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Abstract

Despite the impressive chain-of-thought (CoT)001
reasoning ability of large language models002
(LLMs), its underlying mechanisms remains003
unclear. In this paper, we explore the inner004
workings of LLM’s CoT ability via the lens of005
neurons in the feed-forward layers. We pro-006
pose an efficient method to identify reasoning-007
critical neurons by analyzing their activation008
patterns under reasoning chains of varying qual-009
ity. Based on it, we devise a rather simple in-010
tervention method that directly stimulates these011
reasoning-critical neurons, to guide the genera-012
tion of high-quality reasoning chains. Extended013
experiments validate the effectiveness of our014
method and demonstrate the critical role these015
identified neurons play in CoT reasoning. Our016
code and data will be publicly available.017

1 Introduction018

Through the chain-of-thought (CoT) prompting019

strategy (Wei et al., 2022; Merrill and Sabharwal,020

2024), large language models (LLMs) can arrive021

at correct answers through a step-by-step reason-022

ing paradigm. However, LLMs often generate text023

with obvious mistakes, raising doubts about their024

ability to robustly process reasoning chains (Turpin025

et al., 2023). Therefore, understanding LLMs rea-026

soning mechanisms is important to improve their027

reasoning accuracy and efficiency.028

A surge of work has been conducted to ex-029

plore techniques to improve reasoning accuracy030

and efficiency. Previous studies have predomi-031

nantly focused on optimizing external components032

of CoT (Fu et al., 2023; Wang et al., 2023a; Tang033

et al., 2023; Jin et al., 2024), such as prompt engi-034

neering and symbolic representations (Madaan and035

Yazdanbakhsh, 2022; Ye et al., 2023). While these036

approaches provide valuable external insights into037

the factors that enhance CoT performance, they038

fall short of offering an internal explanation for the039

quality of the model’s outputs.040

To address this gap, researchers have attempted 041

to provide mechanistic explanations for the model’s 042

CoT reasoning abilities. Existing work can be 043

roughly categorized into module-level and neuron- 044

level interpretation methods. Concretely, the 045

module-level methods generally leverage causal 046

tracing (Meng et al., 2022, 2023) and circuit con- 047

struction (Hanna et al., 2023; Yao et al., 2024) to 048

identify and analyze key modules involved in the 049

model’s CoT reasoning process. However, due to 050

the higher cost of estimating all the components 051

within LLMs, these methods can not be used for 052

more fine-grained analysis, attention heads and neu- 053

rons. In contrast, neuron-level methods aim to 054

identify important neurons in the model by analyz- 055

ing their activation values in the feed-forward net- 056

work (FFN) (Stolfo et al., 2023; Yu and Ananiadou, 057

2024b,a) or attention heads (Wang et al., 2023b; Li 058

et al., 2023; Yeh et al., 2024). However, the large 059

scale of the neurons and their great randomness 060

in activation values, also increase the difficulty in 061

accurately estimating their contributions. 062

In this paper, we identify reasoning-critical neu- 063

rons by leveraging the activation differences of 064

FFN neurons across reasoning chains of varying 065

quality. Our motivation is that by modulating their 066

activation strengths, we can directly enhance the 067

model performance on downstream tasks. Con- 068

cretely, we propose an efficient approach to investi- 069

gate the inner workings of LLMs’ reasoning abili- 070

ties through the lens of neurons in the feed-forward 071

layers. We first construct a contrastive dataset of 072

varying reasoning trajectories using the MATH 073

benchmark’s training set. Leveraging the dataset, 074

we analyze the neurons activation patterns under 075

reasoning chains of varying quality. Specifically, 076

we quantify the disparity in neuron activations by 077

computing the ratio of their activation values be- 078

tween high- and low-quality chains, then apply a 079

threshold to select neurons exhibiting significant 080

activation differences. As shown in Figure 4a, these 081
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neurons consistently demonstrate stronger activa-082

tion during correct reasoning chains. Then, we083

modulate the activation strengths of these neurons084

to alter the quality of generated CoT chains.085

Experimental results demonstrate the effective-086

ness of our method across all subdomains of the087

MATH benchmark, leading to 2.4% relative im-088

provement on average.089

2 Preliminary090

Currently, most LLMs are built upon an auto-091

regressive Transformer architecture (Vaswani et al.,092

2017), in which the core components are the multi-093

head self-attention (MHA) and the feed-forward094

network (FFN). Given the MHA output hl
i at layer095

i, the FFN output can be expressed as follows:096

FFN(hl
i) = V lf(K lhl

i) (1)097

where K l ∈ RN×d,V l ∈ Rd×N represent two lin-098

ear layers, and f denotes the non-linear activation099

function. In this paper, we define a neuron as a100

specific scalar parameter in the weight matrix V l.101

In this paper, we study how to identify the acti-102

vation coefficients of key neurons within the LLM,103

and how to improve the CoT reasoning ability by104

intervening these neurons.105

3 Methodology106

3.1 Contrastive Dataset Construction107

To identify neurons that significantly influence the108

quality of CoT, we first construct a contrastive109

dataset of high-quality and low-quality CoT rea-110

soning trajectories using the MATH benchmark’s111

training set, which covers seven mathematical sub-112

domains to diversity in the thematic content of rea-113

soning tasks. For each problem, we generate multi-114

ple CoT trajectories through controlled sampling,115

which ensures that each problem contains 5 to 10116

different model outputs. Then we classify them into117

quality categories based on solution quality. We118

perform initial classification based on answer cor-119

rectness, then we conduct manual verification, ulti-120

mately obtaining a contrastive dataset that encom-121

passes both high- and low-quality CoT instances.122

High-quality CoT demonstrates both correct final123

answers and logically consistent reasoning steps,124

while low-quality CoT contains either incorrect125

answers or fundamentally flawed reasoning paths.126

The final dataset comprises 4,900 meticulously con-127

structed CoT pairs for neuron identification.128

3.2 CoT Key Neurons Identification 129

Neuron Contribution Estimation. Based on our 130

contrastive dataset, we analyze the internal activa- 131

tion differences in the model under different quality 132

CoTs, to estimate the contribution of each neuron 133

on generating high-quality CoTs. Specifically, we 134

feed the LLM with CoT trajectories. For the j-th 135

neuron in the i-th layer, we first compute the aver- 136

age activation strength when processing the CoT 137

trajectories. We define m
(+)
ij as the average activa- 138

tion strength value for the high-quality CoT trajec- 139

tories and m
(−)
ij for the low-quality CoT trajecto- 140

ries. Given the varying average activation values of 141

neurons across different layers, defining an appro- 142

priate significance threshold is challenging. There- 143

fore, we consider using ratio-based differentiation 144

rij = m
(+)
ij /m

(−)
ij rather than absolute difference 145

metrics to quantify the neuronal variance. 146

Figure 1: CoT key neuron identification and intervention
based on FFN neurons activation difference.

CoT Key Neurons Selection. Our identification 147

protocol employs a cascaded filtering approach: 148

first, we select neurons in the top 10% of the {rij} 149

distribution, then we impose a predefined threshold 150

to further filter neurons with significant differences. 151

If the difference measure rij of a neuron exceeds 152

this threshold, we consider that neuron to be related 153

to the quality of the LLM’s CoT. We present this 154

step in Algorithm 1 in Appendix. 155

Interventing Neurons for Improving CoT Rea- 156

soning. We next validate whether our method suc- 157
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Figure 2: Impact of perturbing neuron activation values
on the reasoning task accuracy of LLaMA-3.2 (3B).

cessfully identifies reasoning neurons. We begin158

by conducting a neuron coefficient enhancement159

experiment, where we amplify the coefficients of160

the identified neurons and observe the resulting per-161

formance changes on downstream tasks. Following162

this, we perform a neuron coefficient interference163

experiment, in which we set the coefficients of the164

identified neurons to zero and examine the impact165

on performance in downstream tasks.166

4 Experiments167

4.1 Main Results168

Here, we present our experimental findings, our169

experimental setup is presented in Appendix. We170

first identify a set of critical neurons through our171

proposed method, which selects neurons exhibit-172

ing significantly higher activation strength under173

high-quality reasoning chains compared to low-174

quality instances. We then conduct enhancement175

experiments by amplifying the activation values176

of these neurons by 1.1 during mathematical rea-177

soning tasks. For comparison, we evaluate three178

baseline conditions with equivalent quantities of179

neurons, detailed descriptions of these methods are180

provided in Appendix. The main results are pre-181

sented in Table 2, we observe that the enhancement182

of our identified differential neurons yields consis-183

tent accuracy improvements across all MATH sub-184

datasets, with average gains of 2.4% compared to185

greedy CoT. This performance advantage suggests186

that our methodology effectively captures neurons187

specifically involved in high-quality reasoning pro-188

cesses, potentially responsible for steering LLM to189

generate high quality reasoning chains.190

To further investigate the causal relationship be-191

tween these neurons and reasoning capability, we192

conduct interference experiments through activa-193

tion suppression. We observe that complete deacti-194
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Figure 3: Impact of selection threshold and scaling
scalar on the reasoning accuracy of LLaMA-3.2 (3B).

vation of these neurons result in catastrophic fail- 195

ure on solving mathematical problems. In contrast, 196

random deactivation of equivalent numbers of neu- 197

rons only causes relatively marginal performance 198

decreases. This sharp contrast in task sensitivity 199

confirms that the identified neurons are crucial for 200

maintaining mathematical reasoning capabilities. 201

4.2 Further Analysis 202

Ablation study. Here, we conduct experiments to 203

investigate the influence of two hyper-parameters 204

in our method. We first examine the impact of 205

the threshold used to select neurons. The results 206

are shown in Figure 3a, as the selection thresh- 207

old increases, neurons associated with CoT quality 208

are identified, leading to a gradual improvement 209

in the pruned model’s accuracy on mathematical 210

reasoning tasks. However, further elevation of the 211

selection threshold may result in the exclusion of 212

critical neurons, causing a decline in the model’s 213

task performance. We then set the selection thresh- 214

old to 1.15, exploring the impact of varying scaling 215

factors. As shown in Figure 3b, increasing the scal- 216

ing factor enhances the pruned model’s reasoning 217

ability. However, as the scaling factor continues to 218

grow, the model’s performance begins to decline, 219

which is likely attributed to the model’s sensitivity 220

to the activation coefficients. 221

Activation pattern under varying quality CoTs. 222

As shown in Figure 4a, when comparing activa- 223

tion patterns between high-quality and low-quality 224

CoTs, we observe distinct distribution characteris- 225

tics. Neurons activated under different quality CoT 226

samples exhibit a pronounced ratio peak around 227

1.16, while those from same-quality CoT samples 228

reveal no significant ratio differences. This vali- 229

dates our method’s capability to isolate reasoning- 230

critical neurons through cross-quality comparisons. 231

Neuron distribution across layers. Figure 4b 232

presents the distribution of average identified neu- 233

3



Models Method
MATH

Algebra CP PC PA Geometry IA NT Avg.

LLaMA 3.2 3B IT

Greedy CoT 69.75 43.68 30.40 65.00 36.15 25.8 39.32 47.71
Top-activation 67.96 43.68 32.50 63.72 37.80 23.40 42.32 47.34

MathNeuro 67.96 44.53 29.00 65.23 38.47 26.50 39.70 47.64
Random 69.15 43.00 30.20 65.50 36.15 26.15 36.70 47.35

Ours 70.77 47.32 33.65 67.44 40.59 28.27 40.82 50.11

LLaMA 3.1 8B IT

Greedy CoT 67.80 41.32 31.16 67.90 36.36 26.90 42.69 48.20
Top-activation 66.27 42.82 31.73 67.90 35.70 26.76 41.57 47.83

MathNeuro 68.82 41.97 31.50 68.00 36.36 27.34 42.50 48.61
Random 66.53 42.50 30.85 66.83 35.92 26.50 40.43 47.43

Ours 69.07 46.04 33.26 69.88 40.59 28.27 42.32 50.13

LLaMA 3.2 1B IT

Greedy CoT 44.52 23.76 17.20 41.74 22.83 12.74 21.16 28.74
Top-activation 42.30 24.10 16.80 41.00 22.26 12.63 19.10 27.78

MathNeuro 44.85 23.76 14.50 42.79 24.52 12.63 21.9 28.93
Random 45.19 23.80 17.00 40.50 21.80 13.00 20.78 28.57

Ours 47.32 26.33 19.12 44.3 26.84 14.13 24.34 31.28

Qwen Math 2.5B IT

Greedy CoT 91.42 68.31 60.99 84.88 64.06 59.79 78.65 75.05
Top-activation 91.75 68.52 63.47 84.88 63.42 58.63 76.02 74.87

MathNeuro 91.68 69.59 61.76 84.76 64.75 61.29 78.15 75.58
Random 91.50 68.31 61.18 84.65 63.42 59.55 79.13 75.00

Ours 92.77 70.88 63.67 86.27 65.96 61.64 80.90 76.91

Table 1: Experimental results on MATH dataset. PC and PA denote Precalculus and Prealgebra, respectively. Avg.
is the average value of all categories. The best are denoted in bold and the second-best are underlined.
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Figure 4: Distribution of activation strength difference
and identified reasoning neurons across layers.

rons across model layers. Reasoning-critical neu-234

rons predominantly cluster in middle-to-high lay-235

ers, with the final layer containing most identified236

neurons. This distribution aligns with prior find-237

ings about transformer architectures, where middle238

layers encode task-solving information while final239

layers specialize in answer generation. The high240

concentration in later layers suggests these neurons241

serve as final-stage quality controllers that integrate242

intermediate reasoning states into coherent outputs.243

Overlap between the identified neurons and the244

top-activated neurons. Figure 5 illustrates the245

overlap rates between the neurons identified by our246

method and the top 5% − 50% activated neurons247

across different layers, revealing a U-shaped pat-248

tern. It indicates that critical neurons for reasoning249

quality are not consistently among the most highly250

activated neurons, particularly in middle layers. It251

aligns with our experimental findings that scaling252

the activation values of neurons with significant253
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Figure 5: Overlap between the identified neurons and
the top-activated neurons across layers.

activation differences across reasoning qualities 254

within the top-activated group yields weaker per- 255

formance improvements compared to scaling all 256

neurons with significant activation differences. 257

5 Conclusion 258

In this work, we investigate the internal activa- 259

tion patterns of models when generating Chain- 260

of-Thought (CoT) of varying quality. Specifically, 261

we first construct a contrastive dataset comprising 262

correct and incorrect reasoning chains, then we 263

propose an effective method to identify reasoning- 264

critical neurons based on activation disparities. 265

Through further experiments, we demonstrate that 266

modulating the activation strengths of these neu- 267

rons can enhance the model’s reasoning perfor- 268

mance on downstream tasks. 269
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Limitations270

Our study has several limitations. First, our anal-271

ysis experiments are primarily conducted on the272

LLaMA-3.2-3B architecture. Since neural sensi-273

tivity to interventions varies significantly across274

model families and scales, some conclusions of275

our analysis results may not generalize to other276

LLMs. Second, while we focus on FFN layers due277

to their established role in knowledge representa-278

tion (Dai et al., 2022), LLMs’ reasoning ability279

comes from complex interactions between multi-280

ple components, so a complete mechanistic under-281

standing requires future investigation into more282

components in LLMs like attention layers. Finally,283

although our contrastive dataset for identifying rea-284

soning neurons is effective, we have not systemat-285

ically explored optimal dataset characteristics for286

neuron identification, we plan to explore these in287

our future work.288
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A Reasoning Neuron Collection453

Algorithm454

We present our proposed neuron collection method455

in Algorithm 1

Algorithm 1 Reasoning Neuron Collection
1: Input: Correct solution examples E1, incorrect solution

examples E2, selection ratio threshold θ, the target LLM
2: Output: A set of candidate neuronsN .
3: InitializeN ← {},M (+)

ij ← 0,M
(−)
ij ← 0

4: for each example in E1 :
5: for each layer i = 1, ...,m :
6: for each neuron j = 1, ..., n :
7: âij ← AvgL2Norm({ak

ij}Nk=1, k)

8: M
(+)
ij ←M

(+)
ij + âij

9: for each example in E2 :
10: for each layer i = 1, ...,m :
11: for each neuron j = 1, ..., n :
12: âij ← AvgL2Norm({ak

ij}Nk=1, k)

13: M
(−)
ij ←M

(−)
ij + âij

14: for each layer l = 1, ..., L :
15: for each neuron j = 1, ..., n :
16: m

(+)
ij ← Avg(M

(+)
ij , size(E1)))

17: m
(−)
ij ← Avg(M

(+)
ij , size(E2)))

18: {rij} ← FindLargest(m
(+)
ij /m

(−)
ij , θ)

19: N ← N ∪ {vij |rij ∈ {rij}}

456

B Experimental Setup457

Models. We conduct our primary experiments458

on LLaMA 3.2 3B Instruct (MetaAI, 2024b), a459

state-of-the-art language model specifically fine-460

tuned for instruction-following and reasoning tasks.461

LLaMA 3.2 3B Instruct is known for its robust per-462

formance in complex reasoning scenarios, particu-463

larly in mathematical and logical problem-solving,464

making it an ideal candidate for our study on CoT465

reasoning.To ensure the generalizability of our ap-466

proach, we also evaluate our method on models of467

varying scales and architectures, including LLaMA468

3.2 1B (MetaAI, 2024b) Instruct ,LLaMA 3.1 8B469

Instruct (MetaAI, 2024a) and Qwen Math 2.5 In-470

struct. This multi-model setup allows us to validate471

the applicability of our method across different con-472

figurations.473

Dataset. Our evaluation is conducted on the test474

sets of the MATH benchmark (Hendrycks et al.,475

2021), a widely recognized dataset designed to476

assess the mathematical reasoning and problem-477

solving capabilities of large language models. The478

MATH dataset comprises a collection of challeng-479

ing competition-level mathematical problems, typ-480

ically sourced from middle and high school math481

competitions such as AMC and AIME. These prob- 482

lems span a broad range of mathematical domains 483

and are carefully curated to test reasoning skills. 484

The dataset is divided into seven categories: Alge- 485

bra, Counting and Probability, Precalculus, Prealge- 486

bra, Geometry, Intermediate Algebra, and Number 487

Theory, providing a comprehensive benchmark for 488

our study. The details of the datasets is shown in 489

Table 2.

Category Train Dev/Test
Algebra 1744 1187

CP 771 474
Precalculus 746 546
Prealgebra 1205 871
Geometry 870 479

IA 1295 903
NT 869 540

Table 2: Statistics of the MATH datasets. CP, IA, and
NT denote Counting and Probability, Intermediate Al-
gebra, and Number Theory, respectively.

490

C Details of Main Experiments Baselines 491

• Top Activated Neurons. Many existing meth- 492

ods directly identify important neurons through 493

saliency scores (Geva et al., 2022; Sun et al., 2024). 494

Inspired by prior work, we select the top K% of 495

neurons with the highest average activation values 496

under positive CoT conditions as important neu- 497

rons. This approach provides a computationally 498

efficient baseline for neuron identification. 499

• MathNeuro. MathNeuron (Christ et al., 2024) 500

identifies important parameters in LLMs by isolat- 501

ing math-specific parameters and improves down- 502

stream task performance through parameter scaling 503

and pruning. We adapt this method to a neuron- 504

level version by identifying neurons that are acti- 505

vated under positive CoT but not under negative 506

CoT conditions. We use its default implementation 507

for our pruning experiments. 508

• Random Selection. As a control baseline, we 509

randomly select the same number of neurons to 510

compare against the other methods. This baseline 511

serves as a reference for different methods. 512

D Domain-Specific Neuron Analysis 513

To investigate relationships between selected 514

neurons from different mathematical reasoning 515

datasets, we perform set operations on neurons fil- 516

tered by seven domain-specific contrastive datasets. 517
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Alge
bra CP PC PA

Geo
metr

y IA NT

Algebra

CP

PC

PA

Geometry

IA

NT

-37.5% -15.4% -9.3% -10.5% -16.6% -4.7% -3.5%

-24.5% -54.4% -11.8% -17.7% -21.1% -3.4% -1.0%

-37.8% -9.4% -24.5% -0.6% -12.0% 6.3% 5.0%

-19.1% -7.9% -8.2% -24.3% -8.0% -3.4% -1.8%

-27.5% -11.7% -5.9% -12.9% -30.1% 2.9% -0.6%

-47.4% -16.0% -16.5% -6.2% -12.9% -23.2% -1.2%

-31.4% -18.1% -8.5% -24.7% -19.5% -14.0% -11.0%

Figure 6: Pertubation result across different domain-
specific neurons.

By computing the complement of each dataset-518

specific neuron set against the union of all other do-519

main sets, we identify unique neurons exclusively520

associated with individual mathematical domains,521

which we term domain-specific neurons. The quan-522

titative distribution of these neurons across do-523

mains is presented in Table 3. We further conduct524

intervention experiments to examine the impact of525

these specific neurons, the results are presented in526

Figure 6, we observe that suppressing activation527

values of domain-specific neurons in domain A528

causes disproportionately larger accuracy degrada-529

tion on Domain A’s evaluation set compared to530

other domains. This suggests that beyond gen-531

eral mathematical reasoning neurons, activation532

patterns of neurons tied to particular mathematical533

subfields also contribute to LLM’s CoT reasoning534

quality.535

Algebra CP PC PA Geometry IA NT

1,580 1,071 2,880 604 4,246 492 278

Table 3: The number of neurons across different do-
mains.

Inspired by prior work (Geva et al., 2022), we536

further project these neurons to vocabulary space537

via unembedding matrices. As exemplified in Ta-538

ble 4, we observe that some domain-specific neu-539

rons exhibit semantic associations with their corre-540

sponding mathematical domains, which provides541

additional evidence for our hypothesis that domain-542

specific neurons constitute modular knowledge543

units specialized for distinct reasoning contexts.544
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Category neuron Top tokens

Geometry
f431
23 Vol, vol, volume, Vol, vol

f1727
26 sphere, spherical, spheres, Sphere, Sphere
f1806
26 radius, radius, Radius, Radius, _radius

Algebra
f7100
18 vectors, vector, Vector, vector, direction
f4347
24 Distance, distance, Distance, distances, distance
f391
19 projection, projections, blitz, project, optimal

NT
f2802
23 Ninth, Nine, Sep, XIII, IX
f5198
25 567, 42, 345, 678, 876
f937
26 third, Third, Third, -three, third

CP
f1452
14 sum, total, sum, .sum, total
f2920
19 more, more,更多, More, MORE
f4955
19 percentage, percentages, percent, Percentage, Percent

Table 4: List of domains related to math reasoning along with their relative neurons and neurons’ corresponding top
tokens in Llama 3.2-3B Instruct.
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