Activation Differential Analysis for Enhancing Chain-of-thought Reasoning

Anonymous ACL submission

Abstract

Despite the impressive chain-of-thought (CoT)
reasoning ability of large language models
(LLMs), its underlying mechanisms remains
unclear. In this paper, we explore the inner
workings of LLM’s CoT ability via the lens of
neurons in the feed-forward layers. We pro-
pose an efficient method to identify reasoning-
critical neurons by analyzing their activation
patterns under reasoning chains of varying qual-
ity. Based on it, we devise a rather simple in-
tervention method that directly stimulates these
reasoning-critical neurons, to guide the genera-
tion of high-quality reasoning chains. Extended
experiments validate the effectiveness of our
method and demonstrate the critical role these
identified neurons play in CoT reasoning. Our
code and data will be publicly available.

1 Introduction

Through the chain-of-thought (CoT) prompting
strategy (Wei et al., 2022; Merrill and Sabharwal,
2024), large language models (LLMs) can arrive
at correct answers through a step-by-step reason-
ing paradigm. However, LLMs often generate text
with obvious mistakes, raising doubts about their
ability to robustly process reasoning chains (Turpin
et al., 2023). Therefore, understanding LLMs rea-
soning mechanisms is important to improve their
reasoning accuracy and efficiency.

A surge of work has been conducted to ex-
plore techniques to improve reasoning accuracy
and efficiency. Previous studies have predomi-
nantly focused on optimizing external components
of CoT (Fu et al., 2023; Wang et al., 2023a; Tang
et al., 2023; Jin et al., 2024), such as prompt engi-
neering and symbolic representations (Madaan and
Yazdanbakhsh, 2022; Ye et al., 2023). While these
approaches provide valuable external insights into
the factors that enhance CoT performance, they
fall short of offering an internal explanation for the
quality of the model’s outputs.

To address this gap, researchers have attempted
to provide mechanistic explanations for the model’s
CoT reasoning abilities. Existing work can be
roughly categorized into module-level and neuron-
level interpretation methods. Concretely, the
module-level methods generally leverage causal
tracing (Meng et al., 2022, 2023) and circuit con-
struction (Hanna et al., 2023; Yao et al., 2024) to
identify and analyze key modules involved in the
model’s CoT reasoning process. However, due to
the higher cost of estimating all the components
within LL.Ms, these methods can not be used for
more fine-grained analysis, attention heads and neu-
rons. In contrast, neuron-level methods aim to
identify important neurons in the model by analyz-
ing their activation values in the feed-forward net-
work (FFN) (Stolfo et al., 2023; Yu and Ananiadou,
2024b,a) or attention heads (Wang et al., 2023b; Li
et al., 2023; Yeh et al., 2024). However, the large
scale of the neurons and their great randomness
in activation values, also increase the difficulty in
accurately estimating their contributions.

In this paper, we identify reasoning-critical neu-
rons by leveraging the activation differences of
FFN neurons across reasoning chains of varying
quality. Our motivation is that by modulating their
activation strengths, we can directly enhance the
model performance on downstream tasks. Con-
cretely, we propose an efficient approach to investi-
gate the inner workings of LLMs’ reasoning abili-
ties through the lens of neurons in the feed-forward
layers. We first construct a contrastive dataset of
varying reasoning trajectories using the MATH
benchmark’s training set. Leveraging the dataset,
we analyze the neurons activation patterns under
reasoning chains of varying quality. Specifically,
we quantify the disparity in neuron activations by
computing the ratio of their activation values be-
tween high- and low-quality chains, then apply a
threshold to select neurons exhibiting significant
activation differences. As shown in Figure 4a, these



neurons consistently demonstrate stronger activa-
tion during correct reasoning chains. Then, we
modulate the activation strengths of these neurons
to alter the quality of generated CoT chains.

Experimental results demonstrate the effective-
ness of our method across all subdomains of the
MATH benchmark, leading to 2.4% relative im-
provement on average.

2 Preliminary

Currently, most LLLMs are built upon an auto-
regressive Transformer architecture (Vaswani et al.,
2017), in which the core components are the multi-
head self-attention (MHA) and the feed-forward
network (FFN). Given the MHA output hli at layer
1, the FFN output can be expressed as follows:

FFN(h}) = V'f(K'h)) (1)

where K! € RVx4 vl ¢ RN represent two lin-
ear layers, and f denotes the non-linear activation
function. In this paper, we define a neuron as a
specific scalar parameter in the weight matrix V.

In this paper, we study how to identify the acti-
vation coefficients of key neurons within the LLM,
and how to improve the CoT reasoning ability by
intervening these neurons.

3 Methodology

3.1 Contrastive Dataset Construction

To identify neurons that significantly influence the
quality of CoT, we first construct a contrastive
dataset of high-quality and low-quality CoT rea-
soning trajectories using the MATH benchmark’s
training set, which covers seven mathematical sub-
domains to diversity in the thematic content of rea-
soning tasks. For each problem, we generate multi-
ple CoT trajectories through controlled sampling,
which ensures that each problem contains 5 to 10
different model outputs. Then we classify them into
quality categories based on solution quality. We
perform initial classification based on answer cor-
rectness, then we conduct manual verification, ulti-
mately obtaining a contrastive dataset that encom-
passes both high- and low-quality CoT instances.
High-quality CoT demonstrates both correct final
answers and logically consistent reasoning steps,
while low-quality CoT contains either incorrect
answers or fundamentally flawed reasoning paths.
The final dataset comprises 4,900 meticulously con-
structed CoT pairs for neuron identification.

3.2 CoT Key Neurons Identification

Neuron Contribution Estimation. Based on our
contrastive dataset, we analyze the internal activa-
tion differences in the model under different quality
CoTs, to estimate the contribution of each neuron
on generating high-quality CoTs. Specifically, we
feed the LLM with CoT trajectories. For the j-th
neuron in the i-th layer, we first compute the aver-
age activation strength when processing the CoT
trajectories. We define mfj') as the average activa-
tion strength value for the high-quality CoT trajec-
tories and mEJ_) for the low-quality CoT trajecto-
ries. Given the varying average activation values of
neurons across different layers, defining an appro-
priate significance threshold is challenging. There-
fore, we consider using ratio-based differentiation
Tij = ml(j) / ml(]_) rather than absolute difference
metrics to quantify the neuronal variance.

,,,,, I !

f' Generated \'; Accuracy Based
i CoT r Classification —l
Low Quality High Quality
CoT CoT
! !
Model
| }_ R i __________ 1
: Neuron Activation i Neuron Activation :
o . |
| o |
| o |
| i |
............ |
iAvg [ ] ] : i Avg ] [ ] i
e boom |
1 I
!

"
Contribution Score = ;

Activation Enhancement

| (Scaled up 10%)
Select Top-10%

Figure 1: CoT key neuron identification and intervention
based on FFN neurons activation difference.

CoT Key Neurons Selection. Our identification
protocol employs a cascaded filtering approach:
first, we select neurons in the top 10% of the {r;;}
distribution, then we impose a predefined threshold
to further filter neurons with significant differences.
If the difference measure r;; of a neuron exceeds
this threshold, we consider that neuron to be related
to the quality of the LLM’s CoT. We present this
step in Algorithm 1 in Appendix.

Interventing Neurons for Improving CoT Rea-
soning. We next validate whether our method suc-
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Figure 2: Impact of perturbing neuron activation values
on the reasoning task accuracy of LLaMA-3.2 (3B).

cessfully identifies reasoning neurons. We begin
by conducting a neuron coefficient enhancement
experiment, where we amplify the coefficients of
the identified neurons and observe the resulting per-
formance changes on downstream tasks. Following
this, we perform a neuron coefficient interference
experiment, in which we set the coefficients of the
identified neurons to zero and examine the impact
on performance in downstream tasks.

4 Experiments

4.1 Main Results

Here, we present our experimental findings, our
experimental setup is presented in Appendix. We
first identify a set of critical neurons through our
proposed method, which selects neurons exhibit-
ing significantly higher activation strength under
high-quality reasoning chains compared to low-
quality instances. We then conduct enhancement
experiments by amplifying the activation values
of these neurons by 1.1 during mathematical rea-
soning tasks. For comparison, we evaluate three
baseline conditions with equivalent quantities of
neurons, detailed descriptions of these methods are
provided in Appendix. The main results are pre-
sented in Table 2, we observe that the enhancement
of our identified differential neurons yields consis-
tent accuracy improvements across all MATH sub-
datasets, with average gains of 2.4% compared to
greedy CoT. This performance advantage suggests
that our methodology effectively captures neurons
specifically involved in high-quality reasoning pro-
cesses, potentially responsible for steering LLM to
generate high quality reasoning chains.

To further investigate the causal relationship be-
tween these neurons and reasoning capability, we
conduct interference experiments through activa-
tion suppression. We observe that complete deacti-
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Figure 3: Impact of selection threshold and scaling
scalar on the reasoning accuracy of LLaMA-3.2 (3B).

vation of these neurons result in catastrophic fail-
ure on solving mathematical problems. In contrast,
random deactivation of equivalent numbers of neu-
rons only causes relatively marginal performance
decreases. This sharp contrast in task sensitivity
confirms that the identified neurons are crucial for
maintaining mathematical reasoning capabilities.

4.2 Further Analysis

Ablation study. Here, we conduct experiments to
investigate the influence of two hyper-parameters
in our method. We first examine the impact of
the threshold used to select neurons. The results
are shown in Figure 3a, as the selection thresh-
old increases, neurons associated with CoT quality
are identified, leading to a gradual improvement
in the pruned model’s accuracy on mathematical
reasoning tasks. However, further elevation of the
selection threshold may result in the exclusion of
critical neurons, causing a decline in the model’s
task performance. We then set the selection thresh-
old to 1.15, exploring the impact of varying scaling
factors. As shown in Figure 3b, increasing the scal-
ing factor enhances the pruned model’s reasoning
ability. However, as the scaling factor continues to
grow, the model’s performance begins to decline,
which is likely attributed to the model’s sensitivity
to the activation coefficients.

Activation pattern under varying quality CoTs.
As shown in Figure 4a, when comparing activa-
tion patterns between high-quality and low-quality
CoTs, we observe distinct distribution characteris-
tics. Neurons activated under different quality CoT
samples exhibit a pronounced ratio peak around
1.16, while those from same-quality CoT samples
reveal no significant ratio differences. This vali-
dates our method’s capability to isolate reasoning-
critical neurons through cross-quality comparisons.

Neuron distribution across layers. Figure 4b
presents the distribution of average identified neu-



MATH

Models Method
Algebra CP PC PA Geometry IA NT Avg.
Greedy CoT 69.75 43.68 3040 65.00 36.15 25.8  39.32  47.71
Top-activation 67.96 43.68 32.50 63.72 37.80 23.40 4232 4734
LLaMA 32 3B IT MathNeuro 67.96 4453  29.00 65.23 38.47 26.50 39.70 47.64
Random 69.15 43.00 30.20 65.50 36.15 26.15 36.70 47.35
Ours 70.77 4732 33.65 67.44 40.59 28.27 40.82 50.11
Greedy CoT 67.80 4132 31.16 67.90 36.36 2690 42.69 48.20
Top-activation 66.27 42.82  31.73 67.90 35.70 26.76  41.57 47.83
LLaMA 3.1 8B IT MathNeuro 68.82 4197 31.50 68.00 36.36 27.34 4250 48.61
Random 66.53 4250 30.85 66.83 35.92 26.50 4043 4743
Ours 69.07 46.04 33.26 69.88 40.59 28.27 4232 50.13
Greedy CoT 44.52 23776 1720 41.74 22.83 12.74  21.16 28.74
Top-activation 42.30 24.10 16.80 41.00 22.26 12.63  19.10 27.78
LLaMA 32 IBIT MathNeuro 44.85 23.76 1450 42.79 24.52 12.63 219  28.93
Random 45.19 23.80 17.00 40.50 21.80 13.00 20.78 28.57
Ours 47.32 2633 19.12 443 26.84 14.13 2434 31.28
Greedy CoT 91.42 68.31 60.99 84.88 64.06 59.79  78.65 75.05
Top-activation 91.75 68.52 6347 84.88 63.42 58.63 76.02 74.87
Qwen Math 2.5B IT MathNeuro 91.68 69.59 61.76 84.76 64.75 61.29 78.15 75.58
Random 91.50 68.31 61.18 84.65 63.42 59.55 79.13  75.00
Ours 92.77 70.88 63.67 86.27 65.96 61.64 80.90 76.91

Table 1: Experimental results on MATH dataset. PC and PA denote Precalculus and Prealgebra, respectively. Avg.
is the average value of all categories. The best are denoted in bold and the second-best are underlined.
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Figure 4: Distribution of activation strength difference
and identified reasoning neurons across layers.

rons across model layers. Reasoning-critical neu-
rons predominantly cluster in middle-to-high lay-
ers, with the final layer containing most identified
neurons. This distribution aligns with prior find-
ings about transformer architectures, where middle
layers encode task-solving information while final
layers specialize in answer generation. The high
concentration in later layers suggests these neurons
serve as final-stage quality controllers that integrate
intermediate reasoning states into coherent outputs.

Overlap between the identified neurons and the
top-activated neurons. Figure 5 illustrates the
overlap rates between the neurons identified by our
method and the top 5% — 50% activated neurons
across different layers, revealing a U-shaped pat-
tern. It indicates that critical neurons for reasoning
quality are not consistently among the most highly
activated neurons, particularly in middle layers. It
aligns with our experimental findings that scaling
the activation values of neurons with significant
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Figure 5: Overlap between the identified neurons and
the top-activated neurons across layers.

activation differences across reasoning qualities
within the top-activated group yields weaker per-
formance improvements compared to scaling all
neurons with significant activation differences.

5 Conclusion

In this work, we investigate the internal activa-
tion patterns of models when generating Chain-
of-Thought (CoT) of varying quality. Specifically,
we first construct a contrastive dataset comprising
correct and incorrect reasoning chains, then we
propose an effective method to identify reasoning-
critical neurons based on activation disparities.
Through further experiments, we demonstrate that
modulating the activation strengths of these neu-
rons can enhance the model’s reasoning perfor-
mance on downstream tasks.



Limitations

Our study has several limitations. First, our anal-
ysis experiments are primarily conducted on the
LLaMA-3.2-3B architecture. Since neural sensi-
tivity to interventions varies significantly across
model families and scales, some conclusions of
our analysis results may not generalize to other
LLMs. Second, while we focus on FFN layers due
to their established role in knowledge representa-
tion (Dai et al., 2022), LLMs’ reasoning ability
comes from complex interactions between multi-
ple components, so a complete mechanistic under-
standing requires future investigation into more
components in LLMs like attention layers. Finally,
although our contrastive dataset for identifying rea-
soning neurons is effective, we have not systemat-
ically explored optimal dataset characteristics for
neuron identification, we plan to explore these in
our future work.
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A Reasoning Neuron Collection
Algorithm

We present our proposed neuron collection method
in Algorithm 1

Algorithm 1 Reasoning Neuron Collection

1: Input: Correct solution examples £, incorrect solution
examples &2, selection ratio threshold 6, the target LLM

2: Output: A set of candidate neurons N

3: Initialize N« {}, M 0, M) «0
4. for each example in & :

5: for each layeri = 1,...,m:

6: for each neuron j =1,...,n:

7: ai; < AvgL2Norm({a;; }h_y, k)
8: MY« MY +ay

9: for each example in &; :

10: for each layert =1,...,m:

11: for eachneuron j =1,...,n:

12: aij < AvgL2Norm({af; }2ly, k)
13: M) M + a

14: for each layer [ =1, ..., L :

15: for each neuron j = 1,...,n:

16: m,EjH +— Avg(]\li(jﬂ7 size(€1)))
17: m) — Avg(M, size(£2)))
18: {ri;} < FindLargest(mEﬁ/mE;), 0)
19: L L N« NU {’Uij|1"7;j € {7"1']'}}

B Experimental Setup

Models. We conduct our primary experiments
on LLaMA 3.2 3B Instruct (MetaAl, 2024b), a
state-of-the-art language model specifically fine-
tuned for instruction-following and reasoning tasks.
LLaMA 3.2 3B Instruct is known for its robust per-
formance in complex reasoning scenarios, particu-
larly in mathematical and logical problem-solving,
making it an ideal candidate for our study on CoT
reasoning.To ensure the generalizability of our ap-
proach, we also evaluate our method on models of
varying scales and architectures, including LLaMA
3.2 1B (MetaAl, 2024b) Instruct ,LLaMA 3.1 8B
Instruct (MetaAl, 2024a) and Qwen Math 2.5 In-
struct. This multi-model setup allows us to validate
the applicability of our method across different con-
figurations.

Dataset. Our evaluation is conducted on the test
sets of the MATH benchmark (Hendrycks et al.,
2021), a widely recognized dataset designed to
assess the mathematical reasoning and problem-
solving capabilities of large language models. The
MATH dataset comprises a collection of challeng-
ing competition-level mathematical problems, typ-
ically sourced from middle and high school math

competitions such as AMC and AIME. These prob-
lems span a broad range of mathematical domains
and are carefully curated to test reasoning skills.
The dataset is divided into seven categories: Alge-
bra, Counting and Probability, Precalculus, Prealge-
bra, Geometry, Intermediate Algebra, and Number
Theory, providing a comprehensive benchmark for
our study. The details of the datasets is shown in
Table 2.

Category Train Dev/Test
Algebra 1744 1187
CP 771 474
Precalculus 746 546
Prealgebra 1205 871
Geometry 870 479
1A 1295 903
NT 869 540

Table 2: Statistics of the MATH datasets. CP, IA, and
NT denote Counting and Probability, Intermediate Al-
gebra, and Number Theory, respectively.

C Details of Main Experiments Baselines

e Top Activated Neurons. Many existing meth-
ods directly identify important neurons through
saliency scores (Geva et al., 2022; Sun et al., 2024).
Inspired by prior work, we select the top K% of
neurons with the highest average activation values
under positive CoT conditions as important neu-
rons. This approach provides a computationally
efficient baseline for neuron identification.

e MathNeuro. MathNeuron (Christ et al., 2024)
identifies important parameters in LLMs by isolat-
ing math-specific parameters and improves down-
stream task performance through parameter scaling
and pruning. We adapt this method to a neuron-
level version by identifying neurons that are acti-
vated under positive CoT but not under negative
CoT conditions. We use its default implementation
for our pruning experiments.

e Random Selection. As a control baseline, we
randomly select the same number of neurons to
compare against the other methods. This baseline
serves as a reference for different methods.

D Domain-Specific Neuron Analysis

To investigate relationships between selected
neurons from different mathematical reasoning
datasets, we perform set operations on neurons fil-
tered by seven domain-specific contrastive datasets.
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Figure 6: Pertubation result across different domain-
specific neurons.

By computing the complement of each dataset-
specific neuron set against the union of all other do-
main sets, we identify unique neurons exclusively
associated with individual mathematical domains,
which we term domain-specific neurons. The quan-
titative distribution of these neurons across do-
mains is presented in Table 3. We further conduct
intervention experiments to examine the impact of
these specific neurons, the results are presented in
Figure 6, we observe that suppressing activation
values of domain-specific neurons in domain A
causes disproportionately larger accuracy degrada-
tion on Domain A’s evaluation set compared to
other domains. This suggests that beyond gen-
eral mathematical reasoning neurons, activation
patterns of neurons tied to particular mathematical
subfields also contribute to LLM’s CoT reasoning
quality.

Algebra CP PC PA Geometry IA NT
1,580 1,071 2,880 604 4,246 492 278

Table 3: The number of neurons across different do-
mains.

Inspired by prior work (Geva et al., 2022), we
further project these neurons to vocabulary space
via unembedding matrices. As exemplified in Ta-
ble 4, we observe that some domain-specific neu-
rons exhibit semantic associations with their corre-
sponding mathematical domains, which provides
additional evidence for our hypothesis that domain-
specific neurons constitute modular knowledge
units specialized for distinct reasoning contexts.



Category neuron Top tokens

5%)’1 Vol, vol, volume, Vol, vol
Geometry 2167 2 sphere, spherical, spheres, Sphere, Sphere
f3806 radius, radius, Radius, Radius, _radius
f178100 vectors, vector, Vector, vector, direction
Algebra f 51213 A Distance, distance, Distance, distances, distance
S projection, projections, blitz, project, optimal
f3502 Ninth, Nine, Sep, XIII, IX
NT foro8 567, 42, 345, 678, 876
e third, Third, Third, -three, third
fllf52 sum, total, sum, .sum, total
CP f%’?o more, more, 8 %, More, MORE

1955 percentage, percentages, percent, Percentage, Percent

Table 4: List of domains related to math reasoning along with their relative neurons and neurons’ corresponding top
tokens in Llama 3.2-3B Instruct.
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