
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HARNESSING INPUT-ADAPTIVE INFERENCE FOR
EFFICIENT VISION-AND-LANGUAGE NAVIGATION

Anonymous authors
Paper under double-blind review

ABSTRACT

An emerging paradigm in vision-and-language navigation (VLN) is the use of
history-aware multi-modal transformer models. Given a language instruction, these
models take observation and history as input and predict the most appropriate
action for an agent. While employing these models has significantly improved
performance, the scale of these models can be a bottleneck in practical settings
where computational resources are limited (e.g., in robots). In this work, we present
a novel input-adaptive navigation method for efficient VLN. We first characterize
the overthinking problem in VLN and show that none of the existing input-adaptive
mechanisms successfully reduce overthinking without causing significant per-
formance degradation. Our method addresses this problem by developing three
adaptive algorithms deployed at different levels: (1) We develop an adaptive ap-
proach that improves spatial efficiency; we only process a subset of panoramic
views at each observation of an agent. (2) We also achieve model-level efficiency
by developing adaptive thresholding for the early-exit method we employ, based
on the importance of each view in navigation. (3) To achieve temporal efficiency,
we design a caching mechanism to avoid processing views that an agent has seen
before. In evaluations with six VLN benchmark tasks, we demonstrate over a 2ˆ

reduction in computation across two off-the-shelf VLN agents.

1 INTRODUCTION

Progress in vision-and-language navigation (VLN) has been enabled by larger models (Hao et al.,
2020; Chen et al., 2021; Moudgil et al., 2021; Guhur et al., 2021; Hong et al., 2021) trained on
increasingly large datasets (Wang et al., 2023). These models can process and interpret complex data,
enabling them to understand and act upon natural language instructions within visual environments.
Despite the success, there is a growing concern about their computational demands. The need for
substantial computational power poses a significant challenge for deployment in resource-constrained
settings, such as robots, where low-power consumption increasingly becomes critical.

A potential solution to addressing these computational demands is input-adaptive inference. The main
idea is to reduce overthinking (Kaya et al., 2019): as shallow networks are sufficient for the majority
of samples to make decisions, e.g., class predictions, input-adaptive methods (Huang et al., 2018; Liu
et al., 2020; Xin et al., 2020; Tang et al., 2023) stop forwarding preemptively during inference and
return intermediate outputs when the internal decisions of a model converge. During inference, they
demonstrate up to 50% computational savings while preserving model performance.

In this work, we study the overthinking problem in a new domain—vision-and-language navigation—
and address this issue by proposing a novel input-adaptive navigation method. Prior work has focused
on tasks where inputs are processed independently of one another, e.g., in classification. But they
do not account for sequential decision tasks like navigation, where a model makes several decisions
over time based on inputs with spatio-temporal dependencies. In consequence, existing methods are
designed to reduce overthinking within a model but do not consider the cognitive overload caused by
the visual inputs the model needs to process in navigation. Although these models are not yet widely
deployed in real-world navigation tasks, it is still crucial to evaluate whether our efficiency gains are
robust to common visual corruptions.

Contributions. We first characterize the overthinking problem in vision-and-language navigation. In
our evaluation with two popular agents, HAMT (Chen et al., 2021) and DUET (Chen et al., 2022),
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Figure 1: Overview of our efficient input-adaptive navigation method. We illustrate on the left an
agent navigating a visual environment upon a natural language instruction. On the right, we provide a
high-level overview of the three input-adaptive mechanisms we propose at different levels.

we find that „99.5% of computations are spent in Transformer-based encoders to compute visual
encodings. We also show that addressing overthinking within these visual encoders is ineffective
in providing computational savings. Even with our best effort to apply the existing input-adaptive
inference method, MuE (Tang et al., 2023), we demonstrate that this approach results in unsuccessful
and inaccurate navigation decisions. This, in turn, increases both the time it takes for an agent to
reach the target location and the overall computations, while lowering the navigation success.

Second, to address this issue and achieve computational efficiency, we present a novel input-adaptive
navigation method (shown in Figure 1). We not only minimize overthinking within visual encoders,
as in prior approaches, but also reduce overthinking caused by cognitive overload during navigation.
Specifically, we focus on exploiting the spatio-temporal localities unique to VLN tasks: (1) The
spatial locality: In a panorama, we find that navigable views and a few neighboring views are critical
for successful navigation. We design a weighting mechanism that significantly reduces the number of
views the encoder should process. (2) The temporal locality: We also find that an agent encounters
identical or nearly identical views in consecutive navigation steps. We design a locality-sensitive
hashing algorithm to avoid computing these matching views during navigation. (3) At the model
level, we develop an algorithm for dynamically adapting the thresholds for an existing early-exit
method based on the locality to further reduce computations.

Third, we comprehensively evaluate our input-adaptive navigation method on 6 VLN benchmarks
across two popular agents. Our method achieves significant computational savings of up to 60%,
with a maximum performance degradation of 11.5% in SR. In contrast, baseline methods experience
up to 33.6% performance loss and fail to reduce any computations. Our ablation study also shows
how a practitioner can configure our method for their navigation environments and the factors that
our method does not rely on. Moreover, we examine the robustness of our method to natural visual
corruptions that may occur in navigation environments (such as lighting changes). We show that
while both the baseline and our method show a slight increase in the computations, our approach
loses 7–10% more performance. We hope our results will inspire future research on developing
efficient navigation methods and their deployment in real-world VLN settings.

2 RELATED WORK

Vision-and-language navigation (VLN). Research in this area has been supported by the develop-
ment of high-quality simulators such as Matterport3D (Chang et al., 2017) which we heavily leverage
in our work. Agents developed towards this challenging problem have ranged from earlier recurrent
models (Anderson et al., 2018; Fried et al., 2018) to more recent transformer-based models (Hong
et al., 2021; Chen et al., 2021; 2022; Wang et al., 2023; Kamath et al., 2023). While the recent agents
achieve superior visual-language alignment and improved performance, their increased complexity
leads to higher computational costs during inference. One reason for this can be attributed to the
transformer’s quadratic complexity in the length of input tokens (Vaswani, 2017). In addition, they

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

operate in environments with panoramic observation and action space, often consisting of multiple
single-view images (Fried et al., 2018). Our work is the first providing a tunable trade-off between
computational demands and accuracy.

Input-adaptive mechanisms for computational efficiency. Prior work introduces two distinct mech-
anisms for input-adaptive inference: adaptive neural networks (AdNNs) and multi-exit architectures.
AdNNs (Wang et al., 2018; Figurnov et al., 2017) are designed to dynamically skip certain blocks of
the model to save the computations during inference. In contrast, multi-exit architectures (Teerapit-
tayanon et al., 2016; Huang et al., 2018; Kaya et al., 2019; Xin et al., 2020) introduce an additional
component to the model, such as classifiers attached to each internal layer (early-exits), allowing
the model to preemptively stop running forwards once stopping criteria are met. Both mechanisms
demonstrate computational savings while minimizing performance loss in classification tasks (e.g., a
50% reduction in computation at a utility loss of „10%). Our method employs multi-exit architec-
tures because AdNNs are constrained to ResNet-like architectures. Most multi-exit architectures are
developed for classification tasks and are not compatible with VLN, where an agent utilizes visual
and/or language representations generated from encoders. The closest work by Tang et al. (2023)
developed an adaptation (MuE) to Transformer-based encoders. But despite our best effort, MuE
does not provide any computational savings in VLN tasks (shown in Sec 4.1). A separate line of
research explores methods for compressing models, such as quantization and pruning. These methods
are orthogonal to our study and can be applied in conjunction with our method (see Appendix F).

3 EXPERIMENTAL SETUP

Datasets. Following prior work, we evaluate our method on six different datasets: Room-to-
Room (R2R) (Anderson et al., 2018), R2R-Back (Chen et al., 2021), R2R-Last (Chen et al., 2021),
REVERIE (Qi et al., 2020), CVDN (Thomason et al., 2020), and SOON (Zhu et al., 2021).

VLN Agents. We consider two off-the-shelf VLN agents: HAMT (Chen et al., 2021) and
DUET (Chen et al., 2022). HAMT has four components: (1) the Vision Transformer (ViT) (Dosovit-
skiy et al., 2021) that compute visual representations from panorama view captured at the current
navigation step, (2) BERT (Devlin et al., 2019) that returns language representations from human
instructions, (3) the Hierarchical ViT that progressively encode temporal dynamics across panoramas
in the history into representations, (4) the Cross-modal Transformer that captures multi-modal rela-
tionships between the three representations, and predicts the most appropriate action. DUET consists
of five components but operates differently from HAMT. (1) the ViT extracts visual representations
and object features (e.g., bounding boxes and labels) from panorama views, (2) and uses the panorama
encoder on them for topological mapping. For global action planning, (3) the text encoder generates
language representations of human language instructions. Next, (4) the Coarse-scale Cross-modal
Encoder determines the next action within a global action space, while (5) the Fine-scale Cross-modal
Encoder selects actions within a local action space. The final action is then made by fusing the both.

Evaluation metrics. To evaluate how successful an agent’s navigation is, we employ four metrics
from prior work (Chen et al., 2021; Krantz & Lee, 2022): (1) Trajectory length (TL): the path length
an agent navigated in meters. (2) Oracle Success rate (OSR): the ratio of trajectories where at least
one viewpoint along the agent’s path can see the target object within a 3 meter range. (3) Success
rate (SR): the ratio of trajectories where an agent’s final position is within 3 meters of the target.
(4) Success rate normalized by inverse path length (SPL): the SR normalized by the ratio between
the shortest path’s length and the predicted path’s length. We compute the total giga floating-point
operations per second (GFLOPs) an agent requires to navigate to measure the computational savings
our method offers. We also measure the wall-time (in seconds) it takes for an agent to navigate to its
final location. But, we prioritize GFLOPs over wall-time because the latter depends on the hardware
accelerators and the software implementation. Please refer to Appendix for more details.

4 INPUT-ADAPTIVE EFFICIENT VISION-AND-LANGUAGE NAVIGATION

4.1 CHARACTERIZING THE OVERTHINKING PROBLEM IN VLN

Computational bottleneck. The first step in designing an efficient input-adaptive mechanism is to
understand the computational bottleneck of an agent during navigation. Because no prior work has
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studied which component consumes the most computational resources, we take a representative VLN
agent (HAMT) and analyze the computational demands of each of the five components. We use the
pre-trained VLN agent, provided by the original study through the open-source repository. We run
the agent on the validation (unseen) set of R2R and measure the average GFLOPs per trajectory.

0 20 40 60 80

ViT

Bert

CMT

H-ViT

99.50%

0.04%

0.39%

0.07%

GFLOPs (%)

Figure 2: Component-wise computa-
tional demands. We run HAMT on the
validation (unseen) set of R2R.

Figure 2 summarizes our result. The component that re-
quires the least computations is BERT (0.04%). This is
because the agent uses BERT only once at the beginning of
navigation to compute the language representation of a hu-
man instruction. We show that 99.5% of the computations
are spent on the ViT, in computing visual representations
from panorama views. Note that a single panorama view
is composed of 36 views. This means that each time the
agent makes a navigation decision, the ViT should process
36ˆ times more inputs than the remaining components
(H-ViT and CMT). The computations these two models
use depend on the input dimension and the number of
Transformer layers, but they only account for 0.46% of
the total computations the agent uses. We therefore focus on the ViT.

Existing mechanisms are ineffective in saving computations in VLN. Next, we examine whether
existing input-adaptive inference methods are effective in providing computational savings in VLN.
We find that most approaches discussed in Sec 2 are incompatible with VLN settings because they
are designed for classification tasks, while we need a strategy for encoder models. Tang et al. (2023)
proposes an input-adaptive strategy, MuE, tailored for encoder models. MuE measures the cosine
similarity between the output activations from two consecutive transformer layers to determine when
to stop forward pass. If the cosine similarity becomes greater than a predefined threshold, MuE stops
forwarding and subsequent layers are skipped. We test the MuE strategy to the ViT model in HAMT
and evaluate both the performance and GFLOPs of the agent on the validation (unseen) set of R2R.

Method
Performance

GFLOPs(Ó)
TL(Ó) OSR(Ò) SR(Ò) SPL(Ò)

Base 11.53 74.29 66.16 61.49 4763.24
MuE 17.37 62.20 43.93 36.92 4409.62

Table 1: Performance and computational sav-
ings in HAMT with MuE. Our adaptation of MuE
leads to only marginal computational savings at
the cost of significant performance degradation.

Results. Table 1 presents a comparison of per-
formance and computational savings between
the original HAMT and HAMT with MuE. We
set the early-exit threshold to 0.998 for MuE, as
the value offers the best performance-efficiency
trade-off (see Appendix B for details on how
we choose this threshold). We find a significant
performance reduction across four metrics (up
to 40%), when the HAMT agent employs MuE,
while GFLOPs is only reduced by 7%. The av-

erage GFLOPs per step for the ViT in MuE applied HAMT is 406.10, compared to 607.06 in baseline
HAMT. However, despite the significant per step GFLOPs savings, the total GFLOPs per trajectory
increases because the MuE applied agent takes more steps to complete each trajectory.

In Figure 3, we analyze the factors contributing to the performance loss and the limited computational
savings. The left figure compares trajectories from two different agents: one from the original HAMT
agent and the other with MuE. Both agents navigate to the same position until t = 2. At t = 3, the
original HAMT agent correctly identifies the bathroom (indicated by a green circle in the top-right
figure) and successfully navigates to the front of it. But the MuE agent takes a small step forward
toward it at t = 3. The MuE agent continues to make incorrect navigation steps until it reaches the
maximum allowed steps and eventually stops. Processing fewer transformer layers can lead to an
inaccurate understanding of the visual surroundings. As shown in the bottom-right figures, while the
bathroom is consistently visible across multiple steps (t P r2, 10s) in the panorama, the MuE agent
fails to recognize it and makes sub-optimal decisions at each navigation step. In Appendix B we
provide further discussion on why MuE is unsuccessful when applied directly to VLN.

4.2 OUR NOVEL INPUT-ADAPTIVE NAVIGATION METHOD FOR VLN

Prior work on input-adaptive inference considers models that treats each input independently. This
results in existing methods inheriting the one-size-fits-all philosophy: a model adopts a single set
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Instruction: Go into the house and immediately go left,
you should see a bathroom on your left. Go into the bathroom.

Start position

Navigable nodes
End position

MuE trajectory
Baseline trajectory

t = 2

t = 3

t = 4

t = 2

t = 3

t = 4

t = 0

Baseline

MuE

t = 1t = 2

t = 3

Figure 3: Problems in employing existing input-adaptive methods in VLN. We show that employ-
ing existing strategies lead to performance loss and an increase in computations. (Left) The increase
in computations stems from inappropriate navigation actions, and (Right) such decisions come from
the inaccurate understanding of the visual world, e.g., the agent confuses where to navigate.

of configurations, such as the threshold for stopping the forward pass, for all inputs. However, in
dynamic settings, such as an agent navigating the physical world, the inputs are not independent to
each other. They are dependent on each other both spatially and temporarily.

We introduce a novel input-adaptive inference method that harnesses this unique property—spatial
and temporal dependencies in the input. We first leverage spatial locality (Sec 4.2.1): among the 36
views observed by an agent at each navigation step, we find that those close to navigable views—
views the agent can navigate to—are important. We then propose a novel approach to assign the
exit thresholds of an existing input-adaptive inference method (Sec 4.2.2) for the non-masked views
to provide additional computational savings. In Sec 4.2.3, we exploit temporal locality: between
panorama views observed across navigation steps, the majority of views overlap and do not require
their forward passes to be run again.

4.2.1 HARNESSING SPATIAL LOCALITY

……

……

Adaptive thresholding

𝑘-extension 𝑘-extensionnavigable view

Masking
zero-out

1.0 0.997 0.9960.996 0.997

Figure 4: Our masking and threshold-
ing. The top figure shows how we mask
non-navigable views, and the bottom fig-
ure shows how we adaptively assign the
exit thresholds of MuE.

A panorama view is composed of 36 views, and at each
navigation step, the agent computes visual embeddings
for them. Our first intuition is that only navigable views
are important for successful navigation. Intuitively, these
views form the agent’s decision space, and the information
they contain should be sufficient for choosing the proper
action. To test this hypothesis, we preserve all navigable
views and mask the remaining views (setting them to zero).
Suppose a panorama view contains n navigable views; we
mask all 36 ´ n views and keep the n navigable views.
This way, we can prevent the ViT model from processing
these masked views, thus offering computational savings.
We evaluate the effectiveness of this approach with the
HAMT agent on the validation (unseen) set of R2R. We
found that it resulted in an 84% gain in efficiency, but at the cost of a 33% reduction in SR.

To understand this issue, we manually analyze the failures where the agent could not reach the target
after masking out non-navigable views. In Figure 4, if the agent processes only the navigable view
(4th from the left), it may struggle to identify whether the pathway leads to a stairway. However,
processing neighboring views increases the likelihood of correctly recognizing the pathway.

k-extension. We extend the number of views the agent processes near the navigable views by k.
Suppose a set of n navigable views in a panorama is V , where each navigable view vi is indexed by
t1, 2, . . . , nu. The set of views in the k-extension V i

k for the i-th view is:

V i
k “ tvji |maxp1, i ´ kq ď j ď minpi ` k, 36q u,

5
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where vji is a non-navigable view within the k-extension. Then the union Vk of V i
k s where i P r1, ns,

is the total views in a panorama to process, and the remaining number of masked views which we do
not process is 36 ´ |Vk|. With a careful calibration of k, we reduce the total computations by 2ˆ

times while keeping the performance drop within 10%.

4.2.2 USING ADAPTIVE THRESHOLDS AS STOPPING CRITERIA

Now on top of our k-extension, we design an adaptive mechanism to early-exit the extended views and
further improve model-level computational efficiency. As we describe in the previous sections, we
focus on MuE, the only early-exit mechanism compatible with encoder models. All other early-exits
are developed for classification tasks (or decoder models for natural language processing).

Using the budgeted-batch inference. The current implementation of MuE processes each test sample
with its input-adaptive mechanism. However, this per-sample, anytime strategy is incompatible with
our scenario, where the agent processes a batch of 36 views in a single panorama at once with the ViT.
While each view in the batch should ideally exit at different layers, this per-sample approach forces
all the views to use the same exit layer. To address this issue, we employ the concept, budgeted-
batch inference, proposed by Huang et al. (2018). It allows each sample in a batch to use “uneven"
computations, meaning that processing can stop at different layers for each sample, all within a fixed
computational budget. We assign a sufficiently large computational budget so that the mechanism
can handle the worst-case complexity, where none of the samples in a batch utilize early stopping.

Our adaptive thresholding. In Sec 4.2.1, we find that navigable views are the most important, and
the importance of a view decreases as it gets farther from the navigable views in a panorama. We thus
design a mechanism to apply the early-exit threshold differently based on the importance of each
view. We propose a concept, rank: for views with a low rank, we use an aggressive early-exit with a
smaller threshold, while for high-ranked views, we use a conservative (higher) threshold. Suppose
we have a navigable view vi at index i in a panorama and k is the number of extended views near
vi. We define the rank Ri,j of a non-navigable view vj relative to vi as the difference between the
indices |j ´ i|. Note that we do not process when Ri,j ě k, as views beyond the extension k will be
masked out. We still fully process the navigable views to retain performance. We then assign the exit
threshold Ti,j (the cosine similarity) for MuE as follows:

Ti,j “ T0 ¨ ep´A¨Ri,jq

where T0 is the initial threshold set to 1.0, A is the aggressiveness we set to 9 ˆ 10´4, and Ri,j is
the rank computed above. The threshold decreases as the rank increases T1,j ě T2,j ¨ ¨ ¨ . In our
evaluation, setting k “ 4 typically results in sufficient computational savings with good performance.

4.2.3 HARNESSING TEMPORAL LOCALITY

Our final insight is that during navigation, an agent will encounter similar views multiple times,
leading to temporal redundancy. For example, the views at navigation step i will not differ signifi-
cantly from those at step i ` 1. The agent may also revisit the same surroundings due to misleading
navigation or encounter similar-looking but less important surroundings, such as ceilings or walls.

To reduce this temporal redundancy, we employ locality-sensitive hashing (LSH). LSH works as a
caching mechanism: instead of processing similar views repetitively with the ViT, it stores views and
their visual representations encountered in previous navigation steps, and retrieves them at the current
step. We use the hashing algorithm SimHash, which employs the random projection (Charikar, 2002;
Andoni & Indyk, 2008). SimHash maps high-dimensional views (3ˆ224ˆ224 in our experiments)
into low-dimensionality binary encodings. Given a view v and the randomly initialized hyperplanes
hi, where i P t1, . . . , nu, the algorithm computes which side of the hyperplanes the view v is. If v is
on the top side of hi, SimHash assigns 1; otherwise, it is 0. Similar views are then encoded as the
same binary encoding of length n, e.g., 010. . . 1, and we use this as the key for storing pairs of views
and their visual encoding. We set n to 10. Like early-exiting, we refrain from hashing the navigable
views and fully process them. Combined with our k-extension, we significantly reduce the space
complexity increased by caching. We store only the subset of views processed by the ViT for each
trajectory. With this mechanism, we achieve an additional 2% computational savings without utility
loss. Please refer to Appendix C for more details and an analysis of the added storage overhead.
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4.3 PUTTING ALL TOGETHER

Now we describe how the previous three mechanisms are combined to perform input-adaptive
inference on a panorama view. We show the pseudo-code of our method in Algorithm 1:

Algorithm 1 Our Input-adaptive Navigation at Each Step
Input: a panorama P , a set of navigable views V , a ViT
fθ, a hash table h, and the number of views to extend k
Output: a set of visual representations E for views in P

1: E Ð ∅
# loop over the views in P

2: for i “ 1, 2, . . . , 36 do
3: vi Ð P ris
4: if vi in V then
5: ei Ð fθpviq
6: E Ð E ` ei
7: else if i in k{2 proximity of any views in V then
8: ei Ð hpviq
9: if ei does not exist then

10: j Ð the index of the closest navigable view
11: Ti Ð ComputeThreshold(Ri,j)
12: ei Ð RunMuEInference(vi, Ti)
13: h Ð AddToHashTable(h, vi, ei)
14: end if
15: E Ð E ` ei
16: else
17: E Ð E ` 0⃗

18: end if
19: end for
20: return E

(line 1-2) Initialize. It takes a panorama
view P and returns the visual represen-
tations of the 36 views composing P .
We initialize the output set E as ∅ and
start iterating over each of the 36 views.

(line 4-6) Compute the representation
of a navigable view. Suppose the view
currently chosen vi is a navigable view.
We fully compute its visual representa-
tion ei and add it to the set E.

(line 7-15) Retrieve (or compute) the
representation of the extended views.
In Sec 4.2.1, to improve the understand-
ing of the visual world, we develop the
k-extension. We process k{2 views on
both sides (left and right) of a navigable
view. If we have the representation of
vi in the hash table h, then we retrieve
ei and add it to E. Otherwise, we com-
pute ei. Note that the hash table h is
initialized at the very first step of the
navigation. To compute ei, we first de-
termine vi’s rank Ri,j and decide the
exit threshold Ti. We run the inference
with ViT, adapted for MuE, using Ti and
store the output ei into h and E.

(line 17) Skipping the masked view. If vi is neither a navigable view nor in its k-extension, we skip
processing the view by storing a zero-vector and move on to the next view vi`1.

5 EMPIRICAL EVALUATION

5.1 EFFECTIVENESS OF OUR INFERENCE METHOD

Agent Method
Performance

GFLOPs(Ó)
TL(Ó) OSR(Ò) SR(Ò) SPL(Ò)

HAMT

Base 11.53 74.29 66.16 61.49 4763.24
MuE 17.37 62.20 43.93 36.92 4409.62

Ours (k-extension) 12.52 71.86 61.30 55.79 2408.99
Ours (k-extension+LSH) 12.52 71.90 61.17 55.63 2013.48
Ours (k-extension+thresholds) 12.89 71.95 60.41 54.57 2294.23
Ours (All) 12.87 71.95 60.41 54.5 1917.61

DUET

Base 13.94 81.10 71.73 60.57 4998.00
MuE 16.88 74.84 62.24 49.99 4424.21

Ours (k-extension) 14.03 75.22 65.69 54.06 2413.11
Ours (k-extension+LSH) 14.01 75.18 65.73 54.17 2171.84
Ours (k-extension+thresholds) 14.21 73.82 63.39 52.21 2254.82
Ours (All) 14.21 73.86 63.47 52.35 2026.30

Table 2: Effectiveness of our input-adaptive inference method.
We show our results on R2R for both the HAMT and DUET agents.
Each cell contains the averaged metric over the trajectories in the
validation (unseen) set. Our method achieves „60% computational
savings with a marginal performance loss of „10% (in SR).

We first compare the computa-
tional savings our method of-
fers in two agents across six
popular benchmarking tasks.
As we describe in Sec 3,
we measure four performance
metrics along with GFLOPs
to quantify the computation
an agent requires to finish nav-
igation. We compare with
two baselines: Base, without
any input-adaptive method
and MuE, where we adapt
an existing method for each
agent to provide the optimal
performance-efficiency trade-
off. In our method, we present
four variations: one with k-
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extension (k = 4), and two others (`LSH or `thresholds) that allow us to quantify the effectiveness
of the other mechanisms we design on top of the k-extension, and the final one where we apply All.

Results. Table 2 summarizes our results in R2R. Due to the page limit, we show the full results
for other tasks in Appendix D and more combinations of mechanisms in Appendix E. In R2R, our
method which combines k-extension, LSH, and adaptive thresholding saves „60% computation
while maintaining an SR loss between 8.6–11.5%. We set the upper-limit for performance loss near
10%, consistent with prior work on input-adaptive inference methods (Huang et al., 2018; Liu et al.,
2020; Kaya et al., 2019; Xin et al., 2020; Tang et al., 2023). The naive adaptations of MuE on both
agents only provide 7.4–11.5% computational savings and experience a significant performance drop
of 13.2–33.6% in SR, as expected from our initial investigation in Sec 4.1. Our k-extension alone
provides a 49.4–51.7% reduction in GFLOPs with only a 7.3–8.5% drop in SR. If we apply the
adaptive thresholding (`thresholds), we achieve an additional 2.4–3.2% computational savings, with
a marginal performance loss of „1%. Separately, incorporating the LSH into the k-extension results
in an additional computational savings up to 1.9%, with no performance loss (even the SR increases).

5.2 SENSITIVITY TO OUR METHOD’S CONFIGURATIONS

Next we evaluate how sensitive the computational savings provided by our method to its config-
urations. If a method is too sensitive to the configuration choices, it increases the hidden cost of
employing our approach in practice. We note that no prior work so far has discussed the cost of
employing input-adaptive inference methods. Our method has three key configurations that can
impact its effectiveness: the number of extended views (k), the adaptive thresholds set based on the
extension, and the similarity measure used in our LSH mechanism. Here we show our results in R2R.

k
Performance

GFLOPs(Ó)
TL(Ó) OSR(Ò) SR(Ò) SPL(Ò)

- 11.53 74.29 66.16 61.49 4763.24

1 15.38 70.20 54.32 46.96 1250.65
2 13.67 70.84 58.19 51.99 1554.82
3 12.94 71.60 60.20 54.60 1793.76
4 12.52 71.90 61.17 55.63 2013.48
5 12.19 71.99 62.32 57.08 2216.34
6 11.89 71.99 62.84 57.94 2414.46

Table 3: Performance and computational sav-
ings across different k values. We evaluate with
the HAMT agent in R2R. k is chosen in [1, 6].

Number of extended views (k). Table 3 summa-
rizes the variations in performance and GFLOPs
for different numbers of extended views. We
vary k in [1, 6]. As k decreases, the agent only
needs to process a few views in each panorama,
which results in computational savings of 49.3–
73.7% and a performance drop of 5–18%. It is
surprising that with k “ 1, we can save 74%
of computations while only sacrificing 18% in
performance (SR). We choose k such that an
agent processes approximately half of the total
36 views in each panorama on average. In R2R,
we find that each panorama has an average of 4
navigable views. Extending each of them to 4

neighboring views then results in „18 views per panorama. Given that this strategy provides 50%
computational savings across all benchmarks, even when the average number of navigable views per
panorama is not considered for setting k, we believe the strategy is transferable to new settings.

Thresholds T Performance
A R1,j R2,j R3,j R4,j TL(Ó) OSR(Ò) SR(Ò) SPL(Ò) GFLOPs

0 1.0 1.0 1.0 1.0 12.52 71.90 61.17 55.63 2013.48
0.007 1.0 1.0 1.0 0.997 12.57 71.60 60.96 55.32 1973.23
0.009 1.0 1.0 0.997 0.996 12.87 71.95 60.41 54.5 1917.61
0.015 1.0 0.997 0.996 0.993 13.44 70.67 57.98 52.09 1848.89
0.022 0.997 0.996 0.993 0.990 14.61 70.29 55.60 48.56 1768.85

Table 4: Performance and computational savings across different early-
exit thresholds. We set the aggressiveness A within [0.0, 0.022]. Note that
we round the threshold to 3 decimal places and set any thresholds greater
than 0.998 to 1.0 as ViTs with these thresholds will use full computations.

Early-exit thresholds.
We also analyze the im-
pact of different early-
exit thresholds T . To
this end, we vary the
aggressiveness factor A
from 0.0 to 0.0022. Our
method decreases the
threshold as a view be-
comes farther from a
navigable view. Table 4
shows that as the early-

exit becomes more aggressive (progressing from the top to the bottom rows), performance decreases
while computational efficiency increases. We find that using the aggressiveness over 0.009 leads to a
significant performance drop in SR over 10%. We thus set A to 0.099.
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Using different similarity metrics. In Sec 4.2.3, our primary metric for computing similarity between
views is cosine similarity based on raw RGB pixel values. We explore whether employing different
similarity metrics, commonly used in computer vision studies, can further enhance the effectiveness
of our method. To evaluate this, we test four additional metrics: visual features extracted from ViT’s
first-layer activations, SSIM (Wang et al., 2004), FSIM (Zhang et al., 2011), and LPIPS (Zhang et al.,
2018). We also test other metrics, e.g., SURF (Bay et al., 2006) or SIFT (Lowe, 2004), but they fail to
match even visually similar views in consecutive navigation steps (see Appendix G for more details).

Similarity Metrics
Performance

GFLOPs
TL OSR SR SPL

RGB (Ours) 12.87 71.95 60.41 54.50 1917.61

ViT (1st layer activation) 12.89 71.99 60.41 54.59 1966.95
SSIM (Wang et al., 2004) 12.87 71.95 60.41 54.57 1934.48
FSIM (Zhang et al., 2011) 12.88 71.95 60.45 54.58 1937.73
LPIPS (Zhang et al., 2018) 12.87 71.95 60.49 54.62 1925.15

Table 5: Impact of employing different similarity metrics
in LSH. We experiment with the HAMT model in R2R.

Table 5 shows our results. Across the
board, we observe only a marginal
difference between the similarity met-
rics. We see a performance increase
of 0.16–0.22% at the cost of a 2.6%
increase in computation. The largest
increase in computation comes from
running forward to obtain the interme-
diate activation from ViT (the second
row from the top). The results indi-
cate that our method is not dependent
on the choice of similarity metrics, studied so far in prior work. We also manually analyze the views
identified as similar by these metrics, and most of the views selected are either identical or had tiny
variations, e.g., plain walls with lighting differences.

5.3 ROBUSTNESS OF OUR METHOD UNDER NATURAL CORRUPTIONS

Clean Motion Blur Speckle Noise

Low Lighting Spatter Defocus Blur

Figure 5: Example views illustrating
the five visual corruptions we consider.

Recent work has explored the robustness of VLN agents
to various natural corruptions in their environments (Chat-
topadhyay et al., 2021). We thus evaluate how robust the
computational savings our approach offers are to various
visual corruptions that can happen in practice. We select
five common corruptions that an agent may encounter in
real-world navigation scenarios: Spatter, Defocus Blur,
Speckle Noise, Low Lighting, and Motion Blur. Figure 5
shows how each corruption visually affects a scene. We
apply each corruption to the entire validation (unseen) set
of R2R, using the corruption framework by Chattopadhyay
et al. (2021). We set the severity to 3 out of 5 because set-
ting the severity level above 3 causes excessive distortion
to the views, which does not reflect the realistic corruptions an agent would encounter.

Agent Corruption Performance
TL(Ó) OSR(Ò) SR(Ò) SPL(Ò) GFLOPs(Ó)

HAMT

None 11.53 74.29 66.16 61.49 4763.24

Spatter 13.30 69.82 58.71 52.91 5227.36
Defocus Blur 13.87 66.50 55.21 49.32 5383.35
Speckle Noise 13.60 62.88 51.68 46.02 5345.07
Low Lighting 12.15 71.31 62.58 57.23 4903.06
Motion Blur 12.41 68.20 59.13 54.01 4996.64

Ours

None 12.87 71.95 60.41 54.50 1917.61

Spatter 16.09 67.01 49.04 41.53 2201.19
Defocus Blur 16.22 63.69 49.21 41.73 2082.57
Speckle Noise 18.11 61.43 40.87 33.60 2342.67
Low Lighting 15.27 69.90 52.58 45.33 1516.50
Motion Blur 14.47 65.47 52.96 46.52 1986.50

Table 6: Robustness evaluation of vanilla HAMT and efficient
HAMT under visual corruptions We evaluate both the Vanilla
HAMT and our Efficient HAMT on the R2R dataset under clean
conditions and five different types of visual corruption: spatter,
defocus blur, speckle noise, low lighting, and motion blur.

Results. Table 6 summarizes
our findings from evaluating the
HAMT agent on the R2R bench-
mark. We first observe that apply-
ing our method to a VLN agent re-
duces its performance and compu-
tational savings compared to the
original agent. Across the five cor-
ruptions, the HAMT agent shows
5.4–21.1% reductions in perfor-
mance, while our agent undergoes
12.3–31.3% reductions. GFLOPs
increase by 2.9–13.0% in HAMT,
while we show an increase of 3.6–
20.9%. Per corruption, we find
that both agents are most resilient
to Low Lighting and least robust
to Speckle Noise. This aligns with
the findings of prior work (Chat-

topadhyay et al., 2021). In our evaluation, all the agents use visual encoders pre-trained on ImageNet-
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1K, meaning our agents inherit the susceptibility of these ImageNet encoders to visual corruptions.
This finding highlights the importance of studies on enhancing the robustness of visual encoders to
natural corruptions (Hendrycks & Dietterich, 2019; Guo et al., 2023; Zhu et al., 2023), which could
improve the robustness across various VLN agents.

Baseline VLN Our VLN

Instruction: Walk straight past the kitchen and dining 

room to the sliding glass door. Open the sliding door 
and step outside. Wait by the outdoor dining table.

Instruction: Walk past the towel rack on the right. Exit 

the bathroom, and walk through the closet. Make a left 

at the bed, and walk to the open bedroom door. Wait 
at the top of the stairs.

t = 3

t = 4 (stop)

t = 3

t = 4

t = 5

t = 6

t = 7 (stop)

t = 6

t = 8

t = 7

…
…

Figure 6: Comparison of baseline and our agent trajectories under Spatter corruption. We
demonstrate that our agent fails to stop at the target location, resulting in incorrect navigation (Right),
whereas the baseline agent successfully stops as instructed (Left).

We conduct a manual analysis of the trajectories from the same task for the baseline and our agents in
HAMT. We run this analysis in R2R, where we observe that our HAMT agent suffers from lower
robustness compared to the baseline agent when exposed to visual corruptions. Interestingly, we find
that while our agent experiences a significant drop in SR, the degradation in OSR is notably smaller.
Figure 6 illustrates these examples. In the top figure, our agent fails to stop at the target location,
while the baseline agent successfully stops as intended. The agent is supposed to stop in front of the
outdoor dining table, but our agent reaches the target point and turns around instead of stopping. It
then continues turning until it reaches the maximum allowed steps. Similarly, in the example shown at
the bottom, both agents are required to stop at the top of the stairs, but our agent passes the stairs and
heads into the bedroom. This finding indicates that our agent can navigate to the target destination,
but it struggles to stop correctly at the location in the presence of visual corruptions. Navigating
along the correct trajectory and stopping at the precise location may require different capabilities:
the former relies on pathway identification, while the latter depends on object recognition. Thus, we
hypothesize that our approach does not degrade an agent’s ability to navigate, but negatively impacts
its ability to recognize where they are. Because the robustness of object recognition under various
visual corruptions is a separate, active area of research, we decide to leave this for future work.

6 CONCLUSION

We propose an input-adaptive inference method to mitigate overthinking in vision-and-language navi-
gation (VLN) and achieve computational efficiency. Unlike the overthinking problem in conventional
domains, such as object recognition or natural language comprehension, addressing overthinking in
VLN presents three unique challenges: (1) How can we leverage spatial locality in views observed
by an agent at a navigation step? (2) How can we reduce temporal redundancy across the agent’s
navigation steps? (3) How can we use the mechanisms designed to address the two challenges to
adaptively set early-exit thresholds of an existing method? We present three novel techniques to
address them individually. In our evaluation, we demonstrate a 2ˆ reduction in computations while
preserving performance across six VLN benchmarks. Moreover, we assess the robustness of our
approach under various visual corruptions that may occur in practice, and identify challenges to
address for future work. We hope this work inspires future research on developing efficient (and
robust) VLN algorithms and promote their widespread adoption in real-world settings.
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Reproducability Statement. To ensure our work is reproducible, we provide comprehensive
descriptions of the dataset, models, hyper-parameters and our input-adaptive inference method
both in the main text and in the Appendix. Specifically, Sec 3, Sec 4.2, Sec 5.2, and Appendix A
offer detailed discussions on these topics. Our proposed input-adaptive inference algorithm is
presented in Algorithm 1. We believe these thorough implementation details will enable others to
successfully replicate our work. Additionally, we plan to release the source code to further support
the reproducibility.
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A EXPERIMENT SETUP IN DETAIL

We describe the experimental setup used to evaluate our input-adaptive inference mechanism in detail.
We implemented our strategy on top of the codebases provided by the authors of the HAMT (Chen
et al., 2021) and DUET (Chen et al., 2022). During inference, instead of using cached image features,
we integrate a ViT-B/16 (Dosovitskiy et al., 2021) model to process the images directly.

Hardware and software. We run our experiments on a machine equiped with an Intel Xeon processor
with 48 cores, 64GB of DRAM, and 8 NVIDIA A40 GPUs, with all inference tasks performed on a
single GPU using a batch size of 1. Following the original HAMT study, we use Python v3.8.5 and
PyTorch v1.7.1, along with CUDA v10.1. For GFLOPs calculations, we use the Python library thop.

Datasets. We describe the benchmarking datasets we use in detail:

• R2R (Anderson et al., 2018) is based on Matterport3D (Chang et al., 2017), containing 10,567
panorama views taken from 90 photo-realistic houses. The dataset includes 7,189 shortest-path
trajectories, and each of them is associated with 3 natural language instructions. The training,
validation (seen), validation (unseen), and test (unseen) sets include 61, 56, 11, and 18 houses,
respectively. The validation (seen) set consists of houses in the training set, typically used to
check the generalization status of a model during training, while the sets marked as ‘unseen’ are
the houses not in the training set.

• R2R-Back (Chen et al., 2021) requires the agent to return to its starting point after reaching
the destination. To complete the task, the agent must remember its navigation history. A return
command is appended to each R2R instruction, and the reversed path is provided as guidance for
the return trip.

• R2R-Last (Chen et al., 2021) uses only the last sentence from the original R2R instructions to
describe the destination.

• REVERIE (Qi et al., 2020) provides high-level instructions, closer to those given by humans,
replacing the step-by-step instructions of R2R. Instead of navigating to a target location, the agent
is required to identify and localize the target object upon arrival, making the task more complex
and realistic. The dataset includes 4,140 target objects, which are categorized into 489 distinct
groups.

• CVDN (Thomason et al., 2020) requires the agent to navigate based on long, potentially unclear
instructions. The agent interacts with a navigator through question and answer dialog to clarify
and complete the task. In total, it has 2,050 human-human navigation dialogues, consisting of
over 7,000 navigation trajectories accompanied by question-answer interactions, covering 83
matterport3D houses.

• SOON (Zhu et al., 2021) is similar to REVERIE but contains longer and more detailed instructions.
The average length of these instructions is 47 words, with path lengths varying from 2 to 21
steps. It requires the agent to navigate by understanding the relationship between objects in the
environment to accurately locate the target object.

B OPTIMAL HYPERPARAMETER CHOICE FOR ADAPTING MUE TO OUR WORK

To best evaluate MuE on VLN tasks, we perform a hyperparameter sweep over the threshold used
for early-exiting. Figure 7 presents the performance (in SR) and GFLOPs across different early exit
thresholds applied to the MuE version of ViT used in the HAMT agent, tested on the R2R dataset.
The lowest threshold we report is 0.99, as lower thresholds caused a dramatic drop in performance
(more than 50%). As the threshold increases, the success rate of the MuE agent increases substantially
but at the cost of computational savings. Even for thresholds close to 1, meaning that the ViT is using
a majority of its layers for each input, we still see a large performance drop compared to the baseline
agent. As we discuss in Sec 4.2, this is likely because MuE statically applies early-exits, causing it to
under-process important components of the panorama such as navigable views.

Why does MuE underprocess important views? The intuition behind MuE (Tang et al., 2023) is that
the activations of Transformer-based vision models saturate, where their similarity between layers
peaks early on, and is maintained at future stages of computation, suggesting a lack of new/useful
information. MuE then exploits this property to skip the later layers without a significant loss in
performance. So, for MuE to be successful, the similarity of activations must sufficiently saturate and
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Figure 7: Comparison of performance (in SR) and
GFLOPs in MuE across different thresholds.

Figure 8: Cosine similarity between adja-
cent layers of ViT used in HAMT.

not decrease at later layers. However, as shown in Figure 8, the necessary saturation pattern is not
observed in the VLN setting. The cosine similarity peaks between layers 7 and 8 but then decreases
for all future layers. This explains the significant performance drop when MuE is directly applied to
VLN agents, as it consistently early-exits despite saturation not being achieved.

C OUR LSH ALGORITHM IN DETAIL

A core mechanism we introduce in Sec 4.2.3 is our SimHash algorithm, used to avoid reprocessing
previously seen or near-identical images. Algorithm 2 covers our implementation in detail.

(line 1-9) Hashing RGB vectors. Given an image, we first hash the raw RGB vector into a short
binary encoding using random projection Charikar (2002); Andoni & Indyk (2008). The algorithm
calculates the dot product between the image vector and each hyperplane. If the dot product is
positive, it assigns a binary value of 1, otherwise it assigns 0. These binary values are sequentially
appended to form a complete binary hash key. The length of the hash key is determined by the
number of hyperplanes used in the projection.

(line 10-14) Adding embeddings to the hash table. This function is used to insert processed images
and their corresponding embeddings into the hash table for future use.

(line 15-32) Retrieving a similar embedding. This function takes an image we have not yet processed
and tries to find a suitable embedding candidate. We first obtain all embeddings with images similar
to the current image by hashing it into its binary encoding and accessing the corresponding bucket in
the hash table. We then loop through all images associated with the similar embeddings and find the
one yielding the highest similarity score (in our main experiments, the score is computed using cosine
similarity). If this score exceeds our threshold hyperparameter, we return the associated embedding;
otherwise, we return nothing.

Running the algorithm. We employ the above three functions to run SimHash on an arbitrary
panorama. For each extended navigable view (other views are omitted and explained in Algorithm 1),
we attempt to use a high-similarity embedding from the hash table. If it exists, we reuse this
embedding for the current view and continue to the next. If not, we need to process the view using the
ViT adapted for MuE, and then add the image and its embedding to the hash table. After processing
the entire panorama, we return the set of final embeddings to be used for agent navigation.

Storage overhead analysis. Here, we consider the storage overhead necessary to deploy our hashing
algorithm on VLN agents. Our LSH technique stores pairs of images and embeddings. In the
benchmarks we consider, these images are of size 3x224x224. The embedding size depends on the
model, which for HAMT and DUET is 197x768 (the number of ViT patches times the model’s hidden
dimension). These are stored in full-precision floating-point format (32 bits per value), resulting in
p3 ˆ 224 ˆ 224 ` 197 ˆ 768q ˆ 32 bits of storage per cached pair, approximately 1.2 MB. In our
experiments, the longest navigation route was roughly 12 steps (from R2R-Back), and if we assume
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Algorithm 2 SimHash Algorithm
Input: a current view vi
Output: a binary hash key
1: function HASH(vi)
2: key Ð ∅
3: for each hp in Hyperplanes do
4: sign Ð DotProductphp, viq
5: hash_val Ð psign ą 0q Ź converts to binary
6: key Ð key ` hash_val
7: end for
8: return key
9: end function

Input: a hash table h, a current view vi, an embedding ei
Output: a hash table h
10: function ADDTOHASHTABLE(h, vi, ei)
11: key Ð Hashpviq
12: h Ð InsertToHashTablepkey, vi, eiq
13: return h
14: end function
Input: a hash table h, a current view vi
Output: an embedding ei
15: function FINDSIMILAR(h, vi)
16: smax Ð ´1
17: key Ð Hashpviq
18: bucket Ð h.getpkeyq

19: for each pvcandidate, ecandidateq in bucket do
20: s Ð CosineSimilarity(vi, vcandidate)
21: if s ą smax then
22: smax Ð s
23: ebest Ð ecandidate
24: end if
25: end for
26: if smax ą threshold then
27: ei Ð ebest
28: else
29: ei Ð ∅
30: end if
31: return ei
32: end function

all 36 images per panorama are cached, we obtain a worst-case overhead of 522.7 MB. In practice,
however, we find that most tasks are 5–7 steps, and we cache at most 14 images per step, producing a
more typical overhead of 84.7–118.6 MB. Considering that modern VLN agents Chen et al. (2021;
2022) are orders of magnitude larger, this is not a limiting factor to practical deployment.

D FULL EVALUATION RESULTS

Table 7 complements our main evaluation in Sec 5.1 with additional benchmarks: R2R-Back (Chen
et al., 2021), REVERIE (Qi et al., 2020), R2R-Last (Chen et al., 2021), CVDN (Thomason et al.,
2020), and SOON (Zhu et al., 2021). For CVDN, we report the additional evaluation metric Goal
Progress (GP), which assigns a higher score as the agent moves closer to the goal, indicating better
performance (Chen et al., 2021). For REVERIE and SOON, in addition to image features, object
features are required during navigation. We were unable to find the original implementation for object
feature extraction, so for these benchmarks we use cached object features and apply our strategy only
to image feature extraction. To accommodate this in the performance calculations, we report the
GFLOPs necessary for image feature processing and treat the computational cost of object feature
extraction as a constant (the `C in Table 7). Note that this prevents us from being able to report
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Agent Task Method Performance GFLOPs
TL OSR SR SPL GP

HAMT

R2R-Back Base 20.56 - 55.43 52.34 - 8181.55
Ours (All) 20.53 - 49.21 46.47 - 3331.80

REVERIE Base 14.07 35.73 31.81 29.17 - 5434.71+C
Ours (All) 13.70 26.75 24.96 23.13 - 2735.90+C

R2R-Last Base 12.28 54.24 47.85 42.27 - 4982.68
Ours (All) 12.36 49.72 41.93 36.97 - 2589.44

CVDN Base - - - - 4.88 11022.03
Ours (All) - - - - 4.45 4773.34

DUET

REVERIE Base 22.49 51.46 47.09 33.54 - 6185.15+C
Ours (All) 21.59 46.44 41.32 28.90 - 3350.31+C

SOON Base 35.87 50.38 36.19 22.67 - 9997.81+C
Ours (All) 42.36 54.22 36.43 20.37 - 4533.83+C

Table 7: Comparison of the performance and efficiency of the baseline agents versus our improved-
efficiency agents across multiple benchmarks. Here, we denote the cost of object feature extraction
as C.

percentage-wise changes in total performance, so we consider the raw reduction in GFLOPs in these
cases.

The upper section of the table compares the performance and efficiency of the baseline HAMT
agent against our efficient HAMT agent. For R2R-Back, our strategy achieves a 60% reduction
in computation with an 11% decrease in SR. For REVERIE, our efficient VLN model reduces
computation by 2698.81 GFLOPs, with a 20% drop in SR. For R2R-Last, our method reduces
computation by 48%, with a 12% reduction in SR. Finally, for the CVDN evaluation, our efficient
model reduces computation by 57%, with only a 9% decrease in GP. The lower section of the table
presents a comparison of the performance and efficiencies of the DUET agents. For REVERIE, our
strategy saved 2834.84 GFLOPs with a 12% decrease in SR. For SOON, we observed a marginal
increase in SR accompanied by a 10% drop in SPL, while saving 5463.98 GFLOPs. Despite the
more significant performance drop in the REVERIE task using the HAMT agent, these results
demonstrate that our efficiency strategies are applicable across different benchmarks, achieving
substantial computational savings while maintaining an acceptable trade-off in performance.

Agent Task Average Path Length ∆NE(Ó) ∆GFLOPs(Ó)

HAMT
R2R 6.0 +0.53 -2845.63

R2R-Last 6.0 +0.45 -2393.24
R2R-Back 12.0 +0.54 -5463.98

DUET R2R 6.0 +0.68 -2971.70
SOON 9.6 -0.44 -5463.98

Table 8: Performance of our efficient HAMT agent on bench-
marks with different path lengths. ∆NE and ∆GFLOPs are
the changes in navigation error (NE) and GFLOPs compared
to the baseline agent. The path length is the minimum number
of navigation actions needed to reach the target destination.

Robustness to navigation length. It
is possible that the errors introduced
by our method propagate, resulting
in worse agent navigation for longer
trajectories. We study if this is the
case by considering the navigation er-
ror (NE)—the distance of an agent’s
final position to the target position (in
meters)—on benchmarks with vary-
ing path lengths. We deploy all of our
proposed methods (simultaneously)
on the HAMT agent and report the
changes in NE and GFLOPs com-
pared to the baseline in Table 8.

We find our method is largely robust to longer path lengths. The NE does not increase for longer
trajectories, and we even see a decrease for the SOON benchmark, which has an average path length
3.6 more steps than R2R. The results also show that our efficient VLN agent sees roughly proportional
computational savings for longer paths. For example, the average path length in R2R-Back is double
R2R, and we achieve a 1.92x larger reduction in GFLOPs for the HAMT agent.
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Method TLpÓq OSRpÒq SRpÒq SPLpÒq GFLOPspÓq

None (Base) 11.53 74.29 66.16 61.49 4763.24

k-extension 12.52 71.86 61.30 55.79 2,408.99
thresholds 12.33 72.46 62.62 57.39 3,867.46
LSH 11.53 74.20 66.11 61.47 3,894.76
k-extension+LSH 12.52 71.90 61.17 55.63 2,013.48
k-extension+thresholds 12.89 71.95 60.41 54.57 2,294.23
thresholds+LSH 12.33 72.41 62.49 57.33 3,190.66
All 12.87 71.95 60.41 54.50 1,917.61

Table 10: Performance of all combinations of our speed-up techniques (k-extensions, early-exiting,
and LSH) with the HAMT agent on the R2R benchmark.

Task Agent Method Wall-time (s)

R2R
HAMT Base 200811

Ours 119514

DUET Base 268962
Ours 170464

Table 9: Wall-time comparison between the
baseline agent and our efficient agent on the
R2R task.

Runtime comparison. To validate that our approach
improves efficiency in the real world, we report the
wall-time comparison between our efficient VLN
model and the baseline VLN for both HAMT and
DUET agents, tested on the R2R validation unseen
split, in Table 9. Evidently, our efficient strategy ap-
plied to the VLN agents results in significant runtime
savings, with an approximate 40% reduction. It is
important to note that the disparity between the 60%
GFLOPs savings and the 40% runtime reduction can
be attributed to various hardware and software related
factors.

E PER-MECHANISM ANALYSIS

In most experiments, we treat our proposed mechanisms as a single unit by applying all three
simultaneously. While this is the most flexible and offers the best trade-off between performance
and efficiency, analyzing each mechanism independently can provide valuable insights into its
effectiveness and robustness. Here, we present results on a per-mechanism basis.

Effectiveness. In Sec 5.1, we apply our k-extension technique and then add adaptive thresholding
early-exiting (denoted thresholds in Table 2) and locality-sensitive hashing (LSH) as we found those
combinations of techniques offer the most computational savings. Here, we study all combinations of
three efficiency mechanisms. To use early-exiting and LSH without k-extension, we treat every non-
navigable view as one that can be early-exited or hashed. Navigable views are still fully processed.
We report results for the HAMT agent on the R2R benchmark in Table 10.

The results show that between individual techniques, k-extension offers the best computational
savings with a 49% reduction compared to the baseline agent. Early-exiting and LSH only reduce
GFLOPs by „18% because early-exiting still requires processing every view, and LSH reuses only a
minority of cached image embeddings. We find that LSH provides better performance than the other
two individual mechanisms, with an SR only 0.05 lower than the baseline. This is likely because the
cached embeddings reused by LSH are near-identical, having a negligible impact on performance
when interchanged. However, it is far less efficient than when combined with our other techniques.

The combination we do not present in Table 2, early-exiting and LSH (thresholds+LSH), provides
slightly better performance than combinations using k-extension but at the cost of 39–66% more
GFLOPs. Like the individual mechanisms, this suggests that retaining and partially processing/reusing
the non-navigable views mitigates performance drop but is not nearly as efficient as k-extension.
Overall, we find that all combinations of our techniques fare well, offering different trade-offs between
performance and efficiency.

Robustness to natural corruptions. Now, we complement Sec 5.3 and study the robustness of
each of our proposed mechanisms to visual corruption. We select the Low Lighting and Motion
Blur corruptions based on their varying impact on performance and being more likely to occur in
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Corruption Method TL(Ó) OSR(Ò) SR(Ò) SPL(Ò) GFLOPs(Ó)

Low Lighting

None (Base) 12.15 71.31 62.58 57.23 4903.06

k-extension 13.86 71.14 57.34 50.78 2571.06
thresholds 13.63 70.29 58.79 52.16 4099.21
LSH 12.95 71.43 61.47 55.19 2444.05

Motion Blur

None (Base) 12.41 68.20 59.13 54.01 4996.64

k-extension 14.03 65.13 53.77 48.01 2588.06
thresholds 13.81 68.20 57.51 51.05 4073.04
LSH 12.39 68.03 59.30 54.04 4030.52

Table 11: Performance under visual corruption of our methods applied independently to the HAMT
agent on the R2R benchmark.

real-world VLN systems. We apply our methods to the HAMT agent and report results on the R2R
benchmark in Table 11.

Our methods appear more robust to Low Lighting than Motion Blur, which corroborates our findings
in Sec 5.3. Across both corruptions, k-extension and early-exiting see a slight increase of 150–200
GFLOPs compared to the results in Table 10. This can likely be attributed to the increased trajectory
length, and for early-exiting, we also find that the OOD samples require more ViT layers before
sufficiently saturating. Both mechanisms result in significant drops in performance, though less
than when we apply all simultaneously (results shown in Table 6). Early-exiting is slightly more
robust, achieving a 2–7% higher SR, which makes sense as it processes strictly more images than
k-extension.

Interestingly, LSH functions extremely well when Low Lighting is applied. It offers a „49% reduction
in GFLOPs, compared to just 18% when no corruption is present. We hypothesize that the reduced
lighting makes more images similar, causing our algorithm to find more matches and reuse more
embeddings. It also offers significant robustness, only incurring a 1% point drop in SR. It seems like
our caching mechanism is better suited for this environment, a finding we hope to explore in future
work. For Motion Blur, LSH is less successful, being more robust than our other mechanisms but
with minimal computational savings.

F RELATED WORK ON MODEL COMPRESSION

Research has proposed an orthogonal approach to reduce the computational demands and memory
footprint of deep-learning models: model compression. Quantization and pruning are the leading
practice in model compression. Quantization (Jacob et al., 2018; Choi et al., 2018; Louizos et al.,
2018; Bhalgat et al., 2020; Uhlich et al., 2019; Banner et al., 2019; Choukroun et al., 2019; Li et al.,
2021; Nagel et al., 2020) transforms the memory representation of model parameters from 32-bit
floating point numbers to a lower-bit integers (e.g., 4-bit integers), thereby making it more storage
efficient and lowering memory usage. Pruning (Molchanov et al., 2016; Fan et al., 2019; Fang et al.,
2023; Nova et al., 2023; Han et al., 2015b;a; Hoang & Liu, 2023) aims to create sparse models by
removing parameters that are less important for maintaining performance, effectively reducing model
size and computation.

While quantization and pruning have been demonstrated in simpler unimodal encoder settings for
image and text, they are much more challenging in vision-language model(VLM) settings (Wang
et al., 2022; Sun et al., 2024) and largely unexplored in VLN. (Wang et al., 2022) highlighted the
challenges of pruning VLMs due to the unequal weighting of visual and linguistic modalities. They
mitigated this by using a modal-adaptive approach, adjusting pruning ratios across different model
components based on downstream task sensitivity. Similarly, (Sun et al., 2024) demonstrated that
naively applying post-training quantization to CLIP caused significant performance degradation,
which they addressed by introducing prompt tuning and alignment modules.

We expect similar challenges to be exhibited by VLN agents, if not exacerbated. VLN models, in
addition to processing language and visual modalities, involve sequential decision-making dependent
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on actions taken at each time step. We anticipate the complex interactions between these information
sources to require careful consideration while adapting model compression techniques. Future
research on such techniques can be superposed along with our input-adaptive inference method to
develop highly efficient models with an acceptable performance trade-off.

G COMPARISON OF ADDITIONAL SIMILARITY METRICS

A

B

Figure 9: Two sets of example views (A and B)
demonstrating non-identical but similar views that
have been slightly shifted during navigation.

Simiarlity Metrics Set A Set B

SSIM (Wang et al., 2004) 0.24 0.32
FSIM (Zhang et al., 2011) 0.26 0.27
LPIPS (Zhang et al., 2018) 0.55 0.62

SURF (Bay et al., 2006) 0.31 0.32
SIFT (Lowe, 2004) 0.45 0.37
ORB (Rublee et al., 2011) 0.07 0.19

Figure 10: Similarity scores measured on Set A
and B. We test 6 different similarity metrics.

Other than the three similarity metrics we use,
we test three additional metrics for comparison:
SURF (Bay et al., 2006), SIFT (Lowe, 2004),
and ORB (Rublee et al., 2011). These are feature
detection and description algorithms designed
to identify and match keypoints in images. The
similarity scores are computed by dividing the
number of matching keypoints by the minimum
number of keypoints detected in the two images.
We test all six algorithms on two sets of scenes,
reflecting shifts caused by an agent’s changing
perspectives during navigation.

Figure 9 illustrates the two sets of scenes, and
Table 10 summarizes the quantitative compari-
son. Among the three metrics we employ for our
main evaluation, LPIPS demonstrates a higher
similarity measure of approximately 60% for
both sets. In contrast, SSIM and FSIM are
less effective at capturing the similarity between
views in Sets A and B. The three additional met-
rics (SURF, SIFT, and ORB) are also ineffective
in providing reliable similarity scores for both
image sets A and B. Our qualitative compari-
son of different similarity metrics applied to sets
of similar scenes highlight the challenges these
metrics face in accurately identifying true visual
similarity. We believe that an accurate measure
of scene similarity is crucial for further reducing
the computational demands of a VLN agent, and
we leave this for future work.

H ANALYZING PERFORMANCE-EFFICIENCY TRADE-OFF IN OUR METHOD
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Figure 11: Trade-off between Perfor-
mance (SR) and GFLOPs

In order to illustrate our tunable performance-efficiency
trade-off, we show that even when limiting the perfor-
mance drop to under 5%, our input adaptive inference
method applied to the HAMT agent achieves significant
computational savings. For reference, the baseline HAMT
model achieves a SR of 66.16 with a computational cost
of 4763.24 GFLOPs. Figure 11 shows that with a 3–5%
drop in SR, we still manage to achieve 43–50% savings in
GFLOPs. These results were tested on the R2R validation
unseen dataset.
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