ANNOTATIONS, 3DCOMPAT** CONTAINS THE LARGEST NUMBER OF STYLIZED SHAPES, OBJECT CATEGORIES, MATERIALS AND ALSO PROVIDES A
LARGE COLLECTION OF ALIGNED 2D IMAGES.

Dataset & Shapes Materials Parts B Images
Count  Stylized Classes Source Count  Classes #Instances/Shape  Multi-level  Instances Count  Alignment

ModelNet [2] 128K 662  modelled
ShapeNet-Core [1] 51,3K 55  modelled
ShapeNet-Sem [ 1] 12K 270  modelled
PhotoShape [15] 5,8K 29K 1 modelled 658 8
GSO [16] 1K 17 scanned
OmniObject3D [4] 6K 190 scanned
ObjectNet3D [17] 442K 100 modelled 90K pseudo
3D-Future [6] 9,9K 15  modelled 15 20K exact
ABO [5] + HAL3D [18] 8K 63 modelled 398K pseudo
Objaverse-XL [8] 10,2M modelled 66M exact
ShapeNet-Part [11] 31,9K 16  modelled 2.99
ShapeNet-Mats [13] 3,2K 3 modelled 6 6.20
PartNet [3] 26,7K 24 modelled 7.21 (V] (V]
3DCOMPAT+* 10K 10M 42 modelled 293 13 9.86 o (V] 160M exact

textures. ABO [5] also provides unlabelled part instance
segments for a subset of 3,4K shapes, in the form of unnamed
connected shape pieces. HAL3D [18] builds on ABO using
an active learning pipeline to provide semantic part instance
names for ABO, but did not release the dataset to the public.
Google Scanned Objects [16] is a scanned dataset of recon-
structed 3D objects with high-quality textures and geometries,
and contains 1K 3D shapes from 17 diverse categories of small
objects. OmniObject3D [4] is a scanned dataset of 3D objects
with high-quality textures, and contains 6K 3D shapes from
190 shape categories based on ImageNet [20] and LVIS [21].
ABO [5] is a dataset of 3D objects with high-quality textures
and geometries, and contains 8K 3D shapes from 63 shape
categories based on product catalogs extracted from Amazon.

3D-Future [6] presented a dataset comprising 10K industrial
3D CAD shapes of furniture developed by professional de-
signers. More recently, Objaverse [7] and Objaverse-XL [&]
expanded the horizon of 3D object datasets by releasing
over 10 million artist-designed 3D objects with high-quality
textures.

Despite these significant strides in advancing 3D
understanding, these modern object-centric 3D datasets
(e.g. [11, [21, [7], [8]) and scanned datasets (e.g. [], [10], [4])

lack part-level annotations. PartNet [3], building on
ShapeNet [1], offers fine-grained part segmentations of
3D meshes but does not include material information. The
absence of such part-level annotations and material data
points to the significance of a dataset like 3DCOMPAT*,
which bridges these gaps and serves as a comprehensive
resource for furthering research in 3D visual understanding.

Comparison with existing work. In Table I, we compare
3DCOMPAT** with existing prevalent 3D datasets. We dis-
tinguish between datasets originating from 3D artists (first

group), scanned objects datasets (second group), datasets with
aligned 2D images (third group), and datasets with part-level
annotations (fourth group). We scrutinize fundamental aspects,
including the number of shapes provided, whether or not
stylized shapes are included, the number of classes represented
and whether shapes come from scans or are designed from
CAD tools. Additionally, we assess the availability of material
annotations. We differentiate cases where textured shapes
are provided but without material annotations (') like in
GSO [16] and Objaverse-XL [8], from cases where they are
provided at a coarse-grained level only (e.g. 3D-Future [0]
in which only coarse material annotations are available), or
are provided at both coarse and fine-grained levels. Material
annotations and part-wise material annotations are important
as they provide essential contextual information about the
surface properties and appearance of objects, facilitating com-
positional understanding and analysis of 3D shapes.

We also consider the inclusion of aligned 2D images, and
differentiate between cases where images are pseudo-aligned
or exactly aligned with matching 3D shapes. Pseudo-
alignment includes using a manual 3D alignment pipeline
with close candidate CAD models [17], or using an automatic
3D alignment strategy with exactly matching shapes (e.g.
based on differentiable rendering [5]). Exact alignments
are achieved by producing synthetic 2D images from 3D
models using a rendering engine, and then projecting the
3D models into the 2D images using the camera pose
ground truth (e.g. 3D-Future [6], this work). In contrast
to other works, 3DCOMPAT** emerges distinctively
by offering a large collection of 10K stylized shapes,
each accompanied by complete multi-level part-material
information. With PartNet, 3DCOMPAT** is the only dataset
with instance-level part annotations, which are essential
in tasks involving denumerating parts composing a shape.
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Fig. 4. Detailing the data pipeline of 3DCOMPAT™**. Starting from the collection of 3D shapes, we perform a first editing step consisting of model
re-scaling, UV map correction and removal of undesirable meshes. Material compatibility information is also collected for each part of each shape, alongside
the shape category. Shapes are then annotated at a fine-grained part-instance level, and part names are iteratively refined and uniformized using a web-based
shape visualizer. Misaligned shapes are semi-automatically realigned using part annotations as a prior. Finally, we sample a set of materials for each part of

each shape, and render each stylized shape from multiple viewpoints.

Notably, 3DCOMPAT** also offers a large collection of
aligned 2D/3D data with 160M images and 10M shapes,
enabling its use in diverse multi-modal learning applications
benefiting from scale like object classification, part recognition
or novel view synthesis.

Mesh resolutions. In Figure 3, we compare part instances per
shape distributions between 3DCOMPAT** and PartNet [3]
(left), and model resolution statistics for 3D CAD models from
3DCOMPAT** and ShapeNet [1] (right). This comparison is
important because ShapeNet [I] serves as the CAD model
data source for PartNet [3] and ShapeNet-Part [ 1], which are
two of the most prominent datasets for 3D part understanding.
We provide density plots over vertex counts, edges counts,
and faces counts for 3D CAD models from both datasets.
We show that 3DCOMPAT** exhibits both higher numbers of
part instances per shape compared to PartNet and significantly
higher average numbers of vertices, edges, and faces when
compared to ShapeNet. While polygon count is not a perfect
proxy for shape visual quality and realism, it is a useful
metric for comparing the relative complexity of meshes in each
dataset. This quantitative assessment underscores the richness
of annotations and geometries within 3DCOMPAT**, making
it a valuable resource for advancing research in 3D shape
analysis and understanding.

III. 3DCOMPAT**

The 3DCOMPAT** dataset is based on a collection of artist-
designed 3D CAD models collected and annotated in collab-
oration with an industry partner. It contains 10K geometries
annotated and segmented at a fine-grained part-instance level,
with material compatibility information for each annotated
part. For each shape, 8 rendered views are provided from
canonical and random viewpoints (see Figure 6). For each
rendered view, depth maps, part maps, and material maps are
rendered (see Figures 7 and 21).

All annotations are provided by trained annotators following
a rigorous multi-stage review process. 3DCOMPAT* is a

richly annotated, multimodal 2D/3D dataset: In Figure 1, we
illustrate all data provided for a single stylized shape from our
dataset.

A. Dataset

3D Data. Alongside each stylized shape, we provide a
part-segmented textured 3D mesh, an RGB pointcloud, and
point-wise and triangle-wise part and material annotations. All
part segmentation information is provided in coarse-grained
and fine-grained semantic levels. RGB pointclouds can
be resampled at any resolution starting from the available
textured 3D meshes. In Figure 1, we illustrate the 3D data
provided for a single stylized shape.

2D Data. Each stylized shape is rendered from 8 viewpoints:
4 canonical viewpoints and 4 random viewpoints. Canonical
viewpoints are equally spaced around the shape. Random
viewpoints are sampled uniformly on the upper hemisphere
centered on the center of the shape’s bounding box. In Figure
7, we showcase the 2D data provided for the first canonical
viewpoint across four different 3D shapes. Each 2D image
is accompanied by part segmentation masks, material masks,
and depth maps. For each image, camera parameters are
also provided. Part segmentation masks and material masks
are available in two semantic levels: coarse-grained and
fine-grained.

B. Data collection pipeline

The complete data collection pipeline is depicted in Figure
4, and includes the following steps:

¢ Collection and Editing. 3D shapes are collected and
edited by our industry partner.

« Part annotations. Annotators follow each category-level
guideline when adding instance-level part annotations and
segmentations to each shape.



Fig. 5. Rendering of randomly sampled shapes from 3DCOMPAT**. The dataset comprises a rich collection of stylized 3D shapes annotated at the
part-instance level. These renderings demonstrate the varying shapes, styles, and materials that are captured, enabling comprehensive exploration and analysis
of compositional 3D vision tasks. Shapes are consistently aligned across classes and orientations are consistent for all 3D models. In the left circle, we
illustrate the untextured 3D geometries we start from as a reference. We provide additional reference shapes from all 42 shape categories in Figure 17 of the
appendix.
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Fig. 6. Canonical and random views. Canonical (left) and random (right) views rendered for a single stylized 3D shape. Random viewpoints are sampled,
while canonical viewpoints are equally spaced around the shape. In Figure 20 of the appendix, we provide additional examples of canonical and random
views.

« Material assignments. Annotators select compatible ma- “vertical_back_panel” part should appear at the
terials for each part of each shape, from among 13 back of a shape). We then manually adjust the remaining
possible coarse classes. misaligned shapes by using a web visualization tool” (see

« Stylized shapes. We sample a set of fine-grained mate- Figure 14). 3D shapes are also scaled to fit within a unit cube
rials for each part of each shape, which we refer to as a  centered at the world origin.
style.

o Rendering. We render each shape from multiple view-
points with matching masks, depth maps and pointcloud
data, as detailed in Section III-D.

Part annotations. By combining expert knowledge with
the analysis of unannotated shapes, we define fine-grained
part-level guidelines. A guideline is defined for each shape
category and provides a non-ambiguous definition of each
possible fine-grained part that can occur in shapes belonging
to the category. Annotators follow each category-defined
guideline when adding instance-level part annotations and
segmentations to each shape (see Figure ?? for an example of
a shape guideline for the faucet, shower, sink shape
categories). Part segments and names are iteratively refined
using a web-based shape visualizer (see Figure 14). This

Collection and Editing. All 3D shapes are collected by our
industry partner. Editing steps include model scaling, the
correction of UV maps, the removal of undesirable/invalid
meshes in the shape (e.g., additional objects like a vase on
top of a table), etc. Furthermore, as visible in Figure 5, all
shapes are consistently aligned across classes and orientations
are consistent for all 3D models. To align shapes, we use

part ?nn(')tatlons as a prior to automatlc?llly rotate a majority 2The 3DCoMPaT annotated shapes web-based browser is accessible here:
of misaligned shapes (for example, using the fact that the https:/3dcompat-dataset.org/browser/
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3DCOMPAT** is significantly long-tailed.
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Example coarse materials in 3DCOMPAT**.
domly sample a single material from 8 of the 13 materials provided

in 3DCOMPAT**, and render it on demo primitives. From left to
right, top to bottom: leather, wood, fabric, plastic, metal,
granite, marble, ceramic.

browser allows reviewers to visualize segments for a specific
part class in a shape category, allowing to efficiently verify
part semantics consistency across shapes and quickly identify
annotation errors. Corner cases, when frequent enough,
are identified and further refined into new meaningful part
denominations for the category.

Material assignments. In Figure 10, we illustrate material
categories in 3DCOMPAT* with samples from our collection.
We collect Physics-Based Rendering (PBR [22]) materials
from various free-to-use repositories, including the NVIDIA
vMaterials® library and the ambientCG* public domain
material library. We filter collected PBR materials to ensure
1) overall visual quality, 2) compatibility with our rendering
pipeline, 3) visual affinity with our collected shapes. We
collect a total of 13 coarse material categories, for 293 total
PBR materials. With each segmented part, a set of compatible
material categories is provided by the annotators (e.g. “metal,
wood” for a leg in a chair.). The list of compatible materials
for each part of each shape is first broadly defined at the
shape category level and refined on a case-by-case basis for
specific shapes.

Stylized shapes. Using the collected material compatibility
information associated with each part, we randomly sample
a material for each part of a shape to create a style. A
composition is a combination of materials that could be applied
to any shape, and a style is an instance of a composition
applied to a specific shape. We detail the process of shape
stylization in Figure 13. An average of 1000 styles are sampled
per shape. The number of possible styles per shape S can be
defined as:

N(©S) = I MSp|

pEP(S)
where P(S) denotes the set of parts belonging to shape S,
and M (S, p) the set of materials compatible with part p in
shape S. For 14.6% of shapes, A (S) < 1000, due to either
a small number of parts or compatible materials per part. To

3vMaterials library: https://developer.nvidia.com/vmaterials
4ambientCG public domain repository: https:/ambientcg.com/
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Fig. 11. Going from fine-grained to coarse-grained segmentation. Fine-grained classes are merged following a shape category-specific nomenclature to
create coarse-grained classes. Resulting shapes are simplified and contain fewer parts.

compensate for this effect, we oversample from shapes where
N (8) >> 1000 to reach the desired average of 1000 styles
per model.

C. Coarse/Fine-grained semantics

3DCOMPAT** provides part and material annotations in
two hierarchical semantic levels: coarse and fine.

Part hierarchies. Fine-grained part classes are defined
from a hand-defined shape category-specific nomenclature.
Coarse-grained part semantics are defined as shape category-
specific groupings of fine-grained part categories. For ex-
ample, in the “airplane” shape category, the wheel,
wheel_connector and wheel_cover fine-grained parts
are all merged into the wheel coarse part. Shape categories
in our dataset can share part names by default. Parts that are
category specific and relevant to the category are prefixed by
the name of the category (for example: airplane_wing).
We visualize these two semantic levels in Figure 11 for a
single 3D shape, and highlight resulting grouped parts. The
coarse-grained semantic level considerably simplifies the com-
positional structure of shapes, while the fine-grained semantic
level provides a more detailed description of the composition
of shapes. In the coarse-grained setting, the number of shape
category-specific parts is also significantly reduced, while the
number of parts shared across shape categories is increased. In
Figure ??, we provide additional examples of coarse-grained
and fine-grained part semantics groupings for three distinct
shape categories. Our coarse-level part semantics can be used
for tasks that require a high-level understanding of shapes,
while fine-grained part semantics can be used for tasks that
require more detailed, shape category-specific understanding.
We compare the average number of unique parts per object
(top) for fine and coarse semantic levels across all shape
categories in Figure 8. We also plot the sorted number of
occurrences of each part (bottom) in both semantic levels.
In the coarse-grained semantic level, parts occurrences
are concentrated on a smaller number of parts, while the
distribution for the fine-grained level is clearly long-tailed.
The average number of parts per object is also equalized

across shape categories in the coarse-grained level, while
some shape categories present a significantly higher number
of parts per object in the fine-grained level like cars and
bicycles. Overall, the coarse-grained semantic level provides
a more balanced distribution of parts across shape categories,
while the fine-grained semantic level provides a more detailed
description of the composition of shapes.

Material hierarchies. Coarse-grained materials correspond
to a high-level set of 13 material categories (e.g. “wood,
metal, ceramic, etc.). Each high-level material category
is composed of fine-grained specific materials belonging to
that category (e.g. "pine_wood” in "wood”.). In Table II,
we detail the number of fine-grained materials within each
coarse category in 3DCOMPAT**.

TABLE I

MATERIALS IN THE 3DCOMPAT** DATASET. WE SHOW THE NUMBER
OF FINE-GRAINED MATERIALS WITHIN EACH OF THE 13 COARSE-GRAINED

CATEGORY.
Material  ceramic fabric glass  granite leather marble metal
# Count 6 32 6 11 34 39 66
Material plant plastic rubber soil wax  wood  Total
# Count 1 21 5 4 4 64 293

D. Rendering

Scene. We render each shape in the same scene with a single
directional light and three area lights positioned around the
shape. In Figure 12, we detail our rendering scene setup with
an example shape. The stylized shape is placed inside an
ovoid surface with a white color, to ensure that the shape is
always rendered on a uniformly white background. Projected
shadows only appear on the z = 0 plane on which the
shape is placed. When rendering depth maps and masks, the
background surface is removed from the scene.

All images are rendered in a 256x256 resolution, and 2D
images are encoded in the PNG format. Depth maps are



Fig. 12. Blender rendering scene setup. We depict the ovoid surface in
the middle of which shapes are placed (left). We also show the scene setup
used with three area lights and the camera (right). The directional light is
positioned above the whole scene and centered on the shape.

stored in the OpenEXR format to accommodate absolute
distances to the image plane, which are represented using
floating-point values.

Viewpoints. Each stylized shape is rendered from multiple
perspectives: 4 canonical viewpoints and 4 random viewpoints.
We first translate each shape above the z = 0 plane. Camera
viewpoints are defined in spherical coordinates (¢,#) where
the origin is set to the center of the shape’s bounding box,
which we note o.. The camera is rotated around o, by ¢ and 6.
Canonical viewpoints are distributed evenly around the shape
with a fixed elevation 6. We set the base spherical angle ¢ to
40 degrees and then increment it by 90 degrees for each of the
four viewpoints, while keeping 6 fixed at O degrees. Random
viewpoints are sampled uniformly from an upper hemisphere
above the plane. We randomly sample ¢ from the range [0, 27]
and 6 from the range [—im, £7]. Using the obtained ¢ and 6
angles, we define the position and orientation of the camera.
The camera’s initial position denoted as cg is rotated around
oc. The orientation of the camera is then adjusted to ensure
that the image plane is centered on o.. Extrinsic and intrisic
camera parameters are recorded for each view and are provided
alongside the rendered images. The sampling procedure of
camera parameters is detailed in Algorithm 1.

E. Toolbox

To support the use of 3DCOMPAT**, we provide a toolbox
for easily loading and visualizing the data. Mainly, we provide
the following elements:

o Python API for easily loading the data, based on Py-
Torch [24] and WebDataset [25].

« Web-based browser for easily exploring 3D shapes and
part annotations in both coarse and fine-grained semantic
levels (see Figure 14).

« Documentation and notebooks to facilitate the use of
the dataset.

All of these elements are available on the 3DCOMPAT*
website”.

S3DCOMPAT** website: https://3dcompat-dataset.org/doc

Algorithm 1 Sampling camera parameters
Input:

o obj € RV*3: Object to render.

e co € R3: Base position of the camera.

e vy € [0,3]: View identifier.

e is_random_view € {0,1}: Sample a random view.
Output:

o m,, € R**: Camera transformation matrix.

1. function SAMPLE_CAMERA(0b}], cg, Vg, is_random)

2. 0 < bounding_box_center(obj)

3. if is_random_view then

. GNU[—%ﬂ,%W], ¢ ~ U0, 27]

5. else

6. 9<—0,¢<—%W+gvk

7. ¢y < rotate_point(cg; Oc, @, 0)

5. my, < look_at(cy,0)

9. return my, > Camera transformation matrix

IV. EXPERIMENTS
A. Classification and Segmentation

Shape classification. As illustrated in Figure 9, the shape
class distribution of our dataset is significantly long-tailed.
We conduct shape classification experiments on 2D renders
and 3D XYZ pointclouds to assess the difficulty of this task
on our dataset. All pointclouds are sampled with a resolution
of 2048 points, and all methods are trained from scratch
for 200 epochs. For 2D classification, we fine-tune ResNet
models [26] pretrained on ImageNet [20] for 30 epochs.
We report 2D and 3D shape classification results in Table
V. We reach a maximum top-1 accuracy of 90.20% on 2D
renders with ResNet-50, and 85.14% on 3D pointclouds with
CurveNet [27].

Part segmentation. We conduct 3D part segmentation
experiments on pointclouds and 2D renders to assess the
difficulty of this task on our dataset. We provide results for
both fine-grained and coarse-grained 3D part segmentation
in Table III. We report pointwise accuracy (shape-agnostic)
and mIOU for each model. For mIOU, we consider the
shape-informed version of the metric where we restrict the
set of predicted parts to the parts that are present in the
ground-truth shape category, and the shape-agnostic version
where all possible parts are considered. We also report results
with and without using a shape prior during training and
inference for PCT [28], PointNet++ [29] and CurveNet [27].
We note that getting accurate part segmentations without RGB
information is challenging but remains possible. Without
using a shape prior, CurveNet [27] reaches a shape-agnostic
mlIOU of 53.09% on fine-grained part segmentation. In this
setting, the model has to perform the challenging task of
point-wise part classification from a set of 275 possible parts.

Overall, a large gap exists (around 30 accuracy points across
models) between shape-informed and shape-agnostic mIOU,
highlighting the difficulty of the task over the full space of
possible parts. The task of coarse-grained part segmentation
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Fig. 13. Sampling a shape style. Starting from part-material annotations, we first sample a coarse material class from a set of compatible material classes for
each part. We then sample fine-grained materials within each sampled coarse material class. The combination of fine-grained materials for each part defines
a composition. Finally, we apply the sampled part-materials pairs to the shape to obtain a stylized shape.
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Fig. 14. Interactive web-based browser for 3DCOMPAT**. We provide an interactive 3D shape browser built using Three.JS [23] to visualize the 3D
shapes in our dataset. The browser allows to easily visualize instance and semantic part annotations in both coarse and fine-grained levels.



is easier, as the model only has to perform part classification
from a set of 43 possible parts. In this setting, CurveNet [27]
reaches a shape-agnostic mIOU of 76.32%. For 2D fine and
coarse part segmentation, we report results for SegFormer [30]
in Table IV, alongside material segmentation results. We
obtain a mIOU of 52.24% for fine-grained part segmentation,
73.35% for coarse-grained part segmentation, and 82.45% for
material segmentation.

B. Grounded Compositional Recognition (GCR)

Task. One key property of our 3DCOMPAT** dataset is
that it enables understanding of the complete part-material
compositions of a given 3D shape. This involves predicting
the category of the object, all part categories, and the
associated materials for each of those parts within the 3D
model. In Figure 2, we detail all information that has to
be predicted for a given shape in this proposed GCR task.
Grounded Compositional Recognition can be related to
Zero-Shot Recognition, which aims at predicting the category
of an object from a set of unseen categories, where the
unseen categories are defined by unseen compositions of
visual attributes [31], [32], [33]. The GCR task can also be
related to situation recognition [34], [35] which can be defined
as the identification of role - entity pairs in a given scene [34].

Metrics. Drawing inspiration from the metrics introduced
in [34], [35] initially designed for the compositional recogni-
tion of activities in images, we define the GCR compositional
metrics in 2D/3D as follows:

« Shape accuracy. Proportion of correctly predicted shape
categories.

e Value. Proportion of correctly predicted part-material
pairs.

e Value-all. Accuracy of predicting all part-material pairs
of a shape correctly.

We extend these metrics to the segmentation of parts and
materials in 2D/3D by defining grounded variants of value
and value-all metrics:

¢ Grounded-value. Proportion of correctly predicted part-
material pairs, where the part is correctly segmented.

o Grounded-value-all. Accuracy of predicting all part-
material pairs of a shape correctly, where all parts are
correctly segmented.

We consider a part to be correctly segmented if the predicted
part segmentation mask has an intersection over union (IoU)
of at least 0.5 with the ground-truth part segmentation mask.
In 2D, we use the pixel-wise definition of IoU. For the 3D
modality, we use the point-wise definition.

Formally, for a test set with NV shapes, let y; and ¢; denote the
true and predicted shape categories for shape i, respectively.
Additionally, let C; = {(ph m1), (pg, mg), cee, (pKi , MK, )A}
represent the set of true part-material pairs for shape ¢, and C;
the corresponding predicted pairs. Let P; denote the set of all
parts in shape . We define the metrics as follows:

Shape Accuracy measures the proportion of correctly identified
shape categories:

N
1 .
SHAPE ACCURACY = — ; L(y; = 9s)

Value computes the average proportion of correctly predicted
part-material pairs per shape:

N ~
1 & jenéil
V=
N ; |Ci]

Value-all requires perfect prediction of all part-material pairs:

N
1 N
ALL = — ;:1 Ci=C)

With 1(-) being the indicator function. Note that performing
well on these metrics only requires part-material labels to be
predicted, and does not require part segmentation masks. For
the grounded variants, we define S; as the set of correctly
segmented parts with IoU > 0.5. This allows us to define:

Grounded-value which measures correctly predicted part-
material pairs that are also correctly segmented:

N A
1 |{(p7m)eclpGSZ/\(p7m)€Cz}|
GV =
N; |C:il

Grounded-value-all which requires all part-material pairs to
be correctly predicted and all parts to be correctly segmented:

N
GVALL — % ; 1((€:=Co) A (9p € Ps 10U, ) > 0.5))
Note that Value and Grounded-value are both evaluated at
the shape level: we divide the number of correctly identified
(resp. grounded) part-material pairs by the total number of
parts appearing in each shape, and then average across all
samples. Value is thus upper bounded by Value-all, and
Grounded-value by Grounded-value-all.

Baselines. We experiment with two fusion-based baselines to
assess the performance of the GCR task on 3DCOMPAT**.
o “PointNeXt+SegFormer”. This baseline employs sepa-
rate 2D/3D models and fuses predictions at evaluation
time. We use PointNeXt [36] for 3D shape classification
and SegFormer [30] for 2D material segmentation and
2D part segmentation. 2D dense predictions are projected
to the 3D space using the depth maps and camera
parameters. We use this baseline to assess the feasibility
of the GCR task on 3DCOMPAT** when all part-pair
predictions are performed on the 2D space.

o BPNet. We adapt the BPNet 2D/3D multimodal method
to the GCR task. BPNet leverages complementary infor-
mation from 2D and 3D modalities by fusing features
from both modalities using a bidirectional projection
module for feature fusion. We detail the BPNet archi-
tecture we employ in Figure 24 in the appendix.



TABLE III

3D PART SEGMENTATION. WE REPORT MEAN INTERSECTION OVER UNION (MIOU) AND POINTWISE ACCURACY FOR VARIOUS MODELS ON THE
3DCOMPAT** DATASET FOR BOTH FINE-GRAINED (LEFT) AND COARSE-GRAINED (RIGHT) 3D PART SEGMENTATION. FOR MIOU, WE DIFFERENTIATE
BETWEEN SHAPE-INFORMED (WHERE THE GROUND-TRUTH SHAPE CATEGORY IS PROVIDED AS INPUT) AND SHAPE-AGNOSTIC EVALUATION. FOR PCT,
POINTNET++ AND CURVENET, WE ALSO REPORT RESULTS WITH AND WITHOUT USING A SHAPE PRIOR DURING TRAINING AND INFERENCE. ALL
MODELS ARE TRAINED ON 3D XYZ POINTCLOUDS.

Model Shape Prior  Pointwise Acc. (%) mlOU (%) Model Shape Prior  Pointwise Acc. (%) mlIOU (%)
Shape-Informed  Shape-Agnostic Shape-Informed  Shape-Agnostic
PCT [28] (x] 70.49 81.31 49.09 PCT [28] [x] 80.64 75.49 66.95
o 78.51 82.84 56.14 o 92.15 82.57 80.49
PointNett+ [20] (x] 71.09 80.01 50.39 PointNett+ [29] (%} 84.73 77.98 73.79
o 78.61 81.19 56.46 o 92.02 81.82 81.03
CurveNet [27] (x) 72.49 81.37 53.09 CurveNet [27] (x) 86.02 80.64 76.32
o 79.90 82.15 59.61 o 93.40 84.62 83.85
PointNeXt [30] (V] 82.07 83.92 63.73 PointNeXt [36] (V] 94.18 86.80 85.46
PointStack [37] o 78.51 81.98 56.20 PointStack [37] o 93.49 84.97 83.67
Fine-grained segmentation Coarse-grained segmentation
TABLE IV TABLE V

2D PART SEGMENTATION. WE REPORT MEAN INTERSECTION OVER SHAPE CLASSIFICATION. WE REPORT THE ACCURACY OF VARIOUS
UNION (MIOU) FOR SEGFORMER ON THREE 2D PART SEGMENTATION MODELS ON THE 3DCOMPAT** DATASET FOR BOTH 3D AND 2D SHAPE
TASKS: FINE-GRAINED PART SEGMENTATION, COARSE-GRAINED PART CLASSIFICATION. 3D MODELS ARE TRAINED ON POINTCLOUDS
SEGMENTATION AND MATERIAL SEGMENTATION. PROVIDED WITH EACH SHAPE, WHILE 2D MODELS ARE TRAINED AND
TESTED ON RENDERS WITH CANONICAL AND RANDOM VIEWPOINTS.

Model Task mlIOU (%)
3D Classification
Model
Fine-grained part segmentation 52.24 Accuracy (top-1, %)
SegFormer [30]  Coarse-grained part segmentation 73.35 Model 2D Classification by g 68.88
Material segmentation 82.45 Accuracy (top-1, %) DGCNN [38] 78.85
PointNet++ [29] 84.10
ResNet-18 [26] 76.27 PointStack [37] 8304
1n ac o B
ResNet-50 [26] 90.20 © .
CurveNet [27] 85.14
PointNeXt [36] 82.21
PointMLP [39] 83.71
80
Compositions
60
N=1 B
N=5 P
g
N =20 <
. NS0 2
0
Value Value-All Value-Grounded Value-All-Grounded

Fig. 15. Analysis of the performance with different numbers of sampled styles. We train the BPNet [40] model using 1/5/20/50 style compositions
and report all the compositional metrics defined in Figure 2. Overall, we observe a clear trend of improvement with the number of styles, especially for the
Value-All and Value-All-Grounded metrics. We do notice however the start of a saturation effect when training with N = 50 styles.

TABLE VI

GROUNDED COMPOSITIONAL RECOGNITION (GCR). WE EVALUATE THE PERFORMANCE OF VARIOUS BASELINES ON THE GCR TASK. WHILE
MODALITY FUSION-BASED METHODS LIKE BPNET [40] AND POINTNEXT+SEGFORMER [30], [36] PERFORM WELL ON THE SHAPE CLASSIFICATION
TASK THEY STILL UNDERPERFORMED COMPARED TO THE RGB POINTCLOUD-BASED BASELINE. WE REPORT THE GCR METRICS UNDER BOTH
FINE-GRAINED AND COARSE-GRAINED SETTINGS, USING 10 COMPOSITIONS PER SHAPE. OVERALL, RECOGNIZING AND GROUDING ALL PART-MATERIAL
PAIRS OF A SHAPE IS PARTICULARLY CHALLENGING, ESPECIALLY IN THE FINE-GRAINED SETTING.

Semantic level Model Shape Acc. Value Value-all Grounded-value Grounded-value-all
PointNeXt+SegFormer [30], [36] 84.18 42.57 9.05 26.68 3.84
Fine-grained BPNet [40] 79.57 59.98 27.74 45.46 15.41
PointNet++RCB [20] 83.70 57.78 25.36 49.34 17.55
PointNeXt+SegFormer [30], [36] 84.27 65.61 44.82 52.82 29.74
Coarse-grained  BPNet [40] 84.72 75.04 61.81 67.49 50.44

PointNet++RGB [29] 85.19 75.66 63.88 72.14 58.99




Challenge. We organized a compositional 3D visual
understanding challenge on the GCR task of 3DCOMPAT**,
with the goal of benchmarking the performance of various
methods, in the context of the C3DV workshop at CVPR
2023 ©. The best-performing method (PointNet++R6B in
Table VI) on the GCR task consisted of an unimodal 3D
model based on a modified PointNet++ [29] trained on 6D
inputs (XYZ coordinates and RGB color) ’. One important
design choice is the point grouping method employed
which relies on spatial proximity only. The winning method
achieved a Grounded-value-all accuracy of 58.99% in the
coarse-grained setting and 17.55% in the fine-grained setting.
Other solutions included a late fusion of 2D and 3D features
by averaging logits of part and material segmentation and
training a PointNet++ model with additional 2D segmentation
features. More information about the challenge submissions
can be found on the workshop website.

Results. Table VI summarizes GCR results of baseline
methods and challenge winners. The PointNeXt+SegFormer
2D-based baseline is markedly outperformed by the BPNet
multimodal baseline, which can be imputed to the absence
of explicit 3D-aware modality fusion during training. The
winning method PointNet++RCB, which takes only 3D point
clouds as inputs and leverages a powerful point grouping
module, performs best in the coarse-grained setting, reaching
58.99% on the Grounded-value-all metric. BPNet on the
other hand, performs best in the fine-grained setting, and
outperforms PointNet++R¢B on the classification metrics
(Value and Value-all), but is overtaken by PointNet++RGB
on the grounded metrics. More importantly, we notice that
even our best performing models struggle to perform on the
fine-grained GCR task, where we reach most 17.55% on the
Grounded-value-all metric. This suggests that creating a
single model able to achieve strong performance across GCR
metrics poses great challenges, especially in the fine-grained
setting.

In this sense, Grounded Compositional Recognition is
a challenging task that can be used to benchmark the
compositional understanding of future multimodal models.

Number of compositions. We conduct further ablation
analysis to investigate the impact of varying the number of
compositions during the training of the BPNet [40] model.
We focus our analysis on the compositional metrics outlined
in Figure 15, related to the GCR task (2D/3D material mloU,
2D shape accuracy, and 3D part mloU). We train multiple
instance of the BPNet model with 1/5/20/50 compositions
from each shape and report the performance obtained for
each epoch, for each GCR compositional metric. Our findings
reveal a clear and consistent improvement in the performance
of all metrics as the number of compositions utilized in
training is increased, specifically when going from N, = 1
to N. = 5 and N, = 20. However, the observed trend
becomes less discernible when transitioning from N, = 20 to

6C3DV Workshop: https://3dcompat-dataset.org/workshop/C3DV23/
7Winning solution repository: https://github.com/Cattalyya/
3DCoMPaT-challenge

N, = 50 compositions. This highlights the need for further
investigation into efficient ways of leveraging a large number
of compositions during training.

V. CONCLUSION

We introduce 3DCOMPAT ™, a large-scale dataset of Com-
positions of Materials on Parts of 3D Things, which contains
10M styled models stemming from 10000 3D shapes from
42 object categories. 3DCOMPAT** contains 3D shapes, part
segmentation information in fine-grained and coarse-grained
semantic levels and material compatibility information, so
that multiple high-quality PBR materials can be assigned to
the same shape part. We also propose a new task, dubbed
as Grounded CoMPaT Recognition (GCR), that our dataset
enables and introduces baseline methods to solve them. Future
directions may include additional tasks such as 3D part-aware
shape synthesis, 3D part-aware reconstruction from 2D views,
and 3D part-style transfer, which all can be enabled by the
rich data provided in 3DCOMPAT**.
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